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Abstract
Detections of gravitational waves from astrophysical sources such as binary black holes by
LIGO and Virgo has attracted widespread attention from the scientific community, the me-
dia and the general public. Among these sources, precessing systems with a misalignment
of the black hole spin and the orbital angular momentum are of particular interest because
of the rich dynamics they offer. For aligned-spin systems, the energy and momentum emit-
ted above the orbital plane is symmetric to the emission below the plane. For mis-aligned
systems, however, this is not the case and amplitude and phase modulations will appear in
the waveform itself. Even when transformed to a coprecessing frame that follows the orbital
angular momentum direction, such asymmetric features are clearly visible. When the signal is
decomposed into modes of spin-weighted spherical harmonics, we can discuss the asymmetry
between the negative and positive m-modes by defining an anti-symmetric waveform, which
is neglected in most waveform models used in gravitational wave data analysis to date. Mode
asymmetry is therefore a hot topic in the gravitational wave community, with many questions
still to be answered. In this thesis, we analyse the phenomenology of the anti-symmetric
waveform for several binary black hole configurations and relate it to the physics of remnant
black hole recoil. We find strong correlations between the intrinsic system parameters and
the amplitude and phase of the anti-symmetric waveform, and hence the magnitude of the
out-of-plane recoil velocity.
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1 INTRODUCTION

1 | Introduction
The Universe, with its unimaginable size and sheer endless possibilities, has inspired the minds
of humanity for centuries. Humans observed the sky with the naked eye, or later with instru-
ments such as telescopes, and tried to build a theory based on their observations. Nowadays,
it is usually the other way round, and we confirm or reject the predictions of our theoretical
models of nature by the outcome of experiments. This was also the case for gravitational
waves (GWs), oscillations in the curvature of spacetime that Albert Einstein predicted in the
early 20th century as a result of his theory of general relativity (GR) [1], which is still our
current understanding of gravity. Almost 100 years later, on 14 September 2015, the first
direct detection of a GW by the advanced Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) finally verified the existence of GWs [2]. The source of the detected GW was the
inspiral and merger process 1.4 billion years ago of two black holes (BHs) with masses about
30 times that of the Sun. A BH is an extremely dense object with a strong gravitational field.
With the first GW detection, a new era in astronomy has been opened up. To date, nearly
100 observations have been published by the LIGO-Virgo-KAGRA (LVK) collaboration [3–5],
including a binary neutron star (BNS) merger [6] and two neutron star-black hole (NSBH) coa-
lescences [7]. The most recent observation was the evidence of a GW background radiation by
several pulsar timing array (PTA) collaborations, which take a different approach, observing
and analysing a set of galactic pulsars to look for correlated signatures in the arrival times of
the pulses at Earth [8–10]. The range of applications of GW detection is vast, from answering
questions about fundamental physics [11–19] to our understanding of stellar evolution [20–23].

Besides challenges in the instrument’s technology and in data analysis, the power of new
discoveries from GW detection is limited by our ability to model the expected signals. With-
out an accurate understanding of how the physical characteristics of a source affect their
waveform, measuring and interpreting these characteristics becomes problematic. While sim-
ple approximate waveforms were useful for the first detections and data analysis explorations,
the true value of future GW astronomy lies in the need for precise theoretical models of wave-
forms. GW modelling can be understood in many ways, but the most informative step is
always to analyse the phenomenology of the time-consuming full numerical solution of Ein-
stein’s GR theory for a given initial value problem. Such a solution, which usually takes the
form of a wave in a matter-free spacetime, allows us to find imprints of the initial configu-
ration physics and its time evolution. This is exactly how the title of this thesis should be
interpreted, including the fact that understanding the physics of the GW source mainly means
operating in the time domain, as the frequency domain is less intuitive and more useful for
data analysis approaches.

More specifically, in this thesis we study a subtle physical effect that is noticeable in GW
signals from numerical simulations of generic spinning binary black hole (BBH) systems or
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in highly specialised waveform models such as NRSur7dq4 [24], which is directly based on
numerical simulations and which we will mainly use in this work. The physical effect men-
tioned is the asymmetry between the +m and −m multipoles of the wave’s spherical harmonic
decomposition. Due to these asymmetries, energy and linear momentum are preferentially
radiated along or opposite to the orbital angular momentum, leading to an out-of-plane recoil
of the remnant BH, since linear momentum is conserved. The mode asymmetries are of a
small order of magnitude compared to the overall signal strength and are therefore neglected
in most standard waveform models, but are essential if the full spin and recoil information is
to be extracted with current or future detectors [25–30]. Motivated by a small number of pub-
lications that have studied the mode asymmetry in an abstract mathematical framework [31]
or with the aim of building a first model [32] or of analysing it in terms of the recoil [33], here
we bring together some of their concepts and further develop the relations between all of them.

The reader who is already familiar with the mathematical concepts and the basics of GW de-
tection and modelling may wish to skip sec. 2 and move directly to the discussion of the imprint
of the multipole asymmetry on the waveform of precessing BBHs in sec. 3. In sec. 4 we use our
new knowledge of the asymmetry and relate it to the recoil velocity of the remnant BH. At the
end of this thesis we summarise our results and give an outlook in sec. 5. All code related to
this thesis is open source and available at https://github.com/janmie1701/master-thesis.
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2 GRAVITATIONAL WAVES

2 | Gravitational waves
This section introduces important basic concepts of GWs, a fundamental prediction of Ein-
stein’s theory of GR. We start by exploring the mathematical foundations, including the most
basic conceptual form of Einstein’s equations in sec. 2.1, and go into more detail in sec. 2.2,
until we have a theoretical framework to describe the GW radiation of precessing BBHs,
which will be deeply analysed in this thesis. We will then go into the practical aspects, from
the description of the detection of GWs in sec. 2.3 to the explanation of their modelling by
different approaches in sec. 2.4.

2.1 Einstein field equations

The fundamental concept to describe the interaction between matter, space and time is the
theory of GR. We briefly summarise standard textbooks by Hartle [34] and Schutz [35] in
this chapter. In 1916 Albert Einstein published his pioneering work about the interpretation
of gravity as a geometric property of a curved spacetime [36]. The American theoretical
physicist John Archibald Wheeler summed up the Einstein field equations (EFE) in a few
straightforward words: "Space tells matter how to move, matter tells space how to curve"
[37]. In more mathematical words, the EFE read

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (2.1)

To understand this expression, which is technically a set of ten nonlinear partial differential
equations, we need to look at the key concept in GR that describes the local geometry of
spacetime, called the metric tensor gµν , for which the EFE has to be solved. It is often
expressed as the line element in a four-dimensional manifold

ds2 = gµνdx
µdxν , (2.2)

where we have used the Einstein summation convention of implicitly summing repeated in-
dices. Rµν is the Ricci curvature tensor and can be understood as a quantification of how
the local geometry described by a specific metric tensor deviates from the geometry of the
standard Minkowski spacetime η = diag(−1,+1,+1,+1). The Ricci tensor can be expressed
with Christoffel symbols as

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (2.3)

in a local coordinate system. The Christoffel symbols are defined as

Γα
µν =

1

2
gαβ (∂µgβν + ∂νgµβ − ∂βgµν) (2.4)
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2.1 Einstein field equations

and are some auxiliary quantities in the concept of differential geometry to describe covariant
derivatives on manifolds. By contraction of the Ricci tensor, the Ricci scalar

R = gµνRµν (2.5)

can be derived.

The cosmological constant Λ is a constant coefficient of a term Einstein added to his field
equations to explain his assumption of a static Universe. After Edwin Hubble’s discovery
that the Universe is expanding, Einstein set the cosmological constant to zero. Nowadays this
quantity is interpreted as the energy density of vacuum and plays a huge role in the context
of explaining the accelerated expansion of the Universe and dark energy. The stress-energy
tensor Tµν describes the density and flux of momentum and energy in spacetime. It is the
gravitational field’s source and provides a mathematical description of how matter and energy
interact with spacetime.

The geometrized unit system, where G = c = 1 is set, simplifies many equations in GR.
It follows that physical quantities like energy, time and length have the unit of mass. This
convenient choice of physical units is used consistently throughout this thesis. SI units are
only used in specific sections to get a better intuitive feeling for the quantitative dimensions.

2.1.1 Schwarzschild metric

One of the most famous analytical solutions of the EFE is the Schwarzschild solution. A
few months after Einstein’s publication in 1915, Karl Schwarzschild considered the EFE in a
vacuum, meaning Tµν = 0, and assumed that all mass m is at a singular point at the origin.
The solution he found is nowadays known as the Schwarzschild metric. Its line element in
four-dimensional spherical coordinates, i.e. time t, radial line r, polar angle θ and azimuthal
angle ϕ, reads [37]

ds2 = −
(
1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2 dθ2 + r2 sin2(θ) dϕ2 . (2.6)

This solution is relevant to astrophysics because it describes the metric of an uncharged,
non-rotating BH. Additionally, due to Birkhoff’s theorem [37], it characterises the outer grav-
itational field of an isolated, homogeneous, non-charged, non-rotating star of mass m. When
looking at the line element, two special values of the radial coordinate, r = 0 and r = 2m,
play a crucial role in the understanding of the properties of BHs. The true physical r = 0

singularity is a point of infinite density and curvature at the centre of the BH, while at
the Schwarzschild radius rS = 2m the event horizon represents the boundary beyond which
nothing can escape the gravitational attraction, including light.
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2 GRAVITATIONAL WAVES

2.1.2 Kerr metric

Because most of the BHs known through astrophysical observations are not of a static kind,
it is worthwhile to study the properties of rotating BHs. A deeper understanding of rotating
BHs can be found in Ref. [38], on which this chapter is based. The Kerr metric, another
solution of the EFE, describes rotating BHs of mass m with a specific angular momentum
a = |s⃗ | /m ∈ [0,m], also known as the Kerr parameter. The line element in Boyer-Lindquist
coordinates has the following form:

ds2 =−
(
1− 2mr

ρ2

)
dt2 − 4mra sin2(θ)

ρ2
dϕ dt+

ρ2

∆
dr2 + ρ2 dθ2

+

(
r2 + a2 +

2mra2 sin2(θ)

ρ2

)
sin2(θ) dϕ2 ,

(2.7)

where ρ2 = r2 + a2 cos2(θ) and ∆ = r2 − 2mr + a2. Rotating BHs have a ring singularity
at r = a and a more complex structure of event horizons. Event horizons occur formally
at spacetime points where the radial component of the underlying metric becomes singular,
meaning grr = 0. Two solutions are obtained, commonly denoted by the symbols r+ and r−:

r± = m±
√
m2 − a2 . (2.8)

There is a transition to the Schwarzschild limit of the event horizon of a non-rotating BH
when a = 0, then r+ = 2m and r− = 0.

x/m

−1
0

1 y/
m−1

0
1

z/m

−1

0

1

a = 0

x/m

−1
0

1 y/
m−1

0
1

z/m

−1

0

1

a = 0.95m

x/m

−1
0

1 y/
m−1

0
1

z/m

−1

0

1

a = m

Figure 2.1: Important surfaces of the Kerr metric for a non-rotating, highly rotating and extremely
rotating BH. The figures include the ergosphere outer boundary rE+ (magenta), the outer event
horizon r+ (grey), the inner stationary limit surface rE− (green) and the inner event horizon r−
(blue). The ring singularity (red) is located at the cusp of the blue surface. In the Schwarzschild
limit, a = 0, the ring singularity, the green and blue surfaces are one point at the origin, and the
grey and magenta surfaces are identical. This figure has been modified based on Fig. 1 in Ref. [38]
with ideas from a computational GR lecture by Matthias Hanauske in Summer Term 2021 at Goethe
University Frankfurt, summarised on this website [39].
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2.2 Mathematical concepts of gravitational waves

Solving gtt = 0 leads to two further interesting solutions:

rE± = m±
√
m2 − a2 cos2(θ) . (2.9)

These are known as the stationary limit surfaces or surfaces of infinite redshift. The space
between rE+ and and the outer horizon r+ is called ergosphere. In the ergosphere, particles,
even light, have to co-rotate with the spin direction due to the strong frame-dragging effect.
The inner surface structure is visualised in Fig. 2.1. Of course, the Kerr metric is only a
theoretical concept for rotating BHs. However, even if understanding the structure of the inner
horizons is of secondary importance, their spacetime in the outer regions strongly influences
the matter, like accretion disks around a rotating BH, and is therefore highly relevant to
astrophysics [40].

2.2 Mathematical concepts of gravitational waves

Spacetime geometry is not just a rigid background, it also exhibits a dynamic behaviour. One
of the most fascinating consequences of the spacetime dynamics is that perturbations in the
spacetime geometry can propagate as waves. This solution of the EFE is commonly known
as a GW, which Einstein predicted in 1916 [1], just one year after his publication on GR [36].
GWs have analogies to electromagnetic waves. They transport energy, travel at the speed of
light, and have the ability to interfere. In contrast, GWs can pass through matter without
being significantly absorbed or scattered, making them very difficult to measure.

Unless otherwise stated, the first three chapters of this sec. 2.2 follow the standard textbooks
by Hartle [34], Misner/Thorne/Wheeler [37] and Schutz [35]. In addition, several concepts
are derived from the lecture on gravitational physics given by Frank Ohme at the Leibniz
University Hanover in the summer semester of 2023.

2.2.1 Linearised gravity in vacuum

In the weak gravitational-field limit, perturbation theory can be applied to the flat Minkowski
metric ηµν . This method is called linearised gravity and is widely used to describe GWs.
Consider an almost flat spacetime with a small metric perturbation hµν . There is a coordinate
frame in which

gµν = ηµν + hµν , |hµν | ≪ 1 . (2.10)

Keeping only terms up to linear order in hµν when calculating the Ricci tensor, the vacuum
EFE simplify to

Rµν =
1

2
(−□hµν + ∂µVν + ∂νVµ) = 0 , (2.11)

where we have introduced the d’Alembert operator □ = ∂µ∂
µ and an auxiliary vector

Vµ = ∂αhµ
α − 1

2
∂µhα

α . (2.12)

6



2 GRAVITATIONAL WAVES

The choice of coordinates for which Eq. (2.10) holds is not unique. We can still apply a small
coordinate transformation of the form

x′µ = xµ + ξµ, |∂νξµ| ≪ 1 , (2.13)

also called a gauge transformation. Under this transformation, hµν transforms as

h′µν = hµν − ∂µξν − ∂νξµ . (2.14)

We can enforce V ′
µ = 0. To achieve this, ξµ is required to satisfy the following relation:

□ξµ = ∂αhµ
α − 1

2
∂µhα

α . (2.15)

A solution to this equation can always be found [41]. Even more, this relation is not unique
since a solution of the homogeneous equation □ξµ = 0 can be added, say to the right-hand
side, and still leave Eq. (2.15) valid. This results in the Lorenz gauge condition:

0 = ∂αhµ
α − 1

2
∂µhα

α . (2.16)

For a simpler representation, we have chosen to omit the dash in the notation for the trans-
formed coordinate system. By doing so, we see that in this Lorenz gauge Eq. (2.11) becomes
a familiar form of the wave equation:

□hµν = 0 . (2.17)

A general complex solution reads

hµν = Aµνe
ikµxµ

, (2.18)

where the wave vector kµ has to fulfil kµkµ = −ω2 + |⃗k|2 = 0, i.e. GWs move with the speed
of light. The dispersion relation |⃗k| = ω = 2π/λ is valid.

To find a simple representation of the symmetric perturbation tensor hµν underlying ten in-
dependent components, we attempt to eliminate eight components by gauge choice. Within a
Lorenz gauge, a further gauge transformation can be applied that preserves the Lorenz gauge,
as long as the additional transformation satisfies the wave equation. For example, looking at
Eq. (2.14), we can choose ∂µξν = hµν . These additional degrees of freedom are used to set
four components of hµν to zero, hµµ = 0 and h0i = 0 with i = 1, 2, 3. Thus the Lorenz gauge
condition in Eq. (2.16) gives kµhµν = 0. If we now align the coordinate system such that the
z-axis is along the propagation direction, we can write hµν in this transverse-traceless (TT)

7



2.2 Mathematical concepts of gravitational waves

gauge as

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



. (2.19)

The two independent remaining components are called plus and cross polarisation. The space
between test particles is simultaneously squeezed and stretched by both polarisations. Their
orientations are rotated 45◦ with respect to each other. It is common to consider both polar-
isations simultaneously by defining a complex-valued scalar strain,

h = h+ − ih× , (2.20)

which is very convenient when modelling waveforms, because we can get information about
the strength of the GW via the absolute value |h| and about the phase difference between the
polarisations via the argument arg(h). The minus sign is chosen by convention.

y

x

y

x

time −→

h+

h×
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x
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x
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Figure 2.2: Visualisation of the two independent GW polarisations, h+ and h×, as they affect the
distances between free-floating test particles. A full period of a GW propagating along the z-axis and
acting on the x-y-plane is depicted. The figure is reconstructed based on Fig. 8.1 and Eq. (8.39) in
Ref. [42].

2.2.2 Sources of gravitational waves

Revisiting the full EFE, we have to consider matter as a source to generate GWs. By intro-
ducing the trace-reversed perturbation tensor

h̄µν = hµν −
1

2
ηµνhα

α , (2.21)

so that the Lorenz gauge becomes ∂αh̄µα = 0, the EFE turn into

□h̄µν = −16πTµν . (2.22)

8



2 GRAVITATIONAL WAVES

Analogous to the inhomogeneous electromagnetic wave equation we can obtain the general
solution of Eq. (2.22) in terms of the retarded integral

h̄µν(t, x⃗) = 4

∫
d3x′

Tµν(t− |x⃗− x⃗ ′|, x⃗ ′)
|x⃗− x⃗ ′| . (2.23)

To keep the weak-field approximation of linearised gravity, we approximate large distances
from the source, |x⃗− x⃗ ′| ≈ |x⃗| := r, and simplify Eq. (2.23):

h̄µν(t, x⃗) ≈
4

r

∫
d3x′ Tµν(t− r, x⃗ ′) . (2.24)

Using the stress-energy conservation ∂µTµν = 0 and projecting in the TT gauge [41], we can
find

hij(t, r) =
2

r
Ïij(t− r) , (2.25)

with i, j ∈ {1, 2, 3}. Here Iij is the quadrupole moment tensor of a mass distribution,

Iij =

∫
d3x′ x′i x

′
j ρ(t− r, x⃗ ′) , (2.26)

where ρ is the mass density for non-relativistic matter.

Generally speaking, from this calculation we can say that all massive objects emit GWs if
their motion is accelerated and if the motion is not perfectly spherical or rotationally sym-
metric. This is the case, for example, when a page is turned in this thesis or when a ball
is hit in a game of table tennis. However, the masses and accelerations of objects on Earth
are too small to produce GWs of sufficient magnitude to be detectable by our instruments.
To detect relatively strong GWs, we must look for massive, accelerating astrophysical objects
and events that produce GWs over a spectrum of wavelengths ranging from a few kilometres
to larger than the observable Universe. In general, GW sources are classified into four differ-
ent types: continuous, inspiral, burst and stochastic [43]. Continuous sources, often rapidly
rotating neutron stars (NSs), emit constant, periodic GWs. Inspiral sources occur when two
compact objects, such as NSs or BHs, spiral closer together and emit GWs of slowly increasing
amplitude until they merge. Burst sources emit intense, short-lived bursts of GWs, such as
supernova explosions. Stochastic sources produce a background of GWs, generated by the
cumulative effect of many unresolved and indistinguishable events throughout the Universe.

2.2.3 Compact binary coalescences

Among the many different types of sources, we will focus on compact binary coalescences
(CBCs), since they are relatively easy to describe and emit GWs in a frequency range de-
tectable on Earth. The two-body problem in GR is not analytically solvable like the Kepler
problem in classical physics, but we can get interesting results for a Newtonian orbit and some
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2.2 Mathematical concepts of gravitational waves

additional assumptions. Let the binary system be characterised by two point masses m1 and
m2, where m1 ≥ m2, on a circular orbit located in the x-y-plane. The binary separation R

should be much smaller than the distance to the source r. In the centre-of-mass coordinate
frame, the position of the compact objects can be written as

x⃗1 =
µR

m1
(cos (ωorbt) , sin (ωorbt) , 0) , x⃗2 = −m1

m2
x⃗1 , (2.27)

where we have defined the reduced mass µ = m1m2/M and M = (m1+m2) is the total mass.
We can also write the binary separation as R = |n⃗|, where we have introduced n⃗ = x⃗1 − x⃗2

as the separation vector from the lighter to the heavier BH.

m1

m2

y

x

x⃗2

x⃗1 ωorbt

Figure 2.3: Two point masses characterised by their mass mi and position x⃗i on circular orbits.
Each revolves around the common centre-of-mass chosen as the origin of the coordinate system with
an orbital angular velocity of ωorb. The figure has been modified from Fig. 23.2 in Ref. [34] and from
lecture drawings by Frank Ohme.

Applying these assumptions to the quadrupole formula in Eq. (2.25) results in

hij =
4µR2ω2

orb

r



− cos(2ωorb(t− r)) − sin(2ωorb(t− r)) 0

− sin(2ωorb(t− r)) cos(2ωorb(t− r)) 0

0 0 0


 . (2.28)

Considering the given matrix entries, h+ ∼ cos(2ωorb(t−r)) and h× ∼ sin(2ωorb(t−r)), it can
be observed that the GW’s frequency is exactly twice the orbital frequency, ωGW = 2ωorb, in
this idealised scenario. The two polarisations have an almost identical oscillatory behaviour,
differing only by a phase shift of π/2. In addition, by plugging in some typical astrophysically
motivated values for the different quantities in the amplitude factor before the matrix, we see
that the strain of a GW is on the very tiny order of 10−21, making its detection very difficult.
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Remember also that we are dealing with astrophysical objects, i.e. a GW with a frequency of
the typical order of 102Hz corresponds to two objects with masses greater than the mass of
the Sun orbiting 50 times per second.

The evolution of the orbital frequency of the BBH orbit can be calculated by considering
next-order corrections in terms of the post-Newtonian (PN) expansion, a perturbative expan-
sion in small parameters such as orbital velocity that expresses orders of magnitude of the
deviations from Newton’s law of universal gravitation [44]. From the conservation of energy
it can be shown that in the leading order the evolution of ωorb is described by the differential
equation [45]

ω̇orb =
96

5
M5/3

c ω
11/3
orb , (2.29)

where we have used the chirp mass

Mc =
(m1m2)

3/5

M1/5
=

(
q

(1 + q)2

)3/5

M (2.30)

with the mass ratio q = m1/m2. By setting the integration constant such that the merger
occurs at t = 0, i.e. f → ∞ as t→ 0, we obtain the solution of Eq. (2.29) for t < 0

ωorb =
153/8

29/8
(
−96M5/3

c t
)3/8 . (2.31)

It shows an increase in frequency during the inspiral, called the chirp signal, which is deter-
mined only by the chirp mass. A chirp is consistent with the fact that a part of the energy
in the binary system has to be emitted in the form of GWs. Full GR confirms that the as-
sumption of a perfectly circular binary orbit is no longer true, and that we have non-Keplerian
orbits, meaning that R is shrinking as the gravitational radiation carries energy away from the
system. As the compact objects get closer, their orbital velocity increases, leading to a rapid
rise in GW emission. In the final stages of their inspiral, they merge into a single remnant
object, such as a BH or NS, releasing an enormous amount of GW energy, on the order of
several solar masses depending on the configuration. In addition to energy, GWs also remove
linear and angular momentum from the system. Ruiz et al. [46] summarised the energy flux
dE/dt, linear momentum flux dPi/dt and angular momentum flux dJi/dt for i = x, y, z in
terms of the strain h defined in Eq. (2.20):

dE

dt
= lim

r→∞
r2

16π

∮
dΩ |ḣ|2 , (2.32)

dPi

dt
= lim

r→∞
r2

16π

∮
dΩ li|ḣ|2 (2.33)

dJi
dt

= − lim
r→∞

r2

16π
Re
(∮

dΩ (L̂ih) ∂th
∗
)
. (2.34)
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Here we introduced the standard solid angle element dΩ, the unit radial vector in flat space

l⃗ = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) (2.35)

and the angular momentum operators

L̂x = − sin(ϕ)∂θ − cos(ϕ)(cot(θ)∂ϕ + i s csc(θ))

L̂y = cos(ϕ)∂θ − sin(ϕ)(cot(θ)∂ϕ + i s csc(θ))

L̂z = ∂ϕ ,

(2.36)

where s = −2 for h and s = +2 for h∗. In sec. 4.4 we will further simplify the integrals and
take a closer look at the relationship between these physical flux parameters and the waveform
itself.

2.2.4 Precessing binary black holes

We restrict ourselves even more to a subclass of CBCs, and focus on two BHs with arbitrary
spins orbiting each other on a quasi-circular orbit. Binaries consisting of either non-spinning
BHs or at least one with spin, where the spin axis is aligned with or opposite to the orbital
angular momentum, are called aligned-spin systems. All remaining systems are categorised as
mis-aligned systems. The GW radiation from a generic mis-aligned BBH system on a quasi-
circular orbit is determined by seven intrinsic parameters, the mass ratio q = m1/m2 ≥ 1 and
the dimensionless spin parameters of the two BHs χ⃗1 and χ⃗2, summarised in λ = {q, χ⃗1, χ⃗2}.
The dimensionless spin parameter is defined as χ⃗ = s⃗/m2 ≤ 1 and is related to the Kerr
parameter via a = |χ⃗| ·m [47].

In most cases the total angular momentum J⃗ = L⃗ + S⃗ is approximately constant. It is
defined as the sum of the orbital angular momentum L⃗ and the sum of the spin angular
momenta of the two BHs S⃗ = s⃗1 + s⃗2. We are talking about a non-precessing system when
s⃗1 and s⃗2 are aligned with L⃗. But in general, the BH spins s⃗1 and s⃗2 are mis-aligned with
respect to L⃗, so they exert torques on each other. This leads to a wobbling of the orbital
plane, the geometric plane in which the orbit lies, i.e. L⃗ precesses around J⃗ . In addition, s⃗1
and s⃗2 change their direction so that ˙⃗

L = − ˙⃗
S. The spin-spin and spin-orbit couplings can be

described by the spin precession equations [44, 48, 49]

˙⃗χi(t) = Ω⃗i(t)× χ⃗i(t) , i = 1, 2 , . (2.37)

Ω⃗i is given in Eq. (A32) in Ref. [50]. It is a series in the PN expansion parameter x(t), which
can be chosen as x(t) = Mω

2/3
orb . From Eq. (2.37) we can see that the magnitudes of the

individual spins remain constant during the evolution of the spins. The precession frequency
ω pre
i = |Ω⃗i| is the frequency with which χ⃗i precesses around Ω⃗i. In general, when both BHs

are spinning, the total spin S⃗ changes its magnitude.
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Figure 2.4: Spin dynamics of a highly precessing BBH system. The time evolution of the dimen-
sionless spins in an inertial frame was calculated using an ODE solver implemented in NRSur7qd4
for Eq. (2.37) with an initial condition of a λ = {3, (−0.2,−0.4,−0.6), (0.2, 0.4, 0.6)} configuration
defined at a reference time of tref = −2000 M. The spin of the heavier BH evolves over a longer time
scale than that of the lighter BH. Since the PN theory collapses near the coalescence and the two BHs
merge into one, so that the notation of two BHs no longer makes sense, the dynamics for t ≳ −100 M
is not physical.

All the effects described above occur on three different timescales [51]. First, the BHs or-
bit around each other with an orbital period torb/M ∼ (R/M)3/2 given by Kepler’s third
law. The precession time, at which the BH spins and the orbital angular momentum changes
direction, is on a timescale of tpre/M ∼ (R/M)5/2. Finally, there is the radiation reaction
time trr/M ∼ (R/M)4, where the binary separation R decreases as the system loses mo-
mentum and energy in the form of GWs. In the early inspiral we have R ≫ M and thus
torb ≪ tpre ≪ trr. This means that the BBHs go through many orbits and precession cycles
before they merge.

Due to the difficulty of measuring individual spins [26, 27] and the computational inten-
sity for the generation of waveforms for precessing systems [52–54], notable efforts have been
made to reduce the size of the parameter space. Therefore, degeneracies between certain spin
combinations are used to parameterise the spins of a binary. The most successful of these is
the adoption of two spin parameters to describe the whole binary system, where we replace
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the six spin parameters with two:

χeff =

(
s⃗1
m1

+
s⃗2
m2

)
· L⃗
M

, (2.38)

χp =
max (A1|s⃗1,⊥|, A2|s⃗2,⊥|)

A2m2
2

. (2.39)

Here A1 = 2 + 3q
2 , A2 = 2 + 3

2q and |s⃗i,⊥| is the magnitude of the in-plane spin component
[55]. These parameters effectively quantify the amount of in-plane and out-of-plane spin of
the binary system. Another useful parameter to mention is the angle θLS between L⃗ and S⃗,
referred to as the spin-orbit misalignment or the spin-tilt [56].

L⃗

J⃗

S⃗

s⃗2

s⃗1

χeff

χp

θLS

Figure 2.5: Illustration of the angles and vectors used to describe precessing BBHs. The entire
system precesses around the total angular momentum J⃗ . Keep in mind that χeff and χp are scalar
quantities, but are drawn as vectors along L⃗ and n⃗ with a length of χeff and χp. This figure is modified
based on Fig. 1 in Ref. [56].

The location and orientation of the source relative to an observer is described by another
large set of extrinsic parameters, such as luminosity distance, binary inclination, declination,
right ascension, polarisation angle, coalescence phase and time of arrival [57]. Of course, the
extrinsic parameters are important for the actual detection of GWs, but we will focus on the
variation of the intrinsic parameters, since these affect the real physics of the system. One
of these physical effects in precessing BBH systems is called mode asymmetry, which we will
analyse in detail in sec. 3 and sec. 4.

2.2.5 Spherical harmonic decomposition

We define a spherical coordinate system (t, r, θ, ϕ) with the BBH centre-of-mass at the origin.
At an arbitrary reference time before the merger we fix the axis of the coordinate system along

14



2 GRAVITATIONAL WAVES

some well-defined directions of the system. Usually the z-axis (θ = 0) is parallel to the orbital
angular momentum L⃗, the x-axis (ϕ = 0) lies along the separation vector n⃗ and the y-axis
(ϕ = π/2) fulfils the triad. We denote this coordinate system as the inertial frame. Following
Ref. [58] or [59], it can be shown that in this frame we can expand the GW strain in a basis
of s = −2 spin-weighted spherical harmonics (SWSH):

h(t, r, θ, ϕ) = h+ − ih× =
∞∑

ℓ=2

ℓ∑

m=−ℓ

hℓ,m(t, r, λ) · −2Yℓ,m(θ, ϕ) . (2.40)

The complex functions hℓ,m are named as the modes of GWs and depend on all physical
intrinsic parameters λ. In the majority of cases the dominant contribution to GW radiation
are the quadruple modes ℓ = 2, m = ±2. Therefore all other modes are called higher
harmonics or subdominant modes. In first order hℓ,m is proportional to 1/r. This feature is
used to extract the modes on spheres of various radii, when solving the EFE numerically, and
then extrapolate to future null infinity [60]. For this reason, we drop the r dependence and
the hℓ,m are in the following functions of time only. Furthermore, it turns out that the total
mass of the binary M scales out [49], i.e. the modes are given in scaling units of M/r, which
is dimensionless since mass and length have the same dimension in geometrized units, and
time in units of M . In most waveform models the time of merger is defined as

t̂ = argmax
t



√∑

ℓ,m

|hℓ,m|2

 , (2.41)

so roughly the peak of the dominant (2, ± 2) modes. The time series is usually shifted so
that t̂ = 0M [47], which we will adopt in the following chapters of this thesis.

Fig. 2.6 shows the three modes with the highest contribution to the total strain emitted
by a given precessing BBH. We divide the waveform into three different regimes: inspiral,
merger and ringdown. It is difficult to find a clear cut-off for the regimes without further in-
formation about the horizon structure of the merging BHs, but in approximation the inspiral
regime is for times t < t̂, the merger regime is around t̂ and the ringdown regime is for t > t̂.
The phase and the amplitude for all modes increase until t̂, which is characteristic of the long
inspiral regime. The amplitude reaches its maximum in the merger regime. The now single
BH is ringing and emitting exponentially damped waves.

For non-precessing binaries we can find symmetries in the negative and positive m-modes for
fixed ℓ, since non-precessing systems are invariant under reflections across the orbital plane.
But this is in general not true for a generic precessing system in any coordinate frame [31].
This first considerations about mode asymmetries will be analysed in more detail in many
parts of this thesis and already shows the need to analyse positive and negative m-modes
separately.
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Figure 2.6: Real part of the three most dominant modes for a λ = {1, (0.8, 0, 0), (−0.8, 0, 0)}
configuration in a fixed inertial frame defined at a reference time of tref = −4300M . The GW’s
frequency and amplitude increase with time until the moment of merging at around t ≈ 0, initiating
the subsequent ringdown. Note the strong suppression of the (4, −4) mode, even if this mode is the
next subdominant mode after the dominant (2, ±2) modes for this particular configuration. Especially
in the merger regime, zoomed-in inset, we see a mode asymmetry between h2,2 and h2,−2 since we
have a precessing system. The plot was generated using NRSur7dq4 [24].

SWSH can be generated from the standard spherical harmonics and read in the Goldberg
representation [61] as

sYℓ,m(θ, ϕ) = (−1)ℓ+m−s

√
(ℓ+m)!(ℓ−m)!(2ℓ+ 1)

4π(ℓ+ s)!(ℓ− s)!
sin2ℓ

(
θ

2

)
eimϕ

·
ℓ−s∑

k=0

(−1)k
(
ℓ− s

k

)(
ℓ+ s

k + s−m

)
cot2k+s−m

(
θ

2

)
.

(2.42)

By definition, a function f with spin weight s transforms under rotation ψ around an choosen
axis via f 7→ exp(isψ)f . GWs of binary systems have spin weight s = −2. This can be seen
by applying a rotation of ψ = 2π/s around the propagation direction to Eq. (2.19). In other
words it is consequence of a specific Lorentz transformation of a rank-2 tensor [42].
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Figure 2.7: SWSH surface plots for 2 ≤ ℓ ≤ 4, −ℓ ≤ m ≤ ℓ and s = −2. The distance of the surface
from the origin indicates the absolute value of sYℓ,m from Eq. (2.42) in the angular direction (θ, ϕ).
Blue surfaces represent m ≥ 0, red surfaces m < 0.

The geometrical structure of the s = −2 SWSH, see Fig. 2.7, is consistent with the property of
the GW to be quadrupolar, i.e. the structure does not allow any modes other than the (2, ±2)
modes to dominate. The (2, ±2) modes are most efficient in radiating spherically GWs above
and below the orbital plane. In addition, the structure of SWSH indicates that harmonics
with positive/negative m-values have greater influence in directions with positive/negative
z-values.

2.2.6 Source frames of reference

If we want to demonstrate that GWs from precessing BBHs contain features that are in-
trinsically a physical phenomenon and not just a coordinate artefact that can be resolved
by transformation to another frame of reference, we need to explore frame transformation
techniques. These techniques were initially introduced to simplify the time dependence of the
modes and thus to simplify the modelling problem. In this chapter we are following definitions
and explanations by Boyle et al. [31, 62]

As we have already seen in sec. 2.2.4, for precessing systems the orbital angular momen-
tum L⃗ is no longer fixed in an inertial frame due to precession. The spins rotate, involving
all three degrees of orbital rotational freedom, and the orbital plane wobbles during the in-
spiral. This means that in an inertial frame there is no fixed axis along which the radiation
dominates. Energy emitted perpendicular to the orbital plane can be radiated in modes other
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than the (2, ±2) modes, resulting in strong modulation of the amplitude and phase of each
mode. This can be observed in the inertial frame from the beat pattern, see Fig. 2.8. The
representation of the strain in a basis of SWSH has the advantage that transformations under
rotations take a simple form. The modes in a second rotated frame h̃ℓ,m can be calculated
from the inertial frame modes hℓ,m via

h̃ℓ,m(t) =
∑

m′

hℓ,m′(t)D(ℓ)
m,m′

(
R−1(t)

)
, (2.43)

where D(ℓ) are Wigner matrices [63] and R is the rotor, which can be expressed as an unit
quaternion [62] and rotates the first set of basis vectors into the second.

We can define a coprecessing frame by applying a time-dependent rotation so that the or-
bital angular momentum L⃗ is always parallel to the z-axis of the coordinate system from
which we measure the waveform. In this non-inertial frame the radiation is always strongest
along the z-axis and the (2, ±2) modes dominate. The waveform in the coprecessing frame
is analogous to that of a non-precessing system in an inertial frame, in the sense that the
amplitude and phase modulations are absent [64].

To reduce further precession effects, another frame rotation can be applied in addition to
the L⃗-orientation. In a corotating frame we align again the z-axis at each time step with L⃗

and additionally rotate the x-axis around the z-axis so that the separation vector between
both BHs n⃗ is always along the x-axis. This is equivalent to applying a phase factor with
the instantaneous orbital phase ϕorb(t), which is related to the orbital angular velocity by
ωorb = dϕorb/dt, to the coprecessing frame modes [24]

hcoroℓ,m (t) = hcoprℓ,m (t) eimϕorb(t) . (2.44)

Here we denoted the strain in the coprecessing and corotating frame in the superscript. No
superscript means that the inertial frame is used. Since ωGW = 2ωorb, as shown in sec. 2.2.3,
we can define the orbital phase in terms of the GW phase. Here we use the average of the
dominant (2, ±2) modes to calculate the orbital phase in Eq. (2.44):

ϕorb(t) =
1

4

(
arg
(
hcopr2,−2

)
− arg

(
hcopr2,2

))
. (2.45)

Since the corotating and coprecessing frames are only related by a phase factor, their ampli-
tudes are equal

∣∣hcoroℓ,m (t)
∣∣ =

∣∣hcoprℓ,m (t)
∣∣. However, the waveforms are no longer sinusoidal in the

corotating frame and we cannot define a precise phase. However, the time evolution of the
phase derivative is the dominant effect used to measure GWs, making this frame less useful
for real world problems.
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Figure 2.8: Real part of the (2, 2), (2, 1) and (3, 3) mode for a λ = {4, (−0.19,−0.6, 0), (−0.8, 0, 0)}
configuration defined at a reference time of tref = −4300M . Beat effects of the subdominant modes
occur in the inertial frame. In the coprecessing frame the (2, 2) mode is the dominant one. Here,
the fast phase evolution and the amplitude of the (2, 1) mode have been strongly suppressed by the
frame rotation, while the (3, 3) mode remains similar. In the corotating frame, the modes no longer
oscillate around zero and most of the precessing effects are removed. This figure has been modified
based on Fig. 1 in Ref. [24].

Technically the two frame rotations described above are done by using the waveform itself
without any knowledge of the spin dynamics of the system. Therefore, we use a mathematical
concept that can be partly related to the orbital parameters in BBH systems, such as separa-
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tion vector and orbital angular momentum evolution. The waveform angular velocity vector
ω is given by

ω = −⟨LL⟩−1 · ⟨L∂t⟩ . (2.46)

For i, j ∈ {x, y, z} we define the matrix

⟨LL⟩ij =
∑

ℓ,m,m′

h∗ℓ,m′ ⟨ℓ,m′|L̂iL̂j |ℓ,m⟩hℓ,m . (2.47)

The dominant eigenvector V h of ⟨LL⟩ is called the waveform’s symmetry axis. In addition
we define the vector

⟨L∂t⟩i =
∑

ℓ,m,m′

Im
(
h∗ℓ,m′ ⟨ℓ,m′|L̂i|ℓ,m⟩ ∂thℓ,m

)
, (2.48)

which according to Ref. [62] can be interpreted abstractly as a projection of the waveform’s
time derivative onto the rotational parts of the waveform and is equivalent to Eq. (2.34) [31].
Here we used a quantum-mechanical motivated bra-ket notation and set ℏ = 1. The states
|ℓ,m⟩ are the same in position basis as the SWSH:

⟨x|ℓ,m⟩ = sYℓ,m(θ, ϕ). (2.49)

The angular-momentum operators L̂i act on the states as

L̂z |ℓ,m⟩ = m |ℓ,m⟩ (2.50)

L̂± |ℓ,m⟩ =
√
(ℓ∓m)(ℓ±m+ 1) |ℓ,m± 1⟩ (2.51)

where L̂± = L̂x ± iL̂y. In position basis the L̂i are the same as in Eq. (2.36) [61]. The task
now is to find the rotor R(t), which describes a frame whose waveform angular velocity is ω.
One can show that the rotor has to fulfil this differential equation [62]:

ω = 2ṘR∗ . (2.52)

By setting physically motivated boundary conditions for the integration of this equation, we
achieve that in this frame the z-axis is always aligned with V h and the x-axis is always
aligned with the BBH separation vector n⃗ by setting the (2, 2) phase to zero. In Ref. [62]
it was shown that ω and V h are related to the separation vector n⃗ ∼ ω − (V h · ω)V h and
the orbital angular momentum L⃗ ∼ (V h · ω)V h. This means that we have found the rotor
for the corotating frame and by neglecting the evolution of n⃗ also for the coprecessing frame.
Finally, by using the quaternion notation of R, we can reduce the numerically expansive
computation of the Wigner matrices in Eq. (2.43) at each time step to perform the frame
rotation. The entire procedure described for this manipulation of the time-dependent modes
for frame rotation methods is already implemented in the scri package [65]. An alternative
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coprecessing frame is the quadrupole-aligned frame, which orients the coordinate system, such
that the (2, ±2) modes are maximised. It was proposed by Schmidt et al. [64], but later in
Ref. [66] it was shown that the quadrupole-aligned frame is equivalent to the waveform axis
alignment technique just described when only the (2, ±2) modes are included.
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Figure 2.9: Trajectories of three vectors used to build source frames just from waveform quantities.
The waveform of the same precessing system as in Fig. 2.8 is inserted in the definitions of the waveform
angular velocity ω, the projection of the waveform’s time dependence onto rotation ⟨L∂t⟩ and the
waveform axis V h, which is just for visibility scaled by a factor of 1/20. The last 4300M until merger
are shown. The dot indicates the time of merger at t = 0M . The trajectories are smooth at first, then
increasingly oscillating until the merger. The question of the physical meaning of these trajectories
is not so easy to answer, but it is certainly worth getting a visual feeling for the mathematical
constructions used to perform frame rotations. The plot is generated using functions implemented in
the scri package [65].

To be more precise, it is useful to introduce two other source frames that are often found in
the literature. The conutating frame, which is analogous to the copreccessing frame, and the
coorbital frame, which is analogous to the corotating frame. The conutating and coorbital
frames, grouped together as binary frames, are defined in terms of the orbital elements of
the binary, such as the two individual spins, while the coprecessing and corotating frames,
grouped together as waveform frames, are defined in terms of the angular velocity of the
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2.2 Mathematical concepts of gravitational waves

waveform. Since scri uses the algorithm described in the paragraph above, and thus deals
with waveform frames, we speak only of coprecessing and corotating frames, and have in mind
the analogy of aligning the coordinate axis with the orbital elements of the binary.

Notation Waveform frame Binary frame Axis alignment

h(t) Inertial Inertial x̂ ∥ n⃗(tref ), ŷ = x̂× ẑ, ẑ ∥ L⃗(tref )
hcopr(t) Coprecessing Conutating x̂ ∥ n⃗(tref ), ŷ = x̂× ẑ, ẑ ∥ L⃗(t) ∀t
hcoro(t) Corotating Coorbital x̂ ∥ n⃗(t) ∀t, ŷ = x̂× ẑ, ẑ ∥ L⃗(t) ∀t

Table 1: Different source frames explained in this chapter. The reference time tref is an arbitrary
but fixed time point before the merger. Note that the waveform frames are determined from the
waveform alone, but are analogous to the binaries frames, which are defined with respect to the BBH
orbital elements. The definitions follow Ref. [31].

2.2.7 Reference epoch

The waveform and the spin dynamics of a precessing BBH system strongly depends on a
parameter fref , which is a reference frequency at which the spin directions are specified. The
strong dependence is due to the fact, that in precessing systems the directions of the BH spin
angular momenta change with time. As already seen in the first PN order in Eq. (2.31) the
frequency, be it a GW or an orbital frequency, depends on time, i.e. analogously we can define
a corresponding reference time tref . The generic term is called reference epoch. As there is
currently no convention on how to set the reference epoch for waveform generation, e.g. using
an angular or ordinary frequency or a point in time, one has to be careful how the waveform
models define the reference epoch. One reason why there is no standard convention is that
different waveform models use different physically and mathematically motivated approaches
to build the basic framework of the model, as will be discussed in sec. 2.4, making it difficult
to find a standardised convention.

As an example, we explain how the NRSur7dq4 model defines the reference epoch and how
to find a mapping between reference frequency and time. To generate a waveform with
NRSur7dq4 the spins can be defined at a reference frequency, here an ordinary GW frequency
in units of cycles per total mass M . The relation between an angular frequency ω and ordinary
frequency f in geometrized units is given by

ω

rad/M
= 2π

f

cyc/M
. (2.53)

We can get the GW phase behaviour ϕGW = arg(h) from a waveform h(t) generated from
a spin configuration at some arbitrary but fixed reference epoch, for example the NRSur7dq4

default case t0ref = −4300M [24]. Calculating the time derivative of the phase ϕ̇GW , which
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is in units of radians per M since the phase is in units of radians, and using ω = ϕ̇ gives

fGW (t)

cyc/M
=

1

2π

ϕ̇GW (t)

rad/M
, (2.54)

which is exactly the reference frequency that NRSur7dq4 wants to use. We take advantage of
this relation to find an algorithm that maps an user given reference time t1ref to the wanted
reference frequency f1ref :

0. Specify intrinsic parameters λ1 = {q, χ⃗1, χ⃗2} and a reference time t1ref .

1. Generate a time-domain waveform GW0 with λ1 at arbitrary t0ref or f0ref .

2. Calculate the GW0 phase-time map via ϕGW0(t) =
(
arg
(
hcopr2,−2(t)

)
− arg

(
hcopr2,2 (t)

))/
2,

the average of the argument of the two most dominant modes in the coprecessing frame.

3. Substitute ϕ̇GW0(t = t1ref ) in Eq. (2.54) to get f1ref in units of cyc/M.

An implementation in Python is given in appendix B. We can use the calculated f1ref and the
same λ1 to generate a new waveform GW1. We find that GW1 is a good approximation of
the waveform produced by the configuration λ at the given reference time, if t1ref ≲ −100M .
The approximation holds for a choice of t1ref in the inspiral regime and for small mass ratios,
because the frequency-time map of GW0 and GW1 is equal up to PN order 3/2. To prove
this, one can extend Eq. (2.29) to this order. Therefore the reader can explore Eq. (3.20)
and (3.21) in Ref. [45] and find out that ωorb is a function of only the mass ratio q, the
total mass M and the effective spin χeff . Since M is scaled out and q(t0ref ) = q(t1ref ) and
χeff(t

0
ref ) = χeff(t

1
ref ), we have shown that the frequency-time map of GW0 can be used to

figure out any reference time t1ref to generate GW1.

fGW

cyc/M
forb

cyc/M
ωGW

rad/M
ωorb

rad/M

fGW

/
cyc/M 1

1

2
2π π

forb

/
cyc/M 2 1 4π 2π

ωGW

/
rad/M

1

2π

1

4π
1

1

2

ωorb

/
rad/M

1

π

1

2π
2 1

Table 2: Conversion table for reference frequencies in different units. It should be read as the quantity
on the left multiplied by the conversion factor is equal to the quantity on the top. For example, the
third row and first column is Eq. (2.54). The conversion factors do not change in SI units, but the
unit of an ordinary frequency is Hz and the unit of an angular frequency is rad/s.
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The inverse algorithm, i.e. giving a reference frequency in cyc/M and obtaining a reference
time in units of M, is analogous by replacing tref with fref in the above enumeration. If the
waveform model defines the reference epoch in another way, step 3 can be adjusted by picking
the right conversion factor in Table 2.
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Figure 2.10: Frequency-time map for λ = {q = 2, χ⃗1 = (0.5, 0.2, 0.5), χ⃗2 = (−0.3, 0.1, 0.5)} configu-
rations defined at different reference times. The black dashed line is the leading PN order expression
defined in Eq. (2.31). The solid lines are calculated from the waveforms via the time derivative of
Eq. (2.45). Since q and χeff are equal for all configurations ωorb(t) is up to P3/2N order equal. Higher
order corrections include in-plane spin effects and explain the small oscillations, which can be seen in
the inset.

2.3 Detecting gravitational waves

In the previous chapter, we saw that the amplitude of GWs decays linearly with the distance
from the source, that the GW effect is small and that there is a wide range of GW-emitting
sources, making their detection very difficult. Despite all the challenges, physicists have made
considerable efforts to observe GWs with state-of-the-art instruments.
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2.3.1 History

The first attempt to detect GWs with aluminium bar detectors was made by Joseph Weber
in the 1960s [67–70], but his claimed detection was later found to be inaccurate [71]. In 1974
Russell Hulse and Joe Taylor discovered the binary system PSR 1913+16 composed of a NS
and a pulsar [72]. After 14 more years of observations and measurements of the binary’s
orbit, it was confirmed that the distance between the two objects was decreasing over time at
exactly the rate predicted by GR [73]. This indirect detection was the first clear evidence for
the existence of GWs and motivated physicists to detect them directly.

On 14 September 2015, the LIGO made the first direct observation of a GW, named GW150914.
The LIGO and Virgo research groups announced their groundbreaking discovery in 2016 [2]
which led to the awarding of the Nobel Prize in Physics in 2017 to Rainer Weiss, Barry Barish
and Kip Thorne. The GW signal was emitted due to the collision of two BHs, with masses
of 36 M⊙ and 29 M⊙, which merged and became a BH with a mass of 62 M⊙. This event
resulted in the emission of GWs with a total energy of 3 M⊙. Since then, multiple groups have
reported hundreds of observations, including BBHs, NSBH and BNS mergers, by analysing
the publicly available data [74, 75] from four observation periods, with the fourth observation
run still ongoing. The data was recorded by three Earth-based detectors: LIGO Livingston
(Louisiana, USA), LIGO Hanford (Washington, USA) [76], and Virgo at Santo Stefano a Mac-
erata (Pisa, Italy) [77]. Towards the end of the third observation period, a fourth detector,
KAGRA at Kamioka (Gifu, Japan) [78], joined the network. Due to its size, the fifth current
operating detector, GEO 600 in Sarstedt (Hanover, Germany), is not expected to reach a level
of sensitivity that will allow regular GW detections. However, it plays an important role as
a test bed for new technologies. Once proven effective, these technologies will be integrated
into other detectors. All of the detectors are laser interferometers with scales up to 4 km. A
brief introduction to them will be provided in sec. 2.3.3.

Using radio telescopes to analyse pulsars is another approach to detecting GWs. Pulsars are
rapidly rotating NSs that emit radio waves in sweeping patterns, similar to lighthouses. PTAs
track these signals by using millisecond pulsars to detect the small perturbations that GWs
cause in the signal’s travel time. PTAs focus on detecting supermassive BBHs, galaxy merg-
ers, and poorly understood sources of GWs, such as the primordial background of GWs from
cosmic inflation or cosmic strings. Three large global projects, North American Nanohertz
Observatory for Gravitational Waves [9, 79–84], Australian Parkes PTA [10, 85, 86], and Eu-
ropean PTA [8, 87–91], collect data from various radio telescopes. The first evidence of a
stochastic ultra-low-frequency GW background, including the Hellings-Downs curve [92], was
disclosed in the 15-year data release on 29 June 2023.
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2.3.2 Motivation for gravitational wave measurements

Over the last few centuries, various types of telescopes that use electromagnetic waves such
as gamma rays, radio waves, or visible light have been utilised to "see" the Universe. Thus,
the recent era of detecting GWs is often referred to as "listening" to the Universe to highlight
the relevance and novelty.

All observed CBCs to date have one thing in common, the merger of two compact objects
with a stellar origin. The life cycle of a star involves several phases. Stars begin their jour-
ney as clouds of gas and dust that collapse to form protostars. Once nuclear fusion starts,
stars transition into a phase characterised by the generation of energy. Depending on their
mass, stars can conclude their lives as white dwarfs or explode in supernovae, scattering heavy
elements across the Universe and resulting in a BH or NS [93]. By analysing GWs from merg-
ing processes we can learn something about the evolution and demography of BHs and NSs.
The most popular formation channels for BBHs are the isolated and the dynamical channels
[94]. The isolated channel, where two massive binaries complete their life cycle, gives rise to
aligned-spin BBHs. While the dynamical channel, where BBHs form in dense clusters, leaves
various imprints on the mass, orbital properties and especially the spins of two BHs, with
a chance to form precessing BBHs. Measuring the distribution of aligned and mis-aligned
BBHs is an active area of research to determine which channel is more likely. In addition, the
recoil of the BH formed after the merger is of great astrophysical interest, since the recoil can
exceed the escape velocity of even the most massive galaxies in the Universe [95, 96].

In this paragraph we briefly list some more astrophysical, cosmological, fundamental physical
and quantum physical reasons why it is important to measure GWs, and give some references
for further reading. GW measurements of binaries containing a NS, such as GW170817, the
first GW event ever detected caused by the merger of two NSs [6], can tell us something about
the interior structure of NSs, since we are dealing with quantum chromodynamics at ultra-
high densities with exotic states of matter [97]. We can learn about the NS equation of state
or the nucleosynthesis of elements [11]. In addition, interesting astrophysical GW sources
could be detected, such as core-collapse supernovae [20], isolated NSs [98], exotic objects [99],
or white dwarf binaries [100]. Although GR is the best current description of gravity, it is
likely to be an incomplete theory because it is incompatible with quantum mechanics. One
might therefore expect GR to break down in strong field regimes. GWs from a BH merger
are an ideal test of GR [14, 101]. Cosmologically, GWs are of scientific interest because the
Universe became transparent to electromagnetic waves only 380 million years after the Big
Bang. With GWs, we can look further back in time and search for primordial BHs [15, 16],
find out about the Hubble constant [17, 18] or about inflation [19].
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2.3.3 Detectors

In principle, all GW detectors currently in operation are highly advanced Michelson interfer-
ometers. These L-shaped interferometers split a laser beam into two perpendicular beams. In
each arm, one beam passes an input test mass that acts as a mirror. It then travels a long
distance, e.g. 4 km for the advanced LIGO design [102], before being reflected by the output
test mass. On its return journey, a significant proportion of the light is again reflected by the
input test mass, increasing the time the light takes to travel through the arms. The two test
masses effectively form a large Fabry-Pérot cavity. As the light passes through the input test
mass, it recombines and interacts with the light from the opposite arm. To generate the read-
out, a photodiode captures the beam at the output port. These interferometers are sensitive
in a 10Hz to kHz band, where the main sources are CBCs, supernovae and continuous waves
from spinning NSs.

Laser

BS

ETM

ETM

ITM

ITM

MR

MR

PD

Figure 2.11: Simplified optical configuration of the advanced LIGO interferometer design. The main
components are a Nd:YAG laser, 50/50 beamsplitter (BM), input test masses (ITM), end test masses
(ETM), photodiode (PD) and some refined laser modulation and power recycling (MR) constructions.
The thickness of the beams indicates the different effective laser powers of 125W, 5.2 kW and 750 kW.
The figure has been modified based on Fig. 1 in Ref. [102].

As illustrated in Fig. 2.2, the distance between the two freely-floating test masses in each arm
of the interferometer changes if a GW passes through it. We assume a GW travelling in the
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z-direction, linearly polarised with h+ = h+(t− z) and h× = 0. The proper distance change
∆L between two masses separated by L along the optimally located arm on the x-axis is

∆L

L
=
h+
2

(2.55)

in first order [35]. This change in length is equivalent to a change in laser frequency in each
arm. By splitting the same laser beam into two, the frequency difference and the resulting
phase difference on recombination can be used to monitor the GW amplitude.

We see from Eq. (2.55) that to increase the impact of a GW on the detector, one can extend
the length L of the arms, hence the current detectors being on a scale of kilometres. Alter-
natively, the detected signal can be amplified by boosting the power of the laser circulating
within the arms by implementing a Fabry-Pérot cavity and power recycling mirrors. The in-
terferometer design noise is determined by different noise sources summarised in Table 3. The
detectors have been designed so that these noises are extremely quiet [103]. This is achieved
by pre-stabilising the laser, implementing damping techniques, and using many other refined
constructions. Using a minimum of two GW detectors is crucial to enhance the significance
of detections. Multiple detectors in different locations improve accuracy, ensure astrophysical
validity, and allow better source localisation in the sky.

Noise sources Description

Quantum noise Photon fluctuations due to Heisenberg uncertainty

Thermal noise Molecular motion-induced mirror vibrations

Seismic noise Ground vibrations managed with isolation systems

Gravity gradients Variations in local gravitational field

Gas noise Residual gas interactions with mirrors and laser light in vacuum

Laser noise Small variations in the laser intensity and frequency

Coating noise Scattering and absorption from coating imperfections

Table 3: Examples of noise sources in the advanced LIGO design [103].

Numerous upgrades and extensions to the existing network of ground-based GW detectors are
planned. In the near future, a third copy of the advanced LIGO detector design will be built
in India [104]. More upgrades to the LIGO detectors, known as A+, A♯ and LIGO Voyager,
will include advances in quantum squeezing technologies, larger test masses, increased laser
power, changes in laser frequency, cryogenic operation and many other refinements [105].
In addition, completely new ground-based detectors are being planned for operation in the
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mid-2030s. The Einstein Telescope (ET) [106] in Europe will be an underground triangular
interferometric detector with a 10 times better sensitivity than the current instruments. The
Cosmic Explorer (CE) [107] in the United States will use an arm length of 40 km. The Neutron
Star Extreme Matter Observatory (NEMO) in Australia will be an interferometer optimised
for the study of nuclear physics with merging NSs [108]. Three space-based projects are being
developed to overcome the low-frequency limitations of Earth-based observatories. The Laser
Interferometer Space Antenna (LISA) [109] is a collaboration between ESA, NASA and the
LISA Consortium. LISA will consist of three satellites in heliocentric orbit using time delay
interferometry with an arm length of 2.5 · 109m to detect GWs in the range of about 0.1mHz

to 1Hz. Following successful technology testing with LISA Pathfinder [110], the LISA mission
is planned for launch in 2037. DECIGO is a proposed Japanese GW detector that will be
based in space. The detector will be triangular in shape, with each side measuring 106m

[111]. Another proposed space-based observatory is the TianQin [112] detector, consisting of
three satellites with a reduced arm length of 105m orbiting the Earth.

2.3.4 Data analysis

As seen in the previous chapter, the detector’s sensitivity is limited by different noise sources.
To achieve optimal sensitivity, advanced data analysis techniques are necessary. We can ex-
press the output of the detector s(t) as a linear combination of the noise n(t) and a potentially
additive GW signal h(t):

s(t) = n(t) + h(t) . (2.56)

We assume that the noise is stationary and Gaussian with a mean of zero. In reality, this is
an approximation, as noise characteristics slowly change over time and there are small non-
Gaussian noise disturbances known as glitches. However, the pace of noise change is slow
compared to the typical duration during which CBC signals are observable [113]. Further-
more, multiple methods have been developed to eliminate glitches from the data [114].

We can construct the meaningful signal-to-noise ratio (SNR), denoted by ρ(t), which allows
us to measure the importance of the signal against the background noise [115, 116], as

ρ(t) =
⟨s, h⟩√
⟨h, h⟩

. (2.57)

Once the SNR surpasses a threshold determined by search configurations, the search may
have potentially detected a signal. Here we used the noise-weighted inner product between to
functions a(t) and b(t) given by

⟨a, b⟩ (t) = 4Re

[∫ ∞

0
df

ã∗(f) b̃(f)
Sn(f)

]
, (2.58)
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where ã(f) is defined using the common definition of Fourier transformation in signal pro-
cessing

ã(f) = F [a(t)] =

∫ ∞

−∞
dt a(t)e−2πitf , (2.59)

where f is an ordinary frequency. The one-sided power spectral density can be calculated from
pure noise n(t) and a finite time interval of length T as [117]

Sn(f) =
2

T
|ñ(f)|2 , (2.60)

where the overline denotes the average. The amplitude spectral density is the square root of
the power spectral density and has units of Hz−1/2.
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Figure 2.12: Amplitude spectral density
√
Sn(f) of the raw LIGO Hanford detector data calculated

from a time interval of GPS time 1126258950 to 1126259462 (512 s before until 14 September 2015 at
09:50:45 UTC, the time given in Ref. [2] as the start time of the first ever detected event GW150914).
The data were divided into overlapping 4 s chunks, each spaced by 2 s. A Tukey window was applied
to each chunk and then fast Fourier transformed. Finally the power spectrum from all the chunks
was Welch averaged. The inset shows the raw detector time series s(t) with the GW150914 signal
h(t) from 0 s to around 0.5 s, which is not visible to the naked eye without any further data analysis
techniques such as whitening or bandpassing [116].
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The first step in data analysis is to correlate the observed data with a set of template wave-
forms representing different possible signals. This process identifies potential events and is
called matched filtering. In a matched filter search, the unknown finite set of signal param-
eters θ ∈ Rn is not known in advance. The optimal detection statistic would be obtained
by maximising the likelihood ratio Λ(s|θ) over all unknown parameters by integrating Λ(s|θ)
over these parameters. Assuming stationary and Gaussian detector noise, we can write the
likelihood ratio as [117]

Λ(s|θ) = exp

(
−1

2
⟨s− h(θ), s− h(θ)⟩+ 1

2
⟨s, s⟩

)
. (2.61)

The related well-known Fisher information matrix Fij [h] = ⟨∂h/∂θi, ∂h/∂θj⟩ is another strong
analytical framework for measuring uncertainties for GW observations [118]. Various inde-
pendent search pipelines already contain all the algorithms needed to detect signals in the
data. Just to name a few examples, we have PyCBC [119], GstLAL [120] or MBTA [121].

Once a candidate event is detected, parameter estimation becomes crucial and further source
characterisation is performed using Bayesian inference [117]. This involves using stochastic
sampling techniques to obtain estimates of the system’s binary intrinsic and extrinsic pa-
rameters. Bilby [122], LALinference [123] and PyCBC Inference [124] are one of the most
popular software packages for parameter estimation.

2.4 Modelling gravitational waves

Matched filtering and parameter estimation are powerful tools for finding and characterising
known signals in noisy data. However, these methods are critically dependent on the accuracy
of the waveform model used to predict GWs. Although analytical expressions to describe the
GW radiation from two merging BHs have been developed in the previous chapters, our
formulae are based on approximations such as assuming no eccentricity of orbits, small mass
ratios, or ignoring dynamical friction due to astrophysical environments around BHs. In this
chapter we take a brief look at how to solve the full EFE numerically and at the various
approximate waveform models that have been established over the years. We can categorise
them into three main waveform families that are widely utilised: effective-one-body (EOB),
phenomenological, and surrogate waveforms. Most waveform models are included in LALSuite

[125], the LIGO algorithm library for GW analysis routines.

2.4.1 Numerical relativity

For astrophysically interesting systems such as BBHs no exact analytical solution for the un-
derlying spacetime metric is known. A first approach is to use perturbative methods. The
expansion parameter in PN can be chosen as the ratio of the characteristic velocity of the BHs
to the speed of light. However, when the BHs are about to merge, the expansion parameter
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is no longer small, since the BHs are moving at about half the speed of light. Similarly, BH
perturbation theory can only be used to describe the ringdown of the remaining BH after
the merger by describing the ringdown morphology with an infinite sum of damped sinusoids,
called quasi-normal modes, around the final Kerr BH state [126]. All perturbative methods
break down in the strong field regime near the BH merger, and full numerical simulation of
the EFE is the only way forward. This research field is known as numerical relativity (NR).

Realistic astrophysical computer simulations must solve the EFE and the associated hydro-
dynamic equations in a time-dependent manner without special symmetry assumptions. To
realise this on a computer, it is necessary to rewrite the underlying equations. We are following
Ref. [127] to briefly describe the NR basics. Ref. [128] is recommended for a quick read. In NR
the (3+1)-decomposition, which divides a four-dimensional manifold into three-dimensional
space-like hypersurfaces

∑
t, is used for the EFE reformulation. The spacetime metric gµν is

thereby divided into a purely spatial metric γij , a lapse-function α and a shift-vector βi:

gµν =

(
−α2 + βiβ

i βi

βi γij

)
. (2.62)

The lapse-function α describes the difference between the coordinate time t and the proper
time τ of a particle, i.e.

dτ2 = α2(t, xj) dt2 . (2.63)

The shift-vector measures how the coordinates on the space-like hypersurface
∑

t are shifted
when the particle moves an infinitesimal time step further

∑
t+dt, i.e.

xit+dt = xit − βi(t, xj) dt (2.64)

By inserting this ansatz for the metric into the EFE, one can reformulate the equations into a
system of first-order differential equations, the ADM equations [129], named after its authors
Richard Arnowitt, Stanley Deser and Charles W. Misner. Since the ADM equations are not
numerically stable, i.e. small numerical perturbations could build up exponentially, one must
rewrite them using a conformal transformation of the metric. This transformation is known as
Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) reformulation [130, 131].
It turns out that BSSNOK is well-posed and stable. The algorithm requires the initial hy-
persurface

∑
0 specified by the user and then iteratively calculates in time intervals dt the

dynamic time evolution of the system.

There are different methods for extracting the strain h from a NR simulation. One com-
mon method is to use the complex Weyl tensor component Ψ4 [132], which is related to the
strain via

Ψ4 = −ḧ+ + iḧ× = −ḧ . (2.65)

32



2 GRAVITATIONAL WAVES

Figure 2.13: Visualisation of the (3+1) decomposition. The key concept is the decomposition of
spacetime into constant-time hypersurfaces

∑
t and

∑
t+dt. The four-vector t indicates the time

evolution and can be divided into a space-like component, represented by the spatial four-vector β,
and a time-like component αn, where n is a time-like unit vector to the hypersurface. The lapse
α measures the proper time between neighbouring surfaces. The components of the shift-vector βi

measure the coordinate shift from one surface to the next. The illustration is taken from Fig. 7.1 in
Ref. [127].

The measurement of Ψ4 is more accurate than measuring small perturbations on a flat back-
ground. Analogous to Eq. (2.40) we can expand the Weyl scalar in a basis of SWSH:

Ψ4 =
∞∑

ℓ=2

ℓ∑

m=−ℓ

ψℓ,m(t, r) · −2Yℓ,m(θ, ϕ) . (2.66)

Following [133], the hℓ,m modes can then be obtained by performing a double time integration
of Ψ4

hℓ,m(t) =

∫ t

−∞
dt′
∫ t′

−∞
dt′′ψℓ,m(t) +Aℓ,mt+Bℓ,m , (2.67)

where we scaled out the explicit dependence on the distance from the origin r with the same
argument as in sec. 2.2.5. The integration constants Aℓ,m and Bℓ,m can be obtained via a
fitting procedure by the imposition of some physical condition, e.g. that the strain should
tend to zero after the ringdown. However, it turns out that a small numerical error in Ψ4 can
be magnified by integrating. These numerical errors cause nonlinear drifts in the waveform.
A common technique to avoid this effect, is to go in the Fourier domain [134]. Therefore we
Fourier transform the ψℓ,m(t) via Eq. (2.59) and apply a step filter of the following form

h̃filteredℓ,m (f) =





−ψ̃ℓ,m(f)/ω2 , ω ≥ ω0

−ψ̃ℓ,m(f)/ω2
0 , ω < ω0

, (2.68)

where ω0 is the lowest frequency expected to be physical. Note the relationship of the angular
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frequency ω to the ordinary frequency via ω = 2πf . Finally we inverse Fourier transform the
h̃filteredℓ,m (f) to go back in the time domain. Various other filters methods have been developed
[135, 136], e.g. a smooth transition near ω0.

Although NR is the most accurate technique to solve the EFE, NR encounters the issue
of extremely high computational costs, which renders it impractical for generating thousands
of waveforms for parameter estimation. For comparison, the surrogate package NRSur7dq4

quickly generates waveforms within milliseconds for individual cases, whereas NR can take
several weeks or even months. Factors such as longer waveforms, higher resolution, method
selection or initial parameters can affect the timescale. As a result, only a small number of
NR datasets, in the order of thousands, are available. To name just a few NR codes dealing
with the BBH problem and associated catalogues of publicly available simulations, we have
the SpEC code [137] developed by the Simulating eXtreme Spacetimes (SXS) collaboration
[52], MAYA [53] or BAM [54, 138].

2.4.2 Phenomenological waveform family

The phenomenological waveform-family was initially introduced in Ref. [139]. Essentially,
their technique aligns the analytical PN-waveform, which describes the inspiral phase, with
the more precise NR-waveform in the merger phase, leading to a finite set of hybrid waveforms
[136]. These hybrid waveforms are then fitted to a parameterised model based on the phe-
nomenology of the waveform, which can subsequently be correlated with the actual physical
characteristics of the binary system. The generated model is fast to evaluate, highly accurate
and usually suitable for frequency domain calculations. Several models from the phenomeno-
logical family have been developed over the past two decades. One well-known example is
the non-precessing model IMRPhenomD [140], which was instrumental in detecting GW150914.
The prefix "IMR" denotes that the model encompasses the entire inspiral-merger-ringdown
and the postfix "D" indicates its version number. Subsequent versions included additional ef-
fects, such as higher modes and precession [141–146]. The latest phenomenological waveform
model is called IMRPhenomXO4a [147]. In this frequency domain model the dominant mode
asymmetry is already included [32]. It should be mentioned here that in some future work it
is definitely worthwhile to investigate the accuracy of IMRPhenomXO4a with a modelling of the
phenomenology of mode asymmetries in the time domain, which we will describe in sec. 3.
The reader interested in building a phenomenological time-domain model can have a look into
Ref. [148–150].

2.4.3 Effective-one-body waveform family

EOB waveforms, introduced in Ref. [151], provide a comprehensive model for GWs and cover
the inspiral, merger and ringdown regime. This formalism maps the BBH system to a system
with a test particle in an effective external metric. It uses a Hamiltonian that is constructed
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2 GRAVITATIONAL WAVES

with a radiation-reaction force. Resummation techniques [152] are applied to express both
the Hamiltonian and radiation-reaction force non-polynomially. Additional parameters are
incorporated to capture non-perturbative effects [153]. The EOB fits these free parameters to
NR simulations for the inspiral and merger and adds an analytical model for the ringdown.
The first waveform model including inspiral, merger and ringdown within the EOB family
was developed in Ref. [154], initially for non-spinning BBHs, later extended to spinning cases
in Ref. [155]. Later refinements included higher order modes, aligned spins, and precession
[156]. Currently, the SEOBNRv5PHM [157] is the most comprehensive EOB model, taking into
account both, higher order modes and precession. Solving differential equations for specific
parameters with the EOB ansatz can be computationally expensive, and its time-domain
formulation requires a frequency-domain transformation for data analysis. Therefore, reduced
order models in the frequency domain are often used to speed up computations for GW search
and parameter estimation [158, 159].

2.4.4 Numerical relativity surrogate waveform family

Surrogate modelling is a data-driven approach to waveform modelling where nothing is as-
sumed about the underlying phenomenology. Instead, the NR waveforms themselves are used
to implicitly reconstruct the phenomenology. This is achieved by first constructing an accu-
rate basis using the NR waveforms and then using sophisticated interpolation techniques to
create a waveform model. NR surrogate models are typically more accurate than the approx-
imate methods described above, but are only valid in limited region of parameter space that
is covered by the underlying simulations. The reader can see Ref. [160] or Ref. [161] for more
technical details.

The first surrogate model was introduced in Ref. [162] and used non-spinning NR waveforms.
The NRSur7dq2 model [49] laid the foundation for full coverage of the seven-dimensional pa-
rameter space for the generic non-eccentric BBH problem. The development of NRSur7dq4,
the latest generic surrogate model for precessing BBHs trained on 1528 SXS NR simulations,
was carried out in the corotating frame. NRSur7dq4 has relatively narrow parameter bound-
aries, q ≤ 4, |χ⃗1|, |χ⃗2| ≤ 0.8, and is claimed to have over 99 % accuracy against NR waveforms
computed with the advanced LIGO design sensitivity noise curve [24]. Another advantage is
the fast evaluation time of about 50ms. However, an important limitation of this surrogate
model is that it does not cover the whole LIGO frequency band, since it has a start time of
about −4300M , i.e. it is valid for a total mass of M ≳ 66M⊙, assuming a GW starting fre-
quency of 20Hz [24]. To remedy this, a hybridised non-precessing model called NRHybSur3dq8

is presented in Ref. [163]. In this work, NR waveforms are stitched together with PN and
EOB waveforms at early times. In addition, Ref. [164] recently developed an eccentric model
NRSur2dq1Ecc for non-spinning waveforms and eccentricities up to 0.2. There have also been
surrogate models developed [165–167] for extreme mass-ratio inspirals using point-particle BH
perturbation theory.
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3 | Phenomenology of mode asymmetry
There are many ways to improve currently existing waveform models for GW signals from
BBH coalescences. For example, numerical computing has made great progress in allowing
faster and more complex simulations. In addition, neglected small physical effects can be
implemented into newer waveform models. One of these small effects, which is encoded in the
waveform itself, is the mode asymmetry, which is present in precessing BBHs.

We start with the general definition of the mode asymmetry in sec. 3.1. We then look at
the morphology of several quantities derived from the mode asymmetry for a specific BBH
configuration as an example in sec. 3.2. Sec. 3.3 and sec. 3.4 describe the dependence of these
quantities on the intrinsic parameter space and in particular for BBH configurations with
both spins in the orbital plane.

3.1 Definition of the +/− waveform

In some arbitrary frame for a ℓ ≥ 2 and a positive 0 < m ≤ ℓ we define

h±ℓ,m(t) =
hℓ,m(t)± (−1)ℓ h∗ℓ,−m(t)

2
. (3.1)

This quantity is a complex-valued time series. We call it the symmetric waveform for "+"
and the anti-symmetric waveform for "−". The symmetric/anti-symmetric (+/−) waveform
describes a combination, sum or difference, of the m > 0 and m < 0 modes [24]. By mul-
tiplying the hℓ,m modes with their associated SWSH and remembering the structure of the
SWSH, we can approximately identify the anti-symmetric waveform with the difference of the
GW radiation above and below the orbital plane. In non-precessing systems the modes are
invariant under reflection across the orbital plane and thus the symmetry

hℓ,m = (−1)ℓ h∗ℓ,−m (3.2)

holds. In this case h+ℓ,m = hℓ,m and h−ℓ,m = 0, so Eq. (3.1) is only non-trivial for precessing
systems, where this symmetry is broken and we have hℓ,m ̸= h∗ℓ,−m [31].

3.2 Morphology of mode asymmetries

The majority of waveform models ignore the broken multipole symmetry for precessing sys-
tems, limiting the number of models that can be used to discuss the +/− waveform char-
acteristics. At the time of writing, only waveforms generated by IMRPhenomXO4a [147], NR
surrogate models [24] or full NR simulations include mode asymmetries. To gain a deeper
insight into the definition in Eq. (3.1), we analyse as an example the +/− waveform emit-
ted by a particular precessing BBH configuration, which has a non-vanishing anti-symmetric
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3 PHENOMENOLOGY OF MODE ASYMMETRY

waveform but is otherwise arbitrarily chosen. In the following four chapters we decided for a
NR waveform from the SXS collaboration [49, 52, 168] with the name SXS:BBH:0802. This
is a q = 2 BBH configuration with both BHs spinning. The spins are defined at a reference
orbital frequency of fref ≈ 0.0164 rad/M and take the values χ⃗1 ≈ (0.58, 0.01, −0.55) and
χ⃗2 ≈ (−0.02, −0.07, 0.79). Most of the NR post-simulation techniques described in sec. 2.4.1,
such as the Ψ4 integration, are already applied to the data we get from the SXS catalogue.
In addition, we cut out the junk radiation before fref from the modes. Nevertheless, at the
boundaries of the time series or for very small values, some numerical noise may be visible
in the following plots. Finally, we shift the time series so that the time at which a common
event horizon forms is t = 0, which is approximately the time of merger defined in Eq. (2.41)
via the peak amplitude of the mode sum.

3.2.1 Real and imaginary part

To learn something about the phenomenology of time-domain waveforms, the most intuitive
way is to look at the real or imaginary part of the complex-valued time series. We expect the
+/− waveform to be a sinusoid with a time-dependent frequency, since it is a combination
of sinusoidal modes hℓ,m. In Fig. 3.1 we compare the real and imaginary part of dominant
symmetric waveform h+2,2 with the dominant modes h2,±2. We observe that the waveforms
Re(h+2,2) and Im(h+2,2) behave like the average of the real and imaginary parts of the positive
and negative m-modes for fixed ℓ, respectively. This behaviour is something expected from
the definition of the symmetric waveform itself. With Im(z∗) = −Im(z) for any complex
number z ∈ C, Eq. (3.1) can be decomposed:

Re
(
h+ℓ,m

)
=





Re(hℓ,m) + Re(hℓ,−m)

2
, ℓ even, (3.3)

Re(hℓ,m)− Re(hℓ,−m)

2
, ℓ odd, (3.4)

Im
(
h+ℓ,m

)
=





Im(hℓ,m)− Im(hℓ,−m)

2
, ℓ even, (3.5)

Im(hℓ,m) + Im(hℓ,−m)

2
, ℓ odd. (3.6)

It seems that the minus sign in Eq. (3.4) and Eq. (3.5) does not correspond to the definition of
a conventional average. But since we assume that in a precessing system the mode symmetry
is only broken at a small level, and Eq. (3.2) is approximately valid, we have exactly the
average behaviour we wanted with the definition of the symmetric waveform. Analogously,
the same argument holds for the anti-symmetric waveform, which is a quantity that measures
the difference between the modes with positive and negative m for fixed ℓ.
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Figure 3.1: Real and imaginary part of the symmetric waveform h±2,2 and the dominant modes h2,±2

of the SXS:BBH:0802 configuration in the inertial frame. The symmetric waveform is the average of
the h2,±2 modes. In the merger regime there is a bigger amplitude difference between the positive
and negative m-mode and a slightly different phase behaviour. Note that −Im(h2,−2) is plotted, since
there is π-phase shift with respect to Im(h2,2) because ℓ is even.

In Fig. 3.2 the real and imaginary part of the anti-symmetric waveform is compared to the sym-
metric waveform of SXS:BBH:0802. We observe that in the inspiral regime the anti-symmetric
waveform is much smaller than the symmetric one, but builds up to a significant amount until
the merger. There is a slight difference between the symmetric and anti-symmetric waveform
in terms of the time at which the maximum of the waveform is reached. Note that the phase
shift between the symmetric and anti-symmetric waveform has some influence on the recoil
velocity of the remnant BH, which we will see in sec. 4.5. In addition, we can see that the
symmetric waveform oscillates faster than the anti-symmetric one. Since it is difficult to ob-
serve and explain all the physical effects using only the real and imaginary parts of the +/−
waveform, in the next chapter we will focus on another representation of the complex-valued
function h±2,2(t).
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Figure 3.2: Real and imaginary part of the dominant +/− waveform of the SXS:BBH:0802 configu-
ration in the inertial frame.

3.2.2 Amplitude and phase

Any complex number can be expressed in an exponential form, including

h±ℓ,m(t) = a±ℓ,m(t) eiϕ
±
ℓ,m(t) . (3.7)

We denote a+ℓ,m = |h+ℓ,m| ∈ R as the symmetric amplitude and ϕ+ℓ,m = arg(h+ℓ,m) ∈ R as the
symmetric phase. We call this the anti-symmetric amplitude and phase in the "−" case.

In Fig. 3.3, we can observe the effects more clearly, which were indicated in Fig. 3.2. The
symmetric amplitude for SXS:BBH:0802 increases until the time is about t̂+ ≈ 5.8M , while
the anti-symmetric amplitude peaks at about t̂− ≈ 14.3M before decaying exponentially. We
observe small oscillations in the inspiral regime of a±ℓ,m. This was found partially to be a result
of the inertial frame and is at least for a+ℓ,m eliminated by converting to the coprecessing frame,
but is still visible for a−ℓ,m, see Fig. 3.5. The ratio of peak amplitudes is about 24 %, which is
a large amount, at least in the merger regime, especially considering that mode asymmetries
are ignored in most waveform models. The high ratio also means that the anti-symmetric
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3.2 Morphology of mode asymmetries

waveform in this regime is of great importance in describing the physics that occurs during
the merger, such as the remnant BH recoil, which we will analyse in sec. 4. However, the
effect of the anti-symmetric waveform on the SNR is negligible, as this waveform is of small
order of magnitude in the inspiral regime, which has the largest impact on the SNR [117].
Nevertheless, it is worth investigating the characteristics of the anti-symmetric waveform as it
allows the measurement of spins in third generation detectors or the detection of the remnant
BH recoil velocity [32, 169–172].

In the inspiral regime, the symmetric phase ϕ+ℓ,m evolves more than twice as quickly as the
anti-symmetric phase ϕ−ℓ,m, which corresponds to the observation of a faster oscillation of the
symmetric waveform compared to the anti-symmetric waveform in Fig. 3.2. Around the +/−
waveform time of the merger t̂±, the phases begin to fall faster as the ringdown begins. In
addition the phases become parallel to each other, i.e. the phase derivatives should be equal
in the merger-ringdown regime.
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Figure 3.3: Amplitude and phase of the dominant +/− waveform of the SXS:BBH:0802 configuration
in the inertial frame. The left axis corresponds to the solid lines, while the right axis corresponds to
the dashed lines. The inset shows the merger regime. The grey dotted lines indicate the maxima of
a±ℓ,m at t̂+ ≈ 5.8M and t̂− ≈ 14.3M , respectively.
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3.2.3 Subdominant +/− waveforms in different source frames

As already seen in sec. 2.2.6 GW modes contain modulations of the amplitude and phase
in an inertial frame. These modulations occur especially in the case of subdominant modes,
because the power of the dominant modes is radiated in the subdominant modes due to the
movement of the orbital plane. Since the +/− waveform is a combination of positive and
negative m-modes, we expect these artefacts as well. In Fig. 3.4 it is shown that these beat
artefacts are visible in h−2,1 of SXS:BBH:0802, but can be simplified by converting the modes
h2,±1 to the coprecessing or corotating frame and then applying Eq. (3.1).
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Figure 3.4: Real part of the anti-symmetric h−2,1 waveform of SXS:BBH:0802 in the inertial (blue),
coprecessing (orange) and corotating (green) frame. To see the order of magnitude of the dominant
modes, the symmetric waveform h+2,2 is plotted in grey.

It turns out that these rotations do not cancel out the anti-symmetric waveform. It is natural
to ask whether the non-vanishing of the anti-symmetric waveform holds in general for all
precessing configurations, or whether we could get rid of the asymmetries by finding another
rotation of the coordinate system. Everything points to that the mode asymmetry is indeed
rotationally invariant, i.e. no rotation can eliminate the anti-symmetric waveform of an ar-
bitrary precessing system. In Ref. [31] this was shown by some analytical considerations for
frame rotations.
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Figure 3.5: Amplitude and phase behaviour of the four most dominant coprecessing-frame waveforms
h±, copr
ℓ,m of SXS:BBH:0802. The solid lines are the "+" case, while the dashed lines are the "−" case.

Note, however, that putting too much time dependence of a waveform into a time-dependent
frame rotation can oversimplify the physics. For example, it is harder to understand the
physics in the corotating frame because the waveform is less sinusoidal and we have no clear
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3 PHENOMENOLOGY OF MODE ASYMMETRY

phase behaviour. So we treat the corotating frame as a strong mathematical concept, which
is of course powerful for applying empirical interpolation methods in models like NRSur7dq4,
but makes it more difficult to understand some physical concepts. We will concentrate on the
coprecessing frame in the following, leaving the corotating frame +/− waveform for subse-
quent research.

In the upper plot of Fig. 3.5 the amplitudes of the +/− waveform in the coprecessing frame
a±, copr
ℓ,m are illustrated on a logarithmic scale. In fact, the oscillations of the symmetric am-

plitude are cancelled out by the frame rotation, but are still present for the anti-symmetric
amplitude. It is planned to further investigate the anti-symmetric amplitude oscillations and
to explore additional dimensions of the problem in subsequent research. But what we can
already see is that a±, copr

ℓ,m follow a clear order with respect to their magnitude, here for
SXS:BBH:0802 in the order a+, copr

2,2 , a+, copr
3,3 , a+, copr

2,1 and a+, copr
4,4 . The corresponding anti-

symmetric amplitudes are up to two orders of magnitude smaller. For the dominant (2,
2) anti-symmetric amplitude, this means that it is almost as strong as the next strongest
symmetric (3, 3) amplitude. In the merger regime, the anti-symmetric amplitudes increase
significantly, almost to the order of magnitude of their corresponding symmetric amplitude.

The subdominant time series behave similarly to the dominant. Similar to how the dominant
phases are related by ϕ+2,2 ≈ 2ϕ−2,2 in the inspiral, there is a factor that relates the subdom-
inant phases. For instance we found for SXS:BBH:0802 ϕ+2,1 ≈ 1/2ϕ−2,1, ϕ

+
3,3 ≈ 17/12ϕ−3,3

and ϕ+4,4 ≈ 13/10ϕ−4,4. To figure out the exact factors with possible corrections from the
spin-precession rate is a current task of research [32]. For us it is important to note that the
difference ϕ+ℓ,m − ϕ−ℓ,m stays approximately constant for t → ∞, since the curves get parallel
in the merger-ringdown regime. In other words it holds ϕ̇+ℓ,m = ϕ̇−ℓ,m during ringdown, which
is expected from perturbation theory [32]. In sec. 4.5 we will analyse the phase differences in
more detail in relation to the remnant BH recoil.

3.2.4 Frequency domain

A discussion of the +/− waveform of SXS:BBH:0802 in the frequency domain is worthwhile
for modelling reasons. But first, let us introduce the Fourier domain definition of the +/−
waveform

h̃±ℓ,m(f) = F
[
h±ℓ,m(t)

]
=
h̃ℓ,m(f)± (−1)ℓ h̃∗ℓ,−m(−f)

2
. (3.8)

Fig. 3.6 shows the dominant +/− frequency-domain waveform in the coprecessing frame.
Since we are dealing with a discretised time series, the Fourier transform is a bit tricky and
we have to apply several steps to get smooth curves. First, we transform the individual NR
modes from the inertial to the coprecessing frame and plug them into Eq. (3.1). Then we use
a standard cubic interpolation method implemented in SciPy [173] to interpolate h±ℓ,m(t) to
uniform time steps. We then apply a Tukey window with a shape parameter of α = 0.015

43



3.2 Morphology of mode asymmetries

[174] to reduce the Gibbs effect [175], a ringing artefact in discrete Fourier analysis. Finally,
we apply a standard discrete fast Fourier transform algorithm implemented in NumPy [176]
and normalise the result. Analytically, this procedure should be the same as first Fourier
transforming the modes and then plugging them into Eq. (3.8). However, there are some
small differences that can be resolved with further numerical Fourier techniques.
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Figure 3.6: Amplitude of the dominant +/− waveform in the frequency domain for the NR simulation
SXS:BBH:0802. The inset shows the phase derivative as defined in Eq. (2.45) and divided by π to have
the same units as the Fourier frequencies. The vertical grey dotted line at tRD ≈ 60M represents the
ringdown start time and the horizontal grey dotted line represents the ringdown frequency at about
MfRD ≈ 0.078.

To build a model of the anti-symmetric amplitude in the frequency domain, as was done in
Ref. [32], we can use the fact that the symmetric amplitude is a kind of rescaling of the anti-
symmetric one. In addition, we can observe an approximately equal decay rate of the +/−
waveform for f > fRD, where MfRD ≈ 0.078 is the ringdown frequency for SXS:BBH:0802.
We get the ringdown frequency by computing the derivative of the orbital phase defined in
Eq. (2.45) and identify the ringdown frequency with the phase derivative at which the phase
derivative stabilises during ringdown at around tRD ≈ 60M , which is shown in the inset of
Fig. 3.6. The ringdown frequency is of great interest when building phenomenological models
[140]. To summarise this short chapter on frequency-domain waveforms, it is more difficult
to intuitively understand the dynamic features of the waveform, but Fourier domain models
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are usually much quicker to evaluate. In the following, we will return to the time-domain, as
our main objective is not to build a model, but rather to understand the physical imprint of
the intrinsic parameters on the waveform and the recoil of the remnant BH.

3.3 Variations in parameter space

Now that we have seen the basic morphology of the mode asymmetry for a particular configu-
ration, we examine some of the main properties of the +/− waveform by varying the intrinsic
parameter space. In sec. 2.2.6 and sec. 2.2.7 we introduced the tools to deal with the different
modes hℓ,m, which we get from most waveform models or NR simulations. We can specify
the spins of a BBH configuration at a self-chosen reference epoch and transform the modes
into different coordinate frames. Since NR surrogate models are based on interpolations of
an accurate basis using NR waveforms themselves, these models already include mode asym-
metries in the time domain, albeit in a very limited region of the full parameter space. To
generate the plots in this chapter we will use the latest version NRSur7dq4 of the NR surrogate
waveform family [24].

We reduce the seven-dimensional space to four dimensions and start with a single-spin con-
figuration. Note that the analysis of only one BH spinning is an appropriate procedure, since
there are methods which map between generic two-spin configurations and approximately
equivalent single-spin configurations where the spin is placed on the heavier BH [177]. In
Fig. 3.7 we fixed three of the four parameters, q = 1, χ = 0.8, θ = π/2 and ϕ = 0, and varied
the remaining fourth parameter for 1024 samples in a calibration range covered by NRSur7dq4.
The spin in each sample is defined close to merger at tref = −100M . To learn how the mass
ratio q, spin magnitude χ = |χ⃗|, out-of-plane spin angle θ and in-plane spin angle ϕ of the
heavier BH affect the +/− waveform, we focus on the peak of the dominant +/− amplitude
in the coprecessing frame

â± = max
t

(
a±, copr
2,2 (t)

)
. (3.9)

The corresponding time argument t̂± ≈ 0 is approximately at the time of merger. There
are other possible choices to compare waveforms like the inner product of two functions as
described in Eq. (2.58), but since we are mostly interested in the magnitude of the anti-
symmetric contribution in comparison to the symmetric one, the dominant peak amplitude
is a reasonable choice. Some basics of the anti-symmetric phase behaviour in the parameter
space are discussed in sec. 4, in the context of the BH recoil. However, it is now already
worth mentioning that in Ref. [32] a map was found from the symmetric phase derivative to
the anti-symmetric phase derivative which is independent of location in the parameter space.

The +/− waveform has a strong dependence on q as can be seen in Fig. 3.7. The de-
creasing behaviour of the dominant symmetric peak amplitude and the slow increasing in the
anti-symmetric case is already noticeable from PN equations. Therefore we take a look at
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the coprecessing frame PN expressions given in Eq. (13) and Eq. (14) of Ref. [32]. Note that
even though these equations are given in the frequency-domain, we can build an argument
for our time-domain considerations on them, since only the PN expansion parameters de-
pend on frequency and not the expansion coefficients, which are responsible for the amplitude
changes with variations in parameter space. So we use the coefficients and observe up to their
respective leading orders:

a+,copr
2,2 ∼ η =

q

(1 + q)2
,

a−,copr
2,2 ∼ (1 + δ)η =

2q2

(1 + q)3
.

(3.10)

Here η = m1m2/M
2 is the symmetric mass ratio and δ = (m1−m2)/M is the fractional mass

difference. Indeed, we observe that the unintuitive morphology of these expressions persists
until the merger, as can be seen by comparing the dashed lines with the solid lines in the
upper left plot of Fig. 3.7.
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The anti-symmetric amplitude scales linearly with the spin magnitude χ, while the symmetric
amplitude is independent on χ. This is also expected from the PN expressions mentioned in
the paragraph above, since a−,copr

2,2 ∼ χ and a+,copr
2,2 is not a function of χ in this particular

in-plane spin configuration with θ = π/2 up to PN order O(ν5), where ν is the PN expansion
parameter which can be expressed as ν = (Mωorb)

1/3. Note that we have chosen equal-mass
configurations here, with the spin completely in the plane. So there could be higher order
terms that depend on θ and q, disturbing the clear linear dependence of â− on χ.

The same PN expression can be used to explain the effect of the polar angle on the anti-
symmetric amplitude. We have a−,copr

2,2 ∼ sin θ, i.e. the anti-symmetric waveform reaches its
maximum if the spin is completely in the plane, θ = π/2. This behaviour is expected, since
the anti-symmetric waveform vanishes for aligned-spin systems, i.e. θ = 0 and θ = π. For
the symmetric amplitude we see some small variations with θ. These may have some physical
explanation, but since there is a dependence on θ only in the PN order of O(ν5), we expect
the dependence to be very small. In addition, we choose to measure the variation of the +/−
waveform at a point in the merger regime where it is questionable whether the PN expres-
sions hold. So we assume that the symmetric waveform does not change to much with the
out-of-plane spin.

In the lower right plot of Fig. 3.7, we observe small π-periodic oscillations of the +/− am-
plitude when varying the in-plane-spin ϕ. This is surprising, since PN expressions predict no
ϕ-dependence in either +/− amplitude. In order to analyse the in-plane spin effect in more
detail, in the following chapter we consider systems with two BHs spinning in the plane.

3.4 In-plane spin configurations

We analyse equal-mass two-BH spinning configurations by fixing the spin of the second BH
with a magnitude of |χ⃗2| = 0.8 in the direction of the separation vector. The first BH with the
same spin magnitude is rotated by an angle ϕ1 in the orbital plane. Both spins are entirely in
the plane. Note that this rotation mainly changes the sum of both spins, i.e. the total in-plane
spin magnitude, and we are not analysing a pure in-plane spin angle effect. However, we do
find a secondary result from the ϕ1-rotation, which shows a real in-plane spin angle effect on
the phase of the anti-symmetric waveforms, which we will explain below.

But first, the explanation of the primary result, best visible in the inset of Fig. 3.9, namely
that the magnitude of the anti-symmetric waveform is approximately symmetric around the
maximum at ϕ1 = π, is not trivial. This is counterintuitive to the argument made in the
previous chapter for the out-of-plane angle θ, because for ϕ1 = π the in-plane spin magnitude
is zero.
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Figure 3.8: Illustration of three different in-plane spin rotations of equal-mass binaries used in this
chapter. The reader is facing the orbit, so that the orbital plane is in the paper plane. The blue arrows
indicate the BH spins with a magnitude of χi = 0.8 defined at tref = −100M . The left plot shows
the rotation of the azimuthal angle ϕ for only one of the BH spins used in Fig. 3.7. The middle plot
shows the azimuthal angle rotation of the first BH ϕ1, while the second BH has a fixed spin direction,
so that for a ϕ1 rotation the sum of the two spin vectors is not constant. In contrast, in the right-hand
plot, a simultaneous rotation of both spins in the plane by an angle α keeps the spin sum to zero, a
superkick configuration for all α.

We assume that the increase of the anti-symmetric amplitude with the misalignment of the
two spins in the orbital plane is related to the bobbing of the whole orbital plane for these
particular configurations, which also reaches the peak for the maximum spin misalignment
ϕ1 = π [178]. Therefore, it is important to note that for anti-aligned in-plane spin configu-
rations with the same spin magnitude, the orbital plane changes only with the z-direction.
So the mode asymmetry of the positive and negative m-modes results in an up-and-down
movement of the orbital plane in the direction of the orbital angular momentum. Maybe
the mode asymmetries can be resolved with a frame transformation. For BBH configurations
with a vanishing spin sum component in the plane, the orbital angular momentum does not
precess, i.e. the inertial and coprecessing frame are identical. Because the coprecessing frame
does not follow the bobbing of the orbital plane, we may be able to define a centre-of-mass
frame, in which the bobbing is cancelled, and thus the anti-symmetric waveform could disap-
pear. Whether or not this statement about boosted frames is true is a task for future work.
Incidentally, these fine-tuned BBHs of equal mass, with spins lying in the plane and pointing
in opposite directions, are called superkick configurations, which were discovered in Ref. [179,
180]. The reason for the name and the bobbing of the orbital plane will be explored in a sec. 4

Besides the magnitude of the anti-symmetric waveform depending on the rotation of ϕ1,
we find some interesting phase dependence on this rotation when looking at the real part
of the waveforms in Fig. 3.9. Between different in-plane spin directions there seems to be
only an overall phase shift. Indeed the PN calculations and explorations in Ref. [32] confirm
this observation. The PN expression predicts h−,copr

2,2 ∼ exp(−i(ϕorb + α)), i.e. a rotation
of the spin within the plane by an angle ∆α, causes a corresponding shift in the dominant
anti-symmetric phase by ∆α. Here we have a different notation, and we use α for an in-plane
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3 PHENOMENOLOGY OF MODE ASYMMETRY

spin rotation, because we want to rotate both spins at once, as opposed to Fig. 3.9 where one
spin was fixed, i.e. a α-rotation is a pure in-plane angle effect. For the α-rotation, we use the
superkick case since the anti-symmetric amplitude is at maximum. However, the phase shift
argument is true for all configurations, in which the relative angle between the spins is fixed
in an α-rotation. In Fig. 3.10 we choose χ⃗1 = 0.8 · (cosα, sinα, 0) and χ⃗2 = −χ⃗1 specified
at tref = −100M to show the phase shift in the waveform by an angle of α. As an example,
we have chosen α = 0 and applied a phase shift of exp(−iπ/2) to obtain approximately the
same anti-symmetric phase as for a configuration with α = π/2. The amplitudes are slightly
different, as can be seen in the lower right plot of Fig. 3.7. To summarise the in-plane spin
effect, we have found a simple phase dependence of the anti-symmetric waveform on the in-
plane spin, but we can only state that there are small periodic amplitude modulations with a
variation of the in-plane spin angle, without a good explanation.
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Figure 3.9: Dominant anti-symmetric waveform of equal-mass in-plane spin configurations defined
at tref = −100M . ϕ1 = 0 corresponds to both spins pointing in the same direction, while for ϕ1 = π
the spins are pointing in the opposite direction. The inset shows the sinusoidal dependence of the
anti-symmetric peak amplitude on the in-plane spin rotation of ϕ1, which effectively changes the spin
sum.
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Figure 3.10: Anti-symmetric waveform for two configurations with oppositely aligned spins in the
plane. For α = 0 both spins are collinear to the separation vector, while for α = π/2 both spins are
perpendicular to the separation vector. The dashed grey line is the same waveform in the α = 0 case,
but a π/2 phase shift is applied to the waveform. In the inspiral regime it is in very good agreement
with the α = π/2 waveform, which is also approximately true for the merger regime. The figure is
reconstructed from Fig. 2 in Ref. [32].
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4 | Correlating black hole kicks with mode
asymmetry

In this section we go into the merger and ringdown regime and analyse the interplay between
the GWs of precessing BBHs and the recoil velocity of the remnant BH. The reader can skip
sec. 4.1 and sec. 4.2 if they are already familiar with the physics leading to the different
recoil velocities. In sec. 4.3 we analyse the influence of the spin direction on the recoil and
the dominant anti-symmetric waveform amplitude. Finally, the analytical expression for the
linear momentum flux in terms of the +/− waveform derived in sec. 4.4 is further discussed
in sec. 4.5 and sec. 4.6.

4.1 Physics of the remnant black hole

When two BHs are in orbit around each other, they emit GWs and thereby lose energy, linear
and angular momentum, as described by Eq. (2.32)−(2.34). As they get closer, their orbital
velocity increases and at the final stages of their inspiral, they merge into a single BH, releas-
ing a large amount of GW radiation. We will now focus a little bit more on the properties of
the final BH.

It is difficult to determine the exact time during coalescence when the final BH begins to
exist. The usual time of merger is defined by the peak of the waveform, see Eq. (2.41), but
this does not tell us anything directly about the horizon structure of the remnant BH. How-
ever, we can at least state that the formation of an apparent horizon must occur close to the
usual time of merger. In this dynamical strong field regime the apparent horizon is expected
to be highly distorted [181], but if we go further in time we can fully characterise the final
BH by its spin χ⃗f and massmf . There is also an additional feature called the recoil velocity v⃗f .

The amount of energy and angular momentum emitted by the source, and hence the amount
of mf and χ⃗f , depends mostly on the spin-orbit coupling, as well as the mass ratio and total
mass of the inspiralling system, as can be seen in the PN equations [48]. When the total spin
component aligns/opposes with the orbital angular momentum direction, more/less energy
and angular momentum are generally emitted compared to a non-spinning case. This phe-
nomenon is called the orbital hangup effect [30, 47, 182, 183]. The heuristic explanation of
this effect is that BBHs with spins aligned/anti-aligned with L⃗ will merge slower/faster than
non-spinning binaries, starting from the same reference epoch. This is because a spin addition
of L⃗ with the individual BH spins s⃗1 and s⃗2 is not allowed to be larger than the maximum
allowed spin magnitude of the Kerr BH a = M , so that a longer time is needed to radiate
angular momentum in the form of GWs. On the other hand, in the anti-aligned case there is
no need to radiate angular momentum away and the merger occurs earlier.
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4.1 Physics of the remnant black hole

Any property of an orbit such as unequal BH masses or spin precession, that leads to an
anisotropic GW radiation, could result in the newly formed BH receiving a recoil in the oppo-
site direction of the GW linear momentum flux, which we also call a kick. The kick is a result
of the conservation of momentum, similar to the recoil experienced when releasing a shot
of a weapon. Kicks can be significant and have important astrophysical consequences. For
instance, if the kick is strong enough, it can cause the merged BH to escape its host galaxy.
The in-plane kick refers to the component of the final recoil velocity that is within the orbital
plane of the BBH system just before merger. In addition to the mass ratio, the in-plane kick
is influenced by the spins that are aligned or anti-aligned with the orbital angular momentum,
and thus in-plane kicks occur even for non-precessing BBHs [184–186]. On the other hand,
the out-of-plane kick refers to the component of the final recoil velocity that is perpendicular
to the orbital plane. This kick is primarily influenced by the spin components not aligned
with the orbital angular momentum. In this case the spins contribute to a mode asymmetry
in the GWs, leading to a non-zero out-of-plane kick. In other words, the in-plane kick can
be described with higher modes without considering mode asymmetry, but the out-of-plane
kick needs a further investigation in the asymmetric emission between negative and positive
m-modes, i.e. there is a relation to the +/− waveform.

Strongly precessing BBHs have been found to generate kicks over 1000 km/s. One of these
special configurations is the superkick configuration already mentioned in sec. 3.4, i.e. equal-
mass binaries with identical spin magnitudes completely in the orbital plane but anti-parallel
to each other [33, 184]. Note that there is no orbital precession for superkick configurations,
since both spins precess at the same rate in the orbital plane, i.e. the spins remain opposite
to each other during the time evolution and the vector sum remains zero [32]. To understand
why superkick configurations can result in a large kick, we need to consider the constructive
addition of the frame-dragging effect of both BHs. We will use an explanation given by Frans
Pretorius in this paragraph [187]. Analysing the BBH orbit shown in Fig. 4.1, the rotation of
BH 2 affects the movement of BH 1. The rotation of BH 2 drags spacetime, causing a minimal
impact on BH 1 in phases A and C, but inducing movement in the negative z-direction in
phase B and in the positive z-direction in phase D. The same effect occurs with the impact
of the rotation of BH 1 on BH 2. In this superkick configuration, both BHs experience the
same induced velocity perpendicular to the orbital plane, causing the orbital plane to oscillate
up and down with the orbital frequency. Although this motion alone does not produce much
radiation, it does cause a blue shift in one direction and a red shift in the other, affecting the
net Doppler shift. As the GW radiation causes the orbital radius to decrease, the Doppler
shift increases until the time of the merger, affecting the net momentum radiated in the z-
direction. Finally, the magnitude and direction of the out-of-plane kick during the merger
depend on the explicit phase of the orbit at that moment.
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4 CORRELATING BLACK HOLE KICKS WITH MODE ASYMMETRY

Figure 4.1: Four different orbital phases of the superkick configuration. The grey lines illustrates
the frame-dragging of spacetime around the two rotating BHs, with spins pointing in the direction of
the blue arrows. The depiction is taken from Fig. 5 in the lecture notes of Frans Pretorius [187].

Equal-mass binaries with a small spin component in the direction of the orbital angular
momentum, but anti-parallel in the in-plane spin component, are called hangup kick config-
urations. These configurations have been found by Lousto et al. to have a maximum kick
velocities of about 5000 km/s [30, 183]. These configurations combine the frame-dragging
effects of the superkick configuration and the orbital hangup effect to increase the duration
of the linear momentum flux in addition to the energy and angular momentum flux. Ultimate
kicks up to 27 000 km/s, nearly 9 % of the speed of light, can be generated when eccentricity
is included in the BBH orbits [188].

4.2 Centre-of-mass trajectory

During the inspiral and merger of a BBH system, the emission of linear momentum P⃗ in
GWs leads to a motion of the centre-of-mass of the binary system. The trajectory of the
centre-of-mass is given by x⃗(t) =

∫∞
−∞ dt v⃗(t), where the time series of the kick velocity is

defined by

v⃗(t) = −Px(t) x̂+ Py(t) ŷ + Pz(t) ẑ

M(t)
, (4.1)

due to linear momentum conservation. In other words, the momentum of the final BH is
balanced by the momentum of the centre-of-mass of the merged system. The mass of the
binary is time-dependent due to the emission of energy, but it can be shown that the final
BH mass Mf can be expressed in units of the total mass M of the binary at early times [184].
As a result, M is just a scaling factor of the centre-of-mass trajectory, and the kick velocity
is independent of the total mass.

In Fig. 4.2 the interplay of spin precession and mass asymmetry leads to a complicated motion
of the centre-of-mass trajectory. The final kick velocity is given by v⃗f = limt→∞ v⃗(t). For the
particular configuration described in the caption of the figure the final kick reaches a value of
|v⃗f | ≈ 1267 km/s, mostly out of the orbital plane in the negative z-direction. This is already
more than twice the escape velocity of our Milky Way [189]. The flux of linear momentum
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4.3 Effect of the spin direction on the kick mode-asymmetry correlation

is insignificant in the early stages, and the kick is only accumulated in the last few cycles
before the merger. This is consistent with the build-up of the anti-symmetric waveform in
the merger-ringdown regime.
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Figure 4.2: Centre-of-mass trajectory taken from moving puncture data computed with the BAM code
for a q = 2 configuration with only the heavier BH spinning [54]. In the right panel the corresponding
dominant +/− waveform generated with NRSur7dq4 is shown. The spin is defined at a reference
frequency of ωorb ≈ 0.23 rad/M with |χ⃗1| = 0.6, θ1 = π/2 and ϕ1 = π/2. The rainbow colour indicates
the time evolution from t = −1000M until t = 100M . The final kick direction is the straight reddish
line in the negative z-direction.

4.3 Effect of the spin direction on the kick mode-asymmetry correlation

In order to obtain a first quantitative relationship between the anti-symmetric waveform and
the kick velocity, in this chapter we analyse the influence of the spin direction close to the
merger. Therefore, we consider equal-mass BBH configurations with only one BH spinning
with a high fixed spin magnitude of χ = 0.8 and choose 216 equally spaced sample points on
the sphere, i.e. the spin angles are chosen from θ ∈ [0, π] and ϕ ∈ [0, 2π]. We choose these
configurations because the highest kick velocities for quasi-circular BBH orbits are expected
for two maximally-spinning BHs and of equal mass [30, 183]. Focusing on the spin direc-
tion of only one BH simplifies considerations of the anti-symmetric waveform. In Fig. 4.3
the results are visualised by a scatter plot of the recoil velocity v = |v⃗f | versus the maxi-
mum value of the (2, 2) anti-symmetric amplitude â− as defined in Eq. (3.9), which we will
sometimes refer to as "asymmetry" for simplicity. Each point corresponds to one configura-
tion from the sample set. The colours of the points indicate the in-plane spin component,
i.e. the component of the spin perpendicular to the orbital angular momentum χ⊥ = sin(θ) ·χ.

Indeed, we can confirm the intuitive assumption that the kick velocity calculated with the
surrogate model NRSur7dq4Remnant increases as the asymmetry calculated from NRSur7dq4

waveforms increases. The linear dependence of the asymmetry on χ⊥, which we have already
found in sec. 3.4, is clearly visible by the colour gradient from left to right.
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Figure 4.3: Relation between the magnitude of the kick velocity v and the peak amplitude of the
dominant anti-symmetric waveform â− for 216 equal-mass BBH configurations with the spin specified
at tref = −100M placed on one BH. The colour map indicates the in-plane spin magnitude χ⊥. The
inset shows the difference between the maximum and minimum kick velocity for 1024 vertical lines
in the main plot versus the mean of χ⊥ in each line. The waveforms and remnant BH properties are
calculated via NRSur7dq4 and NRSur7dq4Remnant.

If we look at the three corners of the triangular shaped plot, we can see some interesting
properties that are not so intuitive. Starting with the lower right corner, it should be noted
that such configurations with very small recoil but strong anti-symmetric GW emission exist
at all. There must be other quantities and relations between them, than just a−, copr

2,2 (t) that
affect the linear momentum emission. We will have a closer look at configurations in this
corner in sec. 4.5.

The upper right corner consists of configurations with very high kicks and a strong asym-
metry. There are two surprising facts. The first is that the global maximum of 1684 km/s
is reached by a configuration where the spin is not completely in the plane. Consequently,
the asymmetry does not reach the global maximum. This is consistent with the concept
of the hangup kick configurations mentioned in sec. 4.1. These configurations combine the
in-plane spin effect, which maximises the anti-symmetric waveform, and the orbital hangup
effect, which maximises the duration of the GW emission due to the partial alignment of
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the spin with the orbital angular momentum. The second interesting fact about the upper
right corner is obtained by plotting the difference between the maximum and minimum kick
velocity ∆v = |v⃗ max

f | − |v⃗ min
f | against the in-plane spin magnitude χ⊥. To generate this

plot, we imagine vertical lines of small width in the scatter plot, i.e. constant asymmetry
values, and calculate from the configurations intersecting the vertical line the mean value of
χ⊥ and ∆v. We observe an almost linear dependence, i.e. the higher the in-plane spin value,
the wider the range of possible kick velocities. This indicates an increasing influence of the
angle ϕ between the separation vector and the spin on the kick as χ⊥ increases, since ϕ is the
only free quantity in this plot. In other words, ϕ must significantly modulate the maximum
achievable kick value, which is determined by χ⊥ and thus by the anti-symmetric amplitude.
At the far right of the inset plot ∆v drops rapidly. These are very specific configurations with
maximum asymmetry, due to a combination of maximum in-plane spin and a specific angle ϕ
that maximises the asymmetry. This is consistent with the observation of small oscillations
of the asymmetry with respect to ϕ in Fig. 3.7. So here ϕ takes a particular value, which
is a peak of the small asymmetry oscillations, and thus there is no ϕ-modulation of the kick
amplitude, which in turn leads to almost zero ∆v.

In the lower left corner of Fig. 4.3 we see a split into two lines of constant velocity. To
better understand where this split comes from, we generate Fig. 4.4. Therefore three vertical
lines in Fig. 4.3 for a very small, a medium and a high constant asymmetry are notionally
drawn. The lines have a small width of less than 15 % of the constant asymmetry value in
order to intersect with enough points, since we are dealing with a discretised space. The
intersecting points then have three free parameters left to analyse, the two spin angles and
the kick velocity.

The first row in Fig. 4.4 is now exactly the case of the lower left corner of Fig. 4.3, i.e.
an almost vanishing anti-symmetric waveform. We see a clear separation into two lines at
θ = 0 and θ = π. This means that we have non-precessing configurations with the BH spin
aligned, χz = +0.8, or anti-aligned with the orbital angular momentum χz = −0.8. The
anti-aligned spin case has the slightly higher kick velocity of about 195 km/s compared to the
aligned case with about 150 km/s. This difference can be explained by looking at the second
order kick PN expression for spins collinear with the orbital angular momentum. Eq. (4.30)
of Ref. [190] is where this expression was explicitly written down by Racine et al. Since we are
using an equal-mass single-BH spinning configuration, we have to substitute the mass differ-
ence δm = 0, the symmetric mass ratio η = 1/4, the constant total spin |Sc|/m2

1 = χz and the
constant spin difference |∆c|/m2

1 = −χz. The reader will find the precise definitions of these
four quantities in the reference. Simplifying the above-mentioned Eq. (4.30) as proposed by
Racine et al., we observe that there is no kick out of the plane, and the in-plane kick velocity
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has a value of

v⃗f = − 29
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Here n̂ is the normalised separation vector and x is the PN expansion parameter. What we
now learn is that for the aligned-spin case with χz = +0.8 the ∼ χz and ∼ χ2

z terms have
opposite signs, leading to a small kick velocity. On the other hand, in the anti-aligned case
with χz = −0.8, both terms have a negative sign, resulting in an effective addition of both
terms and thus a higher kick.
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Figure 4.4: Spin polar angle θ, azimuthal angle ϕ and kick velocity magnitude v relations for a
small, medium and high constant anti-symmetric peak amplitude â− · r/M ∈ {0.0025, 0.03, 0.052}.
The peak amplitude increases from the first to the last row. The colour bars in the left column have
different scales to better show the relative colour gradient on the lines of the different spin angle
configurations. The right column shows the sinusoidal dependence of the kick velocity on ϕ. The
magenta lines correspond to BBH configurations with the spin above the orbital plane v+1(ϕ), while
the cyan lines correspond to configurations with the spin below the orbital plane v−1(ϕ).
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Increasing â− causes the two spin angle lines to move towards θ = π/2 until they are so
close together that they connect in a circularly shape, as can be seen in the left column of
Fig. 4.4. The fact that some irregular circular shapes are formed and that the straight lines
in the upper left plot do not remain straight until connecting in θ = π/2 is another indi-
cation that the anti-symmetric amplitude must also depend on ϕ, especially in the merger
regime, as already mentioned in sec. 3.3. Another thing we can learn when increasing the
asymmetry is from the rainbow colour gradient, which indicates the magnitude of the kick
velocity. There is a sinusoidal pattern of the colours with respect to ϕ. The amplitude of
the redness increases with â−, as can be seen from the scales of the colour bars on the left
in each row of Fig. 4.4. Also, the redness is stronger on the left side of θ = π/2 compared
to the right side, and the points of maximum redness are at different ϕ on the left and right
sides. The graphical representation of these descriptions are the plots in the right column
of Fig. 4.4. In more mathematical words the kick velocity has a sinusoidal dependence on
the in-plane angle. There are two sinusoids v±1(ϕ) for configurations with the spin above
or below the orbital plane, which is characterised by the sign of cos θ. The amplitude of
both v±1(ϕ) increase linearly with the asymmetry. The phase shift between v−1 and v+1

decreases with â−. At maximum asymmetry, which corresponds to an infinitesimal region
around θ = π/2, the phase shift is zero and v+1(ϕ) = v−1(ϕ). To explain the sinusoidal
dependence of the kick on the in-plane spin, we refer to Ref. [179], which first developed a
model to predict the kick velocity, and to further studies by the group [134, 191–195]. The
fact, that there are two sinusoids is that for a constant asymmetry always two out-of-plane
angles are responsible since â− ∼ sin(θ) and the sin function is symmetric around θ = π/2.
v+1 has a higher amplitude than v−1 due to the orbital hangup effect mentioned above. This
is counterintuitive to the PN argument made in Eq. (4.2), but remember that PN only gives
possible trends from the insperial regime, whereas the orbital hangup effect is a full GR effect.

Besides the references given in the last paragraph, to understand the interaction between
v, θ and ϕ, the reader can have a closer look at the variation of the kick velocity with the
out-of-plane spin θ in Fig. 4.5. The six plots show the v(θ) profile of configurations with six
different but fixed in-plane angles ϕ ∈ {0, π/5, 2π/5, 3π/5, 4π/5, π}. Therefore configura-
tions from Fig. 4.3 with an in-plane spin close to the six chosen ϕ-values are picked. From the
colours we can again deduce that the peak asymmetry â− is maximised for spins completely
in the plane, which can be seen by the fact that the maximum redness is always at θ = π/2.
As expected, since we have only a single BH spinning system, the v(θ) maps are π-periodic
in the rotation of the in-plane spin, which is consistent with the π-periodicity of the plots
in the right column of Fig. 4.4. The maximum kick is reached in the plot for ϕ = 3π/5 at
about θ ≈ 85◦, which is again a hangup kick configuration, a combination of frame-dragging
maximisation, which is responsible for superkicks, and the hangup effect, which increases the
energy emission.
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Figure 4.5: Effect of the polar angle θ on the kick velocity v for six different but fixed azimuthal
angles ϕ. The relation of v and θ is π-periodic in ϕ, i.e. the plots in the upper left corner and lower
right corner are equal. The colours indicate the dominant anti-symmetric peak amplitude. The highest
peak amplitude is always reached when the spin is completely in the plane, so θ = π/2. This is not
the case for the kick velocity, where the peak also depends on ϕ.
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4.4 Expressing the linear momentum flux through +/− waveform quantities

4.4 Expressing the linear momentum flux through +/− waveform quanti-
ties

The transfer of linear momentum only occurs if there is an asymmetric energy distribution in
the emitted waves, i.e. studying the mode asymmetry in GWs can help us to understand where
the recoil comes from. Since mis-aligned systems lead to an out-of-plane kick and to higher
asymmetries, we will focus here on the derivation of the z-component of the linear momentum
flux in terms of the dominant +/− waveform. We therefore explain the calculations in chapter
III of Ruiz et al. [46], adapt them to our notation, and include ideas from a non-public
transcript by Shrobana Ghosh. We start with the linear momentum flux function in Eq. (2.33)
and use Ψ4 = −ḧ to get

dPz

dt
= lim

r→∞
r2

16π

∮
dΩ lz

∣∣∣ḣ
∣∣∣
2

= lim
r→∞

r2

16π

∮
dΩ lz

(∫ t

−∞
dt′Ψ4(t

′, r)
)(∫ t

−∞
dt′Ψ∗

4(t
′, r)
)
.

(4.3)

We can now use the spherical harmonic expansion of Ψ4 in Eq. (2.66). The property that
the strain is in first order anti-proportional to the distance from source r, also holds for the
expansion coefficients ψℓ,m(t, r). So ψℓ,m(t, r) ≈ ψℓ,m(t)/r and we get rid of the limit in
Eq. (4.3):

dPz

dt
=

1

16π

∑

ℓ,m

∑

ℓ′,m′

∮
dΩ−2Yℓ,m

−2Y ∗
ℓ′,m′ lz

(∫ t

−∞
dt′ ψℓ,m(t′)

)(∫ t

−∞
dt′ ψ∗

ℓ′,m′(t′)
)
. (4.4)

To calculate the integral over the sphere, we can express the z-component of the radial unit
vector as

lz = cos θ = 2

√
π

3
Y1,0 (4.5)

where Yℓ,m are the common spin zero spherical harmonics. So we now have an integral over
three SWSH in the form of

∮
dΩ s1Yℓ1,m1

s2Yℓ2,m2
s3Yℓ3,m3

=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
,

(4.6)

where we have written down the solution of the integral to the right of the equal sign, which
involves Wigner 3-ℓm symbols. These Wigner 3-ℓm symbols are related to the Clebsch-Gordan
coefficients from quantum mechanics, which in turn can be expressed in a closed form [63].
Since the complex conjugate of SWSH is given by

sY ∗
ℓ,m = (−1)s+m −sYℓ,−m , (4.7)
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we have in the case of Eq. (4.4) s1 = −2, s2 = 2, s3 = 0, ℓ1 = ℓ, ℓ2 = ℓ′, ℓ3 = 1, m1 = m,
m2 = −m′ and m3 = 0. In this special case the closed form of the Wigner matrices (Eq. (A24)
in Ref. [46]) involves Kronecker deltas that are only non-vanishing form = m′, ℓ = ℓ′, ℓ = ℓ′+1

and ℓ = ℓ′ − 1. Thus the two sums in Eq. (4.4) can be simplified to one sum over ℓ ≥ 2 and
−ℓ ≤ m ≤ +ℓ. So we have

dPz

dt
=

1

16π

∑

ℓ,m

(∫ t

−∞
dt′ ψℓ,m(t′)

)

·
(∫ t

−∞
dt′
(
cℓ,m ψ

∗
ℓ,m(t′) + dℓ,m ψ

∗
ℓ−1,m(t′) + dℓ+1,m ψ

∗
ℓ+1,m(t′)

))
,

(4.8)

where the coefficients are given by

cℓ,m =
2m

ℓ(ℓ+ 1)
(4.9)

dℓ,m =
1

ℓ

√
(ℓ− 2)(ℓ+ 2)(ℓ−m)(ℓ+m)

(2ℓ− 1)(2ℓ+ 1)
. (4.10)

Note that
∫
dt′ψl,m(t′) = −ḣl,m(t). We now calculate the sum until ℓ = 2 and keep only

combinations with exclusively ℓ = 2 and m = ±2 modes. Then we can rewrite Eq. (4.8) as

dPz

dt
=

1

16π

(
2

3
ḣ2,2ḣ

∗
2,2 −

2

3
ḣ2,−2ḣ

∗
2,−2

)
. (4.11)

With the definitions in Eq. (3.1) and in Eq. (3.7) we can express the dominant modes for a
precessing system in terms of the +/− amplitude and phase:

h2,2(t) = a+2,2(t) e
iϕ+

2,2(t) + a−2,2(t) e
iϕ−

2,2(t) (4.12)

h2,−2(t) = a+2,2(t) e
−iϕ+

2,2(t) − a−2,2(t) e
−iϕ−

2,2(t). (4.13)

Calculating the derivatives with the chain rule give:

ḣ2,2 =

(
ȧ+2,2 + iϕ̇+2,2 a

+
2,2

)
eiϕ

+
2,2 +

(
ȧ−2,2 + iϕ̇−2,2 a

−
2,2

)
eiϕ

−
2,2 , (4.14)

ḣ2,−2 =

(
ȧ+2,2 − iϕ̇+2,2 a

+
2,2

)
e−iϕ+

2,2 −
(
ȧ−2,2 − iϕ̇−2,2 a

−
2,2

)
e−iϕ−

2,2 . (4.15)

Substituting these into Eq. (4.11) and suppressing the subscript "2, 2" for better reading, we
find that:

dPz

dt
=

1

6π

((
ȧ−ȧ+ + a−a+ϕ̇−ϕ̇+

)
cos(ϕ− − ϕ+)

−
(
a−ȧ+ϕ̇− − ȧ−a+ϕ̇+

)
sin(ϕ− − ϕ+)

)
.

(4.16)
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Figure 4.6: Linear momentum fluxes for the same configuration as in Fig. 4.2. The dashed lines
are the momenta extracted at r = 120M calculated with the BAM code [54] and are therefore the
most accurate. The orange line is calculated using Eq. (2.33) and includes all available modes up to
ℓ = 4, where the modes are taken from the NRSur7dq4 model as only Ψ4 data are available in the BAM
simulation. The green line is calculated using Eq. (4.16). As a sanity check of the calculations in this
chapter, the reader can include only the h2,±2 modes in Eq. (2.33) and see that the orange line would
exactly overlie the green one, because Eq. (2.33) and Eq. (4.16) are equivalent for ℓ = 2 and m = ±2.
In the brackets in the legend the kick velocity is given, which is nothing else than the negative of the
integral over the full momentum time series. The kick in the x- and y-directions is suppressed, since
the grey lines have stronger oscillations compared to the coloured lines. The inaccuracies in the vzf
due to the surrogate modes, the limited integration bounds and the non-inclusion of all modes are
in an acceptable range, considering the most recent accurate remnant model NRSur7dq4Remnant [24]
give an out-of-plane kick of vzf = −1116.3 km/s and have a 95th percentile error of ∼ 120 km/s.

To the best of our knowledge, this relationship between the linear momentum flux and the
dominant +/− waveform quantities has not been reported elsewhere. We can immediately
see from this equation that when the anti-symmetric waveform is switched off, i.e. a−(t) = 0,
the out-of-plane recoil disappears, since the out-of-plane kick is given by

vzf = −
∫ ∞

−∞
dt

dPz

dt

/
Mf . (4.17)

Notice two small sources of error when calculating the kick velocity in units of the total mass
M by numerically integrating over Eq. (4.16). Since we only have a limited waveform time
series, a small integration error occurs. In addition there are higher order corrections from
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4 CORRELATING BLACK HOLE KICKS WITH MODE ASYMMETRY

the subdominant +/− waveforms. Nevertheless, in Fig. 4.6 and the following sections, we can
explore the power of considering only these dominant waveform quantities. Further relations
for the energy, linear momentum and angular momentum fluxes in terms of the dominant and
subdominant +/− waveforms can be derived using the same approach. However, deciding
which relationship is worth investigating in terms of mode asymmetries and the final analysis
of these expressions will require some future work.

4.5 Influence of the +/− phase difference

So far, we can only state with the equation derived in the last sec. (4.16), that the merged BH
indeed recoils due to mode asymmetries. But as we have seen in sec. 4.3, the recoil depends
crucially on the spin direction. The strong dependence on the spin direction was also ob-
served in sec. 3.3 for the anti-symmetric waveform. So it is reasonable to assume that there is
a correlation between the two dependencies. The aim of this chapter is to further understand
the different terms in the Eq. (4.16) between the out-of-plane linear momentum flux and the
+/− waveform quantities. Therefore, we take two configurations with equal masses and one
BH spinning from Fig. 4.3. We choose a configuration in the lower right corner, which has the
characteristics of a low kick velocity but high asymmetry (LKHA). The second configuration
is in the upper right corner, so one with a high kick velocity but the same high asymmetry
(HKHA). We make two hypotheses about their different kick velocities. First, the asymme-
tries vary only in phase, which means that the phase evolution is different for the two cases,
and the final kick occurs at different phases in the motion of the precessing orbital plane.
Consequently, the final kick is influenced by the phase at which the kick happens. Secondly,
the two asymmetries actually differ in amplitude. These differences are barely discernible in
the PN equations, but become more pronounced near the merger, making them perceptible
in full NR waveforms.

The top panel of Fig. 4.7 shows the real part of the dominant +/− waveform of both config-
urations in the coprecessing frame. Both the symmetric and the anti-symmetric amplitudes
are of comparable order of magnitude. But we can already see just from the waveforms of
LKHA and HKHA that in the merger-ringdown regime, which is mainly responsible for the
final kick, the phase shift between their anti-symmetric and symmetric waveforms is different.
In the LKHA case for t ≳ −20M a peak of the anti-symmetric waveform is at the same time
as a zero crossing of the symmetric waveform, i.e. there is a π/2 phase difference between
them. For the HKHA case, we observe a π phase difference because a maximum of the anti-
symmetric waveform is at the same time as a minimum of the symmetric waveform and vice
versa.

Before we explain that the phase difference between the +/− waveform is indeed mainly
responsible for the different high kick values, let us have a look at the kick time series we get
by expressing Eq. (4.17) as a function of the upper integration limit and assuming M ≈Mf .
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In the lower panel of Fig. 4.7 we observe, that the LKHA configuration has a kick profile
vz(t), which shows a antikick, i.e. there is a significant difference between the maximum kick
and the final kick velocity [196]. The HKHA kick profile, on the other hand, does not fall
back on low velocities.
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â− = 0.056M/r

Figure 4.7: Real part of the dominant +/− waveforms in the coprecessing frame and the kick profile
vz(t) for two q = 1 configurations, LKHA and HKHA, with one BH spinning, where the spin χ⃗1 is
defined at tref = −100M . The two configurations have a similar high asymmetry amplitude â−, but
differ in their final out-of-plane kick velocity vzf , since there is a different phase difference between the
anti-symmetric and symmetric waveform.

We will now try to find an explanation for these phenomena by splitting Eq. (4.16) into four
individual amplitude terms: ȧ−ȧ+, a−a+ϕ̇−ϕ̇+, a−ȧ+ϕ̇− and ȧ−a+ϕ̇+. Therefore we plot in
the upper left of Fig. 4.8 the four terms without the overall prefactor 1/6π and without the
sine and cosine oscillations. For both, the LKHA and HKHA configuration, we find that the
a−a+ϕ̇−ϕ̇+ term is the most dominant one, which we could also observe for all other precess-
ing configurations at least in the seven-dimensional parameter space covered by NRSur7dq4.
The difference between this term and the other three is that it is independent of the amplitude
derivatives ȧ±, which have the smallest order of magnitude compared to a± and ϕ̇±. This
can be seen in the upper right plot of Fig. 4.8. Note that in this plot we deliberately omit the
units. We get a± in units of M/r, ȧ± in r and ϕ̇± in rad/M . However, in Eq. (4.16) the total
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mass M cancels out when you multiply everything together. The dependence on the distance
r cancels as well, since there is a total r2 in Eq. (4.3), which we have ignored in the derivation
of Eq. (4.16) with the argument that the strain is approximately proportional to 1/r. Another
argument for the dominance of the a−a+ϕ̇−ϕ̇+ term is, that it is always positive, since the
amplitude a± of a complex quantity and the combination ϕ̇−ϕ̇+ is always non-negative. The
latter is true because the phase derivatives ϕ̇± become approximately equal in the merger-
ringdown regime, as we have already suggested in sec. 3.2.3. Thus the area under a−a+ϕ̇−ϕ̇+

is always non-negative, i.e. the linear momentum is not cancelled out by integration over
oscillations in the flux, as could happen with the other terms.

It is interesting to note that the dominant terms for the LKHA and the HKHA configu-
ration are at relatively the same high level, since their +/− amplitudes and +/− phase
derivatives are approximately equal, apart from small peak amplitude differences and small
oscillations of ϕ̇±. The biggest effect now comes from the multiplication of the dominant term
with cos(ϕ−−ϕ+), as can be seen in the lower left plot of Fig. 4.8. For the HKHA configura-
tion the cosine is extreme in the regime of the maximum contribution of a−a+ϕ̇−ϕ̇+ around
tmax ≈ 9M . A multiplication of the dominant term with the cosine only leads to a reflection
of the dominant term on the x-axis, since ϕ− − ϕ+ ≈ π for the region around tmax and thus
the cosine is −1. The situation is quite different in the case of LKHA. Here the cosine makes
a zero crossing at tmax, leading to a folding of the dominant amplitude term from positive
to negative values. Integration over these oscillations results in a kick velocity close to zero.
Finally, the bottom right plot shows the wrapped phase difference for both configurations.
In fact, in the region around tmax that contributes most to the momentum flux, the phase
difference is π/2 for LKHA and π for HKHA, which is consistent with our observation from
the different phase evolution of the +/− waveforms in Fig. 4.7. We can also observe that the
phase difference becomes approximately constant for t ≳ 9M , which is consistent with what
we have already stated in the last paragraph of sec. 3.2.3. There we found that the phase
evolution of the symmetric and anti-symmetric waveform remains parallel and hence their
derivatives ϕ̇− ≈ ϕ̇+ become equal in the merger-ringdown regime.

In a nutshell, the kick velocity depends on a very specific interplay of the +/− waveforms.
First, the magnitude of the anti-symmetric and symmetric amplitudes are crucial. However,
we have seen in sec. 3.3 that the symmetric amplitude in leading order depends mostly on
the mass ratio, while the anti-symmetric amplitude depends strongly on the spin magnitude
and the polar angle in addition to the mass ratio. So, for a constant mass ratio, we can say
that the magnitude of the anti-symmetric amplitude is the decisive quantity for the maximum
achievable kick velocity. But secondly, we also have to consider that in the merger regime
there is no phase difference modulo π between ϕ− and ϕ+.

65



4.6 Correlation of in-plane spin rotation with the +/− phase difference

0.000

0.001

0.002

0.003

0.004

0.005

d
P
z
/d
t

ȧ−ȧ+

a−a+φ̇−φ̇+
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Figure 4.8: Analysis of the different components of the momentum flux defined in Eq. (4.16) for the
same LKHA and HKHA configuration as in Fig. 4.7. The different line styles are used to represent
different single terms of the Eq. (4.16). In the upper right plot, the bottom four lines correspond to ϕ̇±,
while the remaining lines are the amplitude a± and the small amplitude derivatives ȧ±, respectively.
The y-axis labels are dropped on porpuse as described in the text above. Note that in the lower left
plot, the amplitude of cos(ϕ− − ϕ+) is scaled by 1/250 for better visibility, and dPz/dt is scaled by
6π to compensate for the overall 1/6π factor in Eq. (4.16). The vertical grey dashed line indicates
the time when the dominant term a−a+ϕ̇−ϕ̇+ is approximately maximal at tmax ≈ 9M . At this time
ϕ−−ϕ+ is approximately π/2 for LKHA and and π for HKHA, as indicated by the horizontal dashed
lines in the lower right plot.

4.6 Correlation of in-plane spin rotation with the +/− phase difference

With our knowledge of the strong influence of the +/− phase difference on the out-of-plane
kick velocity, we can now relate this to the sinusoidal kick dependence of superkick configu-
rations on in-plane spin rotation. One could consider breaking the dependence on the phase
differences further down to a dependence on the anti-symmetric phase only. For configura-
tions with the same mass ratio and the same χeff , such as superkick configurations, this might
work, because the contribution of the in-plane spin to the symmetric phase evolution is only
at higher orders of the PN equations, as we saw in sec. 2.2.7. Thus ϕ+(t) is relatively similar
in all superkick cases. But since the momentum flux reaches its maximum in the merger-
ringdown regime, we cannot use this PN assumption and we do not treat ϕ+ as equal in all
cases. We simply continue to analyse the difference ϕ+ − ϕ− at tmax.
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Figure 4.9: Out-of-plane recoil velocities for a series of superkick configurations rotated by an in-
plane spin angle α. The blue lines belong to the left y-axis, while the orange line belongs to the right
y-axis and is unitless. The solid blue line is calculated using the NRSur7dq4Remnant model and is
assumed to be the most accurate. The dashed blue line is calculated using Eq. (4.16) and Eq. (4.17).
It is in very good agreement with the solid line, considering that only (2, ±2) modes are included
and that we can only integrate over a limited time series. The dotted line is the time integral over
the dominant term a−a+ϕ̇−ϕ̇+ in Eq. (4.16). The dominant term has a small dependence on α, but
these oscillations are not responsible for a clear sinusoidal kick profile. Rather, the cosine of the phase
difference ϕ− − ϕ+ in the merger-ringdown regime at about tmax = 9M is the driving term for the
integral evaluation, since a−a+ϕ̇−ϕ̇+ is maximal at tmax.

Fig. 4.9 shows the out-of-plane kick velocity for binaries with dimensionless spins of χ⃗1 =

−χ⃗2 = 0.8 · (cosα, sinα, 0) defined at tref = −100M , i.e. the same configurations we have
already analysed in sec. 3.4. First, note again the good agreement in which the sinusoidal kick
dependence on α can be reconstructed just by using +/− waveform quantities in Eq. (4.16)
by comparison with the more accurate NRSur7dq4Remnant prediction. As discussed in sec. 4.1
superkick configurations only lead to a very high kick velocity with a very specific orbital
phase, i.e. depending on where exactly the merger occurs and whether the frame-dragging is
constructive or destructive at that time. In other words, it is a question of finding the refer-
ence time to define the spins, which is directly at the point of merger, to relate the in-plane
rotation α with the orbital phase. This question is not so easy to answer as we only have the
waveform quantities and no information about when the apparent horizon of the remnant BH
forms. However, it is not necessary to answer this question, as it would only result in a left or
right shift of the overall sinusoidal kick behaviour, since the spin of superkick configurations
remain opposite during spin evolution. So defining the spins at tref = −100M is fine and we
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just have to live with the fact that e.g. for α = 0 the kick is not zero, as we would expect
from the simple picture in Fig. 4.1 if tref were the exact merger time.

If we now analyse the rotation of the spins in the orbital plane with respect to the dominant
term a−a+ϕ̇−ϕ̇+ and with respect to the phase difference ϕ− − ϕ+ at the time of maximum
linear momentum flux of the dominant term tmax, the final answer is that the +/− phase
difference, which leads to different recoil velocities, is directly related to the in-plane spin ro-
tation α. We can explore this in Fig. 4.9 by comparing the α-dependent kick profile with the
cosine of the +/− phase difference at tmax, which has the same sinusoidal shape. Superkick
configurations have almost no difference in the +/− amplitudes and phase derivatives, with
the exception of minor oscillations associated with the azimuthal angle, as previously men-
tioned. Hence, the integral over the dominant term

∫
dt a−a+ϕ̇−ϕ̇+, which is the amplitude

of the cosine, is almost constant with the α-variation. Graphically, one can imagine that mul-
tiplying the dotted blue line by the orange line gives the dashed line, except for the remaining
three negligible small terms of Eq. (4.16). Note that the time integral over Eq. (4.16) actually
goes over the time-dependent function cos (ϕ−(t)− ϕ+(t)). However, since the amplitude of
the cosine is almost zero, except for a small region around tmax, the integral is approximately
just the cosine evaluated at tmax. To summarise this chapter we can say that there is a direct
relationship between the +/− phase difference and a rotation of the azimuthal angle.
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5 | Conclusion
In this thesis we have delved into the wide field of actually very weak oscillations of spacetime.
Starting with the standing-above theory of GR, we have explored mathematical concepts to
deduce and describe GWs, and limited ourselves to an interesting source of GWs, the precess-
ing BBHs. In addition, we discussed the history and motivation behind GW measurements,
detailed the detectors and data analysis processes, and finally introduced various models for
simulating GWs, such as the NR surrogate, phenomenological and EOB waveform families.

The complex dynamics in mis-aligned BBH systems manifests itself in an asymmetry in the
GW radiation between the +m and −m multipoles, which becomes significant in the merger
regime. The effect is maximal for binaries with opposite spins that are completely in the
orbital plane close to the merger. Technically, the important step was the transformation to
a coprecessing frame that follows the precession of the orbital angular momentum, so that we
can suppress artefacts such as beat effects in the waveform, and identify the anti-symmetric
waveform for ℓ = 2 and m = ±2 as the dominant one for all systems.

A discussion of the correlation between the magnitude of the recoil velocity and the mode
asymmetry, showed that the anti-symmetric waveform amplitude is indeed a crucial quantity
for the kick, but by far not the only quantity. Expressing the linear momentum flux in form
of GW modes and separating the anti-symmetric and symmetric contributions in Eq. (4.16)
shows that the recoil is a result of an interaction between both contributions. A high kick
velocity can only be achieved if there is no phase difference modulo π between the (2, 2) anti-
symmetric and symmetric waveform in the merger-ringdown regime and if the anti-symmetric
amplitude is large. Furthermore, we found that this phase difference is related to an in-plane
spin rotation of superkick configurations and thus to the specific orbital phase at the time of
the merger.

The title of this thesis allows for very broad research questions, but in terms of understanding
the physics of a small but not unimportant effect to improve current GW models as a next
step, this thesis has made a major step. In particular, we found a +/− waveform interaction
responsible for the kick, which has long been known in research, but to our knowledge has
never been published in this detail and disaggregation. However, in various sections we came
across a few unresolved problems, such as the analysis of mode asymmetry in different rotated
and boosted frames, which could lead to the disappearance of the anti-symmetric waveform, or
the more accurate consideration of subdominant modes. Furthermore, we have only touched
on the frequency-domain morphology of the +/− waveform. It is obvious that in future work
a time-domain model should be developed and compared with the frequency-domain model
in IMRPhenomXO4a [32] or other upcoming mode asymmetry implementations.
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For accurate spin and kick measurements, further investigation of the phenomenology, mod-
elling and recoil relationship of mode asymmetry is essential, because, as detector sensitivity
increases, louder signals with measurable spin misalignment are expected. Spin and kick mea-
surements in turn will give new insights into different fields of research such as astrophysics
or cosmology. Projected new ground-based detectors will be sensitive in a frequency range
exactly where precessing BBHs are located [197]. The mode asymmetry including NRSur7dq4

model will then be insufficient due to its limitations in parameter space and the short length
of time series. But even for space-based detectors such as LISA, which will mainly detect
other sources of GWs, waveform modelling is an ongoing process [198], and considerations
about asymmetric radiation from BBHs should also hold to a certain level for other sources.
All in all, there is plenty of scope for future research that will fascinate humanity for centuries
to come.
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APPENDIX

Appendix

A List of acronyms

ADM Arnowitt-Deser-Misner
BAM bi-functional adaptive mesh
BH black hole
BBH binary black hole
BNS binary neutron star
BSSNOK Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima
CBC compact binary coalescence
CE Cosmic Explorer
EFE Einstein field equations
EOB effective-one-body
ET Einstein Telescope
GR general relativity
GW gravitational wave
HKHA high kick high asymmetry
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LKHA low kick high asymmetry
NEMO Neutron Star Extreme Matter Observatory
NR numerical relativity
NS neutron star
NSBH neutron star-black hole
PN post-Newtonian
PTA pulsar timing array
SNR signal-to-noise ratio
SpEC Spectral Einstein Code
SXS Simulating eXtreme Spacetime
SWSH spin-weighted spherical harmonics
TT transverse-traceless
+/− symmetric/anti-symmetric
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B Implementation of the reference time-frequency map

'''
Code snippet showing the implementation of the reference epoch algorithm
described in this thesis. An important function for the frame transformation
is described first.
'''

import numpy as np
import gwsurrogate as gws
import scri

def from_iner_to_copr(t, h, ell_min, ell_max):
'''
Transforms modes from the inertial frame into the coprecessing frame.

Parameters
----------
t : ndarray

Time array.
h : dict

Dictionary of available modes with (ell, m) tuples as keys in
the inertial frame.

ell_min : int
Minimum ell value.

ell_max : int
Maximum ell value.

Returns
-------
dict

Dictionary of modes in the coprecessing frame.
'''
# Build scri WaveformModes object
data = list(h.values())
data = np.array(data).T
waveform_modes = scri.WaveformModes(

dataType=scri.h,
t=t,
data=data,
ell_min=ell_min,
ell_max=ell_max,
frameType=scri.Inertial,
r_is_scaled_out=True,
m_is_scaled_out=True)

2
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# Apply scri frame transformation
waveform_modes.to_coprecessing_frame()
data_copr = waveform_modes.data.T

# Build mode dictionary
mode_list = [(ell, m) for ell in range(ell_min, ell_max+1)

for m in range(-ell, ell+1)]
h_copr = dict(zip(mode_list, data_copr))

return h_copr

def get_f_ref(q, chi1, chi2, t_ref):
'''
Maps a reference time in units of M to the reference frequency in units
of cycles/M, which is used to set the reference epoch in NRSur7dq4.

Parameters
----------
q : float

Mass ratio m1/m2 >= 1.
chi1 : ndarray

Dimensionless spin of the heavier black hole.
chi2 : ndarray

Dimensionless spin of the lighter black hole.
t_ref : float

Reference time between -4300 M and -100 M to define spins.

Returns
-------
float

Reference frequency in cycles/M.
'''
# Generate surrogate waveform GW^0 at t^0_{ref} = -4300 M
sur = gws.LoadSurrogate('NRSur7dq4')
dt = 0.1
ell_min = 2
ell_max = 4
t, h, dyn = sur(q, chi1, chi2, dt=dt, f_low=0)
h_copr = from_iner_to_copr(t, h, ell_min, ell_max)

# Get frequency-time map from GW phase
phi_GW0 = 1/2 * (np.angle(h_copr[(2, -2)]) - np.angle(h_copr[(2, 2)]))
phi_GW0_dot = np.diff(phi_GW0) / dt
phi_GW0_dot = np.append(phi_GW0_dot[0], phi_GW0_dot)

3
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# Substitute t_{ref} and multiply conversion factor
i_ref = np.argmin(np.abs(t - t_ref))
f_ref = phi_GW0_dot[i_ref] / (2*np.pi)

return f_ref

# Example output
q = 2
chi1 = [.5, .2, .5]
chi2 = [-.3, .1, .5]
t_ref = -500
f_ref = get_f_ref(q, chi1, chi2, t_ref)
print('The GW frequency at t = %.1f M is f = %.4f cyc/M' % (t_ref, f_ref))

4
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