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.

ABSTRACT

In this thesis, we classify certain singular K3 surfaces over Q. The Shioda-Inose theorem
establishes a one-to-one correspondence between the set of isomorphism of singular K3
surfaces over C and the isomorphism classes of positive definite even oriented lattices of
rank 2. As a result, we know that every singular K3 surface can be defined over a number
field. Therefore a natural question consists in determining which singular K3 surfaces can
be defined over the rational numbers. It is already known that singular K3 surfaces with
class number 1 and 2 have a rational model. We prove that singular K3 surfaces with fun-
damental discriminant |d| ≤ 408, whose class group is two torsion and class number 4 also
has a rational model. To exhibit this, we find a Weierstrass model over Q for each of the
four possible singular K3 surfaces with fundamental discriminant d. To achieve this, we
will investigate the obstructions coming from the field of definition of singular K3 surfaces
using the theory of lattices and Mordell-Weil lattices as well as of elliptic fibrations and
class group theory. Additionally, we will utilize an important technique over finite fields,
which consists in using the moduli theory of complex K3 surfaces to get specializations
over Q of families of K3 surfaces Xλ with ρ(Xλ) ≥ 19. Furthermore, we use p-adic multi-
variable Newton iteration, to solve algebraic equations over Q simultaneously .

Key words: Elliptic surfaces, K3 surfaces, singular K3 surfaces, Lattices, Mordell-
Weil lattices, Weierstrass model.

ZUSAMMENFASSUNG

In dieser Arbeit klassifizieren wir bestimmte (Klassen von) singulären K3 Flächen. Das
Shioda-Inose-Theorem stellt eine Eins-zu-Eins-Korrespondenz zwischen der Menge der
Isomorphismen von singulären K3 Flächen über C und den Isomorphieklassen von positiv
definiten, orientierten Gittern vom Rang 2 her. Deshalb wissen wir, dass jede singuläre
K3 Fläche über einem Zahlkörper definiert werden kann. Daher stellt sich die natürliche
Frage, welche singulären K3 Flächen über den rationalen Zahlen definiert werden können.
Es ist bereits bekannt, dass singuläre K3 Flächen mit Klassenzahl 1 und 2 ein rationales
Modell haben. Wir beweisen, dass singuläre K3 Flächen mit fundamentaler Diskrimi-
nante |d| ≤ 408 und Klassenzahl h(d) = 4 ebenfalls ein rationales Modell haben.Um
dies zu zeigen, finden wir ein Weierstraß-Modell über Q für jede der vier möglichen sin-
gulären K3-Flächen mit Fundamentaldiskriminante d haben. Um dies zu erreichen, unter-
suchen wir die Obstruktionen des zugrundeliegenden Körpers von singulären K3 Flächen,
indem wir die Theorie der Gitter und Mordell-Weil-Gitter sowie der elliptischen Fibratio-
nen und der Klassengruppentheorie verwenden. Darüber hinaus werden wir eine wichtige
Technik über endlichen Körpern verwenden, indem wir die Modulitheorie der komplexen
K3 Flächen verwenden, um Spezialisierungen über Q von Familien von K3-Flächen Xλ

mit ρ(Xλ) ≥ 19 zu erhalten. Des Weiteren verwenden wir die p-adische Mehrvariablen-
Newton-Iteration, um algebraische Gleichungen über Q simultan zu lösen.
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Introduction

K3 surfaces have been one of the central themes in algebraic geometry. They appear nat-
urally in different areas of mathematics such as algebraic geometry, number theory, Lie
groups, differential geometry and more, in addition to this, K3 surfaces also appear in
modern areas of physics such as particle physics or string theory. In algebraic geometry
K3 surfaces are a really special kind of objects because they have a trivial canonical bundle
and irregularity zero. They can be considered as a 2 dimensional generalization of elliptic
curves.

In this dissertation we investigate certain aspects of the arithmetic of singular K3 surfaces,
i.e. K3 surfaces with maximum Picard number over C. In particular we investigate the
field of definition of singular K3 surfaces and we find explicit models over Q for certain
singular K3 surfaces. One of the reasons these singular K3 surfaces are interesting to study
is that, as established by Shioda-Inose work, they are two-dimensional analogues of elliptic
curves with complex multiplication (CM). This will be explored in great detail throughout
this thesis.
A classic result states that every elliptic curve with CM is defined over a number field. And
given a fixed positive integer n ∈ N,

#{E elliptic curve with CM defined over K; [K : Q] < n}/∼=C <∞.

Additionally, it is possible to understand the elliptic curves with CM through the use of
class field theory. By considering O the order associated with an elliptic curve with CM,
it is a well-established result that there is a one-to-one correspondence between the class
group Cl(O) and the isomorphism classes of elliptic curves with End(E) = O.

It is possible in a natural way to obtain an analogous version of these (and many more) re-
sults for singular K3 surfaces over C. In groundbreaking work by Shioda and Inose [SI77],
they proved that there is a one-to-one correspondence from the isomorphism classes of
singular K3 surfaces to the set of isomorphism classes of positive definite even oriented
(given by the choice of the order of a base) lattices of rank 2, given an abelian surface A,
a Shioda-Inose structure associates with it a K3 surface X , which serves as a 2:1 covering
of Km(A)—the Kummer surface associated with A. This construction ensures that the
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transcendental lattices of X and A are isomorphic, denoted as T (X) ∼= T (A). From the
Shioda-Inose construction, it follows that singular K3 surfaces behave like elliptic curves
with complex multiplication. For instance, they are defined over number fields.

Moreover Shafarevich [Sha96] proved a result for singular K3 surfaces with bounded field
of definition. Given n ∈ N

#{S singular K3 surface defined over K : [K : Q] < n}/∼=C <∞.

This result tells us that there is a finite number of singular K3 surfaces defined over Q.

By the results of Shioda-Inose every one of these singular K3 surfaces corresponds to a

lattice given by a primitive quadratic form Q =

(
2a b

b 2c

)
. And given a discriminant d,

the number of primitive, positive definite quadratic forms of discriminant d is h(d) known
as the class number. So given a fundamental discriminant d, there are exactly h(d) singular
K3 surfaces with discriminant d (in this case we say that singular K3 surfaces have class
number h(d)).

A singular K3 surface defined over Q is associated to an imaginary quadratic field K with
class group with at is Cl(K) ∼= (Z/2Z)l. There are 65 imaginary quadratic fields whose
class groups are at most two-torsion and their class numbers are 1, 2, 4, 8, 16.

Singular K3 surfaces of class number 1 have models over Q by lemma 2.2.2, because the
corresponding CM elliptic curves have j-invariants in Q . However, for class number 2, the
classification problem is more difficult and it was solved by Schütt and Schulze in [SSed].
Then the next question would be, what happens with the singular K3 surfaces with class
number 4. Therefore, the main result of this work is as follows.

Theorem. Every singular K3 surface with class number 4 and fundamental discriminant
|d| ≤ 408 whose class group Cl(d) is two torsion, has a model defined over Q.

We will get this result by finding explicit Weierstrass models over Q for every respective
singular K3 surface. In order to find these models over Q, we have to study the fields of
definition of singular K3 surfaces. Let X be a singular K3 surface of discriminant d. Take
a subfield L ⊂ H(d) such that X admits a model over some number field L ⊂ H(d), such
L exists by [Sch07b].

1. The degree of the extension L/Q is a multiple of the number of quadratic forms in
the genus of T (X) by [Sch07b].

2. Assuming that NS(X) is generated by divisors defined over L, then the extension
L(
√
d) contains the ring class field H(d) by [Sch10].
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These obstructions will be approached by working with elliptic fibrations and Weierstrass
models. The crucial difficulty for the field of definition of singular K3 surfaces lies in
dealing with the complexities of both obstructions above. That is to say, in order to obtain
singular K3 surface over a small number field, with given discriminant d and transcenden-
tal lattice T , it has to admit a certain Galois action by obstruction 2. In consequence, this
complicates the potential surfaces.

As a consequence of the obstruction 1 the genus of the transcendental lattice T (of a sin-
gular K3 surface defined over Q) consists of a single class, which in particular implies that
for a fundamental discriminant d, the class group Cl(K) for K = Q(

√
d) is at most two

torsion i.e. Cl(K) ∼= (Z/2Z)n, as stated in [Sch07b].

To classify singular K3 surfaces over Q with small class numbers, we must first perform
lattice-theoretic calculations to determine which singular K3 surfaces meet the necessary
criteria to be defined over Q (or other subfields of H(d)). This will help us to determine if
a singular K3 surface can be defined over Q.

For a fixed fundamental discriminant d such that Cl(d) ∼= (Z/2Z)2 and for each of the 4
elements of Q ∈ Cl(d), we search for a singular K3 surface X over Q with T (X) ∼= Q. In
numerous instances, we are able to derive a suitable one-dimensional family of K3 surfaces
with high Picard rank Xλ and subsequently specialize it over Q through computations over
finite field. As the class number or absolute value of the discriminant increases, it may no
longer be sufficient to consider one-dimensional families in order to find singular K3 sur-
faces over Q. This necessitates the examination of higher-dimensional families to identify
the singular K3 surfaces that occur. Problems related to this topic have been addressed in
[ES13], [Elk08].

Structure of the dissertation

The present thesis is divided into three chapters.

Chapter 1 is meant to recall classical results of lattice theory, class field theory, K3 surfaces
and elliptic surfaces. This chapter is divided into 4 sections: the first section corresponds
to the study of lattices, we will recall basics of ADE lattices and some important results
related to root lattices and overlattices of Kondo [Kon20] and Nikulin [Nik80]. In the sec-
ond section we will recall essential definitions of class field theory such as quadratic forms,
quadratic fields and Hilbert class field. In the third section we will review the main ob-
jects of study of this work, K3 surfaces and elliptic surfaces. The fourth section is mainly
concerned with the study of singular fibers and elliptic fibrations through Tate’s algorithm
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[Tat75a], which is divided into two cases, multiplicative or additive reduction. Tate’s al-
gorithm is of particular importance in this work to find families of K3 surfaces as elliptic
surfaces because as an application, it deduces the behavior of Kodaira types of singular
fibers. At the end of this section we will recall some basic notions of quadratic twists and
Mordell-Weil lattices to finish the chapter.

Chapter 2. We will look into the field of definition of singular K3 surfaces. We will exam-
ine the two main obstructions to their field of definition and explore how these obstructions
relate to singular K3 surfaces. To begin, we will review some properties of elliptic curves
with complex multiplication. This will provide us with a foundation for understanding
these obstructions in greater detail. This chapter is divided into three sections. The first
section covers the study of the Shioda-Inose structure, singular abelian surfaces, and Kum-
mer surfaces. The second section focuses on the field of definition of singular K3 surfaces
and its obstructions, including results from Schütt and Shimada [Sch07b], [Shi09]. The
final section reviews the concept of modularity for elliptic curves (including results from
[Wil95], [TW95], [Bre+01]) and singular K3 surfaces in [Liv95].

Chapter 3. We will focus on singular K3 surfaces with fundamental discriminant d whose
Cl(d) is two torsion and #Cl(d) = 4. In the first section, we will summarize the condi-
tions and obstructions that apply to singular K3 surfaces. After doing this, we will define
the problem and outline the steps we will take to solve it. To ensure that the model of a sin-
gular K3 surface allows for sufficient Galois actions, we will examine the Galois action on
the Néron-Severi group. We will also explore the possible ways in which the Galois action
can act, particularly in cases where the surface X has an elliptic fibration. By examining
the Galois action on the singular fibers and sections, we can determine conditions that need
to be met in our search for singular K3 surfaces. In the last subsection we start our search
for lattices for singular K3 surfaces.

For the remainder of chapter 3, we will divide the singular K3 surfaces to be studied based
on the rank of the Mordell-Weil group. We will begin by examining the simplest case:
singular K3 surfaces with an elliptic fibration and a Mordell-Weil group of rank zero. This
type of singular K3 surface is referred to as an extremal K3 surface in [SZ01]. Table 3.3
lists the extremal K3 surfaces that are singular K3 surfaces with fundamental discriminant
and class number 4, along with their transcendental lattice and configuration of singular
fibers. We will then use this information to identify the corresponding Weierstrass model
for some of the extremal K3 surfaces listed in Table 3.3.

Before we begin to work with singular K3 surfaces with Mordell-Weil rank 1, we will need
to introduce some techniques over finite fields that will assist us in obtaining models over
Q. The first one consists in working with the moduli theory of K3 surfaces and the Weil
conjectures. In many cases, for a given fundamental discriminant d and Q ∈ Cl(d), we can
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obtain a family of K3 surfaces, Xλ, with ρ(Xλ) ≥ 19, from which we can try to achieve
a specialization with the desired discriminant and transcendental lattice. To specialize this
family over Q, we will work with reductions of Xλ over Fp for multiple primes that allow
for good reduction. We will then search for specializations of this family over Fp that fulfill
a condition derived from the Lefschetz fixed point formula. By finding enough of these
specializations, we can lift them over Q using Chinese remainder theorem and euclidean
algorithm. Then we probe if one of them corresponds to the specialization of Xλ over Q
that we are looking for. The second technique discussed in this chapter is p-adic multivari-
ate Newton iteration. It will assist us in solving systems of equations over Q that are not
directly solvable with Tate algorithm and the previous mentioned technique.

The last two sections of this chapter focus on the study of singular K3 surfaces with
Mordell-Weil rank 1 and 2, respectively. In section four, we will develop algorithm 3.4.1.
This algorithm takes a fundamental discriminant d with Cl(d) ∼= (Z/2Z)2 and a quadratic
form Q in Cl(d) as inputs, and returns a collection of candidates N . If a K3 surface X
has NS(X) ∼= U ⊕ N , it will be a singular K3 surface with T (X) ∼= Q. Table 3.6 lists
all the singular K3 surfaces with Mordell-Weil rank 1 that were solved in this project. The
table includes information such as the discriminant of the Néron-Severi lattice, the config-
uration of singular fibers, the transcendental lattice, and the height pairing of the section
that generates the Mordell-Weil group. For each of these singular K3 surfaces we found
a Weierstrass model of type y2 = x3 + Ax2 + Bx + C with a section P = (xp, yp). We
have listed the associated Weierstrass models in tables 3.7, 3.8, 3.9, 3.10 and 3.11, which
includes the coefficients A,B,C of the Weierstrass model and the first component xP of
the section P .

We obtained rational models for each singular K3 surface with class number 4 and funda-
mental discriminant |d| ≤ 408, whose class group is at most two torsion, as singular K3
surfaces with Mordell-Weil rank 0 or 1, with the exception of three cases. One case has
discriminant of d = −195, another has a discriminant d = −228, and the last one has
discriminant of d = −340. These three cases will be addressed as singular K3 surfaces
with Mordell-Weil rank 2 in the final section of this chapter.

For the singular K3 surfaces with class number 4 and fundamental discriminant |d| > 408

(with Cl(d) ∼= (Z/2Z)2), we have successfully found models over Q for some of them,
namely those with discriminants−520,−532,−555,−708,−760. However, we didn’t find
all the four possible singular K3 surfaces in each discriminant. In this work, we were un-
able to find rational models for any new singular K3 surfaces with the desired discriminant
and transcendental lattice for the remaining fundamental discriminants with class group
Cl(d) ∼= (Z/2Z)2, which are d = −795,−1012,−1435. The task proved to be too chal-
lenging due to the large size of the discriminants.
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1 | Preliminaries

1.1 Lattices

In this section we recall some definitions and properties about lattices that we are going
to use throughout this thesis, as main references for this topic we use: [Nik80], [SS19],
[CS99], [Ebe13], [Shi90].

Definitions 1.1.1. A lattice L is a finitely generated free Z-module equipped with a non-
degenerate symmetric bilinear pairing

L× L→ Q, (x, y)→ ⟨x, y⟩.

If it is integer valued, then the lattice is called integral. It is called even if x2 = ⟨x, x⟩ ∈ 2Z
for all x ∈ L. The rank of L is the rank of L as a Z-module.

Let L be a lattice of rank n and take a basis {ξ1, ..., ξn} of L. Given x, y ∈ L we can write

x =
n∑

i=1

xiξi, y =
n∑

i=1

yiξi xi, yi ∈ Z

hence we get a bilinear form

⟨x, y⟩ =
r∑
i,j

ci,jxiyi, ci,j = ⟨ξi, ξj⟩,

the matrix I = (ci,j) = (⟨ξi, ξj⟩), is called the Gram matrix of L, with respect to the basis
ξi. It is a real symmetric invertible matrix. Various properties of invariants of a lattice can
be defined in terms of its Gram matrix I , for example the determinant det(L) of L is the
determinant of any matrix representing the bilinear product ⟨, ⟩ on L (det(L) = det(I)) so
the value is independent of the choice of basis.
In particular if we choose an orthogonal basis (ξi) of the induced for on L ⊗ Q, the Gram
matrix I = (cj) is going to be a diagonal matrix, the number of positive (n+) and negative
(n−) cj are independent of the choice of orthogonal basis; these invariants constitute the
signature (n+, n−) of the pairing ⟨·, ·⟩, with n = n+ + n−, we call this also the signature

7



of the lattice. L is called positive (respectively negative) definite if the signature of L is of
the form (rank(L), 0) (resp. (0, rank(L)).

Example 1.1.2. The integer lattice U of rank 2 with intersection matrix

U =

(
0 1

1 0

)
is called the hyperbolic plane. It has |det(U)| = 1 and signature (1, 1).

Definition 1.1.3. The pairing induces an isomorphism

HomZ(L,Z) ∼= L∨ = {x ∈ L⊗Q | ⟨x, L⟩ ⊂ Z}

with the dual lattice L∨, L∨ is a lattice with the same rank as L, so the quotient group
AL = L∨/L is a finite, abelian group and is called the discriminant group. Its order is
equal to | detL |.

As AL is a finite abelian group, the minimum number of generators of AL is called the
length l(AL) of AL (the p-length lp(AL) of AL is the length of its p-part), note that l(AL) ≤
rk(L). If AL = 0, or equivalently |det(L)| = 1, we call the lattice L unimodular.

The discriminant group is equipped with a fractional form

f : AL × AL → Q/Z, ⟨x̄, ȳ⟩ → ⟨x, y⟩mod(Z). (1.1)

On an even lattice there is the quadratic form qL given by

qL : AL → Q/2Z, x̄→ ⟨x, x⟩mod(2Z). (1.2)

It is called the discriminant form of the even lattice L. The discriminant form has an
important relation with the genus of a lattice, we will elaborate on it in section 1.1.3. Given
two even lattices L and M , we say that qL ∼= qM if the following diagram commutes:

AL AM

Q/2Z Q/2Z

∼=

qL qM

1.1.1 Root lattices

In these paragraphs, we consider root lattices, in particular the root lattices of type A, D
and E, because they arise naturally in the context of K3 and elliptic surfaces.
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Definition 1.1.4. Let L be a definite even integral lattice:

• Elements x ∈ L with ⟨x, x⟩ = ±2 are called root vectors or more simply roots.

• The set of roots of L will be denoted byR(L).

• A definite even integral lattice is called root lattice if it is generated by roots.

Let V be a finite dimensional vector space, with an inner product ⟨, ⟩, a root system is a
finite set R of vectors in V , possessing the following properties: R does not contain the
null vector, and it generates V ; for every α ∈ R there exists an element α∨ of the dual
space V ∨ such that α∨(α) = 2 and such that the endomorphism sα : x → x − α∨(x)α of
V maps R into itself; for all α, β ∈ R , ⟨α, β⟩ ∈ Z.

Let L be a definite even integral lattice and V be the subspace of L⊗R spanned byR(L).
Then the set of roots R(L) forms a root system. It is known that if a root system is irre-
ducible, then it is a root system of type Ar, Dr or Er.

Definition 1.1.5. A lattice L of rank r is a root lattice of type Ar(r ≥ 1), Dr(r ≥ 4) or
Er(r = 6, 7, 8), if there exists a basis {α1, . . . , αr} ⊂ R(L) of L such that the following
holds: for 1 ≤ i < j ≤ r we have the pairing ⟨αi, αj⟩ = 0 unless

(Ar) ⟨αi, αj⟩ = −1⇔ i+ 1 = j

(Dr) ⟨αi, αj⟩ = −1⇔ i+ 1 = j < r, or i = r − 2, j = r

(Er) ⟨αi, αj⟩ = −1⇔ i+ 1 = j < r, or i = 3, j = r

The importance of the root lattices of type Ar, Dr and Er came from their big relation
with different areas of math, in particular of our interest, the theory of elliptic surfaces
and Mordell-Weil Lattices. The classification of root lattices follows from the following
theorem:

Theorem 1.1.6 ([Kon20],Proposition 1.12). Any positive definite even integral root lattice
L, is isometric to an orthogonal sum of root lattices of type An, Dn or En.

We finish this section by enlisting the basic properties of the A,D,E lattices in the follow-
ing table 1.1, such as determinant, discriminant group and discriminant form (determined
on generators of the discriminant group), we refer to [Kon20, Section 1.1] for a precise
study of ADE lattices.
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L An D2n D2n+1 E6 E7 E8

|det| n+ 1 4 4 3 2 1
AL Z/nZ (Z/2Z)2 Z/4Z Z/3Z Z/2Z -

qL
n

n+1

(
1 1/2
1/2 n/2

)
2n+1

4
4/3 3/2 -

Table 1.1: Basic properties of root lattices

1.1.2 Overlattices

Definition 1.1.7. Let L be an even lattice, an overlattice of L is an even lattice L′ containing
L such that the quotient L′/L is a finite group. We denote by [L′ : L] the index of the
overlattice, i.e. the index of L as a subgroup of L′.

Definition 1.1.8. Let L be a lattice, sublattice T of a lattice L is called primitive if the
quotient L/T is torsion-free.

Lemma 1.1.9 ([Nik80], Section 1.4). Let L be a lattice, and L′ be an overlattice of L. Then
the following equality holds:

|det(L)|
|det(L′)|

= [L′ : L]2

Let L be an even lattice, a subgroup G ⊂ AL is called isotropic if qL|G = 0, the isotropic
subgroups of AL characterize the overlattices of L.

Proposition 1.1.10 ([Nik80], Proposition 1.4.1). There is a 1:1 correspondence between
overlattices of L and isotropic subgroups of AL.

For a lattice L and an overlattice L′ given by an isotropic subgroup G ⊂ AL, the discrimi-
nant group of L′ is AL′ = G⊥/G with the quadratic form reduced to the quotient.

Definition 1.1.11. Let L be a lattice, L is called root-overlattice if one of the following
conditions hold:

1. L is an overlattice of a root lattice.

2. L admits a Q-basis given by root vectors on L.

3. The root part Lroot has the same rank as L.

Otherwise, we say L is not a root-overlattice.

1.1.3 Genus of a lattice

There are some important properties about the genus of a lattice that we are going to need
in this thesis, we are going to give a brief review about them, mostly we will be concerned
with integral even lattices.
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Definition 1.1.12. Two lattices M,N are in the same genus if M ⊗ Zp
∼= N ⊗ Zp are

isometric over the p-adic integers for all primes p and M ⊗R ∼= N ⊗R are isometric over
the real numbers.

The discriminant form and the quadratic form of a lattice have an important relation with
the genus of a lattice, and the next two theorems show us their relevance for the rest of this
work.

Theorem 1.1.13 ( [Nik80], Proposition 1.6.1). Let N be an even integral unimodular lat-
tice, L a primitive non-degenerate sublattice of N and M = L⊥. Then the discriminant
groups are isomorphic, AL

∼= AM , and the discriminant forms satisfy:

qL = −qM .

Theorem 1.1.14 ( [Nik80], Corollary. 1.9.4 ). The genus of an even lattice L is determined
by its signature (n+, n−) and discriminant form qL and vice versa.

When the genus of a lattice L is trivial, i.e. consists of a single class (which is determined
uniquely by its signature and discriminant form), we will say that L is unique in its genus.

1.2 Class field theory
In this section we recall some definitions and properties about quadratic forms and class
field theory that we are going to use in this thesis, as main references for this topic we use
[Cox22], [Shi94], [Lan94].

1.2.1 Quadratic forms and form class group

We will denote a quadratic form in two variables f(x, y) = ax2+bxy+cy2 with a, b, c ∈ Z
as

Q =

(
2a b

b 2c

)
(1.3)

and its discriminant d = b2− 4ac. A quadratic form is primitive if its coefficients a, b, c are
relatively prime.

Theorem 1.2.1. Let d < 0 be a fixed integer. There is a finite number of classes (up to
action of SL2(Z)) of primitive positive definite forms of discriminant d and it is denoted
with h(d) which is called the class number.

Let d ≡ 0, 1 mod 4 be negative, we denote the set of classes of primitive positive definite
forms of discriminant d as Cl(d). Dirichlet composition induces a well-defined binary
operation on Cl(d) which makes Cl(d) into a finite Abelian group whose order is h(d).
The group Cl(d) is called the form class group to distinguish it from the ideal class group.
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Remark 1.2.2. A primitive positive definite form ax2 + bxy + cy2 is said to be reduced if

|b| ≤ a ≤ c, and b ≥ 0 if |b| = a or a = c.

An integer m ∈ Z is represented by a form f(x, y), if the equation

m = f(x, y) (1.4)

has an integer solution in x and y. If the x and y in are relative prime in (1.4), we say that
m is properly represented by f(x, y). We say that two forms Q = f(x, y) and Q′ = g(x, y)

are equivalent if there are integers p, q, r, s such that

f(x, y) = g(px+ qy, rx+ sy) with ps− qr = ±1, (1.5)

or in another words, there exists a matrix M =

(
p q

r s

)
with det(M) = ±1, such that

Q′ = MTQM . This means that M is in the group of 2 × 2 invertible integer matrices
GL(2,Z), and it follows that equivalence of forms is an equivalence relation. We say that
an equivalence is a proper equivalence if ps− qr = 1, i.e M ∈ SL(2,Z).

Lemma 1.2.3. Every positive definite form is properly equivalent to a unique reduced form.

An important method of separating reduced forms of the same discriminant is given by
genus theory, the basic idea of genus is due to Lagrange who used quadratic forms to prove
Euler and Fermat conjectures.

Definition 1.2.4. Two primitive positive definite forms f(x, y), g(x, y) of discriminant d
are in the same genus if they represent the same values in (Z/dZ).

Remark 1.2.5. Equivalent forms are in the same genus, but the converse does not hold. For
example, x2 + 82y2 and 2x2 + 41y2 are in the same genus but not equivalent over Z. In
particular each genus consists of a finite number of classes of forms.

In Section 1.1.3, we introduced the concept of the genus of a lattice. When working with
rank 2 lattices, these two definitions of lattice coincide. We will further explore this concept
in the context of even, positive-definite lattices of rank 2 when examining singular K3
surfaces.

Theorem 1.2.6. Let f(x, y), g(x, y) primitive forms of discriminant d ̸= 0, then these
conditions are equivalent:

• f(x, y), g(x, y) are in the same genus i.e., they represent the same values in (Z/dZ).

• f(x, y), g(x, y) are equivalent modulo m for all nonzero integers m.

• f(x, y), g(x, y) are equivalent over the p-adic integers Zp for all primes p.

A proof of this theorem is found in [Hua82; War51].
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1.2.2 Ideal class group

Given a field K we denote by OK the ring of algebraic integers of K.

Theorem 1.2.7. LetOK be the ring of integers of a number fieldK, thenOK is a Dedekind
domain.

As one of the most important properties of a Dedekind domain we recall that OK has a
unique factorization on the level of ideals.

Corollary 1.2.8. If K is a number field, then any nonzero ideal a in OK can be written
uniquely as a product

a = p1 · · · pr

of prime ideals, and the decomposition is unique up to order.

Besides ideals of OK , we are interested in fractional ideals, which are the non-zero finitely
generatedOK-submodules of K. The name fractional comes from the fact that these ideals
are of the form αa where α ∈ K and a is an ideal of OK (more details about fractional
ideas can be found in [Mar18, Chapter 3]).

Notation 1.2.9. We will denote by IK the group of all fractional ideals of K, and by PK

the subgroup of of principal fractional ideals (i.e. those of the form αOK for some α ∈ K).

Definition 1.2.10. The quotient IK/PK is called the ideal class group and it is denoted by
C(OK).

An important fact is that C(OK) is a finite group, but it has a big importance in the context
of quadratic fields.

Remarks 1.2.11. We need to mention some of the properties of primes in finite extensions.
Let K be a number field and let L be a finite extension of K. If p is a prime of OK , then
pOL is an ideal of OL, and has a prime factorization

pOL = Pe1
1 · · ·Peg

g .

Pi are distinct primes of L containing p and ei is an integer number called the ramification
index of p over Pi. Each prime Pi containing p also gives a residue field extensionOK/p ⊂
OL/Pi, the degree of this extension is called the inertia degree of p in Pi and it is denoted
by fi.

Theorem 1.2.12. Let K ⊂ L be a Galois extension of a number field, and p be a prime
ideal in K then

• The Galois group Gal(L/K) acts transitively on the primes of L containing p.

• The primes of L containing p have the same ramification index e and inertial degree
f .
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Given a Galois extension K ⊆ L of a number field, we say that an ideal p of K ramifies
if the ramification index e > 1, it is unramified if e = 1 and it splits completely if the
ramification index and inertia degree e = 1, f = 1.

1.2.3 Hilbert class group

The Hilbert class field of a number field K is defined in terms of the unramified Abelian
extensions of K. First an extension K ⊂ L is called abelian if it is Galois and Gal(L/K)

is an abelian group. And an extension K ⊂ L is unramified if it is unramified at all primes.

Theorem 1.2.13. Given a number field K, there is a finite Galois extension L of K such
that:

i) L is an unramified Abelian extension of K.

ii) Any unramified abelian extension of K lies in L.

The field L of theorem 1.2.13 is called the Hilbert class field of K. The Hilbert class field
of K is the maximal unramified Abelian extension of K and due to ii) theorem 1.2.13, the
Hilbert class field of a field is unique.

Lemma 1.2.14 ([Cox22] Lemma 5.19). Given a number field K, a Galois extension field
L, and prime ideals p of K and P of L unramified over p, there exists a unique element
σ ∈ Gal(L/K) such that for every element α ∈ L,

σ(α) ≡ αN(p) mod P (1.6)

where N(p) =| OK/p | is the norm of p

The unique element σ of lemma 1.2.14 is called the Artin symbol and it is denoted ((L/K)/P),
since it depends on the prime P of L.

Remark 1.2.15. As a consequence of lemma 1.2.14, of the uniqueness of the Artin symbol,
we have that (

L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1

When K ⊂ L is an Abelian extension of K, the Artin symbol only depends on the prime
p = P ∩ OK lying under P, to see this, let P′, be another prime containing p, we have
P′ = σ(P) for some σ ∈ Gal(L/K), hence by remark 1.2.15 ((L/K)/P) = ((L/K)/P′),
since Gal(L/K) is Abelian. It follows that whenever K ⊂ L is Abelian, the Artin symbol
can be written as

(
L/K
p

)
.

WhenK ⊂ L is an unramified extension, the Artin symbol is defined for all the prime ideals
ofOK . So we can make use of the basic properties of fractional ideals. Any fractional ideal
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a ∈ IK has a prime factorization

a =
r∏

i=1

prii

then we define the Artin symbol to be the product over the prime ideals, so the Artin symbol
help us to define a homomorphism.

Definition 1.2.16. Let K ⊂ L be an unramified Abelian extension, the map(
L/K

·

)
: IK → Gal(L/K)

defines a homomorphism and it is called the Artin map.

Theorem 1.2.17. Let K ⊂ L be the Hilbert class field of a number field K, then the Artin
map is surjective, its kernel is the subgroup PK of principal fractional ideals and the map
induces an isomorphism between the ideal class group and Gal(L/K),

Cl(OK)
∼−→ Gal(L/K).

1.2.4 Quadratic fields

To summarize the theory previously sketched, let’s apply it to the case of most interest in
this thesis, the case of quadratic fields. A quadratic field can be written uniquely in the
form K = Q(

√
N).

Definitions 1.2.18. Let K = Q(
√
N) where N ̸= 0, 1 is a square free integer, be a

quadratic field, the discriminant of K is defined to be

dK =

{
N if N ≡ 1 mod 4

4N otherwise
(1.7)

The ring of integers of K is given by

OK = Z
[
dk +

√
dk

2

]
(1.8)

We can see from the definition that dk ≡ 0, 1mod4 and K = Q(
√
dk), the quadratic field is

completely determined by its discriminant.
It is important to recall the Legendre symbol, let p be an odd prime number, an integer
a is a quadratic residue modulo p if it is congruent to a perfect square modulo p and is a
quadratic non-residue modulo p otherwise. The Legendre symbol is a function of a and p
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defined as

(
a

p

)
=


1 if a is a quadratic residue modulo p and a ̸≡ 0 mod p
−1 if a is a non-quadratic residue modulo p
0 if a ≡ 0 mod p

(1.9)

Theorem 1.2.19. Let K be a imaginary quadratic field with discriminant dK < 0, f =(
2a b

b 2c

)
is a primitive positive quadratic form of discriminant dK . Then the map

Cl(dK)→ Cl(OK), f =

(
2a b

b 2c

)
→ [a, (−b+

√
dK)/2].

induces an isomorphism between the form class group Cl(dK) and the ideal class group
Cl(OK).

Putting together Theorems 1.2.17 and 1.2.19, we have that the Galois group Gal(L/K) of
the Hilbert class field of an imaginary quadratic field K is isomorphic to the form class
group Cl(dK). Thus the class refers to the class of properly equivalent quadratic forms
Cl(dk).

1.3 K3 Surfaces and singular K3 surfaces
In this section we are going to review some fundamental properties of K3 surfaces, elliptic
fibrations and singular K3 surfaces which are the main object of study in this thesis. The
main references for this chapter are [Huy16; SS19; Mir89; Bar+04]. We fix an algebraically
closed field k = k̄, we will mention which results are only valid when k is the field of
complex numbers C.

Definition 1.3.1. A K3 surface over k is a smooth irreducible projective surface X with
trivial canonical bundle and vanishing first cohomology:

ωX = OX h1(X,OX) = 0.

Remark 1.3.2. In Chapter 2 and 3 we will be interested in the field of definition of K3
surfaces, in particular in K3 surfaces defined over number fields. A (geometrically smooth)
projective surface X over a number field is a K3 surface if the base change to the algebraic
closure K̄, XK̄ is a K3 surface.

Example 1.3.3. Common examples of K3 surfaces over k of char(k) ̸= 2 are:

• Double covers of P2 branched over a smooth sextic,

• Smooth quartics in P3,
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• Smooth intersections of a quadric and a cubic in P4,

• Kummer surfaces, this is the minimal resolution Ã/⟨±⟩ of the quotient of an abelian
surface by the involution (the -1 map on A).

The Néron-Severi group NS(X) is the group of algebraic divisors defined over k modulo
algebraic equivalence. For a K3 surface X over a field of characteristic 0 this is a free
abelian group whose rank is called the Picard number ρ(X) and is an integer such that
1 ≤ ρ(X) ≤ 20. On a K3 surface over k algebraic and numerical equivalence coincide,
andNS(X) is torsion-free. Equipped with the intersection form, it becomes an even lattice
of signature (1, ρ(X)− 1), the Néron-Severi lattice.
Let X be a complex K3 surface. Its second cohomology group H2(X,Z) is torsion-free,
and when endowed with the cup-product form it is isomorphic to the K3-lattice

ΛK3 := E8(−1)2 ⊕ U3.

Here U is the hyperbolic lattice and E8 is the unique (up to isometry) unimodular, negative
definite even rank 8 lattice. The signature of the lattice H2(X,Z) is (3, 19).

Definition 1.3.4. For any surface X over C, we define the transcendental lattice T (X) as
the orthogonal complement of NS(X) in H2(X,Z):

T (X) = NS(X)⊥ ⊂ H2(X,Z).

For a complex K3 surface, T (X) is an even lattice with signature (2, 20− ρ(X)).

1.3.1 Singular K3 surfaces

Definition 1.3.5. A complex K3 surface X is called singular if its Picard number attains
the Lefschetz bound

ρ(X) = h1,1(X)

In other words a complex K3 surface is singular if ρ(X) = 20 . An important aspect
about singular K3 surfaces is that they involve no moduli, so the term ”singular” should
be understood in the sense of exceptional but not non-smooth. In many ways singular K3
surfaces behave like elliptic curves with complex multiplication (CM), i.e. elliptic curves
E with Z ⊊ End(E).
IfX is a singularK3 surface, then the transcendental lattice T (X) is a positive definite even
oriented (given by choosing the order of a basis) lattice of rank two. Using the intersection

form, we will identify the transcendental lattice with a 2× 2 matrix T (X)⇔
(
2a b

b 2c

)
.
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Definition 1.3.6. We will denote by d the discriminant d(X) of a singular K3 surface X ,
i.e. the discriminant of the intersection form on the Néon–Severi lattice,

d = d(X) = disc(NS(X)). (1.10)

Example 1.3.7. (Fermat Quartic) A classical example of a singular K3 surface S is the
Fermat quartic in P3 defined as

S : x40 + x41 + x42 + x43 = 0.

In [PS72] an argument was given which proved that S contains 48 lines and these generated
the NS(S), with disc(NS(S)) = −64 and also that the intersection form of S is TS =(
8 0

0 8

)
. However the argument relied on a statement that turned out to be incorrect. The

proof was later completed by Cassels in [Cas78].

For a more detailed study of Fermat surfaces, see [SSL10].

1.3.2 Elliptic fibrations

Let X be a K3 surface over an algebraically closed field k = k̄ of characteristic ̸= 2, 3 (in
roder to avoid quasi-elliptic fibrations).

Definition 1.3.8. A genus one fibration on X consists of a morphism π : X → P1 whose
generic fiber is a smooth curve of genus one over the base. An elliptic fibration is a genus
one fibration equipped with a distinguished section O : P1 → X with π ◦O = idP1 , which
is relatively minimal in the sense that no fibre contains a (−1)-curve.

For a smooth irreducible curve C on a surface X , we can compute C2 through the adjunc-
tion formula : 2g(C) − 2 = C2 + C.KX , in particular on a K3 surface the adjunction
formula has the form C2 = 2(g(C)−1), so any elliptic curve has 0 self-intersection, on the
other hand by the Riemann–Roch theorem we have that dim|C| = g(C), then any smooth
elliptic curve E on a K3 surface induces a genus 1 fibration by [PS72, Theorem 1, section
3] which said that a K3 surface X admits a genus one fibration if and only if there is a
divisor 0 ̸= D ∈ NS(X) with D2 = 0.
There is a close relation between an elliptic surface π : X → P1 and its generic fiber
denoted E/K (which is an elliptic curve over the function field K = k(P1)).

Proposition 1.3.9. Let X be an elliptic fibration, there is a one-to-one correspondence
between sections of ϕ : X → P1 and the K-rational points of its generic fiber E.

Proof. For anyK-rational point ofE, P ∈ E(K), the closure of P inX is a curveD ⊆ X ,
if we take the restriction of π to D, π|D : D → P1 we have a finite, birational map,
that induces an isomorphism of curves, then taking the inverse of this map, we have that
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σ : P1 → X gives a unique section with Im(σ) = D. In the opposite direction, any section
σ : P1 → X defines a curve σ(P1) inside X that meets every fiber transversally in a single
point. The curve D extends naturally to the underlying scheme of X by taking the Zariski
closure, thus it meets the generic fibre in a K-rational point.

As a consequence of proposition 1.3.9, we can identify K-rational points of the generic
fiber E/K with sections of the elliptic fibration X and vice versa.

Notation 1.3.10. Following the identification above, we will use the same notation E(K)

to denote the group of sections of an elliptic fibration f : X → P1, also we will use the
terms section and rational points in the same way. For P ∈ E(K) (a K-rational point) we
denote by (P ) the curve on X which is the image of the section P : P1 → X .

Let X be an elliptic surface, the zero section O defines a rational point on the genus one
curve E/k(P1), the generic fiber turns into an elliptic curve with zero given by O. By the
Riemann–Roch theorem, the elliptic curve has a Weierstrass equation. In general we have
the following:
Let K be a local field, complete with respect to a discrete valuation v. Let E/K be an
elliptic curve, and let:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.11)

a Weierstrass equation for E/K where ∆ denotes its discriminant.

Definition 1.3.11. Let E/K be an elliptic curve. A Weierstrass equation for E as (1.11), is
called a minimal Weierstrass equation for E if v(∆) is minimized subject to the condition
that a1, a2, a3, a4, a6 ∈ R (where R = {x ∈ K : v(x) ≥ 0}).This minimal value of v(∆) is
called the valuation of the minimal discriminant of E at v.

Remark 1.3.12. Having an elliptic curve E/K, with a Weierstrass form as (1.11), the sub-
stitution (x, y)→ (u−2x, u−3y) leads to a new equation in which ai is replaced by uiai, by
carefully choosing the value of u, we can obtain a Weierstrass equation where all coeffi-
cients are in R. Then, the discriminant ∆ satisfies v(∆) ≥ 0. Finally, since v is discrete,
among all Weierstrass equations for E with coefficients in R, we can choose one that min-
imizes the value of v(∆) and we obtain a minimal Weierstrass equation.

Lemma 1.3.13. Any elliptic surface over P1 admits a globally minimal Weierstrass form
with polynomial coefficients ai(t) ∈ k[t]:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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For any field of characteristic different from 2 , we can write the Weierstrass equation as

y2 = x3 + Ax2 +Bx+ C. (1.12)

We can choose a generator t for the regular functions on P1 excluding a point, allowing
us to work with polynomials in t. If X is an elliptic K3 surface, A, B, C ∈ k[t] have
degrees 4, 8, and 12, respectively, while the discriminant ∆ has a degree of 24, accounting
for the contribution at ∞. According to the identification in Proposition 1.3.9, sections
of a fibration π : X → P1 correspond to k(t)-rational points of the equation (1.12). The
distinguished zero section is located at the point at infinity (0 : 1 : 0). Let P = (u(t), v(t))

denote the section P of π corresponding to the k(t)-rational point (u(t), v(t)) of equation
(1.12). With the above description of (1.12) for a K3 surface, u(t) and v(t) ∈ k(t) are
rational functions of degrees 4 and 6, respectively, considering the contributions of the
section P at t = ∞ (we rewrite the Weierstrass equation in terms of s = 1/t, x′ = x/t2,
y′ = y/t3, the coordinates of the other chart).

Remark 1.3.14. Let X be a K3 surface, denote by F , O ∈ NS(X) the algebraic equiva-
lence classes of the general fiber F and the zero section O. Their intersection numbers are
O2 = −2, F 2 = 0 and O.F = 1. Thus they span a hyperbolic plane(

0 1

1 −2

)
∼=
(
0 1

1 0

)
= U ⊆ NS(X). (1.13)

Since U is unimodular, we have an orthogonal decomposition NS(X) = U ⊕ L, where L
is a negative definite even lattice of rank ρ(X)− 2.

Lemma 1.3.15 ([Huy16], Chap. 14, Corollary 3.8). Every complex K3 surface of Picard
number at least 12 admits an elliptic fibration.

It is possible to read off an elliptic fibration from the Néron-Severi lattice. A K3 surfaces
X admits a genus one fibration if and only if there is an isotropic divisor 0 ̸= D ∈ NS(X)

(i.e. D2 = 0). If in addition to this, there exists a divisorE ∈ NS(X) with (D.E) = 1, this
gives a section of the fibration, and the fibration is an elliptic fibration by [PS72, Theorem
1, section 3].

1.3.3 Singular fibers

Let f : S → P1 be an elliptic surface over k, an algebraically closed field of characteristic
p ̸= 2, 3. In this thesis we will always assume that the fibrations have at least one singular
fiber to exclude the trivial case of product of two curves.
Now we will give a review of the possible singular fibers of an elliptic surface, given by the
Kodaira-Néron classification in [Kod60] and [Nér64].
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Notation 1.3.16. Let π : X → P1 be an elliptic surface and Fv = π−1(v) a singular fiber
(v ∈ k(P1)), we can write Fv as a sum of divisors with multiplicity

Fv =
mv−1∑
i=0

µi,vΘv,i

where:

• mv: is the number of distinct irreducible components in Fv.

• Θv,i are the irreducible components (0 ≤ i ≤ mv − 1).

• µi,v is the multiplicity of Θv,i in Fv.

• m(1)
v the number of simple components.

We arrange the irreducible fiber components Θv,i of a singular fiber as specified in the
following theorems.

Theorem 1.3.17. Let Fv be a singular fiber on an elliptic surface, then

1. There exists a unique simple component of Fv with a simple intersection with the
zero section O; it is called the identity component, we can denote it by Θv,0.

2. If Fv is an irreducible singular fibre (i.e. Fv = Θv,0), then Fv is either a rational curve
with a node or a rational curve with a cusp.

3. If Fv is a reducible singular fibre (i.e. it has several irreducible fiber components),
then every component Θv,i of Fv is a smooth rational curve with self-intersection
number (Θv,i)

2 = −2.

Theorem 1.3.18. (Kodaira[Kod60], Neron[Nér64]) The possible reducible fibers that can
appear in an elliptic fibration are classified in the following types

Im, I
∗
b , III, IV, II

∗, III∗, IV ∗

for n > 1 and b ≥ 0 (To simplify the notation we write mv = m and Θi = Θv,i).

Im : Fv = Θ0 + · · ·Θm−1, with m ≥ 3, (Θi.Θi+1) = 1 for all i = 0, · · ·m − 2

and (Θm−1.Θ0) = 1, forming a cycle. For m = 2, the two components intersect
tangentially at two points so that (Θ0.Θ1) = 2.

I∗b :Fv = Θ0+Θ1+Θ2+Θ3+2Θ4+ · · · 2Θb+4, with m = b+5, b ≥ 0 and (Θ0.Θ4) =

(Θ1.Θ4) = (Θ2,Θb+4) = (Θ3.Θb+4) = 1, and (Θ4.Θ5) = · · · = (Θb+3,Θb+4) = 1.

III : Fv = Θ0+Θ1, with (Θ0.Θ1) = 2, where the two components intersect tangentially
at a single point and m = 2.
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IV : Fv = Θ0 +Θ1 +Θ2, with (Θ0.Θ1) = (Θ1.Θ2) = (Θ2.Θ0) = 1, all the components
meet in a single point and m = 3.

II∗ : Fv = Θ0+2Θ7+3Θ6+4Θ5+5Θ4+6Θ3+4Θ2+2Θ1+3Θ8, with m = 9 where
(Θ0.Θ7) = (Θ7.Θ6) = (Θ6,Θ5) = (Θ5.Θ4) = (Θ4.Θ3) = (Θ3.Θ2) = (Θ2.Θ1) =

(Θ3.Θ8) = 1.

III∗ :Fv = Θ0 + 2Θ1 + 3Θ2 + 4Θ3 + 3Θ4 + 2Θ5 + Θ6 + 2Θ7, with m = 8, where
(Θ0.Θ1) = (Θ1.Θ2) = (Θ2,Θ3) = (Θ3.Θ4) = (Θ4.Θ5) = (Θ5.Θ6) = (Θ3.Θ7) = 1.

IV ∗ : Fv = Θ0 + Θ1 + 2Θ2 + 3Θ3 + 2Θ4 + Θ5 + 2Θ6, with m = 7 where (Θ1.Θ2) =

(Θ2.Θ3) = (Θ3,Θ4) = (Θ4.Θ5) = (Θ3.Θ6) = (Θ6.Θ0) = 1.

For any (Θi,Θj) not given explicitly, we have (Θi,Θj) = 0 if i ̸= j.

Singular fibers of type In in an elliptic fibration are commonly known as "multiplicative
fibers," while all other singular fibers are referred to as "additive fibers". The smooth locus
F# of a singular fiber F is obtained by removing all multiple components and nodes (i.e.,
intersection points of fiber components). Similar to any algebraic group, F# possesses a
normal subgroup F#

0 with a finite quotient group G(F ). In general, one may choose the
normal subgroup F#

0 as the smooth locus on the identity component Θ0 of F . This leads
to the following:

Additive: F#
0
∼= Ga F0/F

#
0
∼= G(F )

Multiplicative: F#
0
∼= Gm F0/F

#
0
∼= G(F ) ∼= (Z/nZ).

The elements of the group G(F ) can be identified with the simple fibre components; G(F )
is an abelian group of order equal to the determinant of the restricted Dynkin diagram of
the singular fibre.

Notation 1.3.19. • Among the simple components of the fiber Fv , we call the com-
ponent Θ0 meeting the zero section O the identity component. All other simple fiber
components are called non-identity components.

• On a fiber of Kodaira type I2n(n ≥ 1), the component Θn is called the opposite
component.

• On a fiber of Kodaira type I∗n(n ≥ 1), the component Θ1 is called the near (simple)
component, while the other simple components Θ2,Θ3 are called far components.

• Over a non algebraically closed field k0, the singular fiber Fv is called "split singular
fiber", if all the components are defined over the base field k0(v), and "non-split sin-
gular fiber" otherwise. We can notice that the identity component Θ0 is automatically
k0(v)−rational.
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There is an important relation of singular fibers and Dynkin diagrams of root lattices, for a
complete reference see [Mir89, Table II.3.1], [SS19, Section 5.5]. We define the dual graph
of a singular fiber Fv to be the graph whose vertices are the irreducible components of Fv,
and such that vertices Θi and Θj are joined by one edge for each singular point lying on
both of the corresponding irreducible components. And by the restricted dual graph of a
reducible fibre Fv (v ∈ k(P1)), we mean the graph obtained in the same way as the dual
graph, but starting from the m− 1 non-identity components Θi for (i = 1, ...,m− 1). It is
the subgraph of the dual graph obtained by deleting the component Θ0.

Proposition 1.3.20. The restricted dual graph of a reducible fibre is the same as the Dynkin
diagram of the root lattice of type A,D,E, thus we have

Fiber type Fv In I∗b III IV II∗ III IV ∗

Dynkin type Tv An−1 Db+4 A1 A2 E8 E7 E6

Table 1.2: Dynkin type of singular fibers

And we have an important relation involving the discriminant group ATv of the lattice Tv ,
and the number of simple fibre components

|ATv | = det(Tv) = m1
v

Proposition 1.3.21 ([Mir89], Lemma IV.3.3). Let k = C, let π : X → P1 be an elliptic
fibration. Then

e(X) =
∑
t∈P1

e(π−1(t)) (1.14)

where e denotes the Euler characteristic. And we have

e(Fv) =


0 if Fv is smooth .
mv if Fv is a multiplicative fiber.

mv + 1 if Fv is a additive fiber.
(1.15)

Particularly if X is an elliptic K3 surface, and L = U⊥ ⊂ NS(X) the orthogonal comple-
ment of the hyperbolic plane as in remark 1.3.14, if the root part of L (the sublattice of L
generated by the root vectors of L) decomposes as Lroot =

⊕
i∈I Li where the lattices Li

are ADE lattices, we have ∑
i∈I

e(Li) ≤ 24.

1.4 Tate’s algorithm
In this section we are going to describe Tate’s algorithm which computes, among other
things, the reduction type of an special fiber on an elliptic surface given by a Weierstrass
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equation. We can find the original exposition of this algorithm in [Tat75a] or [Sil94, Chap-
ter IV]. We are going to restrict our attention to the case of perfect fields k with charac-
teristic ̸= 2, 3, this restriction allows us to work with a Weierstrass equation of the form
(1.16).

Notation 1.4.1. 1. R a discrete valuation ring with maximal ideal p, uniformizing ele-
ment π, fractional field K, and perfect residue field k.

2. X an elliptic surface over k with generic fiber E/K (an elliptic curve over K), given
by the Weierstrass equation

E : y2 = x3 + a2x
2 + a4x+ a6. (1.16)

3. The discriminant of E is given by

∆ = −27a26 + 18a2a4a6 + a22a
2
4 − 4a32a6 − 4a34. (1.17)

The idea of Tate’s algorithm is to start with an arbitrary Weierstrass equation for E/R and
manipulate it to obtain a minimal proper regular model.

We will restrict to the caseR = OP1,P (i.e., the local ring of functions on P1 that are regular
at the point P ). And we will choose the coordinates of P1 in such a way that P = 0.

Algorithm 1.4.2. 1. In order to have a singular fibre on E, the discriminant has to van-
ish. We can work locally so we fix the parameter 0 ∈ P1 with the normalized valua-
tion v.

2. If t ∤ ∆, then the special fiber is an elliptic curve, we have a fiber of type I0 with
m = 1 (number of components).

Assuming that t divides ∆, we can perform a change of variables to move the singular
point of E to (0, 0). After this transformation, the Weierstrass equation of E takes
the form:

E : y2 = x3 + a′2x
2 + a′4tx+ a′6t, (1.18)

where a′2, a
′
4, a

′
6 are coefficients that depend on the original coefficients of the Weier-

strass equation of E. We have two possibilities:

• if t ∤ a′2 then the above equation describes a nodal rational curve at t, we have a
multiplicative reduction.

• if t | a′2 then the above equation describes a cuspidal rational curve at t. We
have an additive reduction.
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1.4.1 Multiplicative reduction

If we have that t ∤ a′2 in (1.18), then we have a fiber of type In with n = v(∆). If n = 1,
then (0, 0) is only a singularity of the fiber but not of the surface, and we have a fiber of
type I1 (a nodal rational curve).

If n = v(∆) > 1, there is a surface singularity at (0, 0, 0). In order to resolve this we can
make a translation on x, to make tm | a′4 in (1.18) with m =

[
n
2

]
(the integer part of n

2
) by

translating x by t times a polynomial of degree m − 1. We can see in the equation (1.17)
from the summands a22a

2
4 and 4a32a6 of ∆ that v(∆) = n is equivalent to v(a6) = n and

v(a4) =
[
n
2

]
+ 1. We have an equation of E of shape:

E : y2 = x3 + a′′2x
2 + a′′4t

m+1x+ a′′6t
n.

Now we have to do a succession of m blow-ups of the surface at (0, 0), after every of the
first (m− 1) blow ups the exceptional divisor locally has the form

y2 = a′′2(0)x
2.

Every one of the firstm−1 blow-ups introduces two rational components, which are conju-
gated over k(

√
a′′2(0))/k. More precisely, if

√
a′′2(0) ∈ k we have a split multiplicative re-

duction over k, because a′′2(0) is a square and the two rational components y = ±
√
a′′2(0)x

are defined over k, if
√
a′′2(0) /∈ k we have a non-split multiplicative reduction (for n > 2).

After each blow-up (1, ...,m − 2), a surface singularity persists at (0, 0). In response, we
proceed with an additional blow-up at (0, 0), specifically at the intersection point of the two
most recently created exceptional curves.
After the final blow-up, so the local equation of the special fibre is

y2 = a′′2(0)x
2 + (a′′6/t

2m)(0)

if n = 2m, the local equation of the special fiber has only one rational component and,

y2 = a′′2(0)x
2

if n = 2m+ 1, so that it has two rational components.

After performing the prescribed blow-ups, the surface becomes locally smooth at (0, 0).
Specifically, upon completion of the final blow-up, the equation describing the surface near
(0, 0) is nonsingular. Upon combining all of the blow-ups, n− 1 rational components with
self-intersection −2 are added to the surface. We can verify the intersection points of these
rational components in the charts obtained after each blow-up, resulting in a cycle with n
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rational components. In this way, we obtain a fiber of type In composed of n irreducible
components.

1.4.2 Additive reduction

If t | a′2 in (1.18), then the corresponding Weierstrass equation becomes

E : y2 = x3 + a′2tx
2 + a′4tx+ a′6t. (1.19)

Furthermore, we have v(∆) ≥ 2, and (0, 0) is a surface singularity when v(∆) > 2

(since from (1.17), if t | a2, a4, a6, then t2 | ∆). The additive reduction fibers have types
II, III, IV, I∗n, II

∗, III∗, IV ∗.

1. If t ∤ a′26 , then we have a fiber of type II (a cuspidal rational curve) with v(∆) = 2

and one irreducible component.

2. Now if we assume t2 | a6 and t2 ∤ a4, we have an equation of shape

E : y2 = x3 + a′′2tx
2 + a′′4πx+ a′′6t

2

then we have that v(∆) = 3, so (0, 0) is a surface singularity, in order to resolve
this, we make a blow up at t = x = y = 0 (and choose the chart that contains
all components of the exceptional divisor of the blow up), we obtain that the y2 =

πx3 + a′′2tx
2 + a′′4x + a′′6. Taking t = 0 to obtain that the exceptional divisor locally

has the form
(y2 − a′′4(0)x− a′′6(0)) = 0

thus the blow-up of E consist of a rational curve of degree two, meeting the strict
transform of the cuspidal curve tangentially in one point, then we have a fiber of type
III , with v(∆) = 3 and two irreducible components.

3. If we assume now that t | a′4 but t2 ∤ a′6 in equation (1.19), we have an equation of
shape

E : y2 = x3 + a′′2tx
2 + a′′4t

2a4x+ a′′6t
2.

Carrying out the same process as in the previous case. We obtain that the exceptional
divisor locally has the form

(y2 − a′′6(0)) = 0

consisting of two lines conjugate over k(
√
a′′6(0)) (when

√
a′′6(0) /∈ k), meeting the

strict transform of the cuspidal curve in one point. Then we have a fiber of type IV ,
with v(∆) = 4, and three irreducible components.

4. Now we assume that t2 | a′6 in (1.19). We obtain an equation with the form

E : y2 = x3 + a′′2tx
2 + a′′4t

2x+ a′′6t
3.
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As before, we obtain a generic fiber E ′ : y2 = tx3 + tx2a′′2 + ta′′4x + ta′′6, and the
exceptional divisor locally takes the form:

y2 = 0,

which consists of a double line that intersects the strict transform of the cuspidal
curve in one point. However, the surface is still singular at (0, 0), specifically at the
intersection point of the double line and the strict transform of the cuspidal curve. To
continue the desingularization process, we perform a blow-up along the double line
t = y = 0 to E ′. The exceptional divisor of this blow-up takes the form

P (x) = x3 + a′′2(0)x
2 + a′′4(0)x+ a′′6(0) = 0 (1.20)

so the blow-up is given by gluing the strict transform of the cuspidal curve, the pre-
vious double line y2 = 0, and the exceptional divisor E ′. We now have three cases
to consider, depending on the number of distinct roots in k̄ of the polynomial (1.20).

• If P (x) has three distinct roots in k̄, then the exceptional divisor E ′ consists
of three distinct rational lines, and our special fiber consist of a double line
y2 = 0 together with four rational components intersecting the double line.
This indicates that we have a fiber of type I∗0 with v(∆) = 6, as stated in 1.3.21,
and a total of five irreducible components.

• If P (x) has one simple root and one double root, there is one singularity at
the intersection with the double line that we need to resolve. We can make a
translation over x to assume that the double root of P (x) is located at x = 0, so
that P (x) = x2(x+ a′′2(0)) = 0. In this case, we have t2 | a′4 and t3 | a′6, which
means that the Weierstrass equation takes the form

E : y2 = x3 + a′′2tx
2 + a′′4t

3x+ a′′6t
4. (1.21)

The exceptional divisor after this blow-up locally has the form y2 − a′′6(0) = 0.
If this rational quadratic equation has distinct roots in k̄, then our special fiber
consists of two double lines and four rational lines, and we have a fiber of type
I∗1 with v(∆) = 7 and m = 6.

• If this exceptional divisor consists of a double line, we make a translation on
y, allows to take the double root to be y2 = 0, this implies t4 | a′6, we make
another blow-up along this line and get an exceptional divisor with the form
a2(0)x

2 + a4(0)x + a6(0). If it consists of two simple lines over k̄, then we
finish the desingularization and we have a fiber of type I∗2 , with v(∆) = 8 and
m = 7.

• This procedure will eventually finish, since ∆ has finite vanishing order every-
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where. And at each two steps of the algorithm we force the coefficients a′2, a
′
4

and a′6 on equation (1.19) to be divisible by an additional power of t and also
for ∆.

If we have v(∆) = n + 6, we have a fiber of type I∗n with n + 5 irreducible
components.

5. If P (x) has a triple root over k̄, we can make a translation in x, to locate the triple
root of P (x) at x = 0. If we have the conditions t2 | a2, t3 | a4, t2 | a6 but t4 ∤ a6 in
(1.16), we get a Weierstrass equation of the form

E : y2 = x3 + a′′2t
2x2 + a′′4t

3x+ a′′6t
4.

Resolving this singularity, we introduce another two double lines, and two simple
lines. And we get a IV ∗ fiber with 7 irreducible components and v(∆) = 8.

6. If we have the conditions t2 | a2, t3 | a4, t5 | a6 but t4 ∤ a4 in (1.16), we get a
Weierstrass equation as

E : y2 = x3 + a′′2t
2x2 + a′′4t

3x+ a′′6t
5.

After solving the singularity we are going to get a fiber of type III∗ with 8 irreducible
components and v(∆) = 9.

7. Now if we have the conditions t2 | a2, t4 | a4, t5 | a6 but t6 ∤ a6 in (1.16) , resolving
the singularity, we get a fiber of type II∗ with 9 irreducible components and v(∆) =

10. With Weierstrass equation:

y2 = x3 + a′′2t
2x2 + a′′4t

4x+ a′′6t
5.

8. Finally if t2 | a2, t4 | a′4, t6, | a6 in (1.16), the Weierstrass equation was not minimal,
and we can make a substitution (x, y) = (t2x′, t3y′). We can notice each time we
pass through this step, the original discriminant will be multiplied by t−12, and it will
end eventually since ∆ has a finite order.

1.4.3 Quadratic twist

Let K a field, assuming that char(K) ̸= 2, an elliptic curve over K has Weierstrass equa-
tion of the form

E : y2 = x3 + Ax2 +Bx+ C,

and associated with an elliptic curve we have the discriminant ∆ and the j−invariant. An
important property of the j−invariant is that it remains constant under transformations that
preserve the given shape of Weierstrass form.
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Definition 1.4.3. The only change of variables preserving the short Weierstrass equation
y2 = x3 +Bx+ C is

x→ ux and y → u3/2y for some u ∈ K∗ a non-square (1.22)

this is called a quadratic twist. Usually we only consider u ̸∈ K2.

In particular, this will apply to any elliptic curve over the function field K = k(C) of an
algebraic curve C. If char(k) ̸= 2, from (1.22) we can understand the quadratic twist at
u ∈ K̄ in an elliptic curve E/K with Weierstrass equation E : y2 = x3 + Ax2 + Bx + C

as:
E : y2 = x3 + uAx2 + u2Bx+ u3C (1.23)

This has the following effect on the fibres, both smooth and singular:

• The fiber at v ∈ k̄(C) remains the same if and only if u has even vanishing order (or
pole order) at v, in particular this applies to all points on C where u doesn’t have a
zero or a pole.

• The fibre at v ∈ k̄(C) changes if and only if u has odd vanishing or pole order at v,
in this case, the fibre changes according to the following pattern:

In ↔ I∗n(n ≥ 0), II ↔ IV ∗, III ↔ III∗, IV ↔ II∗ (1.24)

From 1.23 and Tate algorithm we can easily read these conditions.

Lemma 1.4.4. Two elliptic curves over any field K with the same j-invariant and j ̸=
0, 123 are either isomorphic or quadratic twists of each other.

One can find the proof of this lemma in [Sil09]. In particular, we have the following
corollary, concerning the quadratic twist and singular fibers of an elliptic surface.

Corollary 1.4.5. Any two elliptic surfaces with the same j-invariant j ̸= 0, 123 have the
same singular fibres up to a quadratic twist. In particular, the smooth fibres over some point
v ∈ k(C) are isomorphic as long as we assume that k is algebraically closed.

1.4.4 Mordell-Weil lattices

In this section we will recall some basic concepts of Mordell-Weil lattices, as main ref-
erences we used [SS19] and [Mir89]. In this section we consider surfaces over an alge-
braically closed field k.

Let X be an elliptic surface with section and at least one singular fibre over some algebraic
curve C defined over k, an algebraically closed field of characteristic p ≥ 0 . The sublattice
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of NS(X) generated by the general fiber F and its zero section (O) is

U = ⟨O,F ⟩ ∼=
(
−χ 1

1 0.

)
This matrix U has determinant −1 and signature (1, 1). It is isometric to ⟨1⟩ ⊕ ⟨−1⟩ if χ

is odd, or to the hyperbolic plane
(
0 1

1 0

)
. If χ is even. Since U is unimodular, we have

an orthogonal decompositionNS(X) = U⊕L, whereL is a lattice of rank(L) = ρ(X)−2.

Remark 1.4.6. For any section P ∈ E(K), we have P 2 = −χ(X) where χ(X) is the Euler
characteristic of X , by adjunction formula on elliptic surfaces.

Definition 1.4.7. Given an elliptic surface X with fibration π : X → P1, the trivial lattice
Triv(X) is the sublattice of NS(X) spanned by the components of Fv not intersection the
zero section and the zero section

Triv(X) = ⟨O,F ⟩ ⊕
⊕
v∈R

Tv.

Where Tv denotes the restricted dual graph of a singular reducible fibre Fv (as we saw in
secion 1.3.3), and the sum runs over all the singular reducible fibers R = {v ∈ k(P1) |
Tv ̸= 0}.

Definition 1.4.8. Let π : X → P1 be an elliptic fibration with generic fiber E over K =

k(P1). The Mordell-Weil group of E(K), is the group of sections of the elliptic fibration,
and we denote it by MW (X).

The Néron-Severi lattice contains the information not only of sections but multisections of
any degree, while the Trivial lattice includes all the fibre components and the zero section.
From the following theorem it follows that modulo the trivial lattice everything can be
understood in terms of sections.

Theorem 1.4.9 ([Shi90]). Let f : X → P1 an elliptic surface, the map P → (P ) mod
Triv(X) defines an isomorphism of abelian groups

MW (X) ∼= NS(X)/Triv(X).

From theorem 1.4.9 follows the Shioda-Tate formula:

Corollary 1.4.10 (Shioda-Tate formula). Let π : X → P1 an elliptic surface, then

ρ(X) = 2 +
∑
v∈R

(mv − 1) + rank(MW (X)). (1.25)
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The sum on the right side is running again over all the singular fibers. We have that
rank(MW (X)) ≤ ρ(X) − 2, the equality holds if and only if the elliptic fibration has
only irreducible fibers (i.e., all the fibers are either smooth elliptic curves, or nodal or cus-
pidal rational cubic curves).

Remark 1.4.11. For a reducible fiber Fv located at v ∈ k(P1), we denote by Av the Gram
matrix of non-identity fiber components. By proposition 1.3.20, we have that det(−Av) =

det(Tv) = m
(1)
v .

Definition 1.4.12. Let P,Q ∈ MW (X) be two sections such that (P ) intersects the com-
ponent Θv,i of a singular fiber Tv, and (Q) intersects the component Θv,j of the same
singular fiber. Then we define the local contribution from the singular (reducible) fibre at
v ∈ k(P1), denoted by contrv(P,Q), as follows:

contrv(P,Q) =

{
−(A−1

v )i,j if i ≥ 1 and j ≥ 1

0 otherwise
(1.26)

where the first possibility refers to the (i, j)-entry of the matrix −A−1
v . And we set

contrv(P ) = contrv(P, P ).

In [Shi90], Shioda introduced an embedding of MW (X) into NS(XQ) in order to define
a good pairing on MW (X). For any P ∈MW (X), they showed that there exists a unique
element φ(P ) ∈ NS(XQ) that satisfies two conditions: φ(P ) ≡ (P ) mod Triv(X)Q and
φ(P ) ⊥ Triv(X) and the kernel of this map was MW (X)tors. They also showed that this
map is a group homomorphism. Then they present the following lemma.

Lemma 1.4.13. For any P,Q ∈MW (X), let

⟨P,Q⟩ = −(φ(P ).φ(Q)).

Then this defines a Q-valued symmetric bilinear pairing on MW (X).

We denote by (P.Q) the intersection number of given sections (P ) and (Q).

Theorem 1.4.14 (Height pairing). Let P,Q ∈ MW (X) be any two sections P ̸= Q, we
have

⟨P,Q⟩ = χ+ (P.O) + (Q.O)− (P.Q)−
∑
v

contrv(P,Q). (1.27)

And in the case P = Q,

h(P ) = 2χ+ 2(P.O)−
∑
v

contrv(P, P ). (1.28)

The height paring defines a Q-valued symmetric bilinear pairing in MW (X), which in-
duces the structure of a positive-definite lattice on MW (X)/MW (X)tors.
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We can find a proof of theorem 1.4.14 in [SS19, section 6.5].

In particular, if X is a K3 surface, the equation (1.27) has the form

⟨P,Q⟩ = 2 + (P.O) + (Q.O)− (P.Q)−
∑
v

contrv(P,Q)

and the equation (1.28) has the form

h(P ) = 4 + 2(P.O)−
∑
v

contrv(P,Q)

We can write down the explicit values of contrv, if we have two sections P,Q. Supposing
that P intersects Θv,i and Q intersects Θv,j and that i ≥ 1, j ≥ 1. Then the contribution
terms are given in Table 1.3.

Type III∗ IV ∗ In I∗n
Tv E7 E6 An−1 Dn+4

contrv(P ) 3/2 4/3 i(n−i)
n

{
1 if i = 1

1 + n
4

if i > 1

contrv(P,Q) - 2/3 i(n−j)
n

{
1
2

if i = 1
1
2
+ n

4
if i > 1

Table 1.3: Local contributions from singular fibers

The third line corresponds to contrv(P,Q) when the sections P and Q intersect the same
fiber component (i.e. i = j) or P = Q (contrv(P )), the fourth line corresponds to the case
when i < j (we can interchange P and Q if it is necessary).

Torsion sections are an important type of section to consider, we will recall some of their
basic properties. And as a main reference to this we refer to [Sil94], [SS19] and [Cas67].

Proposition 1.4.15. Let π : X → P1 be an elliptic surface.

1. Let n be the order of the torsion subgroup MW (X)tors . Then

n2 | det(Triv(X)) =
∏
v∈R

det(Tv).

2. Let P ∈MW (X), then P is a torsion section if and only if h(P ) = 0, i.e.

2χ+ 2(P.O)−
∑
v

contrv(P ) = 0.

3. For any additive fibre Fv, the torsion subgroup of MW (X)tors injects into the dis-
criminant group of the fibre T∨

v /Tv.
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4. For any torsion element P of order not divisible by char(k), the section P and the
zero section O are disjoint, i.e., (P.O) = 0. In particular, if char(k) = 0, then for
any torsion section P , we have that

2χ =
∑
v∈R

contrv(P ).

We conclude this section by presenting the determinant formula for elliptic surfaces, which
provides a precise method for computing the determinant of the Néron-Severi lattice.

Corollary 1.4.16 (Determinant formula). Let π : X → P1 be an elliptic surface with
r = rank(MW (X)), then

det(NS(X)) = (−1)r det(Triv(X)) · det(MW (X))/ |MWtors(X) |2 . (1.29)

Remark 1.4.17. In the particular case of corollary 1.4.16, where r = 1 and the MW (X) is
torsion free, the determinant formula can be written as:

det(NS(X)) = − det(Triv(X)) · h(P )

where P is a section that generates the Mordell-Weil group.
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2 | Fields of definitions of K3 surfaces
and singular K3 surfaces

Throughout this work we are mainly interested in the field of definition of singular K3

surfaces. In the first section we are going to recall and study some of the main related
results that follow from the ideas of Shioda and Inose in [Ino77], [Shi06], [SI77], as well
as some ideas for the proofs of these results, such as the Shioda-Inose structure, Inose’s
pencil, singular abelian surfaces and Kummer surfaces. In the last sections we will show
the obstructions on the field of definition of singular K3 surfaces that we need to face, that
we can find in [Sch07b], [HS12],[Sch10].

2.1 Arithmetic of singular K3 surfaces
On singular K3 surfaces the term ”singular” is actually referring to exceptional (just like
for singular j-invariants of elliptic curves with complex multiplication, which we’ll see are
closely related).

We denote

M =

{(
2a b

b 2c

)
| a, b, c ∈ Z, a ≥ 0, c ≥ 0, 4ac− b2 ≥ 0

}
on which GL(2,Z) acts by (g,M)→ gTMg, where M ∈M and g ∈ GL(2,Z).
The set of isomorphism classes of even positive-definite lattices of rank 2 is equal to

L =M/GL(2,Z)

while the set of isomorphism classes of even positive-definite oriented (given by choosing
the order of a basis) lattices of rank 2 is equal to

L̃ =M/SL(2,Z).

For any singular K3 surface X , we say that an order basis (t1, t2) of the transcendental
lattice T (X) is positive if Im(pX(t1)/pX(t2)) > 0, where pX is the period map of X and
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T (X) with a choice of a positive basis is said to be positively oriented (as described in
[SI77] by Shioda and Inose)

Theorem 2.1.1. (Shioda-Inose [SI77]) The map that sends a singular K3 surface to its
transcendental lattice

X 7→ T (X)

induces a one-to-one correspondence from the set of isomorphism classes of singular K3

surfaces to the set of isomorphism classes of positive definite even oriented lattices of rank
2.

The injectivity of this map comes from Torelli’s Theorem on [PS72] and the surjectivity
was proved by Shioda and Inose [SI77] where they first introduce the idea of singular K3

surface.

To establish surjectivity, Shioda and Inose initiated with a singular abelian surfaceA (ρ(A) =
4). By analyzing the intersection form of the transcendental lattice Q = T (A), they ob-
served that the Kummer surface of A becomes a singular K3 surface with an intersection
form of 2Q.In order to get a K3 surface with the intersection form Q, Shioda and Inose
constructed of a new elliptic fibration on Km(A). Through a quadratic base change to the
base curve, they transformed it into another K3 surface denoted as X ′ with ρ(X ′) = 20 and
intersection form T (X ′) = Q.
We are going to study in detail the Shioda-Inose structure. Before this we will recall some
properties about elliptic curves with complex multiplication.

2.1.1 Elliptic curves with complex multiplication

We will recall some basic notions of elliptic curves with complex multiplication. Due to
their close relation with singular K3 surfaces, this will help us understand the behavior of
singularK3 surfaces. As main references for this topic we use [Sil09], [Sil94] and [Shi94].

Definition 2.1.2. An order O in a quadratic field K is a subset O ⊂ K such that

(i) O is a subring containing 1.

(ii) O is a finitely generated Z module.

(iii) O contains a Q−basis of K.

Since an order O is torsion free, (ii) and (iii) are equivalent to O being a free Z-module of
rank 2. The ring of integers OK of a field K is always an order in K, and in particular (i)
and (ii) of the previous definition implies that for any order O of K, O ⊂ OK , thus OK is
the maximal order of K.
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Example 2.1.3. For an easy example of an order, consider Z[
√
−n] ⊂ K = Q(

√
−n).

Notation 2.1.4. We are going to use the following notation:
Q : binary quadratic form with discriminant d as in 1.2.1.
K = Q(

√
d): quadratic imaginary field associated to Q.

dK : discriminant of K.
Cl(Q) : class group of Q.
f : conductor of Q: d = f 2dK .
Cl(O) : class group of O.
H(d) : ring class field.

Definition 2.1.5. Let E be an elliptic curve over C, then E has complex multiplication
(CM) if Z ⊊ End(E).

In this case, End(E) is an order O in some quadratic imaginary field of K. For any order
O, there is an isomorphism between the ideal class group Cl(O) and the form class group
Cl(d) consisting of positive definite, primitive, integral quadratic forms

Q =

(
2a b

b 2c

)
(2.1)

with discriminant d = b2 − 4ac up to the standard action of SL2. We refer to [Cox22,
Chapter 2, section 7] for more details about orders in quadratic fields. To the order O we
can associate the ring class field H(O) = K(j(O)), that is an abelian extension of K
(where j(O) is the j-invariant of the associated lattice). By theorem 1.2.17, we have that
Gal(H(OK)/K) is isomorphic to Cl(d).
We have a map in the other direction, sending a quadratic form Q ∈ Cl(d) to a complex
torus

ψ : Cl(d)→ {Elliptic curves with CM by O} (2.2)

Q→ Eτ = C/(Z+ τZ) (2.3)

with

τ =
−b+

√
d

2a
(2.4)

We have got some of the ideas on the proof of the following proposition.

Proposition 2.1.6. There is a one-to-one correspondence between the class groupCl(O) ∼=
Cl(d) and isomorphism classes of elliptic curves with End(E) = O.

Actually, we can say quite a bit more about the j-invariant of an elliptic curve having com-
plex multiplication. As a corollary of the previous proposition we obtain two important
properties of elliptic curves with CM.
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Corollary 2.1.7. 1. There are only finitely many isomorphism classes of elliptic curves
with CM by OK .

2. Let E be an elliptic curve with CM and End(E) = OK . Then j(E) is algebraic over
Q.

Proof. Part 1 is clear since Cl(OK) is finite.
Let σ ∈ End(E), then End(Eσ) ∼= End(E) ∼= OK . It follows from 1 that {Eσ|σ ∈
Aut(C/Q)} contains only finitely many isomorphism classes of elliptic curves. Since
j(Eσ) = j(E)σ, the set {j(E)σ|σ ∈ Aut(C/Q)} is finite. It follows that j(E) is alge-
braic over Q.

Now we can start working with abelian surfaces obtained as a product of two CM elliptic
curves.

2.1.2 Singular Abelian Surfaces and Kummer surfaces

This section is concerned with complex abelian and Kummer surfaces. In order to under-
stand the Shioda-Inose structure, to sketch the proof of Theorem 2.1.1, we can start with
Abelian and Kummer surfaces over C. A singular abelian surface is an abelian surface A
over C with maximal Picard rank ρ(A) = 4.

Remark 2.1.8. Let A be an abelian surface. Denote the involution by i = [−1] (that is
the inversion map with respect to the group structure), then the quotient A/i has 16 A1

singularities corresponding to the 2-division points on A. The minimal resolution of A/i is
a K3 surface, called Kummer surface and is denoted by Km(A).

If we consider two elliptic curvesE, E ′, their product is an abelian surfaceA = E×E ′ and
we can get the Kummer surface X ′ = Km(E × E ′), the Picard rank of A has three possi-
bilities which depend on whether E and E ′ are isogenous or have complex multiplication
(CM):

ρ(A) =


2 if E ̸∼ E ′

3 if E ∼ E ′ without CM
4 if E ∼ E ′ with CM

(2.5)

and the Kummer surface X ′ has ρ(X ′) = ρ(A) + 16, in particular we have the Shioda-
Mitani theorem.

Theorem 2.1.9. (Shioda-Mitani [SM74]) Let Q =

(
2a b

b 2c

)
be a quadratic form as in

(1.3) and

τ1 =
−b+

√
d

2a
and τ2 =

b+
√
d

2
(2.6)
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then Eτ1 and Eτ2 are isogenous elliptic curves with CM in K, and A = Eτ1 × Eτ2 is a
singular abelian surface with intersection form Q = T (A).

If we take the Kummer surface of the singular Abelian surface constructed on Theorem
2.1.9, it gives us a singular K3 surface, however not all singular K3 surfaces are Kummer
surfaces, because the transcendental lattice of a Kummer surface is always two divisible as
an even lattice (as it was shown in [SM74]), we have

T (Km(A)) = T (A)(2). (2.7)

In order to find a K3 surface X with T (X) = Q we introduce the Shioda-Inose structure,
this construction first appeared in [SI77].

2.1.3 Shioda-Inose structure

We will recall some of the ideas of [SM74; SI77], because of their fundamental importance
to understand singular K3 surfaces.
Let X be a singular K3 surface, the transcendental lattice T (X) is a positive definite even

oriented lattice of rank 2, which can be represented by its intersection formQ =

(
2a b

b 2c

)
up to the action of SL2(Z). We refer to d, minus the discriminant of Q, as the discriminant
of X and we can obtain K = Q(

√
d) (the quadratic field associated to Q and X).

We saw in the previous section that we can construct a singular abelian surface A such
that T (A) = Q, however T (Km(A)) = 2Q. To obtain a K3 surface with the original
intersection form Q, in the singular case, starting with A = Eτ1 × Eτ2 , Shioda and Inose
investigated the double Kummer pencil on Km(A), it produces a specific elliptic fibration.
Then after a quadratic base change, it produces a singular K3 surface X with a transcen-
dental lattice with the original intersection form T (X) = Q.

The previous Abelian surface A and the constructed surface X with a Nikulin involution
i (i.e. an involution with eight isolated fixed points that leaves the holomorphic 2-form
invariant) have a degree 2 rational map to the surface Km(A), this construction is often
called the Shioda-Inose structure.

X A

Km(A)

Definition 2.1.10. A complex K3 surface X admits a Shioda–Inose structure if it admits a
rational map of degree two to some Kummer surface Km(A) such that T (X) ∼= T (A).
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Theorem 2.1.11 (Shioda-Inose [SI77]). Any singular K3 surface X admits a Nikulin invo-
lution whose quotient has a Kummer surface Km(A) as minimal resolution. And particu-
larly any singular K3 surface X admits a Shioda-Inose structure.

The Shioda-Inose structures extend to K3 surface with Picard rank 19, 18 and 17, such that
there is a primitive embedding of the transcendental lattice T (X) in U3. This was studied
by Morrison in [Mor84].

The elliptic curves Eτ1 , Eτ2 of the previous construction can both be defined over the ring
class field H(d), since their j-invariants lie in H(d), which is an abelian Galois extension
of the imaginary quadratic field K = Q(

√
d). By the properties of the field of definition of

elliptic curves with complex multiplication, the Shioda-Inose construction implies that any
singular K3 surface can be defined over a number field.

Corollary 2.1.12. Any complex singular K3 surface can be defined over some number
field.

An explicit model forX overH(d) was given by Inose in [Ino77] and by Schütt in [Sch07b]
and we will see it in the next section, where we will recall some important result on the
fields of definition of singular K3 surfaces.

2.2 Fields of definition
As any complex singular K3 surface can be defined over a number field, we will aim for
the model defined over a number field with smallest degree over Q. We will try to classify
some singular K3 surfaces such that the field of definition hast fixed degree over Q. First we
will recall some important results related to the field of definition of singular K3 surfaces.

Theorem 2.2.1 (Shafarevich [Sha96]). Given n ∈ N. Up to isomorphism over C, there is
a finite number of complex singular K3 surfaces that can be defined over a number field of
degree at most n over Q.

A basic property of an elliptic curve E is that it can be defined over Q(j(E)). As a conse-
quence of the theorem 2.1.11 singular K3 surfaces behave in a similar way, as can be seen
from the following analogous result.

Lemma 2.2.2 (Schütt [Sch07b]). Let X be a singular K3 surface with intersection form
Q, discriminant d. Let τ1, τ2 be as in (2.6). Then X has a model over the ring class field
H(d) = Q(j(τ1), j(τ2)) .

Proof. The proof of this lemma was given in [Sch07b], based on the previous construction
of Inose in [Ino77]. For a singular K3 surface X , Inose constructed a defining equation of
X as a quartic in P3. Shioda refers to it as Inose’s Pencil [Shi06]:
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y2 = x3 + 3αxt4 + t5(t2 − 2βt+ 1) (2.8)

where
α3 = j(τ1)j(τ2) β2 = (1− j(τ1))(1− j(τ2)). (2.9)

If αβ ̸= 0, then a twist of the above fibration defined over the smaller field was exhibited:

t→ βt x→ β

α
x y →

√
β3

α3
y

Making A = α3, B = β2, the transformation results in a new fibration given by the
Weierstrass equation:

y2 = x3 − 3ABt4x+ ABt5(Bt2 − 2Bt+ 1)

which means our surface X is defined over Q(j(τ1), j(τ2)).

Later the following theorem was proved by Schütt and Hulek, extending Lemma 2.2.2 to
the Néron-Severi group.

Theorem 2.2.3 (Schütt, Hulek [HS12]). Let X be a singular K3 surface of discriminant d,
and let H(d) the ring class field. Then X admits a model over H(d) with NS(X) defined
over H(d).

The Inose fibration (2.8), allows us to define a singular K3 surface X over a number field.
However this field is not necessarily the field with the minimal degree of extension over
Q such that X has a model over the field. We will see in the next chapter cases where the
degree of extension of the ring class field is bigger than 1, but the surface can be defined
over Q.

2.2.1 Bounds on the field of definition of singular K3 surfaces.

We are going to recall an important result concerning to a lower bound on the degree of the
field of definition of a singular K3 surface X . This result comes from lattice theory, and
it involves the genus of a lattice. The result was proved by Shimada [Shi09] in the case of
fundamental discriminant (i.e. d = dk), and later by Schütt [Sch07b] in the general case.

Theorem 2.2.4 (Schütt, Shimada). LetX be a singular K3 surface with discriminant d over
a number field, and K = Q(

√
d), then

{T (Xσ)|σ ∈ Aut(C/K)} = genus of T (X). (2.10)

With this result we have two important corollaries for this work.
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Corollary 2.2.5. Let X be a singular K3 surface, defined over some number field L such
that K ⊂ L.The number of classes per genus divides [L : K].

This gives us a lower bound for the field of definition.

Corollary 2.2.6. Let X be a singular K3 surface such that X is defined over Q, then the
genus of T (X) consist of a single class. In particular this implies that the every element
Q ∈ Cl(K) is equivalent to its inverse on the class group, then the class group is at most
two-torsion

Cl(K) = Gal(H(K)/K) ∼= (Z/2Z)m. (2.11)

With the notation 2.1.4, if we have the quadratic field K = Q(
√
d), the discriminant of the

field dK = d is a fundamental discriminant, we obtain

Cl(d) = Gal(H(d)/K) ∼= (Z/2Z)m.

This corollary is particularly important for this work because it allows us to identify fields
and fundamental discriminants where we can find singular K3 surfaces defined over Q.

Remark 2.2.7. When studying singular K3 surfaces with a fixed discriminant d = dK , it
is necessary for the discriminant to satisfy the condition that the class group is at most
two torsion. There are 65 known imaginary quadratic fields with this property, and by the
work of Weinberger [Wei73], there exists at most one more such field. The possible class
numbers h(dK) for the know 65 imaginary quadratic fields will be 1, 2, 4, 8, or 16. In
Disquisitiones, Gauss listed the 65 discriminants that satisfy this condition, but they were
actually discovered earlier by Euler, who called them "convenient numbers".

For the case of class number 1, the answer is given independently by Baker [Bak67],
and Stark [Sta67], the only possible fundamental discriminants dK for class number 1 are
−3,−4,−7,−8,−11,−19,−43,−67 and −163.

2.2.2 Ring class field action on singular K3 surfaces.

Another important property of the field of definition of a singular surface K3 is related
to the structure of the Néron-Severi group and the ring class field. This property was
discovered by Schütt in [Sch10] for singular K3 surfaces where the Néron-Severi group is
defined over Q.

Theorem 2.2.8 (Elkies, Schütt [Sch10]). Let X be a singular K3 surface of discriminant d
and L be a number field such that the divisors generating the NS(X̄) are defined over L.
Let H(d) be the ring class field of d . Then

H(d) ⊆ L(
√
d). (2.12)
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Theorem 2.2.8 basically says that when we can define a singular K3 surface over some
number field, the Néron-Severi group still carries the structure of the ring class field H(d)

through the Galois action on the Néron-Severi group. And by theorem 2.2.3 for any sin-
gular K3 surface X it is always possible to define a singular K3 surface over H(d) with
NS(X) also defined over H(d).

Therefore, Theorem 2.2.8 implies that the field of definitionH(d) in Theorem 2.2.3 is close
to optimal. However, the problem of classifying singular K3 surfaces over Q is still open.
Even in the case of singular K3 surfaces over Q, we only know that there are finitely many
of them by Theorem 2.2.1.

Remark 2.2.9. Theorem 2.2.8 implies that, as the class number h(d) of a fundamental
discriminant d increases, the problem of constructing singular K3 surfaces over Q with
discriminant d becomes more challenging. This is because the Galois group of the ring
class field H(d) acts non-trivially on the Néron–Severi group NS(X) of such surfaces. In
particular, if X admits an elliptic fibration, a large value of h(d) can result in a fibration
with a greater number of possible reducible fibers or sections.

The particular case when a singular K3 surfaceX is defined over Q withNS(X̄) generated
by divisors over Q was studied by Elkies [Elk07].

Theorem 2.2.10. Let X be a singular K3 surface over Q, with NS(X̄) generated by divi-
sors over Q. Then X has discriminant d of class number one.

2.3 Modularity

K3 surfaces could be considered the equivalent of elliptic curves in two dimensions, so
before we start with modularity of singular K3 surfaces, we will recall the property of
modularity of elliptic curves.

2.3.1 Modularity of elliptic curves

Let E be an elliptic curve over Q and p ̸= 2 a prime number, we can choose a minimal
Weierstrass equation at p (as on definition 1.3.11)

E : y2 = x3 + a2x
2 + a4x+ a6

with a2, a4, a6 ∈ Z. This Weierstrass model can be reduced modulo p by simply mapping
ai to āi := a1(mod p)∈ Z/pZ =: Fp, this mapping gives a Weierstrass model and defines a
curve Ẽ over the finite field Fp. It turns out (the isomorphism class of) this curve Ẽ/Fp is
independent of the choice of minimal Weierstrass model for E. In particular, its number of
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points over Fp, i.e. #Ẽ(Fp) is an invariant of E, so we can define

ap(E) = p+ 1−#Ẽ(Fp). (2.13)

If Ẽ/Fp is nonsingular, then we say that E has good reduction at p, otherwise we say that
E has bad reduction at p. In the latter case, we say that E has multiplicative reduction if
Ẽ/Fp has a node, and we say that E has additive reduction at p if Ẽ/Fp has a cusp.

For elliptic curves over Q the modularity was proven in the Taniyama-Shimura-Weil con-
jecture by Wiles, Taylor et al. [Wil95], [TW95], [Bre+01].

Theorem 2.3.1. Any elliptic curve over Q is modular, there exists a newform f of weight
2 with coefficients ap such that for almost all p, ap = ap(E).

Remark 2.3.2. In general, given a subgroup Γ ⊂ SL2(Z) of finite index, a modular form
of weight k is a holomorphic function on the upper half plane in C that satisfies the trans-
formation law

f(γτ) = (cτ + d)kf(τ)

for any γ ∈ Γ, and it is holomorphic at infinity.

A newform is a cusp form that is ’new’ at a specific levelN , where the levels are defined by
the nested congruence subgroups Γ0(N) of the modular group. These levels are ordered by
divisibility; in other words, ifM dividesN , then Γ0(N) is a subgroup of Γ0(M). Oldforms
for Γ0(N) are the span of all the subspaces obtained from modular forms of the form
g(dτ) where g is a modular form of level M and M is a proper divisor of N , and d divides
N/M . For a more detailed definition and study of old and newforms, please refer to [DS05,
Section 5.6].
The term ’old’ is used for these forms because, although they have level N , they actually
originate from a smaller level, namely M . Therefore, from the perspective of level N , they
are considered ’old.’ The space of newforms represents the orthogonal complement with
respect to the Petersson inner product (see [DS05, Section 5.4]) of the space of oldforms.
Newforms are genuinely new to level N , hence their name.

By the transformation law, a modular form f always has a Fourier expansion

f = f(τ) =
∑
n

anq
n with q = e2πiτ .

In general the twist of a newform f =
∑
anq

n by a Dirichlet character χ gives us a new-
form

f ⊗ χ =
∑
n

anχ(n)q
n
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with possibly different level. For more details of modular forms we refer to [Shi94].

2.3.2 Modularity of singular K3 surfaces

Definition 2.3.3. Let K be a commutative ring of characteristic p > 0. The Frobenius
endomorphism Frobp on K is defined by

Frobp(x) = xp for all x ∈ K

It is possible to induce a Frobenius map on K[x]. For any polynomial f ∈ K[x], let fp the
polynomial obtained from f by raising each coefficient of f to the pth power.

If a singular K3 surface X is defined over a number field L, the transcendental lattice
T (X) gives rise to a system of two-dimensional l−adic Galois representation ϱ over L. In
particular, if X is defined over Q, modularity was proven by Livné.

Theorem 2.3.4. (Livné [Liv95]) Let X be a singular K3 surface over Q with discriminant
d. Then X is modular: There is a newform f of weight 3 with CM by Q(

√
d) and Fourier

coefficients ap such that for almost all p

trace(Frob∗p) = ap. (2.14)

Here Frob∗p = ϱ(Frob) is the induced Frobenius map.

If we consider a K3 surface X , then X has good reduction Xp at almost all primes p.
This reduction induces an embedding of lattices NS(X) ↪→ NS(Xp). The eigenval-
ues of Frob∗p on H2(X) (the sencond l-adic étale cohomology group) are encoded in
the characteristic polynomial ψ(x) of Frob∗p. We can obtain the Fourier coefficients ap
by determining ψ(x). The characteristic polynomial ψ(x) of Frob∗p can, at least in prin-
ciple, be computed explicitly using Lefschetz fixed point formula, after counting points
over Fq with q = ps and s = 1, ..., 11. The Lefschetz fixed point formula simplifies to
tr((Frob∗p)

i(H2(X))) = #X(Fpi)− 1− p2i. We will go deeper into this topic in the sec-
tion 3.3.

We are in a similar situation to the case of elliptic curves, where it is possible to associate
to any newform of weight two with Fourier coefficients ap ∈ Z an elliptic curve over Q. we
have the property that any newform of weight 3 with Fourier coefficients ap ∈ Z has CM
by a result of Ribet [Rib77]. And more important to us, there is a bijection up to twisting
of newforms with imaginary quadratic fields whose class group is only two-torsion, given
by a classification by Schütt in [Sch09].
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Theorem 2.3.5 (Schütt [Sch09]). For a fixed weight k + 1 there is a bijection between,
CM newforms of weight k + 1

with rational eigenvalues
up to twisting

↔


Imaginary quadratic fields K
with class group Cl(K) ⊆ (Z/kZ)g

for certain g ∈ N



There are 65 known imaginary quadratic fields whose class group is at most two torsion.
Their class numbers go from 1 to 16, and the discriminant from -3 to -5460 as we can see
in Table 2.1. By a work of Weinberger [Wei73], there exists at most one more such field,
under the assumption on Siegel-Landau zeroes of L-series of odd real Dirichlet characters
(which would follow from the extended Riemann hypothesis), the known list is complete.
We enlist these discriminants dk and their class numbers.

h(dK) dK
1 −3,−4,−7,−8,−11,−19,−43,−, 67,−163
2 −15,−20,−24,−35,−40,−51,−52,−88,−91,−115,−123,−148,−187,

−232,−235,−267,−403,−427
4 −84,−120,−132,−168,−195,−228,−280,−312,−340,−372,−408,−435,

−483,−520,−532,−555,−595,−627,−708,−715,−760,−95,−1012,−1435
8 −420,−660,−840,−1092,−1155,−1320,−1380,−1428,−1540,−1848,−1995,

−3003,−3315
16 −5460

Table 2.1: Fundamental discriminants whose class groups are at most two torsion

Theorem 2.3.6 (Elkies, Schütt [ES13]). Every known newform of weight 3 with Fourier
coefficients ap ∈ Z is associated to a singular K3 surface over Q.

The proof of this theorem is constructive, for each of the 65 known imaginary quadratic
fields in table 2.1 (whose class groups are at most two torsion), Elkies and Schütt gave a
singular K3 surface over Q.
To construct some of these singular K3 surfaces, Elkies and Schütt considered one-dimensional
families of K3 surfaces over Q with Picard rank ρ ≥ 19. By moduli theory of singular K3
surfaces, such a family has infinitely many specializations with ρ = 20 over k but only
a finite number of specializations with ρ = 20 over Q (by theorem 2.2.1, there is only a
finite number of singular K3 surfaces over Q), then they looked for a specialization over Q
with the desired discriminant. We will apply some of their methods to compute Weierstrass
equations too in the next chapters.
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Remark 2.3.7. Elkies and Schütt construct a singular K3 surfaces for every one of the 65
imaginary quadratic fields dK in 2.1, but due to theorem 2.1.1, if we have a discriminants
dK with class number h(dK) = 4, there exist 4 non isomorphic singular K3 surfaces over
C with given discriminant.
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3 | Models for singular K3 surfaces with
class number 4

In this chapter, we will build on the results from the previous chapter to develop algorithms
that allow us to construct explicit models of singular K3 surfaces over Q. Some of these
techniques have been previously used to address problems related to the modularity of sin-
gular K3 surfaces. For example, in [ES13], Elkies and Schütt showed that every Hecke
eigenform of weight 3 with rational eigenvalues is associated with a K3 surface over Q,
and they provided explicit equations for singular K3 surfaces over every field Q(

√
d) with

d listed in Table 2.1. We will build upon their work and use these techniques to find explicit
models of singular K3 surfaces.

In [Elk08], Elkies computed Shimura curves using K3 surfaces with Néron-Severi rank at
least 19, demonstrating interesting techniques for computing Weierstrass equations over Q
for K3 surfaces with large Picard rank. Furthermore, in [EK14], Elkies and Kumar and in
[BM08], Beukers and Montanus obtained many explicit defining equations for K3 surfaces
with high Picard rank (ρ ≥ 18). We will make use of some of the techniques from these
works to develop algorithms for computing explicit models of singular K3 surfaces.

In the initial section, our focus will be on the main objective of classifying singular K3
surfaces with fundamental discriminant d such that Cl(d) ∼= (Z/2Z)2. We aim to identify
explicit models of singular K3 surfaces that are defined over Q. In earlier chapters, we have
discussed techniques for studying K3 surfaces with elliptic fibrations and utilizing Weier-
strass models. In this chapter, we will further explore additional techniques for achieving
our goal.

In the second section, we present techniques for finding families of K3 surfaces with high
Picard rank, which can be challenging. We draw upon techniques over Fp from works such
as [Vár17] and [Elk06]. One useful technique involves reducing mod p a family Xλ of K3
surfaces with ρ ≥ 19 and checking for necessary conditions to obtain a specialization of
the family with ρ = 20 over Q. Another approach is p-adic Newton iteration in several
variables.
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In the following sections, we will organize our study of singular K3 surfaces with an el-
liptic fibration, according to the rank of their Mordell-Weil group, which determines the
complexity of finding explicit models of these surfaces. We begin with the simplest case of
extremal K3 surfaces as described in [SZ01], which have maximal Picard rank and trivial
Mordell-Weil group. Next, we turn our attention to singular K3 surfaces with Mordell-Weil
rank 1. For most of these surfaces, we will search for families of K3 surfaces with Picard
rank 19 and attempt to obtain their specialization over Q with rank 20. The last and most
challenging case that we cover in this work involves calculating Mordell-Weil rank 2 sin-
gular K3 surfaces.

3.1 Singular K3 surface with class number 4
The problem of determining the field of definition of a singular K3 surface is a challeng-
ing one, and currently, there is no general algorithm to solve it. However, in recent work
[Sch07b; Sch10], Schütt provided some useful bounds on the fields of definition for singu-
lar K3 surfaces. In particular, in Theorem 2.2.6, we saw that for any singular K3 surface
X defined over Q with discriminant d a fundamental discriminant, the class group Cl(d) is
two-torsion, that is,

Cl(d) ∼= (Z/2Z)g.

In this work, we focus on the problem of determining the field of definition of singular K3
surfaces with a fixed class number, given this additional condition.

Definition 3.1.1. Let X be a singular K3 with discriminant d. We define the class number
of X as the class number h(d) of the associated class group Cl(d).

The cases of singular K3 surfaces with class number 1 and 2 have already been solved, as
demonstrated in [Sch07b] and [SSed], respectively. Therefore, we will now focus on the
next case, namely finding the field of definition of singular K3 surfaces with fundamental
discriminant with class number 4 and two torsion.

As we know from Theorem 2.1.1, for every fundamental discriminant d with class number
4, there exist four singular K3 surfaces (up to isomorphism) with the given discriminant.
The fundamental discriminants with class number 4 and two torsion can be summarized in
Table 3.1 as follows:

h(d) d
4 -84,-120,-132, -168, -195, -228, -280, -312, -340, -372, -408, -435,

-483, -520, -532, -555, -595, -627, -708, -715, -760, -795, -1012, -1435

Table 3.1: Fundamental discriminants with class number 4, whose class groups are two-
torsion.
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Problem 3.1.2. Which singular K3 surfaces with a fundamental discriminant d such that
Cl(d) ∼= (Z/2Z)2 can be defined over Q?

By Torelli’s theorem for singular K3 surfaces, theorem 2.1.1, X correspond to an element
T (X) ∼= Q ∈ Cl(d). And by Nikulin’s theorem 1.1.13, there is a relation between the dis-
criminant form of the Néron-Severi lattice and the discriminant form of the transcendental
lattice

qNS(X) = −qT (X). (3.1)

Thus, we must obtain a model over Q for a singular K3 surface with qNS(X) = −qT (X).

We know that the genus of an integral lattice is determined by its signature and discriminant
form, as stated in Theorem 1.1.14. By Corollary 2.2.6, ifX is a singular K3 surface defined
over Q, the genus of the transcendental lattice T (X) consists of a single class. Therefore,
the discriminant form of the Néron-Severi lattice NS(X) uniquely determines T (X).

Remark 3.1.3. As X is a singular K3 surface, by Theorem 2.2.8, the Néron-Severi group
still carries the structure of the ring class fieldH(d) through the Galois action on the Néron-
Severi group. In the case of class number 4, by corollary 2.2.6 we have

Gal(H(d)/K) ∼= (Z/2Z)2. (3.2)

If X has an elliptic fibration over Q, then the Galois group of the ring class field H(d)

acts nontrivially on the Néron-Severi group, and the action occurs on the reducible fibers
or sections.

In the next section we are going to see how the Galois action can occur in the Néron-Severi
group.

3.1.1 Galois action on the Néron-Severi group

Let X be a singular K3 surface, then a necessary condition for X to be defined over Q is
that NS(X) carries the structure of the ring class field H(d), through a Galois action on it
by theorem 2.2.8.

One of the advantages of working with elliptic surfaces is that the Shioda-Tate formula
(1.25) reveals that the Néron-Severi group of the surface is generated by horizontal and
vertical divisors, which correspond to fiber components and sections respectively by The-
orem 1.4.9. This property is particularly useful when studying singular K3 surfaces over
Q. According to Theorem 2.2.8, the Galois group of the ring class field H(d) acts non-
trivially on the Néron-Severi group NS(X). This means that with a suitable configuration
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of reducible fibers and sections, the fibration can be preserved under this nontrivial Galois
action, which may affect the reducible fibers in various ways.

• A reducible fiber is fixed under the Galois action, but it has type In for n ≥ 3, I∗n for
n ≥ 0 or IV, IV ∗, allowing for an involution of the components (or for I∗0 even an
S3 action) that preserves incidence relations and identity component.

• There are several reducible fibers of the same type lying over points of the base curve
P1 that are Galois conjugate.

When studying a singular K3 surface X over Q with rank(MW (X)) > 1, the Galois ac-
tion on the Néron-Severi group may become more intricate, since it increases the potential
intersections between the sections that contribute to MW (X), and the fiber components.
The action may affect the number of intersections of the sections that generate MW (X)

and the fiber components. However, at the same time, there are also additional restrictions
imposed by the automorphism group of the Mordell-Weil lattice of X . Therefore, in order
to analyze this action, it is crucial to first comprehend the Galois action on MWL(X).
Understanding this action will provide valuable insights into how the sections and fiber
components behave under Galois transformations.

In the particular case of surfaces X with rank(MW (X)) = 2 and torsion-free Mordell-
Weil group (which we will explore later in this chapter), to understand the possible Galois
actions on MWL(X), we must observe the automorphisms of such lattices. In this case
we can express the automorphisms on MWL(X) in terms of the corresponding binary
quadratic form Q, and we refer to [HS12] where the authors conducted a similar study.
Multiplication by ±1 gives the trivial automorphism of Q, any other automorphism will
be called non-trivial. The problem whether a quadratic form Q admits non-trivial auto-
morphisms depends on the order of Q in the class group of even positive definite quadratic
forms with given discriminant.

Let f a binary quadratic form with integer coefficients and non-zero discriminant, repre-

sented by Q =

(
2a b

b 2c

)
. For M =

(
p q

r s

)
∈ GL2(Z) from (1.5), we have fM(x, y) =

f(px+ qy, rx+ sy), we put

Aut(f) = {M ∈ GL2(Z)|fM = f}.

Assuming that Q is positive definite and reduced as in Remark 1.2.2, we can compute
the number of automorphisms through a straightforward computation of the automorphism
group. Several distinct cases arise: #Aut(f) = 12 when a = b = c, #Aut(f) = 8 when
a = c and b = 0, #Aut(f) = 4 when a = b or a = c or b = 0, and #Aut(f) = 2

otherwise.
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Lemma 3.1.4. A reduced quadratic form Q =

(
2a b

b 2c

)
is two-torsion in its class group

if and only if
b = 0 or a = b or a = c.

We find a proof of this lemma in [Dic57] theorem 90. It is easy to check that the condition
of lemma 3.1.4 is equivalent to the property that the quadratic form Q is equivalent to(
2a −b
−b 2c

)
. Putting all this together we have the following lemma.

Lemma 3.1.5. The positive-definite quadratic form Q admits a non-trivial automorphism
if and only if it is two-torsion in its class group.

In table 3.2 we summarize the lemma above and the previous computations on binary
quadratic forms. We have the non-trivial automorphism groups of reduced quadratic forms,
where D2n denoted the dihedral group of order 2n:

Q

(
2a 0
0 2c

) (
2a a
a 2c

) (
2a b
b 2a

) (
2a 0
0 2a

) (
2a a
a 2a

)
Aut(Q) (Z/2Z)2 (Z/2Z)2 (Z/2Z)2 D8 D12

Table 3.2: Reduced binary quadratic forms with non-trivial automorphism group

Depending on the configuration of the singular fibers and sections, a nontrivial action may
occur on the sections. In particular, if we assume that the Mordell-Weil group is torsion-
free, the action could manifest in the following way: if the Mordell-Weil lattice MWL(X)

admits a non-trivial automorphism, and there exists an involution of two sections that pre-
serves the incidence relations with the fiber components when also applied as Galois action
to the fiber.

3.1.2 Lattices for singular K3 with class number 4

We now resume our search for singular K3 surfaces over Q, for fundamental discriminant
with class number 4 and two torsion. Our approach to problem 3.1.2 is almost the opposite
to the one mentioned in the beginning of this chapter (assuming we have a singular K3
surface over Q). We will choose a fundamental discriminant d in Table 3.1, then we can
take one of the four elements in Cl(d). We have a brief description of the steps to follow
to obtain explicit defining equations for singular K3 surfaces.
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Algorithm 3.1.6. Let d be a fundamental discriminant, such that h(d) = 4, and let Q ∈
Cl(d). The following steps are intended to generate a model Xs over Q for singular K3
surface X over C, with a discriminant disc(X) = d represented by a Weierstrass model,
if such a surface with the specified characteristics exists. Additionally, these steps are
designed to establish an isomorphism between T (X) and Q.

1. Find a lattice L that fulfills the following conditions:

• det(U ⊕ L) = −d

• rank(L) = 18.

• −qL ∼= qQ.

Then there is a complex K3 surface X with NS(X) = U ⊕L since the lattice U ⊕L
admits a primitive embedding into the K3 lattice (cf. [Mor84, Corollary 1.9]).

2. As the surface X comes with an elliptic fibration with a section such that NS(X) =

U⊕L, where L encodes fiber components and non-zero sections (by Theorem 1.4.9),
verify that after accounting for quadratic twists, the Néron-Severi group NS(X)

allows for a Galois action isomorphic to (Z/2Z)2.

3. Apply Tate’s algorithm and perform computations involving the discriminant of the
Weierstrass equation to compute a Weierstrass model Xs over Q for the K3 surface
X found in step 2, where the Néron-Severi group satisfies NS(X) = U ⊕ L.

If the algorithm 3.1.6 yields a model over Q, the resulting singular K3 surface X will have
T (X) ∼= Q, by corollary 1.1.14. Up to isomorphism, X will be the singular K3 surface
associated with the quadratic form Q by Theorem 2.1.1.

The level of detail in Algorithm 3.1.6 appears somewhat limited, particularly in steps 2 and
3, which will feature significant variations based on the rank of the Mordell-Weil lattice
MWL(X). To execute step 3 in Algorithm 3.1.6, we will initiate the application of Tate’s
algorithm, as described in section 1.4.

One approach for constructing a singular K3 surface X over Q with a specified discrimi-
nant d is to initially identify a family of K3 surfaces Xλ and specialize this family to obtain
X . However, it can prove to be quite challenging to find a family of K3 surfaces with a
Picard rank exceeding 18. In scenarios where this becomes particularly difficult, alterna-
tive approaches, such as the construction of K3 surfaces over finite fields Fp may become
necessary.

Throughout this work, we concentrate on elliptic K3 surfaces where the configuration of
singular fibers ensures that the Mordell-Weil group is torsion-free, as demonstrated by the
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properties of torsion sections in Proposition 1.4.15. For every potential rank of the Mordell-
Weil group for the singular K3 surfaces in this study, we present a method to compute a
lattice L, leading to an isomorphismNS(X) ∼= U⊕L, as elaborated in Step 1 of Algorithm
3.1.6. Additionally, we guarantee that the Néron-Severi group possesses a Galois action
isomorphic to (Z/2Z)2.

3.2 Extremal elliptic K3 surfaces

We will now begin our search for singular K3 surfaces over Q with class number 4, starting
with the simplest case of singular K3 surfaces that has been studied previously: extremal
elliptic K3 surfaces.

Definition 3.2.1. Let X be a singular K3 surface, X is called extremal elliptic if X admits
an elliptic fibration with rank(MW (X)) = 0, i.e. a finite group of sections .

Extremal K3 surfaces were classified by Shimada and Zhang in [SZ01] and there is a finite
number of them.

Up to torsion section, such surfaces are determined by the configuration of singular fibers
and more in particular if they have no torsion they are completely determined by the con-
figuration of singular fibers, also by Corollary 1.4.16 the discriminant of the Néron-Severi
lattice is :

disc(NS(X)) = −
∏
v

disc(Fv). (3.3)

Remark 3.2.2. Since the classification of extremal K3 surfaces is already known and there
is a finite number of them, we only need to search for a surface in [SZ01] with the de-
sired discriminant and quadratic form of the transcendental lattice. No additional steps are
required for the application of Algorithm 3.1.6 in this case.

Some explicit equations for extremal K3 surface have been found by Schütt in [Sch07a],
and by Beuker and Montanus in [BM08]. We are going to list some of the extremal K3
surfaces found in these previous works, and also those found by us. The next table lists the
discriminant d of a possible configuration of singular fibers, and the transcendental lattice

T (X) with intersection form
(
2a b

b 2c

)
but we can denote it as [2a, b, 2c]. All the surfaces

in Table 3.3 have a trivial Mordell-Weil group, then we can omit it.
We will write the step-by-step procedure to derive an explicit model of an extremal K3
surface, specifically the one identified as No. 2 in Table 3.3. For this specific instance, our
approach initiates with a RES (rational elliptic surface), and by executing a quadratic twist
on the Weierstrass model of this surface, we successfully yield a K3 surface.
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No discriminant Reducible fibers configuration T(X)
1 −84 I7, I3, I

∗
6 [2, 0, 42]

2 −84 I7, IV
∗, I∗2 [4, 2, 22]

3 −120 I3, I10, I
∗
3 [2, 0, 60]

4 −120 I5, I6, I
∗
5 [4, 0, 30]

5 −120 I2, I3, I5, I
∗
7 [6, 0, 20]

6 −168 I2, I3, I7, I
∗
5 [4, 0, 42]

7 −168 I2, I7, IV
∗, I∗1 [2, 0, 84]

8 −195 I3, I5, I13 [6, 3, 34]
9 −280 I2.I5, I7, I

∗
3 [4, 0, 70]

10 −312 I2, I3, I4, I13 [6, 0, 52]

Table 3.3: Extremal elliptic K3 surface with class number 4

For discriminant d = −84 we have:

Cl(−84) =
{(

2 0

0 42

)
,

(
4 2

2 22

)
,

(
6 0

0 14

)
,

(
10 4

4 10

)}

We start with the element
(
4 2

2 22

)
∈ Cl(−84). Looking in [SZ01], there exist an extremal

K3 surface X with transcendental lattice T (X) =

(
4 2

2 22

)
. The associated surface to this

transcendental lattice has a Néron-Severi group NS(X) = U +A6 +D6 +E6 as stated in
[SZ01, Table 2].

It is possible to induce a (Z/2Z)2 Galois action on X up to a quadratic twist, as we saw in
Section 3.1.1. After applying a quadratic twist to X , we can ensure that all fiber compo-
nents ofA6 are defined over Q. Hence there has to exists a Galois action as an involution on
the simple components of the singular fibers D6 and E6 that preserves incidence relations
and the identity component.

Example 3.2.3. Discriminant d = −84 and T (X) = [4, 2, 22].
In this case we search for extremal K3 surface with three singular fibers of type I7, I∗2 , IV

∗,
we work with an extended Weierstrass equation as in (1.12). We start with a rational elliptic
surface (RES) with two singular fibers of type I7 and II located at 0 and∞ respectively:

y2 = x3 + (−3ct2 + a1t− c3)x2 + t3(3c2t+ 2c3)x− c3t6

∆ = t7p(t)

Here p(t) is a polynomial of degree 3 over t, and we have two parameters in the Weierstrass
equation. After a suitable normalization over x, y we obtain c = 1. At this point we need
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solve for a I2 fiber, so we need a double root in the polynomial p(t). In this case we can
solve it in the discriminant of p(t), Disct(p(t)) = 0. We have an extra I2 fiber if and only
if we take a1 = 6. This gives us a singular fiber of type I2 located at t = 3/8 and the
Weierstrass equation takes the form:

y2 = x3 + (3t2 − 6t+ 1)x2 + t3(3t+ 2)x+ t6

∆ = (−1/262144)(27t− 4)t7(8t− 3)2

We have now a Weierstrass equation with three singular fibers of type I7, I2, II over 0, 3/8,∞
respectively. We apply a quadratic twist over (t − 3/8) and ∞ to obtain an extremal K3
surface X with three singular fibers of type I7, I∗2 and IV ∗ over 0, 3/8 and∞ respectively
(see subsection 1.4.3), and the final equation has the form:

y2 = x3 + (t− 3/8)(−3t2 + 6t+ 1)x2 + t3(t− 3/8)2(3t+ 2)x− t6(t− 3/8)3

∆ = (−1/262144)(27t− 4)t7(8t− 3)8

The surface X has ρ(X) = 20 and disc(X) = 84 with NS(X) = U + A6 + D6 + E6

and T (X) =

(
4 2

2 22

)
. In this example the Galois action act on the fiber components of

the singular fibers. The Galois action on the Néron–Severi group is encoded in the fields
where the singular fibers with at least three components split.

Fiber I7 I∗2 IV ∗

Cusp 0 3/8 ∞
Splitting field Q Q(

√
10) Q(

√
15)

Table 3.4: Splitting field of singular fibers of extremal surface

In table 3.3, two of four singular K3 surfaces with class number 4 and discriminant 84 can
be constructed as extremal K3 surfaces. We can consider another example, the element(
2 0

0 42

)
∈ Cl(−84).

We can see in extremal complex K3 surface in [SZ01], there exist a extremal complex K3
surface X with this transcendental lattice with NS(X) = U + A2 + A6 + D10. Because
in this case we only have one singular fiber with additive reduction, we will solve it in a
slightly different way in the following example.

Example 3.2.4. Discriminant d = −84 and T (X) = [2, 0, 42].
In this case, we aim to find an extremal K3 surface with three singular fibers of type
I3, I7, I

∗
6 . We begin by working with an extended Weierstrass form, as given in (1.12). To

simplify the calculations, it is often useful to perform coordinate transformations such that
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the reducible singular fibers are located at ∞ or 0 and the singularity of the Weierstrass
model is at (0, 0).

Using Tate’s algorithm (1.4), we perform five normalizations and obtain three singular
fibers of type I2, I4, I∗2 located at 1,∞, 0 respectively. We can then use Tate’s algorithm to
promote the fibers I4 and I∗2 to I5 and I∗3 respectively. This yields a family of elliptic K3

surfaces with fibers of type I2, I5, I∗3 located at 1,∞, 0 respectively.

y2 = x3 + (a23t
3 + a2t

2 + a1t+ c0)tx
2 + 2t3(t− 1)(a3c1t

2 + b1t+ b0)x+ t5(t− 1)2(c21t+ b20/c0)

∆ = (t− 1)2t9p(t)

Here p(t) is a polynomial of degree 8 over t, we have here 6 free parameters to choose. We
work with p(t) in order to to promote the singular fibers. We solved on the discriminant to
make t3(t − 1)|p(t) and the coefficients of degree 9 and 8 equal to 0 in order to promote
the fibers I2 to I3, I5 to I7 and I∗3 to I∗6 to obtain the following Weierstrass form:

A = − 1

64
(27t3 − 102t2 + 132t− 8)t

B =
1

16
(t− 2)(t− 1)(9t− 2)t3

C = − 1

16
(3t− 2)(t− 1)2t5

y2 = x3 + Ax2 +Bx+ C

∆ =
1

1024
(t− 1)3t12(81t2 − 396t− 28).

By Tate algorithm the above Weierstrass form guarantees that fiber types are I3, I7, I∗6 at
t = 1,∞, 0 respectively.

The cases number 8 and 10 were already solved in [BM08]. In the last two examples we
made the explicit computations of the model over Q for the cases 1 and 2 in table 3.3.
The same ideas can be applied for the remaining cases in table 3.3, we enlist the remaining
cases with their respective model over Q.

Case d = −120 and T (X) = [2, 0, 60].
For this case we got an extremal K3 surface with three singular fibers of type I3, I10, I∗3
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over 1, 0 and∞ respectively, with an associated Weierstrass equation and discriminant:

A = (−1/8)(t− 2)(25t2 − 4t+ 4)

B = (−2)(t− 1)t2(5t2 − 4t+ 4)

C = (−8)(t− 2)(t− 1)2t4

f = x3 + Ax2 +Bx+ C

∆ = 16(t− 1)3t10(125t2 + 12t− 12).

Case d = −120 and T (X) = [4, 0, 30].
For this case we got an extremal K3 surface with three singular fibers of type I5, I6, I∗5 over
1, 0 and∞ respectively, with an associated Weierstrass equation and discriminant:

A = (−1/4)t(7t2 − 4t− 4)

B = (−2)(t− 2)(t− 1)2t3

C = (4)(t− 1)4t5

f = x3 + Ax2 +Bx+ C

∆ = (−2)(t− 1)5t11(25t2 − 30t+ 4).

Case d = −120 and T (X) = [6, 0, 20].
For this case we got an extremal K3 surface with four singular fibers of type I2, I3, I5, I∗7
over −5/49, 1, 0 and∞ respectively, with an associated Weierstrass equation and discrim-
inant:

A = (−1/800)(343t3 + 1105t2 − 675t− 125)

B = (1/400)(t− 1)t2(343t2 + 150t− 25)

C = (−1/800)(343t− 5)(t− 1)2t4

f = x3 + Ax2 +Bx+ C

∆ = (16000000)(t− 5)(49t+ 5)2(t− 1)3t5.

Case d = −168 and T (X) = [4, 0, 42].
For this case we got an extremal K3 surface with four singular fibers of type I2, I3, I7, I∗5
over−5/49, 1,∞, 0 respectively, with an associated Weierstrass equation and discriminant:

A = (1/800)t(343t3 + 1105t2 − 675t− 125)

B = (1/400)(t− 1)t4(343t2 + 150t− 25)

C = (1/800)(343t− 5)(t− 1)2t7

∆ = (16000000)(t− 5)(49t+ 5)2(t− 1)3t11.

Case d = −168 and T (X) = [2, 0, 84].
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For this case we got an extremal K3 surface with four singular fibers of type I2, I7, I∗1 , IV
∗

over 49/81,∞, 0 and 1 respectively, with an associated Weierstrass equation and discrimi-
nant:

A = (−3/4)t(9t− 1)(t− 1)2

B = (−2/27)(27t+ 1)t2(t− 1)3

C = (−4/729)(27t+ 5)t3(t− 1)4

f = x3 + Ax2 +Bx+ C

∆ = (−16/19683)(81t− 49)2t7(t− 1)8.

Case d = −280 and T (X) = [4, 0, 70].
For this case we got an extremal K3 surface with four singular fibers of type I2, I5, I7, I∗3
over −5/49, 0,∞ and 1 respectively, with an associated Weierstrass equation and discrim-
inant:

A = (1/800)(t− 1)(343t3 + 1105t2 − 675t− 125)

B = (1/400)t2(t− 1)3(343t2 + 150t− 25)

C = (1/800)(343t− 5)t4(t− 1)5

∆ = (16000000)(t− 5)(49t+ 5)2t5(t− 1)9.

Before starting with our search of singular K3 surfaces with rank(MW ) = 1, we will
explain some techniques to find specializations over Fp to exhibit singular K3 surfaces.

Remark 3.2.5. We can notice that the cases for d = −120,−168,−280 have a really similar
Weierstrass model. Nanely, starting with the generic fiber of the surface with d = −168, a
quadratic twist over t and t−1 yields the model with d = −120 and d = −280 respectively.
In the construction of this Weierstrass model we started with a Weierstrass equation with
five singular fibers of type I2, I3, I7, I5 at −5/9, 1, 0,∞ respectively and a fiber of type I∗0
at t = a, then merge the fiber I∗0 with one of the I3, I7, I5 respectively to obtain the desired
model.

3.3 Techniques over Fp
Our objective is to construct singular K3 surfaces over Q with a fixed discriminant d and
transcendental lattice T (X) ∼= Q ∈ Cl(d). To this end, we make use of the Weierstrass
equation, as given in Equation (1.12), and apply Tate’s algorithm. In many cases, we can
compute a family Xλ of elliptic K3 surfaces with a high Picard rank (18 or 19), given by
a Weierstrass equation over Q, such that this family can be specialized to yield the desired
discriminant and Néron–Severi lattice (meaning that the K3 surface we are seeking is in
this family, at least over C). However, obtaining a specialization of this family over Q
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with Picard rank 20 can be challenging due to the increased complexity of the Weierstrass
equation and discriminant. It becomes difficult to obtain a specialization of Picard rank 20
working only with the Weierstrass model and Tate’s algorithm as we did in the cases of ex-
tremal elliptic K3 surfaces. Therefore, we will also employ some of the primary techniques
described in [ES13] to address this challenge.

The strategy here is that if X is a smooth projective surface over a number field, then we
can use information at a prime of good reduction for X to understand NS(X) and bound
ρ(X). In addition to this, we will take advantage of the moduli theory of complex K3 sur-
faces, as well as the modularity results for singular K3 surfaces outlined in Theorems 2.3.4
and 2.3.5.

Any one dimensional family of K3 surfaces of Picard rank ρ ≥ 19 has infinitely many
specializations with ρ = 20 by [Ogu03, Corollary 1.6], however we are only interested
in those specializations over Q, which are finite in number due to Shafarevich’s Theorem
2.2.1.

Here we work with a base change of X̄ , the reduction of X mod p (a prime with good re-
duction) consider as a surface over an algebraic closure of Fp. Then we have an important
condition that is based on the Lefschetz fixed point formula at a good prime p. This condi-
tion is written in terms of l-adic étale cohomology at some other prime l ̸= p, H i

et(X,Ql).
We just write H i(X) to abbreviate.

The cohomology groups H i(X) are equipped with an action of the Frobenius map Frob∗p.
The number of eigenvalues of Frob∗p that are of the form pζ (where ζ is some root of unity)
can be determined by examining the characteristic polynomial ψp(x) of the linear operator
Frob∗p. To compute the characteristic polynomial, we can use two key ideas. First, the
characteristic polynomial of a linear operator on a finite dimensional vector space can be
recovered from knowing the traces of powers of the linear operator, in the following way:

Theorem 3.3.1. (Newton’s identities) Let T be a linear operator on a vector space V of
finite dimension n. Let ti be the trace of the i-th composition T i, and define

a1 := −t1 and ak := −
1

k

(
tk +

k−1∑
j=1

ajtk−j

)
for k = 2, ..., n. (3.4)

Then the characteristic polynomial of T is equal to

det(x · I − T ) = xn + a1x
n−1 + · · ·+ an−1x+ an. (3.5)

Secondly in our cases the traces of powers of Frob∗p operating on H2(X) can be recovered
from the Lefschetz fixed point formula in the case of K3 surfaces
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tr((Frob∗p)
i(H2(X))) = #X(Fpi)− 1− p2i (3.6)

see [Man86] for the proof of this formula in the regular surface case. When X is a K3
surface, Theorem 3.3.1 tells us that we need to count points over Fi

p for i = 1, . . . , 22.
However, the characteristic polynomial ψp(x) of Frob∗p satisfies a functional equation, as
predicted by the Weil conjectures:

p2ψp(x) = ±x22ψp(p
2/x). (3.7)

This equation tells us that counting points over Fi
p for i = 1, . . . , 11 is enough to determine

the characteristic polynomial ψp(x) up to sign on equation (3.7). The following theorem
enables us to determine the trace of the induced Frobenius map Frob∗p on H2(X) in the
case of singular K3 surfaces, and is a consequence of Weil’s conjectures.

Theorem 3.3.2 ([Del72], Theorem 1). Let X be a smooth variety over a finite field Fp

of cardinality q = pr with p prime, and let Frobp ∈ Gal(Fp/Fp) denote the Frobenius
automorphism. For a prime l ̸= p, let Frob∗p denote the automorphism of H2(X̄,Ql)

induced by Frobp. Then ρ(X̄) is bounded by the number of eigenvalues of Frob∗p counted
with multiplicity that are of the form ζp (where ζ is some root of unity). Furthermore, the
characteristic polynomial ψp(x) of Frob∗p lies in Q[x].

Suppose we have a family of K3 surfaces Xλ over Q with ρ(Xλ) ≥ 19 for every surface
in the family. Since ρ(Xλ) ≥ 19, we can predict 19 of the 22 eigenvalues of Frob∗p on
H2(Xλ). By Theorem 3.3.1 and equation (3.7), we only need to count points over Fp to
obtain a condition from equation (3.6) at a prime p with good reduction.

#X(Fp) = 1 + tr(Frob∗p(H
2(X))) + p2. (3.8)

By Weil conjectures, the non-real eigenvalues of Frob∗p on H2(X) come in complex con-
jugate pairs. Hence in addition of the 19 eigenvalues mentioned above, we know that there
is one extra eigenvalue of Frob∗p, which has the form±p. And the remaining two eigenval-
ues (αp, βp) are algebraic integers of absolute value p. In particular the pair of eigenvalues
(αp, βp) is determined by (3.8) and the sign of the other eigenvalue. If λ0 ∈ Q is a special-
ization of Xλ over Q such that ρ(Fp(Xλ0)) = 20, the two eigenvalues satisfied αp = β̄p (i.e
the reduction of Xλ0 mod p is not a supersingular K3 surface).

If the specialization at some λ0 ∈ Q is a singular K3 surface over Q, by Theorem 2.3.4,
this specialization is modular. Furthermore, we choose the sign for the eigenvalue ±p in a
manner that guarantees all possible eigenvalues have an absolute value of p, so we have

αp + βp = ap (3.9)

where ap is the Fourier coefficient of the corresponding newform f of weight 3 of Theorem
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2.3.4. Since f has CM, both αp and βp lie in the imaginary quadratic extension K associ-
ated to f by Theorem 2.3.5. The associated field K has class group exponent 2, and this
field is fixed when we change p. We can vary the prime p and use equation (3.9), when the
specialization at λ0 is a singular K3 surface. This provides a criterion for λ0 such that Xλ0

could be a specialization over Q with ρ(Xλ0) = 20.

Remark 3.3.3. It is important to note that the choice of prime p is crucial in the compu-
tations mentioned above. Specifically, we have two possibilities depending on whether p
splits or not in the fixed quadratic field K.
Suppose we have a singular K3 surface X over a number field L. In this case, we can
predict the geometric Picard number of the reductions. Let p be a prime number and p a
prime of L above p. If X has good reduction modulo p, we write Xp for the reduced K3
surface. The reductions fall into two categories, which we find in [Shi09, Theorem 1]:

ρ(Xp) =

{
20, if p splits in K,

22, if p is inert or ramified in K.
(3.10)

At an inert prime p in K, the Fourier coefficient ap of the newform is zero. This results in
p and −p being eigenvalues of Frob∗p. The Tate conjecture in [Tat75b], predicts that the
reduction Xp has additional algebraic cycles. In the case of elliptic surfaces, these extra
cycles would change the configuration of the reducible fibers, or they would occur as extra
sections on the Mordell-Weil group.

Remark 3.3.4. Let X be a (geometrically irreducible) smooth projective variety defined
over some finite field k = Fp . Then we can consider the subgroup of the geometric Néron-
Severi group NS(X ⊗ k̄), which is generated by divisor classes defined over k. Fixing
some prime l relatively prime to p, there is an l-adic cycle class map

NS(X/k)⊗Ql ↪→ NS(X ⊗ k̄)⊗Ql ↪→ H2
et(X ⊗ k̄,Q(1)).

Here we have applied a Tate twist to the second l-adic cohomology in order to make the
embedding compatible with the natural Galois action on the Néron–Severi group. More
precisely, the Frobenius morphism Frobp acts trivially on NS(X/k), and there is an in-
duced action on NS(X ⊗ k̄) which factors through a finite group, since NS(X ⊗ k̄) is
always generated by divisor classes defined over some finite extension of the ground field.

Let’s consider a singular K3 surface X over the finite field Fq. The generators of the
lattice L ⊂ NS(X) provide sufficient eigenvalues of the Frobenius operator, allowing
us to deduce the complete characteristic polynomial on H2(X), with the exception of a
potential ambiguity, through a simple point count over Fp:
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ap = #X(Fp)− 1− tr(Frob∗p(NS(X)))− p2. (3.11)

Here ap would account for the trace of Frobp in the Galois representation associated with
the rank two transcendental lattice T (X) as discussed in section 2.3.2, and the sign depends
on the Galois action on the remaining divisor class±p generating NS(X) together with L.
Furthermore, here ap is the Fourier coefficient of the corresponding newform f of weight 3.

For the sake of simplifying computations, we utilize an appropriate affine Weierstrass
model. We have the following lemma.

Lemma 3.3.5 ([GT95] Lemma 3.3). Suppose X has a minimal, elliptic surfaced defined
over Fq, corresponding to a minimal affine Weierstrass model Xaff , with stable fibers over
each point in P1. Put Al(X) ⊂ H2(Y,Ql) to be the subspace spanned by the generic fiber,
the zero section, and all components of singular fibers not meeting the zero section. Let
H2

tr(X) be the orthogonal complement of Al(X) in H2(X,Ql). Then

trace(H2
tr(X)) = #Xaff (Fp)− q2 − q.

Thus, for a singular elliptic K3 surface X with rank(MW (X)) = 1, considering point
counts over Fp allows us to derive the following equation:

#Xaff (Fp)− 1− 2p− p2 ± p = αp + βp = ap, (3.12)

where #Xaff (Fp) denotes the number of Fp-rational points on a associated affine Weier-
strass model Xaff of X .

To obtain a specialization over Q of a family of K3 surfaces Xλ with Picard rank 20 and
the desired discriminant d, we employ an algorithm that searches for parameters λi ∈ Fpi

such that, for each prime pi, the surface Xλi
reduced modulo pi has Picard rank 20 and it

satisfies (3.9).

Once we have found a collection of parameters λ1 mod p1, . . . , λi mod pi that satisfy these
conditions, we lift them to a rational number λ0 and from all the possible rational numbers,
we can look for a specialization of our family Xλ over Q with desired discriminant and
transcendental lattice. The algorithm proceeds as follows:

Algorithm 3.3.6. Let a family of K3 surfaces Xλ over Q with Picard number ρ(Xλ) ≥ 19,
we look for a specialization Xλ0 over Q with discriminant d (fundamental discriminant).
To do this, we can follow these steps:

1. For several primes p = pi (i = 1, ..., n) such that ( d
pi
) = 1, use (3.8) and (3.12) to

compute αp, βp for every λ ∈ Fp.
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2. Select those λ such that a choice of the sign of the eigenvalue ±p, gives us that
αp + βp = ap as in (3.9), if there is any. Here ap is the Fourier coefficient of the
corresponding newform f of weight 3 up to twist.

3. For every collection {λi mod pi}i such that every λi fulfills (3.12), compute a λ̄0 mod
∏

i pi
s.t. λ̄0 = λi mod pi using the Chinese Remainder Theorem.

4. For every λ̄0 of the previous step, lift λ̄0 to a rational number λ0 using the euclidean
algorithm as

λ0 =
q1
q2

∏
i

(pi − λ̄0)

where λ0 = s1
s2

.

5. Of all λ0, select the rational number with the smallest height (max(|s1|, |s2|)) .

For each family Xλ and a discriminant d, this procedure returns a candidate parameter
λ0 ∈ Q, such that the specialization Xλ0 might have disc(Xλ0) = d and ρ(Xλ0) = 20.

Assuming we have a one dimensional family of K3 surfaces Xλ over Q with ρ(Xλ) ≥ 19,
given by a Weierstrass equation Xλ : y2 = x3 + A(t, λ)x2 + B(t, λ)x + C(t, λ) we sum-
marize algorithm 3.3.6 in the following pseudo-code:

Algorithm 1 Fp reduction and counting points
1: procedure
2: for i in range(30) do
3: p = Primes()[i]← i
4: Xλ = Fp(Xλ)
5: if (d

p
) = 1 then

6: for β ∈ Fp do
7: Xβ = Xλ(λ = β)← β
8: points[β] = #Xβ(Fp)← Xβ

9: if points[β]− 1− 2p− p2 ± p = ±ap then
10: Solutions[p]← Solutions[p] + [β, p]

11: for p ∈ Primes()[0 : 30] do
12: if Solutions[p] then
13: for S in Solutions[p] do
14: for s in S do
15: collections← collections+ s

16: for C in Collections do
17: ctemp = crt(C[0], C[1])← C
18: results← results+ Euclidean algorithm(ctemp)

return results
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Algorithm 3.3.6 can be run with any number of primes. In most cases, 20 to 30 primes
are sufficient to obtain a good parameter λ0. In the following example, we illustrate the
application of the algorithm on the remaining case with d = −120.

Example 3.3.7. Discriminant d = −120 and T (X) = [10, 0, 12].
Let X be a complex K3 surface with trivial transcendental lattice Triv(X) = U ⊕ A5 +

D6 + E6, and a rank one Mordell-Weil group MW (X) generated by a section P with a
height pairing h(P ) = 4− 4/3− 1 = 5/3.
The section P intersects Θ2, the second component of I6, and the near component Θ1 of
I∗2 . Using the determinant formula (1.29), we find that X has disc(X) = −120, and by
the Shioda-Tate formula (1.4.10), we find that ρ(X) = 20. With this information, we can
compute the Néron-Severi lattice and the transcendental lattice T (X), which is isomorphic

to
(
10 0

0 12

)
.

Moreover, it is possible to perform a quadratic twist so that the fiber components of the A5

singular fibers are defined over Q. And the Néron-Severi group of the resulting K3 surface
admits a (Z/2Z)2 Galois action, which corresponds to an involution of the simple far fiber
components of the D6 and the simple components of E6 singular fibers, which is compat-
ible with intersection numbers with the section P . Given these properties, we can proceed
to compute a Weierstrass model for the K3 surface in question.

We applied Tate’s algorithm to obtain the Weierstrass equation for X and obtained a one-
dimensional family Xλ with ρ(Xλ) ≥ 19. This family includes three singular fibers of
type I6, I∗2 , and IV ∗ over 0,∞, and 1, respectively. The Weierstrass equation for Xλ is as
follows:

A = λ(t− 1)2(tλ− 3t− λ)
B = (−1)t2(t− 1)3(2tλ2 − 6tλ− 2λ2 + 3t+ 2λ)

C = (λ− 1)t4(t− 1)4(tλ− 2t− λ+ 1)

f = x3 + Ax2 +Bx+ C

∆ = −t6(t− 1)8(3t2λ4 − 18t2λ3 − 6tλ4 + 45t2λ2 + 22tλ3 + 3λ4 − 54t2λ− 18tλ2 − 4λ3 + 27t2)

We aim to obtain a specialization of this family with λ0 ∈ Q, such that the family con-
tains the desired section as described above. To achieve this, we utilized algorithm 3.3.6
for the first 30 primes, 14 of which satisfy (−120

p
) = 1. We calculated #Xλ(Fp) for p ∈

{11, 13, 17, 23, 29, 31, 37, 43, 47, 59, 67, 79, 101, 113} using the given Weierstrass model.
This process yielded approximately 5,000 parameters λ0 mod

∏
i pi, after all the computa-

tions, which were then lifted to Q to obtain all possible λ0 ∈ Q. These rational numbers
were subsequently ordered by height, and the value with the smallest height was chosen as
our desired λ0 = −2/3.
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To obtain the Weierstrass equation for the candidate elliptic surface X with ρ(X) = 20 and
disc(X) = −120, we specialize a family at λ0 = −2/3. The resulting equation is:

f = x3 + (−2/9)(11t− 2)(t− 1)2x2 + (−1/9)(71t− 20)t2(t− 1)3x+ (−5/9)(8t− 5)t4(t− 1)4

∆ = (−1/27)t6(t− 1)8(2401t2 − 424t+ 48)

To confirm that we have indeed found the surface we are looking for, we need to find a
section P that intersects the I6 fiber on the second component at t = 1 and the I∗2 fiber on
its nearby component at t = ∞. We construct examples with (P · O) = 0 to facilitate the
computations of the components of the section P as polynomials. This has consequences
for the possible height of P , particularly implying that P can be expressed as P = (xP , yP )

with polynomials xP and yP of degree at most 4 and 6, respectively, in the coordinate t of
the base curve. We can express yP in terms of xP by substituting xP into the Weierstrass
equation of X . Specifically, we obtain:

y2P = f(xP ).

In order for the fibers to intersect as we described, according to Tate’s algorithm (the way
we construct the Weierstrass equation for this singular K3 surface), they must satisfy the
divisibility conditions:

t2 | xP and t4 | y2P .

At t = ∞, we rewrite the Weierstrass equation in terms of s = 1/t, x′ = x/t2, y′ = y/t3

(the coordinates of the other chart). The section P intersects the I∗2 fiber at∞ on its near
component, the degree of xP over t is reduced by 1 and the degree of y2P over t is reduced
by 2 . Tate’s algorithm shows that this fiber gives us an additional linear relation in the
coefficients of xP , coming from the intersection with the I∗2 fiber. Since xP has degree
three, there is one degree of freedom remaining. We can solve for this last coefficient using
the equation y2P = f(xP ), which gives us the desired section:

xP = (8/9)(5t+ 3)t2 y2P = (1/729)t4(483t2 + 26t+ 3)2.

The Galois action on the Néron-Severi group is encoded in the fields where the singular
fibers with at least three components split, so here we have:

Fiber I6 I∗2 IV ∗

Cusp 0 ∞ 1

Splitting field Q Q(
√
10) Q(

√
15)

Table 3.5: Splitting field of singular fibers
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We can observe that the surface admits the expected Z/2Z Galois action.

3.3.1 p-adic multivariate Newton iteration

Sometimes, we may encounter a system of equations over Q that cannot be solved directly
using the techniques we have studied so far. This can happen, for instance, when attempting
to resolve a singular fiber or when searching for sections in a family of K3 surfaces. In such
situations, we can resort to p-adic Newton iteration in multiple variables as an alternative
approach. Before describing this algorithm, it is important to note a classic lemma:

Theorem 3.3.8 (Hensel’s Lemma). Let f(x) be a polynomial with integer coefficients. Let
k be a positive integer, and r an integer such that f(r) ≡ 0 mod pk. Let m be a positive
integer. Then if f ′(r) ̸≡ 0 mod p, there is an integer s such that f(s) ≡ 0 mod pk+m and
s ≡ r mod pk. So s is a "lifting" of r to a root mod pk+m. Moreover, s is unique mod pk+m.

We can find a proof of Hensel’s Lemma in [Eis95]. Like Newton’s method, Hensel’s lemma
works for systems of equations in several variables too.

Theorem 3.3.9. Let f = (f1, ..., fn) a system of polynomials in n variables x1, ..., xn with
coefficients in Z, and α ∈ Zn a simultaneous solution modulo pk (i.e, fi(α) ≡ 0 mod pk ).
Let m a positive integer. Assume

det(J(α)) ̸≡ 0 mod p

where J(α) denotes the evaluation of the Jacobian matrix at α . Then there exists a point
β = (β1, ..., βn) ∈ Zn such that fi(β) ≡ 0 mod pk+m and βi ≡ αi mod pk

Remark 3.3.10. Note that from the lift s of r in theorem 3.3.8 we can obtain the formula

s = r − f(r)

f ′(r)
mod pk+m (3.13)

This bears a striking resemblance to the formula used in Newton’s method for approximat-
ing real roots of polynomials.

This can also be applied in the case of multiple variable as the multivariable Newton’s
method, and it can help us to find a solution of a system of rational equations.

Algorithm 3.3.11. Given a system f = (fi = 0) (i = 1, ..., n) of algebraically independent
polynomial equations over Z in n variables z1, ..., zn. The following steps can be used to
search for solutions of the system over Q, if any:

1. With a exhaustive search, find a solution z = (z1, ..., zn) ∈ (Z/pZ)n, if any.
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2. Compute the Jacobian matrix J of f ; if det(J(z)) ̸≡ 0 mod p continue, if J(z) ≡
0 mod p, return to step 1 (to look for another possible solution in (Z/pZ)n if another
solution exists).

3. Using Hensel’s Lemma double the p-adic accuracy of the solution (i.e, if we have
a solution z ∈ (Z/pmZ)n applying Hensel’s Lemma we can get a solution z ∈
(Z/p2mZ)n).

4. Compute X = (x1, ..., xn) a lift of the solution in Q using Chinese remainder theo-
rem and Euclidean algorithm (as in algorithm 3.3.6).

5. Check whether the lift solves the system of equations over Q. If it does not, return to
step 3, and increase the p-adic precision, and try steps 4 and 5 again.

The core step of Hensel’s lemma is to define a sequence (zn) of values that converge to the
unique solution in Qp. On the step 3 in algorithm 3.3.11 to converge, we need some reg-
ularity assumptions on algorithm 3.3.11 for the system of polynomials f . It will converge
if the Jacobian determinant |det(J(z)| does not vanish at z = (z1, ..., zn), as we can see in
[Lew19; Eis95], this is why step 2 is included before applying Hensel’s lemma.

We provide a small pseudo-code implementation of Algorithm 3.3.11 that runs for a fixed
number of iterations. The algorithm takes as input a list of functions with rational coeffi-
cients Fc = [fi]i, the prime number p to work with, and the number of iterations n to run.

Algorithm 2 p-adic multi-variable Newton iteration method
1: procedure : (Fc = {fi},p,iterations)
2: exhaustive search to get (z1, ..., zn) with zi ∈ Fp

3: xold ← (z1, ..., zn)
4: Fc = Fp(Fc)← Fc

5: J = Jacobian(Fc)← Fc

6: if det(J) ̸= 0 then
7: Res = J−1 ∗ Fc

8: for i < iterations do
9: Res = Res(x = xold)← xold

10: xold = Fi
p(xold −Res)

11: xold = Z(xold)
12: return xold
13:

With these techniques at hand, we can continue our search of singular K3 surfaces.
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3.4 Singular K3 surfaces with MW − rank 1

We now shift our focus to the next case in our investigation of singular K3 surfaces with
class number 4: those with rank(MW ) = 1 as in example 3.3.7. To analyze such surfaces,
the first step in Algorithm 3.1.6 is to obtain a suitable lattice L. Thankfully, lattice methods,
aided by computer calculations, can be employed to systematically generate lattices that
fulfill the constraints outlined in Theorems 2.2.10 and 2.2.4, as detailed in the following
algorithm.

Algorithm 3.4.1. Let d be a fixed fundamental discriminant with Cl(d) ∼= (Z/2Z)2 and

Q =

(
2a c

c 2b

)
∈ Cl(d) a binary quadratic form. The following steps provide candidate

lattices (N, T ), if any exist. These lattices satisfy the condition that, should a K3 surface
X exist with NS(X) ∼= U ⊕ N and Triv(X) ∼= T , it would meet the following criteria:
ρ(X) = 20, NS(X) would possess a Galois action by Gal(H(d)/Q), and T (X) ∼= Q.

1. By performing an exhaustive search, we can obtain a collection of root latticesR(n)
for any natural number n. Each lattice L ∈ R(n) can be expressed as a sum L =∑

i Li of positive definite ADE root lattices Li, such that the rank of L is n, i.e.,∑
i rank(Li) = n.

2. We consider all lattices L inR(17) and take their associated Gram matrix IL, which
has rank 17.

3. Construct a torsion-free lattice N of rank 18 such that L is a sublattice of N with the
following properties: the Gram matrix IN of N has a block form with IL as one of
the blocks; furthermore, the last row and column of IN correspond to the possible
intersections of a section P with the simple components of singular fibers of type Li.
Specifically, for each Li, there is at most one entry equal to −1 in the last row and
column of IN that corresponds to the intersection of P with a simple component of
the singular fiber of type Li.

4. Compute the quadratic forms qQ and qN of Q and N respectively, if the quadratic
forms are equivalent −qN ∼= qQ (if they are in the same genus), we can proceed.

5. We begin by considering a complex K3 surface X with NS(X) = U ⊕ N , which
is always possible since the lattice U ⊕N admits a primitive embedding into the K3
lattice (see [Mor84]). This allows us to express Triv(X) = U ⊕

∑
i Li, where Li

denotes the types of singular fibers. We can apply Corollary 1.4.10 (the Shioda-Tate
formula) to conclude that X possesses a rank-1 Mordell-Weil group, generated by a
single section P . Assuming the existence of a model for X over Q, to ensure that
NS(X) admits a (Z/2Z)2 Galois action, we perform a quadratic twist to ensure that
the components of one singular fiber Li ( for a In or IV ∗ singular fiber) are defined
over Q.
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• A reducible fiber of type In for n ≥ 3, I∗n for n ≥ 0 or IV, IV ∗, allowing for
an involution of the components that preserves incidence relations and identity
component.

• There are several reducible fibers of the same type that are Galois conjugates,
in this case they need to preserve the incidence with the zero section, and the
section P .

6. We verify that the Mordell-Weil group MW (X) ∼= N/L is torsion-free because the
configuration of the singular fibers ensures that there are no torsion sections (see
proposition 1.4.15).

7. Return the pair of lattices (N,L) as one of our candidates.

Remark 3.4.2. In Step 3 of Algorithm 3.4.1, the approach by which we construct the lattice
N determines the behavior of the section P , its interaction with the zero section, and the
local contributions of the singular fibers. The intersection with the zero section is dictated
by the element N18,18. In our specific cases, where this value equals 4, it results in the
section P having no intersection with the zero section.

Remark 3.4.3. In step 5 of Algorithm 3.4.1, our focus lies on examining the Galois action
with regard to singular fibers. This is a result of the earlier mentioned quadratic twist, which
has a specific purpose: ensuring that the individual components of a singular fiber Fv are
defined over Q. This quadratic twist, in particular, affect the section P . Its effect depend
of the section’s intersection with the singular fiber Fv and the other singular fibers. The
reason for this dependency is that the fiber components of Fv are defined over Q, while the
same is not necessarily true for the other singular fibers. Therefore, focusing on the Galois
action on singular fibers could simplify the search of the desired singular K3 surface.

Algorithm 3.4.1 may return multiple candidate K3 surfaces. In such cases, we need to
choose the best candidate, but determining what constitutes the "best" candidate can be
unclear. Nonetheless, we can consider a few criteria to make this choice. For instance,
one option is to choose the candidate with the smallest number of singular fibers, as this
simplifies computations. Alternatively, we can choose the section with the smallest height
pairing, as it also simplifies calculations.

We have here a small pseudo-code of our implementation of this algorithm in Sagemath.
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Algorithm 3 Lattices candidates for NS(X)

1: procedure (n, d,Q)
2: P (n) = Partitions of n← n
3: R(n) = Root lattices of rank n← P (n)
4: for L ∈ R(n) do
5: Gram matrix IL ← L
6: for Possible section P do
7: IN − Gram Matrix← (L, P )
8: N − Lattice← IN
9: if Discriminant group(N) ∼= Q and disc(Ls) = d then

10: Lattices← Lattices + (L,N)

11: for S ∈ Lattices do
12: if S admits enough Galois action then
13: LatGalois← LatGalois + S

14: for G ∈ LatGalois do
15: MWL← G
16: if MWL is torsion free then
17: Candidates← Candidates +G

18: return Candidates

To illustrate how Algorithm 3.4.1 works, we present an example of the computations car-

ried out to obtain the lattice for d = −120 and Q ∼=
(
10 0

0 12

)
.

Example 3.4.4. In Example 3.3.7, we computed the Weierstrass model for a K3 surface
with discriminant and transcendental lattice. Then, using Algorithm 3.4.1, we obtain the
latticeN and a configuration of singular fibers satisfying the necessary conditions for a sin-

gular K3 surface withNS(X) ∼= U⊕N to have T (X) ∼=
(
10 0

0 12

)
and be defined over Q.

After an exhaustive search, Algorithm 3.4.1 returned several lattice candidates, among
which is N , a lattice with rank 18. The lattice N contains a sublattice L isomorphic to
A5 + D6 + E6. A K3 surface with Néron-Severi isomorphic to N is a singular K3 sur-
face with three singular fibers, of types I6, I∗2 and IV ∗. Moreover, this K3 surface has a
Mordell-Weil rank of one, and the generator of the Mordell-Weil group is a section P and
a height h(P ) = 5/3. Notably, P intersects the Θ1 simple component of the I∗2 fiber and
the Θ1 simple component of the IV ∗ fiber.
It is worth noting that after a quadratic twist, the fiber components of the I6 fiber may be de-
fined over Q, and the lattice N admits a Galois action of (Z/2Z)2. This action corresponds
to an permutation of the simple far fiber components of the I∗2 fiber and an permutation of
the two simple fiber components Θ2 and Θ3 of the IV ∗ fiber. We have disc(L) = 6 · 4 · 2
and disc(N) = disc(L) · h(P ) = −120.
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In the construction of the Gram matrix IN for the lattice N , we adhered to the instructions
details in Step 3 of Algorithm 3.4.1. It’s noteworthy to mention that we reversed the sign
to ensure that the lattice N becomes positive-definite. The lattice N would represent the
Frame lattice which is the orthogonal projection of U = ⟨O,F ⟩.

The matrix is constructed as a block matrix where each block represents the Gram matrix
of the root lattices A5, D6, and E6. The last element of the matrix, which is 4, represents
the self-intersection of the section P (after the orthogonal projection with respect to U ).
The matrix is embedded into the frame lattice W . For any section P , its projection in W
satisfies (P )2 = 4 + 2(P ·O). We have that (P ·O) = 0, the projection in W simplifies to
(P )2 = 4. We have the Gram matrix IN for the lattice N :



2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 −1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 -1 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 2 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0
0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 4


Now, we can compute the discriminant group of the lattice N and the lattice given by

the matrix Q =

(
10 0

0 12

)
. If we start with the dual lattice of Q, we get a lattice given

by the Gram matrix
(
1/10 0

0 1/12

)
, from it we can compute the discriminant group of

Q, we obtain: The discriminant group AQ is a finite module over Z, it is isomorphic to
(Z/2Z) × (Z/60Z) and the Gram matrix of the quadratic form qQ with values in Q/2Z:(
1/10 0

0 1/12

)
.
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We compute the discriminant group and quadratic form of N , the discriminant group AN

is a finite module over Z given by Z/2Z× Z/60Z and Gram matrix of the quadratic form

qN with values in Q/2Z:
(
1/10 0

0 1/12

)
.

Having that the two discriminant groups AN and AQ are isomorphic, and the two quadratic
forms qQ, qN are equivalent. By theorem 1.1.13, a K3 surface X with NS(X) = U +N−,

is a singular K3 surface with disc(X) = −120, and T (X) =

(
10 0

0 12

)
.

Table 3.6 presents a list of all cases of singular K3 surfaces with fundamental discriminant d
and Cl(d) ∼= (Z/2Z)2, all of which we have found a model over Q as singular K3 surfaces
with Mordell-Weil group of rank 1.

No disc(NS(X)) R(W ) T (X) h(P )

1 -84 A2 +D5 +D10 [6, 0, 14] 7/4

2 -84 D5 +D6 + E6 [10, 4, 10] 7/4

3 -120 A5 +D6 + E6 [10, 0, 12] 5/3

4 -132 A6 +D5 + E6 [2, 0, 66] 11/7

5 -132 A2 + A4 +D5 +D6 [4, 2, 34] 11/20

6 -132 A2 + A4 +D5 + E7 [6, 0, 22] 11/6

7 -132 A1 + A6 +D4 + E6 [12, 6, 14] 11/14

8 -168 A1 + A5 +D5 + E6 [2, 0, 84] 7/6

9 -168 A1 + A2 + A4 +D4 + E6 [6, 0, 28] 7/15

10 -168 A1 + A3 +D7 + E6 [12, 0, 14] 7/4

11 -195 A1 + A4 + E6 + E6 [14, 1, 14] 13/6

12 -195 A2 + A4 + A4 +D7 [10, 5, 22] 13/20

13 -228 A2 + A4 +D5 +D6 [2, 0, 114] 19/20

14 -228 A1 + A2 + A4 + A6 +D4 [6, 0, 34] 19/70

15 -228 A1 + A2 + A4 +D4 + E6 [12, 6, 22] 19/20

16 -280 A1 + A6 +D4 + E6 [2, 0, 140] 5/3

17 -280 A3 + A9 +D5 [10, 0, 28] 7/4

18 -280 A1 + A4 +D5 +D7 [14, 0, 20] 7/4

19 -312 A1 + A1 + A4 +D5 + E6 [2, 0, 156] 13/10

20 -312 A1 + A2 + A4 +D4 + E6 [4, 0, 78] 13/15

21 -312 A2 + A4 +D5 +D6 [6, 0, 52] 13/10

22 -312 A1 + A5 +D5 + E6 [12, 0, 26] 13/6

23 -340 A1 + A1 + A4 +D5 + E6 [2, 0, 170] 17/12

24 -340 A4 + A7 +D6 [20, 10, 22] 17/8

25 -340 A4 + A4 + A5 +D4 [10, 0, 34] 17/30

Continued on next page
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Table 3.6 – Continued from previous page
No disc(NS(X)) R(W ) T (X) h(P )

26 -372 A2 + A5 + A6 +D4 [2, 0, 186] 31/42

27 -372 A1 + A2 + A4 +D4 + E6 [4, 2, 94] 31/30

28 -372 A1 + A2 + A4 + A6 +D4 [6, 0, 62] 31/70

29 -372 A1 + A1 + A4 +D5 + E6 [12, 6, 34] 31/20

30 -408 A2 + A4 +D5 +D6 [2, 0, 204] 17/10

31 -408 A1 + A1 + A4 +D5 + E6 [4, 0, 102] 17/10

32 -408 A1 + A2 + A4 + A6 +D4 [6, 0, 68] 17/35

33 -408 A1 + A2 + A4 +D4 + E6 [12, 0, 34] 17/15

34 -435 A2 + A4 + A6 +D5 [2, 1, 218] 29/28

35 -435 A1 + A4 + A6 + E6 [22, 7, 22] 29/14

36 -483 A1 + A4 + A6 + E6 [2, 1, 242] 23/10

37 -520 A1 + A2 + A4 +D5 +D5 [4, 0, 130] 13/12

38 -520 A3 + A9 +D5 [10, 0, 52] 13/4

39 -520 A1 + A1 + A4 +D5 + E6 [20, 0, 26] 7/6

40 -532 A2 + A3 + A6 +D6 [2, 0, 266] 19/12

41 -532 A1 + A2 + A4 + A6 +D4 [4, 2, 134] 19/30

42 -555 A2 + A4 + A6 +D5 [6, 3, 94] 37/28

43 -555 A1 + A4 + A6 + E6 [26, 11, 26] 37/14

44 -708 A1 + A2 + A4 + A6 +D4 [6, 0, 118] 59/70

45 -760 A1 + A4 + A8 +D4 [2, 0, 380] 19/9

46 -760 A1 + A2 + A4 + A6 +D4 [20, 0, 38] 19/21

47 -795 A2 + A4 + A6 +D5 [6, 3, 134] 53/28

Table 3.6: Singular K3 surfaces with class number 4 and
Mordell-Weil group of rank 1.

Remark 3.4.5. It is worth notice that the lattices with transcendental lattice [2, 0, 84] and
[6, 0, 52], having discriminants of −168 and −312 respectively, appear in both Table 3.6
and Table 3.3. it mean the existence of two distinct fibrations on the same surface.

Each of the surfaces listed in Table 3.6 has a model over Q that can be written in the form
y2 = x3 + A(t)x2 + B(t)x + C(t). Additionally, each surface has a section given by two
polynomials P = (u(t), v(t)), where u(t) has degree at most 4 and v(t) has degree at most
6. And we have the condition that v(t)2 = u(t)3+A(t)u(t)2+B(t)u(t)+C(t), so we only
need the first polynomial u(t) to fully describe the section on our surface. We will provide
the polynomials A(t), B(t), C(t), and u(t) that are required to describe the Weierstrass
models over Q for every singular K3 surface listed in Table 3.6.
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Proposition 3.4.6. All the surfaces enlisted in Table 3.6 have a Néron-Severi group gener-
ated by fibers components and the sections O and P and a Weierstrass model with coeffi-
cients over Q.

Proof. By 3.4.1, we confirm that all the singular K3 surfaces listed in Table 3.6 are indeed
singular K3 surfaces with the desired discriminant and quadratic form. Through the appli-
cation of the Tate algorithm (described in Section 1.4), we verify that the surfaces listed in
Tables 3.7 to 3.11 have the singular fibers and sections as described in Table 3.6
Therefore, the fiber components and sections generate a lattice M of rank 20, which we
need to show is isomorphic to NS(X). The discriminant of M is given by equation (3.3),
and the height pairing of the section (P ) is given by equation (1.27). If the index of M in
NS(X) were greater than 1, then NS(X) would have discriminant divided by the square
greater than 1 of the index. By determinant formula (1.29), the discriminant is given by
the discriminant of the trivial lattice and the pairing of the section, and for all the surfaces
in table 3.6, the quotient disc(M)/disc(NS(X)) is a square if it is equal to 1, so the only
possible index is 1, so disc(M) = disc(NS(X)) and M = NS(X), completing the proof.

We have computed models over Q for all the singular K3 surfaces with fundamental dis-
criminant |d| ≤ 408, as well as for other surfaces with discriminants−435,−483,−520,−532,
−555,−760, and−795. We have summarized our results in Table 3.6. While we were suc-
cessful in finding models for most of the surfaces with fundamental discriminant |d| ≤ 408,

there were a few exceptions. In the following section, we will discuss these exceptional
cases.

3.5 Singular K3 surfaces with class number 4 and MW −
rank 2.

So far, we have successfully computed explicit models over Q for all singular K3 surfaces
with fundamental discriminant d up to 408 and Cl(d) ∼= (Z/2Z)2, with the exception of
three special cases:

1. d = −195 and T = [2, 1, 98].

2. d = −228 and T = [4, 2, 58].

3. d = −340 and T = [4, 2, 86].

We were unable to compute models over Q for these 3 cases as a singular K3 surfaces with
Mordell-Weil rank 1. To resolve these three remaining cases, we will utilize singular K3
surfaces with Mordell-Weil rank 2. To do this, we need to make some modifications to
the algorithms outlined in the previous sections. Specifically, we need to find a suitable
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lattice N with a root lattice L = R(N) of rank 16, along with two sections. We can adapt
algorithm 3.1.6 to this setting by modifying step 1 to require rank(L) = 16.
By modifying algorithm 3.4.1, we can construct a root lattice L of rank 16 and two sections
P and Q that generate the Mordell-Weil group. We can then compute a discriminant d of
the form

d = − disc(L) · det
(
h(P ) ⟨P,Q⟩
⟨P,Q⟩ h(Q)

)
(3.14)

using corollary 1.4.16. To ensure that the lattice N admits a possible (Z/2Z)2, we consider
the automorphism group of the Mordell-Weil group, as discussed in section 3.1.1 and the
Galois action on the singular fibers.

Assuming that the method mentioned above was successful, we obtained a root lattice L
with rank 16. By using this lattice, we can generate a family of K3 surfaces via a Weier-
strass equation of the form

y2 = x3 + A(t)x2 +B(t)x+ C(t) with A,B,C ∈ Q[t]

as in equation (1.12), utilizing the Tate algorithm discussed in Section 1.4. Specifically, we
construct a 2-dimensional family Xα,λ that satisfies ρ(Xα,λ) ≥ 18 for all α, λ, this family
will have the required number and type of singular fibers, which is determined by L.
We specialize the 2-dimensional family Xα,β to obtain a 1-dimensional family Xλ while
keeping the singular fibers fixed (we can do this with the methods we have study until this
point). This family satisfies ρ(Xλ) ≥ 19, providing a higher Picard rank than the original
family.

We introduce the section with the smallest height of the two; we denote it by P . Utilizing
P = (u, v) where u, v ∈ C[t], we substitute u into the Weierstrass equation of Xα,λ, as
y2 = u3 + A(t)u2 + B(t)u + C(t). This allows us to obtain the desired 1-dimensional
family Xλ with the desired singular fibers and a section P .
Now we can apply the methods that we studied in Section 3.3 to the 1-dimensional family
Xλ to obtain the section Q. In this case, we must account for both sections P and Q to
derive the Lefschetz fixed point formula, it has the equation:

tr(Frob∗p(T (X))) = #X(Fp)− 1− tr(NS(X))− p2.

Here we have to take into consideration the section P . So for a prime p with a good
reduction, the equation (3.12) changes to get:

#Xs(Fp)− 1− 2p− p2 ± p± p = αp + βp = ap. (3.15)

The first ±p on (3.15) is determined by the section P , specifically by its field of definition.
Given that we already know P at this point, we can determine the sign of ±p. And the

82



second ±p term on (3.15) indicates the dependence on the field of definition of the section
Q, which remains undetermined. With these considerations we can apply algorithm 3.3.6
to search the parameter λ0 such Xλ0 has a model over Q and ρ(Xλ0) = 20, if we obtain
any from the algorithm.

To construct families of singular K3 surfaces with Mordell-Weil rank 2, we modified algo-
rithm 3.4.1 to obtain a root lattice L of rank 16 as a sublattice of a lattice N of rank 18,
where N is constructed from L and two sections P and Q, and the discriminant is given by
equation (3.14). We computed three cases as singular K3 surfaces with Mordell-Weil rank
2, which are listed in table 3.12, along with the transcendental lattice T (X) and the height
of sections P and Q.

disc(NS(X)) R(W ) T (X) h(P ) h(Q) ⟨P,Q⟩
−195 A1 + A9 + E6 [2, 1, 98] 1 7/2 1/2
−228 A1 +D4 +D5 + E6 [4, 2, 58] 3/2 9/4 1
−340 A2 + A2 +D6 +D6 [4, 2, 86] 5/3 11/6 5/6

Table 3.12: Singular K3 surfaces with Mordell-Weil group of rank 2.

We will focus on one of these three cases in the next example, providing a detailed solution
that includes the Weierstrass equation and sections. For the remaining two cases, we will
only list the corresponding Weierstrass equations and sections.

Example 3.5.1. Discriminant d = −340 and T (X) = [4, 2, 86].

Using the method described above, we found an elliptic K3 surface X with singular fibers
I3, I3, I

∗
2 , I

∗
2 and two sections P and Q with pairing 5/3 and 11/6, respectively. The height

pairing of P and Q was ⟨P,Q⟩ = 2− 2/3− 1/2 = 5/6.
First we applied the Tate algorithm (as outlined in Section 1.4) to obtain a family of K3
surfaces Xα,β with ρ(Xα,β) ≥ 18 and the four desired singular fibers of types I3, I3, I∗2 , I

∗
2

located at the roots of the polynomial t2β2 + tβ2 + 1,0,∞ respectively. The Weierstrass
equation for these surfaces is given by:

A = t(αt2β3 + 8t2β4 + 8αt2β2 + αtβ3 + 46t2β3 + 4tβ4 + 16αt2 ∗ β + 9αtβ2 + 65t2β2

+ 26β3 + 24αtβ + 40tβ2 + 16αt+ β2 + 8β + 16)

B = (1/4)β−1t3(αβ + 4β2 + 4α + 10β)(t2β2 + tβ2 + 1)(αtβ3 + 20tβ4 + 8αtβ2 + αβ3

+ 106tβ3 + 4β4 + 16αtβ + 10αβ2 + 140tβ2 + 26β3 + 32αβ + 40β2 + 32α)

C = (1/4)(2β + 5)2t5(αβ + 4β2 + 4α + 10β)2(t2β2 + tβ2 + 1)2

f = x3 + Ax2 +Bx+ C

∆ = (1/16)β−3t8(αβ + 4β2 + 4α + 10β)3(t2β2 + tβ2 + 1)3p(α, β, t).
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Here p(α, β, t) is a polynomial of degree 2 in t. From this family we can solve for the
section P to obtain a 1-dimensional family Xλ with ρ(Xλ) ≥ 19 with 4 singular fibers
of type I3, I3, I∗2 , I

∗
2 , where the two I3 fibers are located at the roots of the polynomial

(t2λ2 + tλ2 + 1), the fibers I∗2 , I
∗
2 are located at 0,∞ and a section P with height pairing

h(P ) = 4− 2/3− 2/3− 1 intersecting the first components of the fibers I3, I3 at the roots
of the polynomial (t2λ2+ tλ2+1) and I∗2 at t = 0. We can write the Weierstrass model for
this family of K3 surfaces as:

A = t(4t2λ4 + 36t2λ3 + 65t2λ2 + 12tλ3 + 30tλ2 + λ2 + 8λ+ 16)

B = 8λ2(2λ+ 5)2t3(2tλ+ 7t+ 1)(t2λ2 + tλ2 + 1)

C = 16λ2(2λ+ 5)4t5(t2λ2 + tλ2 + 1)2

f = x3 + Ax2 +Bx+ C

∆ = 256λ2(2λ+ 5)4(t2λ2 + tλ2 + 1)3t8p(t)

where p(t) is a polynomial of degree 2 over t. We compute xP with the conditions that
xp = t(t2λ2+ tλ2+1)(x0+x1t) and y2P = f(xP ), solving for x0 and x1. The x-component
of the section P is given by

xP = −(λ+ 2)−1t(tλ3 + 2tλ2 + λ3 + tλ+ 10λ2 + 32λ+ 32)(t2λ2 + tλ2 + 1)

Applying algorithm 3.3.6 we obtain the desired specialization of Xλ at λ = −21/2, then
we get the final singular K3 surface X and its discriminant:

A =
1

169
t(56448t2 − 42336t+ 169)

B =
−903168
28561

(14t− 1)t3(441t2 + 441t+ 4)

C =
462422016

4826809
t5(441t2 + 441t+ 4)2

f = x3 + Ax2 +Bx+ C

∆ =
−7398752256

23298085122481
t8(1018886400t2 + 469844928t− 485537)(441t2 + 441t+ 4)3

Now we need to solve for the section Q, it should intersect the first component Θ1 of a I3
fiber (located at a root of the polynomial (441t2+441t+4)) and a far component of the I∗2 at
t = 0. The x-component of theQ section is not defined over Q, due to the intersection with
one I3 fiber at a root of (441t2+441t+4). We have that xQ = (x0+x1t)

(
t+ −5

42
i+ 1

2

)
t2.

Moreover, the fiber at t = 0 gives one more linear relation in the coefficients of xQ, so there
is only one degree of freedom left, which can be solved from the equation y2 = f(xQ).

Solving for the section Q, we have the x-components of the two sections P and Q, given
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by :

xP =
−1

11492
t(7581t+ 2873)(441t2 + 441t+ 4)

xQ =

(
−79507685376

28561
i− 327826953216

28561

)(
t+
−5
42
i+

1

2

)(
t+
−715
15162

i+
983

5054

)
t2.

In this case, we can see that the corresponding quadratic form of the Mordell-Weil lattice

MW (X) ofX has the form
(
5/3 5/6

5/6 11/6

)
, by lemma 3.1.4, the Mordell-Weil group admits

a non-trivial automorphism group, in other words, the complex conjugate of Q in terms of
P and Q is given by Q→ P +Q . Then the Néron-Severi group admits a (Z/2Z)2 Galois
actions, as conjugation of the two I3 fibers and as involution of the simple non-identity
components of the I∗2 fiber at ∞. By (3.14), we confirm that the elliptic surface X has
discriminant

disc(NS(X)) = −3 · 3 · 4 · 4 · det
(
5/3 5/6

5/6 11/6

)
= −340.

We write down the final equations of the other two singular K3 surfaces of table 3.12.

Example 3.5.2. Case d = −195 and T (X) = [2, 1, 98].
For this case, we obtained a singular K3 surface with three singular fibers over 1, 0 and∞
of types I2, I10, IV ∗, respectively. The associated Weierstrass equation and discriminant
are given by:

A = − 1

36
(72t2 + 4t+ 39)

B = − 1

18
(t− 1)t2(30t2 + 121t+ 39)

C = − 1

36
(t− 1)2t4(375t2 + 238t+ 39)

f = x3 + Ax2 +Bx+ C

∆ = (−3888)(t− 1)2t10(1265625t4 − 662750t3 − 118569t2 − 10062t+ 54756)

We also have two sections P and Q, where the section P has a height of 1 (intersecting
the first component Θ1 of the I2 fiber and the fith component Θ5 of the I10 fiber), and the
section Q has a height of 7/2 (intersecting the first component Θ1 of I2). The assumption
(P,Q) = 1 implies ⟨P,Q⟩ = 1/2. We obtained the equations for these two sections by
working with Tate’s algorithm with the Weiestrass equation and the equations y2 = f(xP )

and y2 = f(xQ) as in the previous example, we obtain that, the x-components of each of
them is given by:

85



xP = −(t− 1)(3t+ 1)t2

xQ = − 1

44161200
(t− 1)(t3 + 13800t2 − 10448t− 149041)

We can verify that the sections intersect in one point, after a blowing up of the Weierstrass
form at t = 1, the sections P,Q meet the same non-identity component of the special fiber.

The surface X does allow a (Z/2Z)2 Galois action, which corresponds to an involution of
the simple non-identity components of the I10 and IV ∗ fibers. By (3.14), we confirm that
the elliptic K3 surface X has discriminant

disc(NS(X)) = −3 · 4 · 4 · 2 · det
(

1 1/2

1/2 7/2

)
= −195.

Example 3.5.3. Case d = −228 and T (X) = [4, 2, 58].
For this case we got an singular K3 surface with four singular fibers of type I2, I∗0 , I

∗
1 , IV

∗

over 1,−675,∞ and 0 respectively, with an associated Weierstrass equation and discrimi-
nant :

A = (2484)(t+ 675)t2

B = (2041200)(t− 1)(t+ 675)2t3

C = (554040000)(t− 1)2(t+ 675)3t4

f = x3 + Ax2 +Bx+ C

∆ = (918330048000000)(32t− 9025)(t− 1)2(t+ 675)6t8

With two sections P and Q where the section P has height h(P ) = 4 − 1/2 − 1 − 1 =

3/2 (intersecting the first component Θ1 of I2, a simple component of I∗0 , and the near
component of I∗1 ), the section Q has height h(Q) = 4− 1/2− 5/4 = 9/4 (intersecting the
first component Θ1 of I2 and a far component of I∗1 ) with (P,Q) = 0 we have ⟨P,Q⟩ = 1

and the x-component of each of them given by:

xP = −9(t− 1)(t+ 675)(76t+ 675)

xQ = −100(t− 1)(9t2 + 5000t+ 40000)

In this case, the surface X , the corresponding quadratic form of the Mordell-Weil lattice

has the form MW (X) =

(
3/2 1

1 9/4

)
.

According to Lemma 3.2, the Mordell-Weil lattice has only trivial automorphism group.
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However, the surface X allows for a (Z/2Z)2 Galois action, with correspond to the involu-
tion of the simple non-identity components of the I∗0 fibers that do not intersect the section
Q, and the involution of the non-identity components of the IV ∗ fiber.

Having resolved these three cases of singular K3 surfaces with Mordell-Weil rank 2, we
can get a similar proposition to proposition 3.4.6

Proposition 3.5.4. The surfaces enlisted in Table 3.12 have a Néron-Severi group generated
by fibers components and the given sections and a Weierstrass model with coefficients over
Q.

The proof of this proposition is analogous to that of proposition 3.4.6 in the previous sec-
tion.

3.6 Conclusions
According to Shioda-Inose’s theorem, every singular K3 surface is equivalent to an ori-
ented lattice of rank 2. Utilizing this result, we can demonstrate that for each fundamental
discriminant d such that Cl(d) ∼= (Z/2Z)2, there exist four singular K3 surfaces with that
discriminant, up to isomorphism. In Sections 3.3, 3.4, and 3.5, we have shown that any of
the four possible singular K3 surfaces (up to isomorphism) with fundamental discriminant
d listed in Table 3.1 (up to -408 with class number 4) have a model over Q.

We used Weierstrass fibrations to construct explicit singular K3 surfaces for each discrimi-
nant d and binary quadratic formQ ∈ Cl(d), in order to demonstrate their existence. These
surfaces were then classified based on the rank of their Mordell-Weil group, starting with
the simplest case of extremal elliptic K3 surfaces and moving on to those with Mordell-
Weil rank 1. In total, we identified 46 different surfaces in this category, which are listed in
Table 3.6.

Next, we extended our analysis to the more complex cases, we also investigated singu-
lar elliptic K3 surfaces with Mordell-Weil rank 2, completing our analysis for all possible
cases up to discriminant |d| = 408. Additionally, we discovered models over Q for sev-
eral other, including some with singular K3 surfaces, including those with discriminants
−435,−483,−520,−532, −555,−708,−760, and −795.

Theorem 3.6.1. Every singular K3 surface with class number 4 and fundamental discrim-
inant |d| ≤ 408 and whose class group Cl(d) is two torsion has a model defined over Q.
This includes the singular K3 surfaces listed in Table 3.3, Table 3.6, and Table 3.12.

Proof. The extremal singular K3 surfaces cases were previously studied and can be found
in [SZ01]. In section 3.2, we obtained Weierstrass models for the singular K3 surfaces
listed in Table 3.3.
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We also analyzed singular K3 surfaces with Mordell-Weil rank one or two. The surfaces
with Mordell-Weil rank one are listed in Table 3.6 and their Néron-Severi groups are de-
scribed in Proposition 3.4.6. For surfaces with Mordell-Weil rank two, we listed them in
Table 3.12 and provided additional details in Proposition 3.5.4.
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A | Appendix A
Sagemath Lattices MWR-1 Code

In this appendix we included the code in Python/Sage-math for algorithm 3.4.1, which is
divided in different functions.

1

2 #Function partition, takes to integers n,m and it returns #

3 #a list with the possible partition of n in a sum of m elements#

4 def Partition(n,m):

5 if m==1:

6 P=[[n]]

7 else:

8 P=[]

9 for i in range(0,floor(n/m)+1):

10 Q=Partition(n-i*m,m-1)

11 P1=deepcopy(Q)

12 for j in range(0,len(Q)):

13 P1[j].extend([i])

14 P.extend(P1)

15 return P

16

17 #Function RootPart, it takes a list of integers v, and it return a list

which elements are list of two elements#

18 #the first element is a list of root lattices wich discriminant which

rank coincide with the numbers of the original v#

19 #The secon element is an integer that represent how many times occurt

the correspond root lattice##

20 def RootPart(v):

21

22 n=len(v)

23 M=[j for j in range(0,len(v)) if v[j]>0]

24 if(len(M)==1 and max(v)==1):

25 ind=M[0]

26 Latt=[[[L],[1]] for L in r[ind+1]]

27 else:

28 ind=M[0]

29 w=v

30 w[ind]=w[ind]-1
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31 Latt2=RootPart(w)

32 Latt=[]

33 for L in r[ind+1]:

34 for k in range(0,len(Latt2)):

35 if L in Latt2[k][0]:

36 Post=[i for i in range(0,len(Latt2[k][0])) if Latt2[

k][0][i]==L][0]

37 Ftemp=deepcopy(Latt2[k][1])

38 Ftemp[Post]=Ftemp[Post]+1

39 Latt.append([Latt2[k][0],Ftemp])

40 else :

41 Ltemp=deepcopy(Latt2[k][0])

42 Ltemp.append(L)

43 Ftemp=deepcopy(Latt2[k][1])

44 Ftemp.append(1)

45 Latt.append([Ltemp,Ftemp])

46 return Latt

47

48 #Function OrdinaLatt, it takes a list of two elements, the first is a

list of root lattices, and te second is a list of integers numbers

with len(Latt[0])=len(Latt[1])

49 #OrdinaLat return a list of two elements with the same conditions that

the imput, but the lattices are order#

50 #First the type A lattices, then type D lattices and in the end type E

lattices and also in decresing order acording to the rank##

51 A=[A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18]

52 D=[D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17,D18]

53 E=[E6,E7,E8]

54 def OrdinaLat(Latt):

55 indA=[i for i in range(0,len(Latt[0])) if Latt[0][i] in A]

56 indD=[i for i in range(0,len(Latt[0])) if Latt[0][i] in D]

57 indE=[i for i in range(0,len(Latt[0])) if Latt[0][i] in E]

58 Latt2=deepcopy(Latt)

59

60 RankA=sorted([rank(Latt[0][i]) for i in indA])

61 RankD=sorted([rank(Latt[0][i]) for i in indD])

62 RankE=sorted([rank(Latt[0][i]) for i in indE])

63

64 for j in range(0,len(indA)):

65 k=[i for i in indA if rank(Latt[0][i])==RankA[j]][0]

66 Latt2[0][j]=Latt[0][k]

67 Latt2[1][j]=Latt[1][k]

68

69 for j in range(len(indA),len(indA)+len(indD)):

70 k=[i for i in indD if rank(Latt[0][i])==RankD[j-len(indA)]][0]

71 Latt2[0][j]=Latt[0][k]

72 Latt2[1][j]=Latt[1][k]

73

74 for j in range(len(indA)+len(indD),len(indA)+len(indD)+len(indE)):
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75 k=[i for i in indE if rank(Latt[0][i])==RankE[j-len(indA)-len(

indD)]][0]

76 Latt2[0][j]=Latt[0][k]

77 Latt2[1][j]=Latt[1][k]

78 return Latt2

79

80 #Function RootLattice#

81 #input an integer number#

82 #Ouput ListLatt a list with len(LissLatt[i])=2 for every i in range(len(

LissLatt)) with len(ListLatt[i][0])=len(ListLatt[i][1])#

83 #and sum_over_j(LissLat[i][0][j]*LissLat[i][1][j])=n for every i

84 def RootLattice(n):

85 P=Partition(n,n)

86 ListLatt=[]

87 for p in P :

88 Latt=RootPart(p)

89 for j in range(0,len(Latt)):

90 Latt1=OrdinaLat(Latt[j])

91 if Latt1 not in ListLatt:

92 ListLatt.append(Latt1)

93 return ListLatt

94

95 ##Function heightParing#

96 #input List of the form Latt=[L1,L2]#

97 #L1 is a list of root lattice, L2 list of integers numbers with len(L1)=

len(L2)#

98 #The function compute all the possible Height Paring for a section "P"

that does not intersect the "0" section, given a lattice compose of

root latice of ADE type"

99 #Ouput two list L1,L1c

100 #L1[i] is a list of the local contributions of the section "P" on the

fiber "Latt[0][i]"

101 #L1c[i] is the list of components of the fibers "Latt" which intersect

the "P" section to get the local contributions L1#

102 def HeightParing(Latt):

103 L=[]

104 Lc=[]

105 for i in range(0, len(Latt[0])):

106 for j in range(0, Latt[1][i]):

107 if Latt[0][i] in A:

108 n=rank(Latt[0][i])

109 Ltemp=deepcopy(L)

110 Lctemp=deepcopy(Lc)

111 L=[]

112 Lc=[]

113 for s in range(0,floor((n+1)/2)+1):

114 Ltemp1=deepcopy(Ltemp)

115 Lctemp1=deepcopy(Lctemp)

116 if len(Ltemp)==0:
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117 Ltemp1.append(s*(n+1-s)/(n+1))

118 Lctemp1.append(s)

119 L.append(Ltemp1)

120 Lc.append(Lctemp1)

121 else :

122 for k in range(0,len(Ltemp)):

123 Ltemp1[k].append(s*(n+1-s)/(n+1))

124 L.append(Ltemp1[k])

125 Lctemp1[k].append(s)

126 Lc.append(Lctemp1[k])

127 if Latt[0][i] in D:

128 n=rank(Latt[0][i])

129 Ltemp=deepcopy(L)

130 Lctemp=deepcopy(Lc)

131 L=[]

132 Lc=[]

133 if Latt[0][i]==D4:

134 for s in range(0,2):

135 Ltemp1=deepcopy(Ltemp)

136 Lctemp1=deepcopy(Lctemp)

137 if len(Ltemp)==0:

138 Ltemp1.append(s)

139 L.append(Ltemp1)

140 Lctemp1.append(s)

141 Lc.append(Lctemp1)

142 else:

143 for k in range(0,len(Ltemp)):

144 Ltemp1[k].append(s)

145 L.append(Ltemp1[k])

146 Lctemp1[k].append(s)

147 Lc.append(Lctemp1[k])

148 else:

149 for s in range(0,3):

150 Ltemp1=deepcopy(Ltemp)

151 Lctemp1=deepcopy(Lctemp)

152

153 if len(Ltemp)==0:

154 Ltemp1.append(s+(s*(s-1)*(n/4-s))/2)

155 L.append(Ltemp1)

156 Lctemp1.append(s+s*(s-1)*(n/2-1))

157 Lc.append(Lctemp1)

158 else:

159 for k in range(0,len(Ltemp)):

160 Ltemp1[k].append(s+(s*(s-1)*(n/4-s))/2)

161 L.append(Ltemp1[k])

162 Lctemp1[k].append(s+s*(s-1)*(n/2-1))

163 Lc.append(Lctemp1[k])

164 if Latt[0][i]==E6:

165 Ltemp=deepcopy(L)
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166 L=[]

167 Lctemp=deepcopy(Lc)

168 Lc=[]

169 for s in range(0,2):

170 Ltemp1=deepcopy(Ltemp)

171 Lctemp1=deepcopy(Lctemp)

172 if len(Ltemp)==0:

173 Ltemp1.append(s*3/4)

174 L.append(Ltemp1)

175 Lctemp1.append(s)

176 Lc.append(Lctemp1)

177 else :

178 for k in range(0,len(Ltemp)):

179 Ltemp1[k].append(s*4/3)

180 L.append(Ltemp1[k])

181 Lctemp1[k].append(s)

182 Lc.append(Lctemp1[k])

183 if Latt[0][i]==E7:

184 n=rank(Latt[0][i])

185 Ltemp=deepcopy(L)

186 L=[]

187 Lctemp=deepcopy(Lc)

188 Lc=[]

189 for s in range(0,2):

190 Ltemp1=deepcopy(Ltemp)

191 Lctemp1=deepcopy(Lctemp)

192 if len(Ltemp)==0:

193 Ltemp1.append(s*3/2)

194 L.append(Ltemp1)

195 Lctemp1.append(s*(n))

196 Lc.append(Lctemp1)

197 else:

198 for k in range(0,len(Ltemp)):

199 Ltemp1[k].append(s*3/2)

200 L.append(Ltemp1[k])

201 Lctemp1[k].append(s*(n))

202 Lc.append(Lctemp1[k])

203 if Latt[0][i]==E8:

204 Ltemp=deepcopy(L)

205 L=[]

206 Ltemp1=deepcopy(Ltemp)

207 Lctemp=deepcopy(Lc)

208 Lc=[]

209 Lctemp1=deepcopy(Lctemp)

210 if len(Ltemp)==0:

211 Ltemp1.append(0)

212 L.append(Ltemp1)

213 Lctemp1.append(0)

214 Lc.append(Lctemp1)
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215 else:

216 for k in range(0,len(Ltemp)):

217 Ltemp1[k].append(0)

218 L.append(Ltemp1[k])

219 Lctemp1[k].append(0)

220 Lc.append(Lctemp1[k])

221 L1=[]

222 for l in L:

223 s=0

224 for k in range(0,len(Latt[1])):

225 if Latt[1][k]>1:

226 M=sorted([l[s+j] for j in range(0,Latt[1][k])])

227 for j in range(0,Latt[1][k]):

228 l[s+j]=M[j]

229 s=s+Latt[1][k]

230 if l not in L1:

231 L1.append(l)

232

233 L1c=[]

234 for l in Lc:

235 s=0

236 for k in range(0,len(Latt[1])):

237 if Latt[1][k]>1:

238 M=sorted([l[s+j] for j in range(0,Latt[1][k])])

239 for j in range(0,Latt[1][k]):

240 l[s+j]=M[j]

241 s=s+Latt[1][k]

242 if l not in L1c:

243 L1c.append(l)

244

245 return L1,L1c

246

247 #Function Lattice_r18

248 #Input two inteders "r" and "d" and a List of lattices "ListLatt"

249 #Ouput return all the lattices of

250 def Lattice_r18(r,d,ListLatt):

251 LattK3=[]

252 for i in range(0,len(ListLatt)):

253 Hp, Hpc=HeightParing(ListLatt[i])

254 detTriv=1

255

256 for k in range(0,len(ListLatt[i][0])):

257 for j in range(0,ListLatt[i][1][k]):

258 detTriv=detTriv*ListLatt[i][0][k].determinant()

259

260 for l in range(0,len(Hp)):

261 h=4-sum(Hp[l])

262 if d==h*detTriv:

263 M=[ListLatt[i][0],ListLatt[i][1],Hp[l], Hpc[l]]

100



264 LattK3.append(M)

265

266 return LattK3

267

268 #Function Lattice_Galois

269 #Input a list L, every element of L is a list consisting of 4 elements,

a list of root lattices, a list of integer numbers of the same

lenght,

270 #A list of local contributions(rational numbers) of a section P and a

list of the component the intersect the section P

271 #Ouput A sub-list of L, such that the lattice of generated by L[i]

admidt ZZ/2*ZZ Galois action.

272

273 def Lattice_Galois(L):

274 G=[A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,D4,D5

,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17,D18,E6]

275 A=[A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18]

276 D=[D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17,D18]

277 s=0

278 Lg=[]

279

280 for l in L:

281 s=0

282 F1=[l[1][j] for j in range(0,len(l[0])) if l[0][j] in G]

283 k1=0

284 t=0

285 for s1 in range(0,len(l[0])):

286 for s2 in range(0,l[1][s1]):

287

288 if l[2][t+s2]!=0:

289 if l[0][s1] in A and floor(rank(l[0][s1])/2) + 1 !=

l[3][t+s2]:

290 k1 += 1

291 elif l[0][s1] in D and l[0][s1] != D4 and l[2][t+s2

]!=1:

292 k1 += 1

293 elif l[0][s1]==E6:

294 k1 += 1

295 t=t+l[1][s1]

296 Sp=[0]

297 t=0

298 for s1 in range(0,len(l[0])):

299 if l[1][s1]>1:

300 S=sorted([l[2][t+j] for j in range(0,l[1][s1])])

301 St=[0 for j in range(0,l[1][s1])]

302 k=0

303 for i in range(0, l[1][s1]-1):

304 if S[i]==S[i+1]:

305 St[k]=St[k]+1
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306 else:

307 k=k+1

308 Sp.extend(St)

309 t=t+l[1][s1]

310 F3=[Sp[j]*(Sp[j]+1)/2 for j in range(0,len(Sp))]

311 s=sum(F1)-k1+sum(F3)

312 if s>=2:

313 k=0

314 Hp,Hpc=HeightParing([l[0],l[1]])

315 for p in Hp:

316 h=4-sum(p)

317 if h==0:

318 k=k+1

319 if k!=0:

320 Lg.append(l)

321 return Lg

322

323 #Function Discriminant_group

324 #Input a list L , every element of L is a list consisting of 4 elements,

a list of root lattices, a list of integer numbers of the same

lenght,

325 #A list of local contributions(rational numbers) of a section P and a

list of the component the intersect the section P

326 #and a discriminant group T

327 #Output sub-list of L, such that de discriminant group of L[i] is equal

to T under isomorphism.

328 def Discriminant_gr(L,T):

329 r_inv=T.invariants()

330 if len(r_inv)==2:

331 [r1,r2]=T.invariants()

332 m=T.gram_matrix_quadratic()

333 M=[]

334

335 for i1 in range(0,r1):

336 for j1 in range(0,r2):

337 for i2 in range(0,r1):

338 for j2 in range(0,r2):

339 if [i1,j1]!=[i2,j2] and [i1,j1]!=[0,0] and [i2,

j2]!=[0,0]:

340 b1=i1*i1*m[0][0]+j1*j1*m[1][1]+2*i1*j1*m

[1][0]

341 b2=i2*i2*m[0][0]+j2*j2*m[1][1]+2*i2*j2*m

[1][0]

342 d=i1*i2*m[0][0]+i1*j2*m[1][0]+i2*j1*m

[1][0]+j1*j2*m[1][1]

343

344 b1=b1*r1*r2%(r1*r2*2)

345 b2=b2*r1*r2%(r1*r2*2)

346 d=d*r1*r2%(r1*r2*2)
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347

348 b1=b1/(r1*r2)

349 b2=b2/(r1*r2)

350 d=d/(r1*r2)

351

352 l=Matrix([[b1,d],[d,b2]])

353 l2=Matrix([[b1,2-d],[2-d,b2]])

354 M.append(l)

355 M.append(l2)

356 if len(r_inv)==1:

357 r=r_inv[0]

358 m=T.gram_matrix_quadratic()

359 M=[]

360 for i in range(1,r):

361 b=i^2*m[0]

362 b=(b*r)%(2*r)

363 b=b/r

364 l=Matrix([b])

365 l2 = Matrix([-b])

366 M.append(l)

367 Ld=[]

368 for l in L:

369 Lt=IntegralLattice(matrix(0))

370 for i in range(0,len(l[0])):

371 for j in range(0,l[1][i]):

372 Lt=Lt.direct_sum(l[0][i])

373 m=Lt.gram_matrix()

374 s,s1=m.dimensions()

375 H=matrix(s+1)

376

377 for i in range(0,s):

378 for j in range(0,s):

379 H[i,j]=m[i,j]

380 k=0

381 k1=0

382 for i in range(0,len(l[0])):

383 for j in range(0,l[1][i]):

384 if l[3][k1]!=0:

385 H[k+l[3][k1]-1,s]=-1

386 H[s,k+l[3][k1]-1]=-1

387 k=k+rank(l[0][i])

388 k1=k1+1

389 H[s,s]=4

390 Lh=IntegralLattice(H)

391 Di=Lh.discriminant_group().gram_matrix_quadratic()

392 if Di in M:

393 Ld.append(l)

394 return Ld
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B | Appendix B
Sagemath Fp reduction

In this appendix we included the code in Python/Sage-math for algorithm 3.3, which is
divided in different functions.

1 def fourier_coeff(d,p):

2 if d%4 == 1 :

3 N=d

4 else:

5 N=d/4

6 if N%4 == 1:

7 fourier_c = []

8 for a in range(-2*p,2*p):

9 for b in range(-p,p):

10 if p^2 ==(a+1/2*b)^2 - N*b^2/4 and a!=0 and b!=0:

11 if 2*(a+1/2*b) not in fourier_c:

12 fourier_c.append(2*(a+1/2*b))

13 else:

14 fourier_c = []

15 for a in range(-p,p):

16 for b in range(-p,p):

17 if p^2 == a^2 - N*b^2 and a !=0 and b!=0:

18 if 2*a not in fourier_c:

19 fourier_c.append(2*a)

20 return fourier_c

21

22 def merge_list (M):

23 if len(M) == 1:

24 merge_1 = []

25 for m in M[0]:

26 merge_1.append([m])

27 return merge_1

28 else:

29 M_temp =merge_list(M[:-1])

30

31 M_merge =[]

32 for m in M_temp:

33 for l in M[-1]:
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34 m_temp = copy(m)

35 m_temp.append(l)

36 M_merge.append(m_temp)

37 return M_merge

38

39 def flat_list(M):

40 M = merge_list(M)

41 flat_M = []

42 for elem in M:

43 L1 = []

44 L2 = []

45 for i in range (len(elem)):

46 L1.append(elem[i][0])

47 L2.append(elem[i][1])

48 flat_M.append([L1,L2])

49 return flat_M

1 def Counting_points(A,B,C,p):

2 A1 = A.numerator()

3 A2 = A.denominator()

4

5 B1 = B.numerator()

6 B2 = B.denominator()

7

8 C1 = C.numerator()

9 C2 = C.denominator()

10

11 try:

12 F1.<a,t> = GF(p)[]

13 F.<x> = F1[]

14 A1 = F(A1)

15 A2 = F(A2)

16 A_s = A1/A2

17

18 B1 = F(B1)

19 B2 = F(B2)

20 B_s = B1/B2

21

22 C1 = F(C1)

23 C2 = F(C2)

24 C_s = C1/C2

25 except:

26 print("Oops!", sys.exc_info()[0], "occurred.")

27 print("For prime %s the denomiator of the Weistrass quation is

zero " %p)

28 return None

29 else:

30 if A_s == 0 or B_s==0 or C_s==0:

31 print("For prime %s the reduction is not good !"%p)
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32 return None

33 else:

34 f_surface = x^3 + A_s*x^2 + B_s*x + C_s

35 L_points = []

36 for pr in GF(p):

37 if A2(a=pr) !=0 and B2(a=pr) !=0 and C2(a=pr) != 0:

38 f_r = copy(f_surface)

39 A_r = copy(A_s)

40 B_r = copy(B_s)

41 C_r = copy(C_s)

42 count = 0

43 f_r = f_r(a = pr)

44 A_r = A_r(a = pr)

45 B_r = B_r(a = pr)

46 C_r = C_r(a = pr)

47

48 d = f_r.numerator().discriminant()

49 if d==0:

50 for el in GF(p):

51 f1 = f_r(t=el)

52 count += 1

53 for a in GF(p):

54 for b in GF(p):

55 if b^2 == f1(x=a):

56 count += 1

57

58 F3.<a,t,x> = GF(p)[]

59 f_inf1 = F3(f_r)

60 f_inf1= t^12*f_inf1(x=x/t^4,t=1/t)

61 f_inf1 = f_inf1(t=0)

62 count += 1

63 for a in GF(p):

64 for b in GF(p):

65 if b^2 ==f_inf1(x=a):

66 count +=1

67 else:

68 F2.<t> =GF(p)[]

69 d = F2(d)

70 roots_temp = d.roots()

71 roots = [roots_temp[i][0] for i in range(len(

roots_temp))]

72 for root in roots:

73 f1 = f_r(t = root)

74 count += 1

75 for a in GF(p):

76 for b in GF(p):

77 if b^2 == f1(x=a):

78 count += 1

79
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80 for l in GF(p):

81 if l not in roots:

82 A_el = A_r(t=l)

83 B_el = B_r(t=l)

84 C_el = C_r(t=l)

85 count += EllipticCurve(GF(p),[0,A_el,0,

B_el,C_el]).cardinality()

86 F4.<t,x,a> = GF(p)[]

87 f_r = F4(f_r)

88 f_i = t^12*f_r(x=x/t^4,t=1/t)

89 f_inf = f_i(t=0)

90

91 count +=1

92 for a in GF(p):

93 for b in GF(p):

94 if b^2 ==f_inf(x=a):

95 count += 1

96 L_points.append([pr,count])

97 return L_points
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