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Abstract
We consider the Dirac equation coupled to an external electromagnetic field
in curved four-dimensional spacetime with a given timelike worldline γ rep-
resenting a classical clock. We use generalised Fermi normal coordinates in a
tubular neighbourhood of γ and expand the Dirac equation up to, and includ-
ing, the second order in the dimensionless parameter given by the ratio of the
geodesic distance to the radii defined by spacetime curvature, linear acceler-
ation of γ, and angular velocity of rotation of the employed spatial reference
frame along γ. With respect to the time measured by the clock γ, we compute
the Dirac Hamiltonian to that order. On top of this ‘weak-gravity’ expansion
we then perform a post-Newtonian expansion up to, and including, the second
order of 1/c, corresponding to a ‘slow-velocity’ expansion with respect to
γ. As a result of these combined expansions we give the weak-gravity post-
Newtonian expression for the Pauli Hamiltonian of a spin-half particle in an
external electromagnetic field. This extends and partially corrects recent results
from the literature, which we discuss and compare in some detail.
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1. Introduction

Modern experiments allow to probe the interface between quantum and gravitational phys-
ics at a rapidly growing degree of accuracy. A proper theoretical description of such exper-
iments would ideally be based on a higher-level theory encompassing quantum mechanics
as well as general relativity as appropriate limiting cases. However, as is well known, such a
higher-level theory is still elusive. Hence, we cannot simply ‘compute’ the impact of a classical
gravitational field, described by a (generally curved) spacetime metric, upon the dynamics of a
quantum system. Rather, depending on the context, wemust ‘deduce’ the influence of the grav-
itational field on the dynamics of the quantum system from general principles that we expect
to be robust and eventually realised in the higher-level theory. This is, in a nutshell, the gen-
erally accepted strategy today for exploring the interface between quantum and gravitational
physics, to which the present study also subscribes.

On the one hand, exploration of this interface is, of course, of fundamental theoretical
interest, not least since by such exploration one hopes to gain insight into how to combine
gravitational and quantum physics on a broader level. On the other hand, a systematic under-
standing of this interface is also necessary in view of ongoing progress in quantum-mechanical
experiments, whose increasing accuracy makes the consideration of post-Newtonian gravita-
tional effects inevitable. As recent examples of interest in ‘novel’ (i.e. previously not con-
sidered) gravitational effects in experiments, we mention the question of the gravitational
contribution to high-precision measurements of the g-factor of an electron stored in a Penning
trap (also referred to as a ‘geonium atom’) [1–4], and the recent results of qBounce, which is
a Ramsey-type gravitational resonance spectroscopy experiment using ultra-cold neutrons to
test the neutron’s coupling to the gravitational field of the earth in the micrometre range [5].

In the field of matter-wave interferometry, post-Newtonian gravitational effects have
recently even become a direct object of investigation, expected to be observed in the fore-
seeable future with the current generation of matter-wave interferometers [6, 7]: for systems
possessing internal degrees of freedom, post-Newtonian effects are expected to induce a coup-
ling between these internal degrees of freedom and the system’s external degrees of freedom
[8–11]. In interferometry with such systems, dubbed ‘quantum clock interferometry’, these
couplings may be observed and/or exploited for, e.g., tests of (certain aspects of) the equival-
ence principle [12–14].

In such examples, and in the more general context of gravitational effects in quantum sys-
tems, it is important to base one’s estimates of possible gravity effects on a well-defined and
systematic approximation scheme. Without such a controlled scheme, a deviation of experi-
mental observations from expectations might be either (a) a result of the underlying theory
being indeed ‘wrong’ (in the appropriate sense), or (b) simply an artefact of an unsystematic
way of deriving the alleged ‘theoretical predictions’. That is: only by employing a consistent
and systematic scheme one can guarantee a complete and redundancy-free account of the (in
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our case relativistic) corrections that one derives, as a necessary condition for properly testing
the underlying theory.

It is the aim of this paper to present such a scheme for a massive spin-half particle obey-
ing the Dirac equation in curved spacetime. Our scheme is based on the assumed existence
of a distinguished reference wordline γ, which, e.g., may be thought of as that of a clock in
the laboratory or a distinguished particle. In a tubular neighbourhood of γ we use general-
ised Fermi normal coordinates [15–17] with reference to γ and an adapted (meaning the unit
timelike vector is parallel to the tangent of γ) orthonormal frame along it. The coordinates
are ‘generalised’ in the sense that we will allow the worldline γ to be accelerated, and the
orthonormal frame to rotate, i.e. its Fermi–Walker derivative need not vanish. The approxim-
ation procedure then consists of two steps which are logically independent a priori.

In the first step we perform a ‘weak-gravity expansion’, which means that we expand the
fields in the tubular neighbourhood of γ in terms of a dimensionless parameter given by the
ratio of the spacelike geodesic distance to γ to the radii that are defined by spacetime curvature,
acceleration of γ, and the angular velocity of rotation of the chosen frame along γ. We recall
that the radius associated with γ’s acceleration a is given by c2/a and that the radius associ-
ated with the frame’s angular velocity ω (against a Fermi–Walker transported one) is c/ω. The
curvature radius is given by the inverse of the modulus of the typical Riemann-tensor com-
ponents with respect to the orthonormal frame. As first derivatives of the Riemann-tensor will
also appear, we also need to control these against third powers of the geodesic distance. Our
expansion hypotheses are summarised in the expression (3.6). Consistently performing this
expansion is the content of section 3, leading to the Dirac Hamiltonian (3.11), which is our
first main result. Note that a ‘Hamiltonian’ refers to a ‘time’ with respect to which it generates
the evolution of the dynamical quantities. In our case, that time is given by the proper time
along γ, i.e. time read by the ‘clock’, extended to the tubular neighbourhood along spacelike
geodesics.

In the second step we perform a ‘slow-velocity’ expansion by means of a formal power
series expansion in terms of 1/c, i.e. a post-Newtonian expansion. More specifically, we will
expand positive-frequency solutions of the (classical) Dirac equation as formal power series
in c−1, similar to the corresponding expansion for the Klein–Gordon equation as discussed in,
e.g., [11, 18, 19], and in a broader context in [20]. For the case of γ being a stationary worldline
in a stationary spacetime, this expansion may be considered a post-Newtonian description of
the one-particle sector of the massive Dirac quantum field theory. A priori this ‘slow-velocity’
approximation is an independent expansion on top of the former. But for the system moving
under the influence of the gravitational field the latter approximation is only consistent with the
former if the relative acceleration of the system against the reference set by γ stays bounded
as 1/c→ 0. This implies that the curvature tensor components with respect to the adapted
orthonormal frame should be considered as being of order c−2. The coupled expansions then
lead us to the Pauli Hamiltonian (4.17), which is the second main result of our paper.

Clearly, our work should be considered in the context of previous work by others. In 1980,
Parker [21, 22] presented explicit expressions for the energy shifts suffered by a one-electron
atom in free fall within a general gravitational field, the only restriction imposed on the lat-
ter being that its time-rate of change be sufficiently small so as to allow stationary atomic
states and hencewell-defined energy levels. Parker also used Fermi normal coordinates, though
standard ones, i.e. with respect to non-rotating frames along a geodesic curve γ. He then gave
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an explicit expression for the Dirac Hamiltonian to what he calls ‘first order in the [dimen-
sionful] curvature’, which in our language means second order in the dimensionless ratio of
geodesic distance to curvature radius. Regarding the ‘slow-velocity’ approximation, Parker
considers only the leading-order terms, i.e. the Newtonian limit instead of a post-Newtonian
expansion.

The restriction to non-rotating frames along γ and geodesic γ was lifted by Ito [4] in
2021, who aimed for estimating the inertial and gravitational effects upon g-factor measure-
ments of a Dirac particle in a Penning trap. To that end he presented an expansion in gen-
eralised Fermi normal coordinates of the Dirac Hamiltonian also including terms to second
order in the ratio (geodesic distance)/(curvature radius), but only to first order in the ratios
(geodesic distance)/(acceleration radius), where ‘acceleration radius’ refers to both acceler-
ation of γ and the rotation of the frames along γ as explained above. Ito also considers a
‘non-relativistic limit’ by performing a Fouldy–Wouthuysen transformation [23] with a trans-
formation operator expanded as a formal power series in 1/m (the inversemass of the fermionic
particle). In dimensionless terms, the latter corresponds to a simultaneous expansion in v/c as
well as the ratio (Compton wavelength)/(geodesic distance).

Finally we mention the work of Perche and Neuser [24] from 2021, who generalise Parker’s
work [22] in allowing the reference curve γ to be accelerating, though the frame along it is still
assumed to be non-rotating (Fermi–Walker transported). For vanishing acceleration of γ, their
result for the Dirac Hamiltonian coincides with that of Parker. Similar to Ito [4], they consider
a ‘non-relativistic limit’ by means of an expansion in ratios of relevant energies to the rest
energy, which effectively amounts to an expansion in 1/m. Let it be mentioned already at this
point that in section 4.1 we will show explicitly that the expansion as presented in [24] is not
equivalent to the post-Newtonian expansion in 1/c that we employ. This we believe, however,
to be rooted in the expansion in [24] being inconsistently applied; when taking proper care
of all appearing terms, the expansion method of [24] is consistent with the corresponding
truncation of our results.

Our paper is an extension of those approaches, in that it also includes inertial effects from
acceleration and rotation to consistently the same order as gravitational effects resulting from
curvature, namely to order ((geodesic distance)/(charecteristic radii))2. We will find some
inconsistencies in the approximations of the aforementioned paper that result in the omis-
sion of terms which we will restore. Our paper is partly based on the master’s thesis [25]. Here
we use the opportunity to correct some oversights in the calculation of order-x2 terms in that
thesis, that we will further comment on below (cf footnote 5).

To sum up, our paper is organised as follows: In section 2, we recall the Dirac equation in
curved spacetime. In section 3, we implement the first step of our approximation procedure
by expressing the Dirac equation in generalised Fermi normal coordinates corresponding to
an accelerated reference worldline γ and orthonormal, possibly rotating frames along it. In
section 4, we implement the second step, namely the ‘slow-velocity’ post-Newtonian expan-
sion in 1/c. This step should be contrasted with the mentioned 1/m-expansions by others or
expansions relying on Foldy–Wouthuysen transformations. In particular, this includes a com-
parison of our resulting Hamiltonian to that obtained in [24], which we discuss in some detail
in section 4.1, where we argue for an inconsistency within the calculation in [24]. We con-
clude in section 5. Details of calculations and lengthy expressions are collected in appendices
A–D.
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2. The Dirac equation in curved spacetime

We consider a massive spin-half field ψ in a general curved background spacetime4 (M, g),
coupled to background electromagnetism, as described by the minimally coupled Dirac
equation (

iγI (eI)
µ
(∇µ − iqAµ)−mc

)
ψ = 0. (2.1)

Here Aµ are the components of the electromagnetic four-potential, ∇ is the Levi-Civita cov-
ariant derivative of the spacetime metric g, extended to Dirac spinor fields, m is the mass of
the field, and q is its electric charge. Note that we set ℏ= 1, but keep explicit the velocity of
light c. A detailed exposition of the Dirac equation in curved spacetime may be found in [27],
to which we refer for further background information.

The Dirac equation takes the above local form with respect to a choice of tetrad (eI) =
(e0,ei), i.e. a local orthonormal frame of vector fields. Explicitly, this means that the vector
fields satisfy

g(eI,eJ) = ηIJ (2.2)

where (ηIJ) = diag(−1,1,1,1) are the components of the Minkowski metric in Lorentzian
coordinates. The gamma matrices γI appearing in the Dirac equation (2.1) are the stand-
ard Minkowski-spacetime gamma matrices γI ∈ End(C4), which satisfy the Clifford algebra
relation {

γI,γJ
}
=−2ηIJ14 (2.3)

with {·, ·} denoting the anti-commutator. The Dirac representation of the Lorentz algebra
Lie(SO(1,3)) on C4 is given by

Lie(SO(1,3)) 3
(
XIJ

)
7→ −1

2
XIJS

IJ ∈ End
(
C4

)
, (2.4a)

with the generators SIJ ∈ End(C4) given by

SIJ =
1
4

[
γI,γJ

]
. (2.4b)

Thus, the spinor covariant derivative is represented with respect to the chosen tetrad by

∇µψ = ∂µψ +Γµ ·ψ, (2.5a)

with the spinor representation of the local connection form explicitly given by

Γµ =−1
2
ωµIJS

IJ (2.5b)

4 Of course, for the very notion of spinor fields to make sense, we need to assume the spacetime to be equipped
with a spin structure, i.e. a double cover of its orthonormal frame bundle such that the covering homomorphism is in
trivialisations given by the double covering of the (homogeneous) Lorentz group L↑

+ = SO0(1,3) by the spin group
Spin(1,3) = SL(2,C). Dirac spinor fields are then sections of the Dirac spinor bundle, which is the vector bundle
associated to the spin structure with respect to the ( 1

2
,0)⊕ (0, 1

2
) representation of the spin group. As is well-known,

the existence of a spin structure is for four-dimensional non-compact spacetimes equivalent to the spacetime manifold
being parallelisable [26].
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in terms of the local connection form ωµ
I
J of the Levi-Civita connection with respect to the

tetrad, defined by

∇eI = ωJI⊗ eJ , (2.6a)

i.e. in components

∇µ (eI)
ν
= ωµ

J
I (eJ)

ν
. (2.6b)

Due to the local connection form taking values in the Lorentz algebra, i.e. satisfying
ωµIJ =−ωµJI, the spinor representation of the connection form may be explicitly expressed as

Γµ =−1
2
ωµIJS

IJ =−1
2
ωµ0iγ

0γi − 1
4
ωµijγ

i γ j. (2.7)

As said in the introduction, in the following we will describe a systematic approximation
scheme for the one-particle sector of the massive Dirac theory from the point of view of an
observer moving along a fixed timelike reference worldline γ, which will proceed in two con-
ceptually independent steps. The first step, which is described in section 3 and implements a
‘weak-gravity’ approximation by expanding the Dirac equation in (generalised) Fermi normal
coordinates, is actually valid without restricting to the one-particle theory.

Only for the second step, the ‘slow-velocity’ post-Newtonian expansion in section 4, we
will restrict to the one-particle theory. For this, we assume the spacetime and the reference
worldline γ to be (approximately) stationary, such that there is a well-defined (approximate)
notion of particles in quantum field theory and wemaymeaningfully restrict to the one-particle
sector of the theory. This sector is then effectively described by positive-frequency classical
solutions of the Dirac equation, which we will approximate by the post-Newtonian expansion.

3. ‘Weak-gravity’ expansion in generalised Fermi normal coordinates

As the first step of our scheme, we will implement a ‘weak-gravity’ approximation of the
Dirac equation with respect to a timelike reference worldline γ and orthonormal spacelike vec-
tor fields (ei(τ)) defined along γ which are orthogonal to the tangent e0(τ) := c−1γ̇(τ). The
approximation works by expressing the Dirac equation in generalised Fermi normal coordin-
ateswith respect to γ and (ei). These coordinates are constructed as follows (compare figure 1):
in a neighbourhood of γ, each point p is connected to γ by a unique spacelike geodesic. The
temporal coordinate of p is the proper time parameter τ of the starting point of this geodesic,
defined with respect to some fixed reference point on γ, and the spatial coordinates of p are the
components xi of the initial direction of the geodesic with respect to the basis (ei(τ)). Phrased
in terms of the exponential map, this means that the coordinate functions (xµ) = (cτ,xi) are
defined by the implicit equation

p= exp
(
xi (p) ei (τ (p))

)
. (3.1)

These coordinates are adapted to an observer along γ who defines ‘spatial directions’ using
the basis (ei). Note that differently to classical Fermi normal coordinates [15] we allow for the
worldline γ to be accelerated—i.e. γ need not be a geodesic—, as well as for the basis (ei)
to be rotating with respect to gyroscopes—i.e. the (ei) need not be Fermi–Walker transported
along γ. Generalised Fermi normal coordinates may be seen as the best analogue of inertial
coordinates that exists for an arbitrarily moving observer carrying an arbitrarily rotating basis
in a general curved spacetime.

6
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Figure 1. The construction of generalised Fermi normal coordinates.

The acceleration a(τ) of γ is the covariant derivative of γ̇(τ) along γ, i.e. the vector field

a(τ) =∇γ̇(τ)γ̇ (τ) (3.2a)

along γ, which is everywhere orthogonal to γ̇ = ce0. Note that we take the covariant derivative
with respect to the worldline’s four-velocity γ̇(τ), such that the physical dimension of the
components aµ will really be that of an acceleration (given that the coordinate functions have
the dimension of length). The angular velocity of the observer’s spatial basis vector fields (ei)
(with respect to non-rotating directions, i.e. Fermi–Walker transported ones) is another vector
field along γ that is everywhere orthogonal to γ̇ = ce0; we denote it by ω(τ). It is defined by

(∇γ̇eI)
µ
=−

(
c−2aµγ̇ν − c−2γ̇µaν + c−1ερσ

µ
ν γ̇

ρωσ
)
eνI , (3.2b)

where both sides of the equation are evaluated along γ, and ε denotes the volume form of the
spacetime metric g. The covariant derivatives of a and ω along γ will be denoted by

b(τ) :=∇γ̇(τ)a(τ) , η (τ) :=∇γ̇(τ)ω (τ) . (3.3)

When working in generalised Fermi normal coordinates we will denote the timelike
coordinate which has the dimension of length by s= cτ , since it is an extension of the proper
length function along γ. In index notation, we will use s as the timelike coordinate index and
reserve 0 for use as the timelike index for orthonormal frame components.

The components of the spacetime metric g in generalised Fermi normal coordinates may
be expressed as formal power series in the geodesic distance to γ according to [16]

gss =−1− 2c−2a · x− c−4 (a · x)2 −R0l0mx
lxm+ c−2 (ω× x)2 +O

(
‖x‖3

)
, (3.4a)

gsi = c−1 (ω× x)i −
2
3
R0limx

lxm+O
(
‖x‖3

)
, (3.4b)

gij = δij−
1
3
Riljmx

lxm+O
(
‖x‖3

)
. (3.4c)

Here, in addition to the acceleration ai(τ) of γ and the angular velocity ωi(τ) of the spatial
basis (ei), the curvature tensor RIJKL(τ) evaluated along γ appears as well; the components are
taken with respect to the orthonormal basis (e0,ei) along γ. We also have used standard ‘three-
vector’ notation for geometric operations taking place in the three-dimensional vector space

7
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Στ = (e0(τ))⊥ = span{ei(τ)} ⊂ Tγ(τ)M of the observer’s local ‘spatial directions’, endowed
with the Euclidean metric δτ := g|Στ

induced by g: we write

v ·w := δijv
iw j, ‖v‖ :=

√
δijvi vj, (v×w)i := εijkv

jwk (3.5)

for the scalar product, the norm, and the vector product with respect to this metric. Note that
with respect to the orthonormal basis (ei), the components δij of the induced metric and εijk
of its volume form are just given by the Kronecker delta and the totally antisymmetric three-
dimensional Levi-Civita symbol, respectively.

The expansion in powers of the geodesic distance to γ implements the desired approxima-
tion in terms of ‘weak gravity’ and ‘weak inertial effects’: we expand according to

RIJKL · ‖x‖2 � 1,
a
c2

· x� 1,
ω

c
· x� 1,

RIJKL;M
RNOPQ

· ‖x‖� 1, (3.6)

i.e. for the expansion to be valid at a point, the geodesic distance to γ has to be small com-
pared to the curvature radius of spacetime, the ‘acceleration radius’ of γ, the ‘angular velocity
radius’ of the spatial reference vector fields, and the characteristic length scale on which the
curvature changes. This also gives a precise analytical meaning to the formal expansion in
the dimensionful parameter ‖x‖: the actual dimensionless quantity in which we expand is the
ratio of ‖x‖ to the minimum of the characteristic geometric lengths defined by the spacetime
curvature, acceleration a, angular velocity ω, and rate of change of the curvature, as given
in (3.6). For the sake of brevity, in the following we will speak of terms of nth order in the
geodesic distance to γ simply as being of ‘order xn’, and correspondingly use the shorthand
notation O(xn) := O(‖x‖n).

Our goal is to expand the Dirac equation (2.1) systematically to order x2. To make precise
what we mean by this, first recall that for the local formulation (2.1) of the Dirac equation to
be possible, we have to choose a tetrad (eI) not only along the reference worldline γ, but also
away from it. This choice of tetrad is an additional input into the approximation procedure, on
top of the choice of local coordinate system. However, in our situation there is a natural choice
for the tetrad: on γ, we choose it to be given by the basis (c−1γ̇,ei) with respect to which the
generalised Fermi normal coordinates are defined; away from γ, we extend the vector fields
by parallel transport along spacelike geodesics. The explicit form of the tetrad components in
coordinates will be computed at a later stage. With a choice of tetrad, we may rewrite the Dirac
equation (2.1) in the Schrödinger-like form

i∂τψ = HDiracψ (3.7a)

with the Dirac Hamiltonian

HDirac = (gss)−1
γJ (eJ)

s
(
iγI (eI)

i c(Di +Γi)−mc2
)
− ic(Γs− iqAs) , (3.7b)

where we used that ∂s = c−1∂τ and that (gss)−1γJ(eJ)s =
(
−γJ(eJ)s

)−1
, and whereDi = ∂i −

iqAi denotes the spatial electromagnetic covariant derivative. It is this Dirac Hamiltonian that
we will expand to order x2 in the following. Note that the partial derivative ∂i = ∂

∂xi in the
operator Di effectively is of order x−1 when acting on functions, such that in the following
calculation, it is important to keep track of terms of the form xlxmxnDi, which despite their
superficial appearance are in fact of order x2.

We are now going to compute all objects appearing in the Dirac Hamiltonian (3.7b) to those
orders in x which are necessary to obtain the total Hamiltonian to order x2.

8
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In order to be able to expand covariant derivatives and the local connection form to order x2,
we need to know the Christoffel symbols in our coordinate system to order x2. Note that these
cannot be obtained from the metric components as given in (3.4): there the metric is given to
order x2, such that its derivatives can only be known to order x1. However, extending the work
in [16], the Christoffel symbols to order x2 (and the metric to order x3) in generalised Fermi
normal coordinates were calculated in [17]. The Christoffel symbols are given in the appendix
in (A.1) (note that some calculational errors were made in [17], which we corrected in (A.1)).

We may now compute the coordinate components of our tetrad (eI). Recall that we define
the tetrad by extending the vector fields (c−1γ̇,ei) along γ into a neighbourhood of γ by parallel
transport along spacelike geodesics. Since spacelike geodesics take a simple form in general-
ised Fermi normal coordinates, the parallel transport equation may explicitly be solved per-
turbatively using the Christoffel symbols (A.1). This calculation is straightforward, but quite
lengthy; it yields the tetrad components

(e0)
s
= 1− c−2a · x+ c−4 (a · x)2 − 1

2
R0l0mx

lxm− 1
6
R0l0m;nx

lxmxn

+
5
6
c−2 (a · x)R0l0mx

lxm− c−6 (a · x)3 +O
(
x4
)
, (3.8a)

(e0)
i
=−c−1 (ω× x)i + c−3 (a · x)(ω× x)i +

1
2
R0l

i
mx

lxm+
1
6
R0l

i
m;nx

lxmxn

+
1
2
c−1 (ω× x)i R0l0mx

lxm− c−5 (ω× x)i (a · x)2 − 1
3
c−2 (a · x)R0l

i
mx

lxm

+O
(
x4
)
, (3.8b)

(ei)
s
=−1

6
R0limx

lxm− 1
12
R0lim;nx

lxmxn+
1
6
c−2 (a · x)R0limx

lxm+O
(
x4
)
, (3.8c)

(ei)
j
= δ ji +

1
6
Rjlimx

lxm+
1
12
Rjlim;nx

lxmxn+
1
6
c−1 (ω× x)jR0limx

lxm+O
(
x4
)
. (3.8d)

From this, we may compute the components of the dual frame as(
e0
)
s
= 1+ c−2a · x+ 1

2
R0l0mx

lxm+O
(
x3
)
, (3.9a)(

e0
)
i
=

1
6
R0limx

lxm+O
(
x3
)
, (3.9b)(

ei
)
s
= c−1 (ω× x)i − 1

2
Ril0mx

lxm+O
(
x3
)
, (3.9c)(

ei
)
j
= δij −

1
6
Riljmx

lxm+O
(
x3
)
. (3.9d)

Note that we have computed the dual frame components only to order x2 (instead of going
to order x3 as would have been possible from (3.8)), since this suffices for our goal, namely
the expansion of the Dirac Hamiltonian (3.7b) to order x2.

Now we have the required information in order to calculate the local connection form ωµ
I
J

according to (2.6) to order x2, which is given in the appendix in (A.2). From this, we can
directly obtain its spinor representation Γµ according to (2.7).

We will also need the component gss of the inverse metric to order x3. Using the frame (3.8),
we may easily compute this according to gss =−((e0)s)2 + δij(ei)s(ej)s, yielding

gss =−1+ 2c−2a · x− 3c−4 (a · x)2 + 4c−6 (a · x)3 +R0l0mx
lxm

9
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+
1
3
R0l0m;nx

lxmxn− 8
3
c−2 (a · x)R0l0mx

lxm+O
(
x4
)
. (3.10)

We thus have obtained all ingredients to express the Dirac equations (2.1) and (3.7) in
generalised Fermi normal coordinates and our chosen tetrad to order x2. Inserting gss, the tetrad
components, and the spinor representation of the local connection form as computed above
into the Dirac Hamiltonian (3.7b), by a tedious but straightforward calculation, employing
standard identities for products of three gamma matrices, we obtain the explicit form of the
Dirac Hamiltonian as

HDirac = γ0
{
mc2 +ma · x+ mc2

2
R0l0mx

lxm
}
− γi

{
mc2

6
R0limx

lxm
}

+1

{
−qAτ + i(ω× x)i Di −

ic
2
R0l

i
mx

lxmDi +
ic−1

4
(a · x)R0lx

l+
ic
12
R0l;mx

lxm

− ic
6
R0l

i
m;nx

lxmxnDi −
ic−1

6
(a · x)R0l

i
mx

lxmDi

}
− γ0γ j

{
icDj+

ic−1

2
aj+ ic−1 (a · x)Dj+

ic
4
(R0j0l−Rjl)x

l+
ic
2
R0l0mx

lxmDj

+
ic
6
Riljmx

lxmDi +
ic
12

(R0j0l;m− 2Rjl;m)x
lxm− ic−1

4
(a · x)Rjlxl

+
ic
6
R0l0m;nx

lxmxnDj+
ic
12
Riljm;nx

lxmxnDi +
ic−1

6
(a · x)R0l0mx

lxmDj

+
ic−1

6
(a · x)RiljmxlxmDi

}
+ γi γ j

{
− i
4
εijkω

k+
ic
4
R0ijlx

l+
ic
6
R0limx

lxmDj

+
ic
12
R0ijl;mx

lxm+
ic
12
R0lim;nx

lxmxnDj+
ic−1

6
(a · x)R0limx

lxmDj

}
+O

(
x3
)
. (3.11)

As already stated in the introduction, this is our first main result. Here Aτ = cAs is the electric
scalar potential with respect to our coordinates. Recall that the partial derivative operator ∂i
appearing in Di is effectively of order x−1 when acting on functions, such we need to keep
terms of the form xlxmxnDi (since they are of order x2). The terms in the Hamiltonian are
ordered, in each pair of curly brackets, by order in spatial geodesic distance x to the worldline,
with those terms of a given order that include a Di appearing after those without5.

Note that setting ω= 0 and ignoring quadratic terms in ai and RIJKL as well as terms
involving covariant derivatives of the curvature tensor, our Dirac Hamiltonian (3.11) repro-
duces the Dirac Hamiltonian from [24].

4. Post-Newtonian expansion

As the second step of our approximation scheme, we will now perform a post-Newtonian
‘slow-velocity’ expansion of the Dirac equation with respect to our reference worldline γ.

5 Here we correct some omissions that occurred in the master’s thesis [25] concerning terms of order x2. Consequently
our Dirac Hamiltonian (3.11) differs from that in [25].

10
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In order to perform the post-Newtonian expansion systematically, we are going to imple-
ment it as a formal power series expansion6 in the parameter c−1, where c is the velocity
of light7. Such formal expansions are a well-established device to implement Newtonian lim-
its and post-Newtonian expansions of (locally) Poincaré-relativistic physics in a mathemat-
ically controlled manner: they appear, of course, in the İnönü–Wigner contraction from the
Poincaré to the Galilei group [28], and have been applied, e.g., to systematically develop the
post-Newtonian expansion of the Klein–Gordon equation [11, 18–20], or to discuss the rig-
orous post-Newtonian expansion of General Relativity and its modifications in the context of
Newton–Cartan gravity (geometrised Newtonian gravity) [29–34]. In order to obtain a con-
sistent post-Newtonian expansion8, we need to treat the orthonormal-basis components of the
curvature tensor and its covariant derivative as being of order c−2, i.e.

RIJKL = O
(
c−2

)
,RIJKL;M = O

(
c−2

)
. (4.1)

Since we have already introduced a formal power series expansion in x (i.e. in spacelike
geodesic distance to our reference worldline γ), in the following we will encounter expressions
that are ‘doubly expanded’ as power series in powers of both c−1 and x9. When writing down
such expansions, we will order their terms as follows: first, we group and sort the terms by
order of c−1, and second, the terms comprising such a coefficient of a power c−n will be
sorted by order of x. We will also use the notation O(c−nxm) for terms that are of order at least
n in the c−1-expansion and order at leastm in the x-expansion—e.g., we have c−2x4 + c−3x3 =
O(c−2x3). For example, the expansion of some quantity X might look like

X= A+Bi x
i +Cijx

i xj+ c−1
(
E+Fi x

i
)
+O

(
c−1x2

)
(4.2)

(which would in particular imply that X has vanishing coefficients for all powers c−nx with
n⩾ 2).

Considering the Dirac Hamiltonian HDirac that appears in the Dirac equation i∂τψ =
HDiracψ in generalised Fermi normal coordinates, as computed in (3.11), wemay of course read
off its expansion as a power series in c−1 directly from (3.11)—we just need to keep in mind
that we treat the curvature tensor as being of order c−2 according to (4.1). However, this expan-
sion of the Dirac Hamiltonian in powers of c−1 is of no direct physical relevance for perturba-
tion theory in the parameter c−1: from (3.11), we directly obtainHDirac = γ0mc2 +O(c1), such
that when expanding the Dirac spinor field as a formal power series ψ =

∑∞
k=0 c

−kψ(k), the
Dirac equation tells us at the lowest occurring order in c−1, namely c2, that 0= γ0mψ(0), i.e.
ψ(0) = 0. At the next order c1, it then implies ψ(1) = 0, etc—meaning that the Dirac equation

6 More precisely, since for some objects terms of negative order in c−1 will appear, it is an expansion as formal
Laurent series. We will however continue to use the term ‘power series’, since most of our series will only have terms
of non-negative order in c−1.
7 Of course, analytically speaking, a ‘Taylor expansion’ in a dimensionful parameter like c−1 does not make sense
(even more so since c is a constant of nature); only for dimensionless parameters can a meaningful ‘small-parameter
approximation’ be made. In physical realisations of the limit from (locally) Poincaré- to Galilei-symmetric theories,
this means that the corresponding small parameter has to be chosen as, e.g., the ratio of some typical velocity of the
system under consideration to the speed of light. In the following, however, we will ignore such issues and simply
expand in c−1 as a formal ‘deformation’ parameter.
8 From a purely formal perspective, not assigning those c−1-orders to the curvature components would lead to the
expanded positive-frequency Dirac equation that we consider later not having perturbative solutions. However, as
already stated in the introduction, this assumption may also be viewed from a physical angle: in order for the accel-
eration of a system relative to γ, as given by the geodesic deviation equation, to stay bounded in the formal limit
c→∞, we need to assume that R0i0j = O(c−2).
9 Formally, they will be valued in the formal Laurent/power series ring R((c−1,x]].
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has no non-trivial perturbative solutions of this form. Hence, in order to obtain a meaningful
‘slow-velocity’ approximation to the Dirac theory, we need to make a different perturbative
ansatz for the spinor field. This will be a WKB-like ‘positive frequency’ ansatz.

Conceptionally, we now restrict from the full Dirac quantum field theory to its (effective)
one-particle sector, which is a well-defined notion if we assume the spacetime to be stationary.
The one-particle sector is effectively described by classical positive-frequency solutions of the
Dirac equation, where ‘positive frequency’ is defined with respect to the stationarity Killing
field [35]10. It is those positive-frequency solutions whose field equation of motion we will
expand in the following in powers of c−1. A similar post-Newtonian expansion scheme for
the Klein–Gordon equation may be found in [11, 18, 19]; a more general discussion of such
schemes is given in [20].

Note that in any realistic situation, in which the theory contains interactions, this description
can only be an approximation: the energy of all processes taking place has to be small enough
such as to stay below the threshold of pair production, such that the system does not leave the
one-particle sector. Therefore, such a post-Newtonian expansion always has to be considered
a low-energy approximation.

In the following, we will define positive frequencies with respect to the coordinate time τ of
the generalised Fermi normal coordinates introduced in section 3; therefore, for the relation-
ship between positive-frequency classical solutions and the one-particle sector of the quantum
theory to (approximately) hold, we need the timelike vector field ∂/∂τ to be (approximately)
Killing. The geometric meaning of this is briefly discussed in appendix B. Note, however, that
the definition of positive-frequency solutions with respect to some ‘time translation’ vector
field and the post-Newtonian expansion of such solutions of course also works for time trans-
lation vector fields which are not Killing, i.e. in a non-stationary situation, in which it still
allows to view the full ‘relativistic’ positive-frequency Dirac equation as a formal deforma-
tion of its (locally) Galilei-symmetric Newtonian limit. In particular, as long as we are in an
approximately stationary situation and the vector field is approximately Killing, the expansion
will still give an approximate description of the one-particle sector of quantum field theory.

The WKB-like positive frequency ansatz that we will make for the Dirac field will lead,
due to the lowest c−1 orders of the Dirac equation, to a split of the Dirac spinor into two two-
component spinor fields with coupled equations of motion. One of these components can then,
order by order in c−1, be eliminated in terms of the other, which will in the end lead to a Pauli
equation for the remaining two-spinor field, with gravitational and inertial ‘corrections’. We
are going to carry out this expansion to order c−2, and in doing so, we want to keep the expan-
sion in spacelike geodesic distance to the reference worldline γ such that the resulting Pauli
Hamiltonian contains terms to order x2, as it was the case for the Dirac Hamiltonian in (3.11).
However, in the decoupling/elimination process described above, the to-be-eliminated com-
ponent of the Dirac spinor field will be spatially differentiated once. Therefore, to achieve
our goal of a consistent expansion of the final Hamiltonian to order x2, we actually need to
know those terms in the Dirac Hamiltonian which are of order up to c−1 in the c−1-expansion
not only to order x2, but to order x3. Employing the methods from [17], one can calculate
the order-x3 terms in the Christoffel symbols in generalised Fermi normal coordinates of c−1-
expansion order up to c−2 with a comparably small amount of work; and while doing so, one

10 Often, this is called consideration of the ‘first-quantised theory’—a historically grown name that sometimes unfor-
tunately tends to create conceptual confusion. For details and caveats of how and why the one-particle sector of the
quantum field theory is described by the positive-frequency classical theory, we refer to the extensive discussion in
the monograph by Wald [35].
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can actually convince oneself that all x-dependent terms in the Christoffel symbols are actu-
ally of order at least c−2. The resulting Christoffel symbols, to order x3 in the c−2 terms and
to order x2 in the higher-c−1-order ones, are given in the appendix in (C.1). Using these fur-
ther expanded Christoffel symbols, we can go through the further steps of the calculation of
the Dirac Hamiltonian from section 3, thus computing the Dirac Hamiltonian to order x3 in
the c−1 terms and to order x2 in the higher-c−1-order ones. The expressions for the frame,
the connection form and the inverse metric component gss arising as intermediate results in
this process are given in appendix C; the resulting Dirac Hamiltonian is given in (C.6). This
Dirac Hamiltonian will give rise, when carrying out our systematic expansion of the positive-
frequency Dirac equation in powers of c−1, to a consistently derived Pauli Hamiltonian to
order x2 and c−2.

As the first step for implementing the expansion, we make for the Dirac field the WKB-like
ansatz11

ψ = eic
2Sψ̃ with S= O

(
c0
)
, ψ̃ =

∞∑
k=0

c−kψ̃(k). (4.3)

This ansatz we then insert into the Dirac equation i∂τψ = HDiracψ, with the Dirac Hamiltonian
given by (C.6). The resulting equation we multiply with e−ic2S and compare coefficients
of different powers of c−1. At the lowest occurring order c3, we obtain the equation 0=
γ0γi (∂i S)ψ̃(0), which in order to allow for non-trivial solutions ψ̃ enforces ∂i S= 0, i.e. the
function S depends only on time. At the next order c2, we then obtain the equation

−(∂τS) ψ̃
(0) = γ0mψ̃(0). (4.4)

Since γ0 has eigenvalues±1, for non-trivial solutions ψ̃ of the Dirac equation to exist we need
∂τS=±m. Since we are interested in positive-frequency solutions of the Dirac equation, we
choose S=−mτ , discarding the constant of integration (which would lead to an irrelevant
global phase). The preceding equation then tells us that the component of ψ̃(0) which lies in
the −1 eigenspace of γ0 has to vanish.

In the following, we will work in the Dirac representation for the gammamatrices, in which
they are given by

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
(4.5)

in terms of the Pauli matrices σi, such that Dirac spinors may be decomposed as

ψ =

(
ψA
ψB

)
(4.6)

in terms of their components ψA,ψB lying in the +1 and −1 eigenspace of γ0, respectively.
(Note that ψA,B are represented by functions taking values in C2.)

Summing up the above, our ansatz for the Dirac field now takes the form

ψ = e−imc2τ

(
ψ̃A
ψ̃B

)
, ψ̃A,B =

∞∑
k=0

c−kψ̃
(k)
A,B , (4.7)

and we know that ψ̃(0)
B = 0. Inserting this into the Dirac equation and multiplying with eimc

2τ ,
we obtain two coupled equations for ψ̃A,B, which are given in the appendix in (D.1). Now

11 Note that in the master’s thesis [25] on which the present article is based, a different notational convention was
used in which ψ̃(k) includes the factor of c−k.
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comparing in these equations the coefficients of different orders of c−1, we may order by
order read off equations for the ψ̃(k)

A,B. These allow to eliminate ψ̃B in favour of ψ̃A, for which
we will obtain a post-Newtonian Pauli equation.

More explicitly, this proceeds as follows. (D.1a) at order c1 yields

0=−iσ jDjψ̃
(0)
B , (4.8)

which is trivially satisfied since ψ̃(0)
B = 0. (D.1b) at order c1 gives

2mψ̃(1)
B =−iσ jDjψ̃

(0)
A (4.9)

and thus allows us to express ψ̃(1)
B in terms of ψ̃(0)

A . We can carry on to the next order: (D.1a)
at order c0 yields

{
i∂τ + qAτ −ma · x− mc2

2
R0l0mx

lxm− i(ω× x)i Di +
1
2
σ ·ω+O

(
x3
)}

ψ̃
(0)
A =−iσ jDjψ̃

(1)
B .

(4.10)

Using (4.9), this may be rewritten as a Pauli equation

i∂tψ̃
(0)
A = H(0)ψ̃

(0)
A (4.11)

for ψ̃(0)
A , with lowest-order Hamiltonian

H(0) =− 1
2m

(σ ·D)2 +ma · x+ mc2

2
R0l0mx

lxm+ i(ω× x)i Di −
1
2
σ ·ω− qAτ +O

(
x3
)
. (4.12)

Next, (D.1b) at order c0 allows us to express ψ̃(2)
B in terms of ψ̃(1)

A and ψ̃(0)
A :

2mψ̃(2)
B =−iσ jDjψ̃

(1)
A +

(
mc2

6
σiR0limx

lxm+
mc2

12
σiR0lim;nx

lxmxn+O
(
x4
))

ψ̃
(0)
A . (4.13)

Note that since ψ̃(2)
B will be differentiated once in the following calculation, here we need to

include the term of order x3 for later consistency, i.e. in order to be able to obtain the final
Hamiltonian to order x2. This is why we needed to know the low-c−1-order terms of the Dirac
Hamiltonian to order x3, and not just order x2. The same will happen at several later stages of
the computation.

(D.1a) at order c−1 will then give an equation for ψ̃(1)
A , which may be rewritten in the Pauli-

like form

i∂tψ̃
(1)
A = H(0)ψ̃

(1)
A +H(1)ψ̃

(0)
A . (4.14)
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Due to the nature of the expansion, the lowest-order operator H(0) read off here will be the
same as the one from the previous order. Detailed expressions may be found in appendix D.

Continuing, (D.1b) at order c−1 allows to express ψ̃(3)
B in terms of ψ̃(2)

A , ψ̃(1)
A , ψ̃(0)

A , and

ψ̃
(1)
B , which in turn may be expressed in terms of ψ̃(0)

A by (4.9). (D.1a) at order c−2 can then
be rewritten as the Pauli-like equation

i∂tψ̃
(2)
A = H(0)ψ̃

(2)
A +H(1)ψ̃

(1)
A +H(2)ψ̃

(0)
A . (4.15)

Again, we know that H(0) and H(1) are the same as determined before; the operator H(2) will
contain new information. Detailed expressions may again be found in appendix D. Note that in
the process of expressing ψ̃(3)

B in terms of the ψ̃A, one term arises for which we need to re-use

the Pauli equation (4.11) for ψ̃(0)
A in order to fully eliminate the time derivative in the resulting

expression.
The three Pauli-like equations (4.11), (4.14) and (4.15) now may be combined into a Pauli

equation

i∂tψ̃A = HPauliψ̃A (4.16a)

with Hamiltonian

HPauli = H(0) + c−1H(1) + c−2H(2) +O
(
c−3

)
. (4.16b)

Explicitly, the post-Newtonian Pauli Hamiltonian reads

HPauli =

{
− 1

2m
− 1

2mc2
a · x− 1

4m
R0l0mx

lxm− 1
8m

R0l0m;nx
lxmxn

− 1
24m

R0k0l;mnx
kxlxmxn

}
(σ ·D)2 − 1

8m3c2
(σ ·D)4

+

{
− 1
6m

Ril
j
mx

lxm− 1
12m

Ril
j
m;nx

lxmxn− 1
40m

Rik
j
l;mnx

kxlxmxn
}
DiDj

+

{
i(ω× x)j− 2ic

3
R0l

j
mx

lxm− ic
4
R0l

j
m;nx

lxmxn− 1
4mc2

a j− i
4mc2

(σ× a)j

+
1

12m

(
4Rjl+R0

j
0l
)
xl+

i
8m

σk
(
−2εijkR0l0i+ εimkR

j
lim
)
xl

+
1

24m

(
5Rjl;m− 3R0

j
0l;m−R0l0m

;j−Rjl
i
m;i− iεijkσ

k (2R0i0l;m+R0l0m;i)

+ 2iεinkσ
kRjlin;m

)
xlxm+

1
120m

(
9Rjl;mn− 6R0

j
0l;mn− 5R0l0m

;j
n− 3Rjl

i
m;in

)
xlxmxn

+
i

96m
σk

(
−4εijk (R0i0l;mn+R0l0m;ni)+ 3εirkR

j
lir;mn

)
xlxmxn

}
Dj

−qAτ +ma · x+ mc2

2
R0l0mx

lxm− 1
2
σ ·ω+

ic
3
R0lx

l− c
4
εijkσ

kR0lijx
l

+
ic
24

(
5R0l;m−R0l

i
m;i
)
xlxm− c

8
εijkσ

kR0lij;mx
lxm+

1
8m

R+
1
4m

R00

+
1

16m

(
R;l+ 2Ril;i

)
xl+

i
24m

εijkσ
k (R0i0l;j− 2Ril;j)x

l
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+
1

48m

(
R;lm+ 4Ril;im+ iεijkσ

k (R0i0l;jm− 3Ril;jm)
)
xlxm

− q
4m2c2

σiσ jDiEj−
q

12m
(Rlm+R0l0m)x

lxmσ ·B+
q

12m
σ jRiljmx

lxmBi

+
iq

4m2c2
σ · (ω×B)+

q
2m2c2

ω ·B+
q

4m2c2
(
ωjx

i −ωi xj
)
DiB

j

+
iq

4m2c2
(σ · (ω× x))B ·D− iq

4m2c2
σ j (ω× x) ·DBj+O

(
c−3

)
+O

(
x3
)
, (4.17)

where Ei = ∂iAτ − ∂τAi is the electric field and Bi = εijk∂jAk is the magnetic field (note that
up to higher-order corrections, these are indeed the electromagnetic field components in an
orthonormal basis). Note that in the expressionsDiEj,DiBj, andDBj, theDi acts on the product
of the electric/magnetic field and the ψ̃A on which the Hamiltonian acts. The post-Newtonian
Pauli Hamiltonian (4.17) is the second main result of this paper.

The terms in the Hamiltonian are ordered as follows: the terms involving electromagnetic
fields come in the end, the terms without in the beginning. The latter are grouped by the form
of the spatial derivative operators (built from Di) appearing in them. In each of these groups,
the terms are ordered as explained before (4.2): first, they are sorted by order of c−1, and for
each c−1-order, the terms are sorted by order of x.

The lowest-order terms in the Hamiltonian, marked in green in (4.17), have clear interpret-
ations: we have the usual ‘Newtonian’ kinetic-energy term − 1

2m (σ ·D)2 for a Pauli particle
minimally coupled to electromagnetism, the coupling−qAτ to the electric scalar potential, the
‘Newtonian’ gravitational coupling m(a · x+ c2

2 R0l0mxlxm) to a potential including an accel-
eration and a tidal force term, and the spin–rotation coupling − 1

2σ ·ω. Note also that the
Hamiltonian contains the special-relativistic correction to kinetic energy,− 1

8m3c2 (σ ·D)4. The
other terms are higher-order inertial and gravitational corrections.

Note that the scalar product of our quantum theory, with respect to which the
Hamiltonian (4.17) needs to be interpreted, is not simply the standard L2 scalar product of
C2-valued Pauli wavefunctions

〈ϕ̃A, ψ̃A〉L2 :=

ˆ
d3x ϕ̃A (x)

T
ψ̃A (x) . (4.18)

Rather, the correct scalar product is that coming from the original Dirac theory: we start with
the original Dirac scalar product

〈ϕ,ψ〉Dirac :=
ˆ
Σ

dvolΣ nµϕ
T
γI (eI)

0
γJ (eJ)

µ
ψ (4.19)

and compute its expansion in x and c−1 that arises from inserting our post-Newtonian
ansatz (4.7) for the Dirac field and expressing ϕ̃B and ψ̃B in terms of ϕ̃A and ψ̃A. With respect to
this scalar product, the Hamiltonian is automatically Hermitian, since the Dirac scalar product
in the full theory is conserved under time evolution.

Our post-Newtonian quantum theory also comes with a natural position operator, which
in this representation of the Hilbert space is given by multiplication of ‘wave functions’ by
coordinate position xa. This operator arises as the post-Newtonian equivalent of that operator
in the one-particle sector of the full Dirac theorywhichmultiplies theDirac fields by coordinate
position xa. For the case of the reference worldline γ being an inertial worldline in Minkowski
spacetime and a non-rotating frame, that operator is, in fact, the Newton–Wigner position
operator [36, 37].
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4.1. Comparison to previous results by others

We now want to compare our post-Newtonian Hamiltonian (4.17) to that obtained in [24]. In
order to do so we proceed as follows: we first recall the hypotheses on which the expansion
in [24] is based. These we then use to further approximate our result in accordance with these
hypotheses. Then, finally, we compare the result so obtained with that of [24]. We shall find a
difference which we interpret as an inconsistency in [24].

Now, the approximation hypotheses in [24] that go beyond those imposed by us fall into
three classes: First, concerning ‘weak gravity’, they assume ω= 0 (no frame rotation), they
neglect quadratic terms in ai and RIJKL, and, finally, they also do not consider terms involving
covariant derivatives of the curvature tensor. Second, as regards their ‘non-relativistic approx-
imation’, they neglect terms of quadratic or higher order inm−1. Third, they trace over the spin
degrees of freedom, i.e. compute 1

2 tr(HPauli), in order to obtain what in [24, p 16] was called
‘the Hamiltonian [. . .] compatible with the description of a Schrödinger wavefunction’12. In
units with c= 1, as used in [24], the result of applying this procedure to our Hamiltonian
reads

1
2
tr(HPauli) =

{
− 1
2m

− 1
2m

a · x− 1
4m

R0l0mx
lxm

}
D2

+

{
−2i

3
Rjl0mx

lxm− 1
4m

a j+
1
3m

Rjlx
l+

1
12m

R0l0
jxl
}
Dj

− qAτ +ma · x+ m
2
R0l0mx

lxm+
i
3
R0lx

l+
1
8m

R

+
1
4m

R00 −
1
6m

Ril
j
mx

lxmDjDi . (4.20)

This is different from the resulting Hamiltonian H from [24], with the difference reading

1
2
tr(HPauli)−H=

{
1
4m

a · x+ 1
8m

R0l0mx
lxm

}
D2 +

{
1
2m

a j+
1
2m

R0l0
jxl
}
Dj+

1
4m

R00 .

(4.21)

This difference arises precisely from that term in the computation of our second-order
Hamiltonian H(2) for which we had to re-use the lowest-order Pauli equation for ψ̃(0)

A : in the
final Pauli Hamiltonian, this term amounts to a contribution of

− 1
4m2c2

(−iσ ·D)
{
iqσ ·E+(−iσ ·D)

(
H(0) + qAτ

)}
; (4.22)

due to H(0) containing terms proportional to m, this expression contains terms proportional to
m−1, which yield exactly the difference term (4.21).

12 This method of tracing over the spin degrees of freedom in order to obtain a Hamiltonian acting on single-
component (complex-number-valued) wavefunctions is used in [24] without further justification beyond the goal of
acting onC-valued functions.We do not believe this method to be of general physical validity for the following reason:
the unitary time evolution described by the full post-Newtonian Pauli Hamiltonian contains interactions between the
position and spin degrees of freedom. Therefore, the effective time evolution which we would obtain by ignoring the
spin, i.e. by taking the partial trace of the total density matrix over the spin degrees of freedom, would no longer be
unitary. Consequently, it cannot be described by a Schrödinger equation with respect to some Hamiltonian. Of course,
this general argument does not exclude that, depending on the context, an approximately unitary time evolution for
some specific initial states does indeed exist, but such an argument is not given in [24]. Nevertheless, for the sake of
comparison to [24], we still apply the tracing procedure which we consider physically unwarranted.
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Closely examining the calculation of [24], one can exactly pinpoint the step of this calcula-
tion at which the above term has been neglected: in appendix C of [24], going from equation

(C3) to (C4), an inverse operator of the form 1
2m

(
1+ i∂T+qA0

2m +(terms linear in ai and R)
)−1

is evaluated via a perturbative expansion (in the notation of [24], i∂T is the ‘non-relativistic
energy’ operator, i.e. the total energy of the Dirac solution minus the rest energy). The authors
of [24] argue that when expanding (with respect to small quotients of involved energies), ‘the
rest mass of the system tends to be much larger than any of the terms that show up in the
expansion’, such that ‘in a power expansion of the inverse operator in equation (C3), it makes
sense to neglect terms that will contribute with order m−2’. Following this argument, the term
involving i∂T

2m is neglected. However, by following the ensuing calculation one can check that
if it were not neglected at this point, this term would in the end lead to a contribution to the
final Pauli Hamiltonian of the form

− 1
4m2

(−iσ ·D)2H(0) +O
(
m−2

)
(4.23)

in our notation, which to the order of approximation used in [24] is precisely the term noted
above in (4.22).

We thus see that the i∂T
2m term ought not to be neglected in going from (C3) to (C4) in [24],

since in the end it leads to terms that are of the same order as the other correction terms. A
more direct formulation of the argument against neglecting this term is to note that i∂T acting
on ψA (in the notation of [24]) induces terms proportional to m, such that −i∂T/(4m2) is not
actually of order m−2, but of order m−1.

One may also formulate our argument against the neglection without referring to expanding
in m−1 at all, speaking only about quotients of energies instead, in the spirit of [24]: if one
were to neglect the term −i∂T/(4m2) =− 1

2m · ‘non-relativistic energy’2(rest energy) in going from (C3) to (C4)

in [24], then one would as well have to neglect the terms − 1
2m (

1
2ajx

j+ 1
4Rk0m0x

kxm) =− 1
2m ·

m(ajx
j+Rk0m0x

kxm/2)
2m =− 1

2m · corrections in ‘non-relativistic energy’2(rest energy) . These last terms, however, clearly have
to be kept in the calculation since they contribute at a relevant order, and indeed are kept in
[24].

Thus, we come to the conclusion that the difference between the result of [24] and our res-
ult when truncated to linear approximation order is due to an undue neglection in [24], which
without further justification seems to render the approximation used in [24] inconsistent. In our
opinion, this exemplifies that a mathematically clear systematic approximation scheme with
spelled-out assumptions—such as ours, based on (formal) power series expansions in deform-
ation parameters—reduces possibilities for conceptual errors in approximative calculations.

5. Conclusion

Deducing the impact of classical gravitational fields (in the sense of general relativity) onto the
dynamical evolution of quantum systems is a non-trivial task of rapidly increasing theoretical
interest given the acceleration that we currently witness in experimental areas, like g-factor
measurements [1–4], atom interferometry [6–9, 12–14], and metrology.

The relatively simple case of a single spin-half particle in an external gravitational field
that we dealt with here provides a good example of the nature and degree on non-triviality
immediately encountered. Given the many much further reaching claims that emerge from
various ‘approaches’ to a theory of quantum gravity proper this may be read as a call for some
restraint. On the other hand, just listing longer and longer strings of corrections toHamiltonians
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will in the end also lead us nowhere without a consistent interpretational scheme that even-
tually allows us to communicate the physical significance of each term to our experimental
colleagues. In this respect we tried hard to consistently stay within a well-defined scheme, so
as to produce each term of a given, well-defined order once and only once. In that respect we
also wish to refer to our discussion in [20].

Closest to our approach are the papers that we already discussed in the introduction. We
claim to have improved on them concerning not only the order of approximation but also
concerning the systematics.We showed that even within the larger (and hencemore restricting)
set of approximation-hypotheses assumed in the most recent of these papers [24], their list of
terms for the final Hamiltonian is not complete. Ours, we believe, is.

Finally we wish to mention a characteristic difficulty concerning the interpretation of inter-
action terms in Hamiltonians in the context of general relativity. It has to do with the changing
interpretation of coordinates once the Hamiltonian refers to different metrics. More precisely,
consider two Hamiltonian functions being given, one of which takes into account the interac-
tion with the gravitational field to a higher degree than the other; then, strictly speaking, it is
not permissible to address the additional terms as the sole expression of the higher order inter-
action, the reason being that together with the higher degree of approximation to the metric,
the metric meaning of the coordinates, too, has also changed at the same time. Again we refer
to [20] for a more extensive discussion, also providing a typical example.
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Appendix A. The connection in generalised Fermi normal coordinates

The Christoffel symbols in generalised Fermi normal coordinates were calculated to second
order in the geodesic distance to the reference worldline in [17]. Note that in this reference,
some calculational errors were made, which we have corrected in the following and marked
in red. The Christoffel symbols are given by

Γsss = c−3 (b · x+ 2a · (ω× x))+
1
2
R0l0m;0x

lxm+
1
3
c−2aiR0limx

lxm

− c−5 (b · x+ 2a · (ω× x))(a · x) +2c−1R0i0j (ω× x)i xj+O
(
x3
)
, (A.1a)

Γssi = c−2ai − c−4ai (a · x)+R0i0jx
j+

1
6
(R0l0m;i+ 2R0i0l;m)x

lxm− 2
3
c−2 (a · x)R0i0jx

j

− 1
3
c−2aiR0l0mx

lxm+ c−6ai (a · x)2 −
1
3
c−1 (ω× x)k (R0ilk+R0kli)x

l+O
(
x3
)
,

(A.1b)
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Γsij =
1
3

{
2R0(ij)k+

1
4

(
5R0(ij)k;l−R0kl(i;j)

)
xl− 2c−2 (a · x)R0(ij)k

}
xk+O

(
x3
)
, (A.1c)

Γiss = c−2ai +R0
i
0jx

j+ c−2 (η× x)i + c−4 (a · x)ai + c−2 (ω× (ω× x))i − 1
2
R0l0m

;ixlxm

+R0
i
0l;mx

lxm+ 2c−2 (a · x)R0
i
0jx

j− 1
3
c−2a jRiljmx

lxm

− c−4 (ω× x)i (b · x+ 2a · (ω× x))− 2c−1 (ω× x)kR0j
i
kx
j+O

(
x3
)
, (A.1d)

Γisj =−c−1εijkω
k−R0k

i
jx
k− c−3 (ω× x)i aj+

{
+

1
6
R0j

i
l;m−

1
2
R0l

i
j;m − 1

6
R0l

i
m;j

}
xlxm

− 1
3
c−2 (a · x)

(
R0k

i
j+R0

i
kj
)
xk+

1
3
c−2ajR0l

i
mx

lxm− c−1 (ω× x)i R0j0kx
k

− 1
3
c−1 (ω× x)l

(
Rlk

i
j+Rl

i
kj
)
xk+ c−5aj (a · x)(ω× x)i +O

(
x3
)
, (A.1e)

Γijk =−1
3

{
2Ri( jk)l+

1
4

(
5Ri( jk)l;m−Rilm( j;k)

)
xm+ 2c−1 (ω× x)i R0( jk)l

}
xl+O

(
x3
)
.

(A.1f )

The local connection form with respect to the frame (3.8) is given by

ωµ
0
0 = 0, (A.2a)

ωs
0
i = c−2ai +R0i0lx

l+
1
2
c−2 (a · x)R0i0lx

l+
1
2
c−1 (ω× x)kR0iklx

l

+
1
2
R0i0l;mx

lxm+O
(
x3
)
, (A.2b)

ωi
0
j =

1
2
R0jilx

l+
1
3
R0jil;mx

lxm+O
(
x3
)
, (A.2c)

ωµ
i
0 = δijωµ

0
j , (A.2d)

ωs
i
j =−c−1εijkω

k−Rij0lx
l− 1

2
c−2 (a · x)Rij0lxl−

1
2
c−1 (ω× x)kRijklxl

− 1
2
Rij0l;mx

lxm+O
(
x3
)
, (A.2e)

ωk
i
j =−1

2
Rijklx

l− 1
3
Rijkl;mx

lxm+O
(
x3
)
. (A.2f )

Appendix B. Stationarity with respect to the generalised Fermi normal
coordinate time translation field

In the following, we are going to briefly discuss the geometric interpretation of the possible
condition that the metric be stationary with respect to the time coordinate τ of the general-
ised Fermi normal coordinates introduced in section 3, i.e. that the timelike vector field ∂/∂τ
be Killing. Note that, as explained in the main text, the post-Newtonian expansion in c−1 of
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section 4 is still a meaningful approximation procedure if stationarity does not hold, formu-
lating the Dirac theory as a deformation of its Newtonian limit.

As a first step, stationarity with respect to ∂/∂τ of coursemeans that the reference worldline
γ has to be stationary.

Away from the worldline, ∂/∂τ being Killing means that the metric components (3.4) need
be independent of coordinate time τ ; i.e. we need the components ai, ωi, RIJKL of the acceler-
ation of γ, the angular velocity of the spatial basis (ei) and the curvature to be constant along
the reference worldline γ:

ȧi (τ) = 0, ω̇i (τ) = 0, ṘIJKL (τ) = 0. (B.1)

Note, however, that the components are taken with respect to the generalised Fermi normal
coordinates; therefore, to see the true geometric meaning of these conditions, we need to
rewrite them covariantly.

By direct computation, for the covariant derivatives of acceleration and angular velocity we
have

bi (τ) =
(
∇γ̇(τ)a(τ)

)i
= ȧi (τ)+ cΓisj (γ (τ))a

j (τ) = ȧi (τ)+ (ω (τ)× a(τ))i , (B.2)

ηi (τ) =
(
∇γ̇(τ)ω (τ)

)i
= ω̇i (τ)+ cΓisj (γ (τ))ω

j (τ) = ω̇i (τ) . (B.3)

Thus, we see that stationarity of the metric with respect to the time translation vector field
given by generalised Fermi normal coordinates implies that the angular velocityω of the spatial
reference vectors be covariantly constant along the reference worldline γ. However, in the case
of ω being non-zero, in the generic case the worldline’s acceleration a need not be covariantly
constant—it has to itself rotate with angular velocityω, such that its components with respect to
the rotating basis are constant. This may sound somewhat artificial, but note that for example
one could satisfy this condition with a covariantly constant acceleration a and spatial basis
vectors (ei) that rotate around the axis given by a.

Of course, the condition of constancy of the curvature components along γ can be rewritten
in terms of covariant derivatives of the curvature tensor as well; however, this does not lead to
any great insight, so we will refrain from doing so here.

Appendix C. The Dirac Hamiltonian up to O(c−1x4)+O(c−2x3)

In the main text, for a consistent post-Newtonian expansion of the Dirac Hamiltonian lead-
ing to a resulting Pauli Hamiltonian known to order c−2 and x2, we need to know the Dirac
Hamiltonian to order x3 in those terms of order up to c−1 in the c−1-expansion. Going through
the derivation of [17], one can convince oneself that all x-dependent terms in the Christoffel
symbols in generalised Fermi normal coordinates are of order at least c−2 when expanding also
in c−1; and employing the methods from [17], one can go to higher order and calculate the
order-x3 terms to order c−2. The resulting Christoffel symbols read as follows, with the newly
calculated terms marked in blue (note that we use the ordering of terms and the O(c−nxm)
notation as explained in the main text before (4.2)):
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Γsss = c−2

(
c2

2
R0l0m;0x

lxm+
c2

6
R0l0m;n0x

lxmxn
)

+ c−3
(
b · x+ 2a · (ω× x)+ 2c2R0i0j (ω× x)i xj

)
+ c−4

(
c2

3
aiR0limx

lxm
)

− c−5 ((b · x+ 2a · (ω× x))(a · x))+O
(
c−2x4

)
+O

(
c−3x3

)
, (C.1a)

Γssi = c−2

(
ai + c2R0i0jx

j+
c2

6
(R0l0m;i+ 2R0i0l;m)x

lxm+
c2

12
(R0i0l;mn+R0l0m;ni)x

lxmxn
)

+ c−3

(
−c2

3
(ω× x)k (R0ilk+R0kli)x

l

)
+ c−4

(
−ai (a · x)−

2c2

3
(a · x)R0i0jx

j

−c2

3
aiR0l0mx

lxm
)
+ c−6ai (a · x)2 +O

(
c−2x4

)
+O

(
c−3x3

)
, (C.1b)

Γsij = c−2

(
c2

3

{
2R0(ij)k+

1
4

(
5R0(ij)k;l−R0kl(i;j)

)
xl
}
xk+

c2

20

(
3R0(ij)l;mn−R0lm(i;j)n

)
xlxmxn

)
+ c−4

(
−2c2

3
(a · x)R0(ij)lx

l

)
+O

(
c−2x4

)
+O

(
c−3x3

)
, (C.1c)

Γiss = c−2

(
ai + c2R0

i
0jx

j+(η× x)i +(ω× (ω× x))i +
c2

2

(
2R0

i
0l;m−R0l0m

;i
)
xlxm

+
c2

6

(
2R0

i
0l;mn−R0l0m;n

i
)
xlxmxn

)
+ c3

(
−2c(ω× x)kR0j

i
kx
j
)

+ c−4

(
(a · x)ai + 2c2 (a · x)R0

i
0jx

j− c2

3
a jRiljmx

lxm

−(ω× x)i (b · x+ 2a · (ω× x))
)
+O

(
c−2x4

)
+O

(
c−3x3

)
, (C.1d)

Γisj =−c−1εijkω
k+ c−2

(
−c2R0k

i
jx
k+ c2

{
1
6
R0j

i
l;m−

1
2
R0l

i
j;m−

1
6
R0l

i
m;j

}
xlxm

+
c2

12

(
R0j

i
l;mn− 2R0l

i
j;mn−R0l

i
m;nj

)
xlxmxn

)
+ c−3

(
−(ω× x)i aj−

c2

3
(ω× x)l

(
Rlk

i
j+Rl

i
kj
)
xk− c2 (ω× x)i R0j0kx

k

)
+ c−4

(
−c2

3
(a · x)

(
R0k

i
j+R0

i
kj
)
xk+

c2

3
ajR0l

i
mx

lxm
)
+ c−5aj (a · x)(ω× x)i

+O
(
c−2x4

)
+O

(
c−3x3

)
, (C.1e)
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Γijk = c−2

(
− c2

3

{
2Ri( jk)l+

1
4

(
5Ri( jk)l;m−Rilm( j;k)

)
xm

}
xl

− c2

20

(
3Ri( jk)l;mn−Rilm( j;k)n

)
xlxmxn

)
+ c−3

(
2c2 (ω× x)i R0( jk)lx

l
)
+O

(
c−2x4

)
+O

(
c−3x3

)
. (C.1f )

Note that, according to (4.1), we have treated the curvature tensor as being of order c−2.
Using the above Christoffel symbols, one can compute the parallely transported frame (3.8)

to higher order of expansion, which reads

(e0)
s
= 1+ c−2

(
−a · x− c2

2
R0l0mx

lxm− c2

6
R0l0m;nx

lxmxn− c2

24
R0k0l;mnx

kxlxmxn
)

+ c−4

(
(a · x)2 + 5c2

6
(a · x)R0l0mx

lxm
)
− c−6 (a · x)3 +O

(
c−2x5

)
+O

(
c−3x4

)
,

(C.2a)

(e0)
i
=−c−1 (ω× x)i + c−2

(
c2

2
R0l

i
mx

lxm+
c2

6
R0l

i
m;nx

lxmxn+
c2

24
R0k

i
l;mnx

kxlxmxn
)

+ c−3

(
(a · x)(ω× x)i +

c2

2
(ω× x)i R0l0mx

lxm
)
+ c−4

(
−c2

3
(a · x)R0l

i
mx

lxm
)

− c−5 (ω× x)i (a · x)2 +O
(
c−2x5

)
+O

(
c−3x4

)
, (C.2b)

(ei)
s
= c−2

(
−c2

6
R0limx

lxm− c2

12
R0lim;nx

lxmxn− c2

40
R0kil;mnx

kxlxmxn
)

+ c−4

(
c2

6
(a · x)R0limx

lxm
)
+O

(
c−2x5

)
+O

(
c−3x4

)
, (C.2c)

(ei)
j
= δ ji + c−2

(
c2

6
Rjlimx

lxm+
c2

12
Rjlim;nx

lxmxn+
c2

40
Rjkil;mnx

kxlxmxn
)

+ c−3

(
c2

6
(ω× x)jR0limx

lxm
)
+O

(
c−2x5

)
+O

(
c−3x4

)
. (C.2d)

For the dual frame, we also obtain that the x dependence starts at order c−2:

(
e0
)
s
= 1+ c−2

(
a · x+ c2

2
R0l0mx

lxm
)
+O

(
c−2x3

)
(C.3a)

(
e0
)
i
= c−2

(
c2

6
R0limx

lxm
)
+O

(
c−2x3

)
(C.3b)

(
ei
)
s
= c−1 (ω× x)i + c−2

(
−c2

2
Ril0mx

lxm
)
+O

(
c−2x3

)
(C.3c)

(
ei
)
j
= δij + c−2

(
−c2

6
Riljmx

lxm
)
+O

(
c−2x3

)
. (C.3d)
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From this, we can compute the higher-order corrections to the connection form, the non-
trivial components of which read

ωs
0
i = c−2

(
ai + c2R0i0lx

l+
c2

2
R0i0l;mx

lxm+
c2

6
R0i0l;mnx

lxmxn
)
+ c−3

(
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(ω× x)kR0iklx

l

)
+ c−4

(
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(a · x)R0i0lx

l

)
+O

(
c−2x4

)
+O

(
c−3x3

)
, (C.4a)

ωi
0
j = c−2
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lxm+
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+O
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, (C.4b)
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2
Rij0l;mx

lxm− c2

6
Rij0l;mnx

lxmxn
)

+ c−3

(
−c2

2
(ω× x)kRijklxl

)
+ c−4

(
−c2

2
(a · x)Rij0lxl

)
+O

(
c−2x4

)
+O

(
c−3x3

)
,

(C.4c)

ωk
i
j = c−2

(
−c2

2
Rijklx

l− c2

3
Rijkl;mx

lxm− c2

8
Rijkl;mnx

lxmxn
)
+O

(
c−2x4

)
+O

(
c−3x3

)
.

(C.4d)

The component of the inverse metric that is needed for the computation of the Dirac
Hamiltonian takes the following form including the newly computed higher-order corrections:

gss =−1+ c−2

(
2a · x+ c2R0l0mx

lxm+
c2

3
R0l0m;nx

lxmxn+
c2

12
R0k0l;mnx

kxlxmxn
)

+ c−4

(
−3(a · x)2 − 8c2

3
(a · x)R0l0mx

lxm
)
+ c−64(a · x)3 +O

(
c−2x5

)
+O

(
c−3x4

)
.

(C.5)

Using all these ingredients, we can finally compute the Dirac Hamiltonian in our coordin-
ates and frame to the necessary order (as for the original Dirac Hamiltonian (3.11), the com-
putation is rather tedious, but straightforward):

HDirac = γ0
{
mc2 + c0

(
ma · x+ mc2

2
R0l0mx

lxm+
mc2

6
R0l0m;nx

lxmxn
)
+O

(
c0x4

)}
− γi

{
c0
(
mc2

6
R0limx

lxm+
mc2

12
R0lim;nx

lxmxn
)
+O

(
c0x4

)}
+1

{
−qAτ + i(ω× x)i Di + c−1

(
− ic2

2
R0l

i
mx

lxmDi +
ic2

12
R0l;mx

lxm

− ic2

6
R0l

i
m;nx

lxmxnDi+
ic2

24
R0l;mnx

lxmxn− ic2

24
R0k

i
l;mnx

kxlxmxnDi

)
+ c−3

(
ic2

4
(a · x)R0lx

l− ic2

6
(a · x)R0l

i
mx

lxmDi

)}
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− γ0γ j
{
ciDj+ c−1

(
i
2
aj+ i(a · x)Dj+

ic2

4
(R0j0l−Rjl)x

l+
ic2

2
R0l0mx

lxmDj

+
ic2

6
Riljmx
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+
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+
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)}
+ γi γ j

{
− i
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εijkω
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(
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lxmDj

}
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(
c−1x4

)
+O

(
c−2x3

)
. (C.6)

Appendix D. Details of the post-Newtonian expansion

The equations that arise from the Dirac equation when inserting the post-Newtonian
ansatz (4.7) are{
iDτ −ma · x− mc2

2
R0l0mx

lxm− mc2

6
R0l0m;nx

lxmxn− i(ω× x)iDi +
1
2
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ic2

24
R0k

i
l;mnx

kxlxmxnDi

+σiσ j
[
ic2

4
R0ijlx

l+
ic2

6
R0limx

lxmDj+
ic2

12
R0lim;nx

lxmxnDj+
ic2

40
R0kil;mnx

kxlxmxnDj

])
+ c−3

(
− ic2

4
(a · x)R0lx

l+
ic2

6
(a · x)R0l

i
mx

lxmDi +
ic2

6
(a · x)σiσ jR0limx

lxmDj

)
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}
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+
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}
ψ̃B , (D.1a)
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2mc2 + iDτ +ma · x+ mc2
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+O(c0x4)+O(c−2x3)

}
ψ̃B

=−σ j
{
icDj−

mc2

6
R0ljmx

lxm− mc2

12
R0ljm;nx

lxmxn+ c−1

(
i
2
aj+ i(a · x)Dj+

ic2

4
(R0j0l−Rjl)x

l

+
ic2

2
R0l0mx

lxmDj+
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}
ψ̃A , (D.1b)

where Dτ = ∂τ − iqAτ ,Di = ∂i − iqAi denotes the electromagnetic covariant derivative. Note
that we used the Pauli matrix identity σiσ j = δij1+ iεijkσk for the simplifications σiσ jεijkωk =
2iσ ·ω and σiσ jR0ijl;m =−R0l;m+ iεijkσkR0ijl;m.

At order c−1, (D.1a) yields

{
iDτ −ma · x− mc2

2
R0l0mx

lxm− i(ω× x)i Di +
1
2
σ ·ω+O

(
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)}
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+
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i
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12
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σiσ jR0ijlx
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σiσ jR0limx
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12
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(
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12
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lxmxn+O
(
x4
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ψ̃
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B . (D.2)
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Using (4.9) and (4.13) to eliminate the ψ̃B, this may be rewritten as{
iDτ −ma · x− mc2
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R0l0mx
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(
x3
)}

ψ̃
(1)
A

+
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+
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From this, we can read off the next-to-leading-order Hamiltonian H(1) according to (4.14),
giving

H(1) =− ic2
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, (D.4)

where we again used σiσ j = δij1+ iεijkσk for simplifications, as well as the Bianchi identities.
The difference of this result to the corresponding one in the master’s thesis [25] on which the
present article is based, arising from oversights in [25] regarding the consistent calculation of
the order x2 terms, consists solely in the appearance of the terms containing covariant derivat-
ives of the curvature tensor. Note thatH(0) read off from (D.3) is the same as the one calculated
above in (4.12).

(D.1b) at order c−1 gives the following:
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With (4.9) to eliminate ψ̃(1)
B , this can be used to express ψ̃(3)

B in terms of the ψ̃A. Note however

that this will involve the term− iDτ

2m ψ̃
(1)
B =− iDτ

4m2 (−iσ ·D)ψ̃(0)
A , such that we need to re-use the

Pauli equation (4.11) for ψ̃(0)
A to fully eliminate the time derivative in the resulting expression.

Explicitly, the term in question evaluates to
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A =− 1
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{
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(
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)}
ψ̃
(0)
A , (D.6)

where Ei = ∂iAτ − ∂τAi is the electric field (note that up to higher-order corrections, these are
indeed the electric field components in an orthonormal basis).

We finally need the next order of expansion in c−1 in order to compute the Hamiltonian at
order c−2. (D.1a) at order c−2 is{
iDτ −ma · x− mc2
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Now we use (4.9), (4.13), (D.5) and (D.6) to rewrite (D.7) just in terms of ψ̃A and read off the
next-order Hamiltonian H(2) according to (4.15):

H(2) =− (−iσ ·D)
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. (D.8)

Note that in the expression −mc2

6 σ
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12σ
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A } appearing in (D.7), the second term is off our order of approximation, so we

neglected it when reading off H(2). Explicitly evaluating the above expression, we obtain the
following order c−2 Hamiltonian:
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This is the final information that we need in order to calculate the Pauli Hamiltonian up to
and including the order of c−2 (4.17). Note that we have used the identity σiσ j = δij1+ iεijkσk

multiple times for simplifications, as well as the Bianchi identities and [Di,Dj] =−iq(∂iAj−
∂jAi) =−iqεijkBk, where Bi = εijk∂jAk is the magnetic field. We also used that covariant deriv-
atives commute up to curvature terms, which are of higher order in c−1.

Note that due to a calculational oversight, the terms explicitly containing the magnetic field
were missing in the master’s thesis [25] on which the present article is based. In [25], some
oversights were also made regarding the consistency of the calculation of the terms of order x2.
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However, the only differences of (D.9) to the corresponding result in [25] that arise from these
miscalculations of order x2 terms are the appearance of all terms which contain covariant deriv-
atives of the curvature tensor and the absence of the term − ic2

4 (ω× x)k(Rkl+R0k0l)xl from
[25].
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