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Abstract
This article presents unified and efficient stochastic modal decomposition meth-
ods to solve stochastic structural static and dynamic problems. We extend the
idea of deterministic modal decomposition method for structural dynamic anal-
ysis to stochastic cases. Standard/generalized stochastic eigenvalue equations
are adopted to calculate the stochastic subspaces for stochastic static/dynamic
problems and they are solved by an efficient reduced-order method. The
stochastic solutions of both static and dynamic equations are approximated by
stochastic bases of the stochastic subspaces. Original stochastic static/dynamic
equations are then transformed into a set of single-degree-of-freedom (SDoF)
stochastic static/dynamic equations, which are efficiently solved by the pro-
posed non-intrusive methods. Specifically, a non-intrusive stochastic Newmark
method is developed for the solution of SDoF stochastic dynamic equations, and
the element-wise division of sample vectors is used to solve the SDoF stochas-
tic static equations. All of these methods have low computational effort and
are weakly sensitive to the stochastic dimension, thus the proposed methods
avoid the curse of dimensionality successfully. Two numerical examples, includ-
ing two- and three-dimensional spatial problems with low and high stochastic
dimensions, are given to show the efficiency and accuracy of the proposed
methods.

K E Y W O R D S

curse of dimensionality, stochastic eigenvalue problems, stochastic Newmark method, stochastic
reduced-order equations, stochastic static and dynamic analyses

1 INTRODUCTION

Predicting uncertainty propagation on the physical models has become an essential part in the analysis and design of prac-
tical engineering problems. The considerable influence of uncertainties on system behavior has led to the development
of numerical methods for uncertainty analysis. In this article, we focus on developing efficient and unified numerical
algorithms for linear stochastic static and dynamic analyses.

Many effective numerical methods have been developed for solving stochastic dynamic and static equations. The
Monte Carlo simulation (MCS) and its extensions1–3 have been widely used for the analyses. By repeatedly solving the
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deterministic problem for each sample realization, they are executed in non-intrusive ways and can be readily applied
to high-dimensional stochastic problems. However, they are usually computationally expensive since a large number
of deterministic problems are solved to achieve high-accuracy stochastic solutions. Several more efficient non-intrusive
methods, for example, adaptive sampling methods and response surface methods,4–6 are also proposed for the purpose.
As a kind of intrusive method, the Galerkin spectral stochastic finite element method and its extensions7–9 have received a
lot of attention for solving stochastic problems. In this method, the stochastic solution is decomposed into the summation
of a series of products of polynomial chaos (PC) bases and deterministic time-independent/time-dependent functions.
An augmented deterministic static/dynamic equation is then obtained by using the stochastic Galerkin projection. The
size of the augmented equation is huge when dealing with large-scale and high-dimensional stochastic problems, thus
this approach suffers from the curse of dimensionality. Several improvements are presented to reduce the computational
effort of PC-based methods, for example, the Krylov-based iteration and the sparse PC approach.10,11 Other methods
are also explored to efficiently and accurately perform stochastic structural static and dynamic analyses, for example,
the stochastic collocation method,12 the PGD-based method,13,14 the ANOVA method,15 the direct probability integral
method16,17 and so forth.

We mention another kind of method, known as the modal decomposition-type method. Let us simply recall the idea
of the modal decomposition method for solving deterministic structural dynamic equations.18,19 In this method, a set of
modes of the target system are calculated using a generalized eigenvalue equation and the time-dependent displacement
response is solved by the linear superposition of each mode. It is natural and straightforward to extend the above idea of
deterministic modal decomposition to the stochastic case, that is, stochastic eigenvalue equations are used to calculate a
set of stochastic modes of the target stochastic system and the stochastic displacement is solved by the linear superposi-
tion of each stochastic mode. However, it is usually not a simple matter since efficient and accurate numerical algorithms
are required to solve stochastic eigenvalue problems. Although a lot of methods can be used to solve stochastic eigen-
value equations, for example, the MCS,20,21 the perturbation method,22–24 the PC-based method,25 the subspace iteration
approach,26–29 the stochastic collocation method,30 the polynomial/spline dimensional decomposition methods,31,32 the
homotopy approach,33 the low-rank approximation method34,35 and so forth, only a few effort has been made to apply
stochastic eigenvalue algorithms to modal decomposition-based stochastic dynamic analyses.

In References 36 and 37, the PC expansion is adopted to approximate stochastic eigenvalues, stochastic eigenvectors
and stochastic responses, and stochastic Galerkin projection is used for their solutions. Similar to classical PC-based
methods, this method still suffers from the curse of dimensionality, which is alleviated by a hybrid PC and MCS strat-
egy in Reference 38. Also, another improvement is developed in Reference 26 by extending deterministic deflated and
subspace inverse power methods to PC-based stochastic approaches, which can be applied to well solve the problems
with repeated or closely spaced stochastic eigenvalues. The methods that combine PC-based stochastic finite element
analyses with deterministic and stochastic reduced-order methods are developed in Reference 39, where determinis-
tic/stochastic reduced bases are obtained by using deterministic/stochastic Krylov subspace techniques. In Reference 40,
a high-order perturbation technique coupled with reduced modal subspaces is developed to solve stochastic dynamic
systems, which exhibits better performance than the classical perturbation methods. The spline chaos expansion (SCE)
and the spline dimensional decomposition (SDD) methods are proposed in Reference 41 for stochastic modal analyses.
Similar to the PC expansion, both the two methods can be considered as Fourier-like expansions and the unknown
expanded coefficients need to be calculated. An advantage of these two methods is that they can well capture nonlinear
and nonsmooth stochastic solutions. Furthermore, SDD alleviates the curse of dimensionality encountered by SCE and
classical PC-based methods.

In this article, we develop efficient and unified stochastic modal decomposition-based numerical schemes for solv-
ing stochastic static and dynamic problems. As discussed above, we construct stochastic subspaces for stochastic
static/dynamic equations by solving standard/generalized stochastic eigenvalue equations. An efficient reduced-order
method proposed in our prior work42 is adopted for this purpose. In this method, stochastic eigenvectors are approximated
by a set of products of random variables and deterministic vectors, where the deterministic vectors are calculated via a few
number of deterministic eigenequations. A reduced-order stochastic eigenvalue problem constructed using the obtained
deterministic vectors is then used to solve stochastic eigenvalues of the original problem and random variable coefficients
corresponding to the deterministic vectors. Original stochastic static/dynamic equations are transformed into a set of
SDoF stochastic static/dynamic equations by using the stochastic subspaces obtained by standard/generalized stochas-
tic eigenequations. Following that, we develop a non-intrusive stochastic Newmark method to solve the SDoF stochastic
dynamic equations and an element-wise division of sample vectors to solve the SDoF stochastic static equations. The pro-
posed methods overcome the curse of dimensionality to a great extent since both the stochastic eigenvalue algorithm and
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the approaches for solving SDoF stochastic static/dynamic equations are not sensitive to the stochastic dimension. Fur-
ther, the final stochastic solutions of both stochastic static and dynamic problems can be represented as a sum of determin-
istic vectors with random variable coefficients, where the random variable coefficients are described by random samples.
It is a kind of semiexplicit representation and provides a convenient pathway to perform uncertainty quantification.

The article is organized as follows: We extend the classical modal decomposition method to stochastic dynamic and
static problems in Section 2, where an efficient reduced-order method is given to solve stochastic eigenvalue equations and
generate stochastic subspaces for the stochastic modal decomposition method in Section 2.3. According to the obtained
stochastic subspaces, stochastic static and dynamic equations are solved in Section 3. Algorithm implementations of the
proposed methods are then elaborated in Section 4. Following that, two numerical examples are given to demonstrate the
efficiency and accuracy of the proposed methods in Section 5, and conclusions follow in Section 6.

2 STOCHASTIC MODAL DECOMPOSITION FOR STOCHASTIC STATIC
AND DYNAMIC ANALYSIS

2.1 Stochastic modal decomposition for stochastic dynamic analysis

Let (Θ,Ξ,) be a suitable probability space, where Θ denotes the space of elementary events, Ξ is a 𝜎-algebra defined on
Θ and  is a probability measure. In this article, we consider a linear stochastic structural dynamic equation

M(𝜃)ü(t, 𝜃) + C(𝜃)u̇(t, 𝜃) +K(𝜃)u(t, 𝜃) = F(t, 𝜃) (1)

defined on a deterministic domain ⊂ Rd with the physical dimension d = 1, 2, 3 and the boundary 𝜕, where u(t, 𝜃) ∈
Rn×nt represents the unknown stochastic solution, nt is the number of time steps, u(ti, 𝜃) ∈ Rn is the stochastic solution
at the time step ti, the symmetric and positive definite matrices M(𝜃),C(𝜃),K(𝜃) ∈ Rn×n, F(t, 𝜃) ∈ Rn×nt are the stochastic
mass matrix, the stochastic damping matrix, the stochastic stiffness matrix and the stochastic force vector, respectively,
which are obtained by the classical finite element discretization, and the initial values are given by u(0, 𝜃) = u0(𝜃) ∈ Rn

and u̇(0, 𝜃) = u1(𝜃) ∈ Rn. In this article, we only consider the Rayleigh damping, that is, C(𝜃) = 𝜍M(𝜃)M(𝜃) + 𝜍K(𝜃)K(𝜃),
where 𝜍M(𝜃) and 𝜍K(𝜃) are given (random) parameters. Hence, uncertainties of Equation (1) may be from stochastic
material properties, stochastic forces, stochastic initial values and stochastic parameters in Rayleigh damping.

Inspired by the classical modal decomposition method for deterministic structural dynamic analysis,18,43 we approx-
imate the stochastic solution u(t, 𝜃) of Equation (1) as

u(t, 𝜃) =
k∑

i=1
𝝋i(𝜃)qi(t, 𝜃) = 𝚽(𝜃)q(t, 𝜃), (2)

where 𝝋i(𝜃) ∈ Rn, i = 1, … , k are a set of stochastic vectors that have determined in some way, 𝚽(𝜃) =[
𝝋1(𝜃), … ,𝝋k(𝜃)

]
∈ Rn×k is a stochastic matrix (similar to the deterministic case, we name it as the stochastic subspace),

qi(t, 𝜃) ∈ R1×nt are unknown time-dependent coefficients that need to be solved, q(t, 𝜃) =
[
qT

1 (t, 𝜃), … , qT
k (t, 𝜃)

]T ∈ Rk×nt

is the coefficient matrix, k is the dimension of the stochastic subspace𝚽(𝜃). Substituting Equation (2) into Equation (1)
we reformulate the stochastic dynamic equation as

M(𝜃)𝚽(𝜃)q̈(t, 𝜃) + C(𝜃)𝚽(𝜃)q̇(t, 𝜃) +K(𝜃)𝚽(𝜃)q(t, 𝜃) = F(t, 𝜃), (3)

which only has k unknown time-dependent variables {qi(t, 𝜃)}k
i=1 if the stochastic subspace𝚽(𝜃) has been known, there-

fore we can solve it with less computational effort. To construct the stochastic subspace 𝚽(𝜃), the stochastic modes{
𝝋i(𝜃)

}k
i=1 are obtained by solving the following generalized stochastic eigenvalue equation

K(𝜃)𝝋(𝜃) = 𝜆(𝜃)M(𝜃)𝝋(𝜃), (4)

whose solution algorithm will be discussed in detail in Section 2.3. In this way, the stochastic matrix 𝚽(𝜃) meets
𝚽T(𝜃)𝚽(𝜃) = Ik ∈ Rk×k almost everywhere (a.e.), where Ik represents the identity matrix. Taking advantage of this and
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recalling Equation (2) we have qi(t, 𝜃) = 𝝋T
i (𝜃)u(t, 𝜃), which results in qi(t, 𝜃) still depending on the random input 𝜃.

However, as presented later, qi(t, 𝜃) can be solved cheaply via a one-dimensional stochastic problem benefiting from
the orthogonality of 𝚽(𝜃). Furthermore, the stochastic modes 𝝋i(𝜃) and 𝝋j(𝜃) corresponding to different stochastic
eigenvalues 𝜆i(𝜃) and 𝜆j(𝜃) (i.e., i ≠ j) meet the orthogonal conditions

𝝋
T
i (𝜃)M(𝜃)𝝋j(𝜃) = 0, 𝝋

T
i (𝜃)K(𝜃)𝝋j(𝜃) = 0 a.e., (5)

whose proof is found in the Appendix. In other words, although Equation (5) is dependent of the random input, the above
orthogonal conditions hold over the spatial domain for each realization of 𝜃 ∈ Θ, which thus allows the construction of
decoupled stochastic problems to solve the coefficients {qi(t, 𝜃)}k

i=1.
To solve unknown stochastic coefficients {qi(t, 𝜃)}k

i=1 in Equation (3), multiplying Equation (3) by𝚽T(𝜃) from left and
taking advantage of the orthogonality in Equation (5) we have

m(𝜃)q̈(t, 𝜃) + c(𝜃)q̇(t, 𝜃) + k(𝜃)q(t, 𝜃) = f(t, 𝜃) (6)

with the initial values q0(𝜃) = q(0, 𝜃) = 𝚽T(𝜃)u0(𝜃) ∈ Rk and q1(𝜃) = q̇(0, 𝜃) = 𝚽T(𝜃)u1(𝜃) ∈ Rk, where the diagonal
stochastic matrices m(𝜃), k(𝜃), c(𝜃) ∈ Rk×k and the stochastic vector f(t, 𝜃) ∈ Rk×nt are given by

m(𝜃) = 𝚽T(𝜃)M(𝜃)𝚽(𝜃) =
⎡
⎢
⎢
⎢⎣

m1(𝜃) 0
⋱

0 mk(𝜃)

⎤
⎥
⎥
⎥⎦
,

k(𝜃) = 𝚽T(𝜃)K(𝜃)𝚽(𝜃) =
⎡
⎢
⎢
⎢⎣

k1(𝜃) 0
⋱

0 kk(𝜃)

⎤
⎥
⎥
⎥⎦
,

c(𝜃) = 𝚽T(𝜃)C(𝜃)𝚽(𝜃) = 𝜍M(𝜃)m(𝜃) + 𝜍K(𝜃)k(𝜃),

f(t, 𝜃) = 𝚽T(𝜃)F(t, 𝜃) =
[
f1(t, 𝜃), … , fk(t, 𝜃)

]T
.

(7)

Since the matrices m(𝜃), k(𝜃) and c(𝜃) are diagonal, Equation (6) can be decoupled into k SDoF stochastic
dynamic equations

mi(𝜃)q̈i(t, 𝜃) + ci(𝜃)q̇i(t, 𝜃) + ki(𝜃)qi(t, 𝜃) = fi(t, 𝜃) (8)

for i = 1, … , k, which is further simplified as

q̈i(t, 𝜃) +𝜛i(t, 𝜃)q̇i(t, 𝜃) + 𝜆i(𝜃)qi(t, 𝜃) = hi(t, 𝜃) (9)

by a normalizing procedure

ki(𝜃)
mi(𝜃)

=
𝝋

T
i (𝜃)K(𝜃)𝝋i(𝜃)

𝝋
T
i (𝜃)M(𝜃)𝝋i(𝜃)

= 𝜆i(𝜃),

ci(𝜃)
mi(𝜃)

=
𝝋

T
i (𝜃)C(𝜃)𝝋i(𝜃)

𝝋
T
i (𝜃)M(𝜃)𝝋i(𝜃)

= 𝜍M(𝜃) + 𝜍K(𝜃)𝜆i(𝜃) ∶= 𝜛i(𝜃),

fi(t, 𝜃)
mi(𝜃)

=
𝝋

T
i (𝜃)F(t, 𝜃)

𝝋
T
i (𝜃)M(𝜃)𝝋i(𝜃)

∶= hi(t, 𝜃).

(10)

In this way, we transform the original stochastic dynamic equation into k SDoF stochastic dynamic equations (9) (i.e.,
one-dimensional second order stochastic ordinary differential equations), which can be solved by existing ODE solvers.44

In this article, we will efficiently solve Equation (9) by using a stochastic Newmark method in Section 3.2. Further,
Equation (1) degenerates into a deterministic dynamical equation for each realization of 𝜃 ∈ Θ. In this way, Equation (2)
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to Equation (10) are the same as the procedure of the classical modal decomposition method. Therefore, the existence
and well-posedness of the above stochastic solution can be inherited from the classical modal decomposition method in
a probabilistic sense.

2.2 Stochastic modal decomposition for stochastic static analysis

The above procedure for solving stochastic dynamic equations can be readily extended to stochastic static prob-
lems. Typically, it is unnecessary to solve deterministic static problems by modal decomposition-type methods due to
the well-established deterministic solvers. However, efficient stochastic solvers for stochastic static problems are still
worth studying. The stochastic modal decomposition method in this article provides a new approach for this purpose.
Specifically, we consider the following linear stochastic finite element equation

K(𝜃)u(𝜃) = F(𝜃) (11)

defined on a deterministic domain ⊂ Rd with the boundary 𝜕, where u(𝜃) ∈ Rn is the unknown stochastic solution,
the symmetric and positive definite stochastic stiffness matrix K(𝜃) ∈ Rn×n is the same as that given in Equation (1) and
F(𝜃) ∈ Rn is a time-independent stochastic force vector. Similar to Equation (2), we approximate the stochastic solution
u(𝜃) of Equation (11) by

u(𝜃) =
k∑

i=1
𝝋i(𝜃)qi(𝜃) = 𝚽(𝜃)q(𝜃), (12)

where the stochastic vectors 𝝋i(𝜃) ∈ Rn, i = 1, … , k and the stochastic subspace 𝚽(𝜃) ∈ Rn×k has the same form given
in Equation (2) and q(𝜃) =

[
q1(𝜃), … , qk(𝜃)

]T ∈ Rk are unknown time-independent stochastic coefficients that need to
be solved. To calculate the stochastic subspace 𝚽(𝜃), only a standard stochastic eigenvalue equation is required to solve
in this case

K(𝜃)𝝋(𝜃) = 𝜆(𝜃)𝝋(𝜃), (13)

whose solution algorithm is the same as that for Equation (4) and will be discussed in Section 2.3. Substituting
Equation (12) into Equation (11) and multiplying it by𝚽T(𝜃) from left we have

k(𝜃)q(𝜃) = f(𝜃), (14)

where the diagonal stochastic matrix k(𝜃) ∈ Rk×k and the stochastic vector f(𝜃) ∈ Rk are given in similar ways as in
Equation (7)

k(𝜃) = 𝚽T(𝜃)K(𝜃)𝚽(𝜃) =
⎡
⎢
⎢
⎢⎣

𝜆1(𝜃) 0
⋱

0 𝜆k(𝜃)

⎤
⎥
⎥
⎥⎦
, f(𝜃) = 𝚽T(𝜃)F(𝜃) =

⎡
⎢
⎢
⎢⎣

f1(𝜃)
⋮

fk(𝜃)

⎤
⎥
⎥
⎥⎦
. (15)

Thus, Equation (14) are also decoupled into k SDoF stochastic static equations

𝜆i(𝜃)qi(𝜃) = fi(𝜃) (16)

for i = 1, … , k, which are one-dimensional stochastic algebraic equations and will be solved by a nonintrusive method
in Section 3.3.

2.3 An iterative algorithm for solving stochastic eigenvalue equations

As discussed above, the key issues of both the stochastic static and dynamic problems are to solve standard/generalized
stochastic eigenvalue equations. In this section, we give an effective solution algorithm for this purpose. Here we only
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consider the generalized stochastic eigenvalue problem Equation (4), which degenerates to the standard stochastic eigen-
value problem Equation (13) by simply letting M(𝜃) be the identity matrix In. The authors have developed an efficient
reduced-order method to solve stochastic eigenvalue problems in Reference 42. In this section, we recall the idea and
apply it to solve the stochastic static and dynamic equations. To solve Equation (4), we approximate the ith stochastic
eigenvector 𝝋i(𝜃) by

𝝋i(𝜃) =
r∑

j=1
𝜂ij(𝜃)dj = D𝜼i(𝜃) (17)

for i = 1, 2, … , where dj ∈ Rn are deterministic vectors, D = [d1, … ,dr] ∈ Rn×r is a deterministic matrix, 𝜂ij(𝜃) ∈ R

are scalar random variables, 𝜼i(𝜃) = [𝜂i1(𝜃), … , 𝜂ir(𝜃)]T ∈ Rr represents the random variable vector, r is the number
of approximate terms, which requires to meet r ≥ k in order to provide a high-accuracy approximation. In practical
implementations, we simply let the number r = k.

Both the random variables
{
𝜂ij(𝜃)

}r
j=1 and the deterministic vectors

{
dj
}r

j=1 are not known a priori. According to
Reference 42, the vectors

{
dj
}r

j=1 are solved by the following alternating iteration

E
{
𝜆j(𝜃)K(𝜃)

}
dj = E

{
𝜆

2
j (𝜃)M(𝜃)

}
dj, (18a)

[
dT

j M(𝜃)dj

]
𝜆j(𝜃) = dT

j K(𝜃)dj, (18b)

where E{⋅} is the expectation operator. Equation (18a) is obtained taking advantage of the stochastic Galerkin method7,8

for a known random variable 𝜆j(𝜃) (or given an initial value). The vector dj can be solved efficiently by use of existing
deterministic eigenvalue solvers.45 For the modal decomposition analysis, we only need to solve the first few stochastic
eigenvectors and the inverse power iteration is adopted in this article. In numerical implementations, we make the vector
dj orthogonal to the obtained vectors {di}j−1

i=1, which achieves by Gram-Schmidt orthogonalization. With the known dj,
Equation (18b) is obtained by the classical Galerkin procedure. Note that it is a one-dimensional stochastic algebraic
equation that can be solved efficiently in a non-intrusive sampling way using ns random sample realizations. Similarly, the
deterministic matrix E

{
𝜆j(𝜃)K(𝜃)

}
= 1∕ns

∑ns
i=1𝜆j

(
𝜃

(i))K
(
𝜃

(i)) ∈ Rn×n can be estimated cheaply using ns random sample
realizations. We can obtain the couple

{
𝜆j(𝜃),dj

}
by repeatedly solving Equations (18a) and (18b) until convergence. The

random variable vector 𝜼i(𝜃) is then solved based on the known matrix D = [d1, … ,dr]. Substituting Equation (17) into
Equation (4) and multiplying Equation (4) by DT from left we have

[
DTK(𝜃)D

]
𝜼i(𝜃) = 𝜆i(𝜃)

[
DTM(𝜃)D

]
𝜼i(𝜃), (19)

which is a reduced-order stochastic eigenvalue equation of size r. We adopt the sampling method to solve Equation (19),
which has low computational effort thanking to its small size. In practice, we only need to solve the first few
stochastic eigenvectors

{
𝜼i(𝜃)

}r
i=1 of the reduced-order stochastic eigenproblem (19) to approximate the stochas-

tic eigenvectors
{
𝝋i(𝜃)

}k
i=1 of the original stochastic eigenproblem (4). It is noted that Equations (18a), (18b),

and (19) are weakly dependent on the stochastic dimension, thus the proposed method can be applied to very
high-dimensional stochastic problems. Details of numerical implementations of the above iterative process can be found
in Reference 42.

3 SOLUTION ALGORITHMS BASED ON STOCHASTIC MODAL
DECOMPOSITION

3.1 Stochastic modal decomposition-based stochastic static and dynamic analysis

Recalling the SDoF stochastic dynamic and static problems Equations (9) and (16), we can calculate the stochastic eigen-
values {𝜆i(𝜃)}k

i=1 via solving the reduced-order stochastic eigenproblem (19) and no additional computational effort is
required. According to Equation (17), the right-side terms of Equations (9) and (16) are calculated by
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ZHENG et al. 7 of 22

hi(t, 𝜃) =
𝜼

T
i (𝜃)D

TF(t, 𝜃)

𝜼
T
i (𝜃)D

TM(𝜃)D𝜼i(𝜃)
, (20a)

fi(𝜃) = 𝜼T
i (𝜃)D

TF(𝜃). (20b)

In this way, we reformulate the SDoF stochastic equations (9) and (16) based on the proposed stochastic eigenvalue
algorithm. There is no reformulation to the left sides and only slight modifications to the right-side terms are required.

3.2 Solution algorithm for SDoF stochastic dynamic equations

In this section, we extend the deterministic Newmark method to solve the SDoF stochastic dynamic equation (9). Accord-
ing to the classical Newmark method,18,46 the stochastic solution qi(t + Δt, 𝜃) at the time t + Δt is solved based on the
stochastic solution qi(t, 𝜃) at the time t and the time increment Δt, which corresponds to

si(𝜃)qi(t + Δt, 𝜃) = zi(t + Δt, 𝜃), (21)

where the random variables si(𝜃) = 𝛼1 + 𝛼2𝜛i(𝜃) + 𝜆i(𝜃) and zi(t + Δt, 𝜃) = hi(t + Δt, 𝜃) + 𝛼9,k(𝜃)qi(t, 𝜃) + 𝛼10,k(𝜃)q̇i(t, 𝜃) +
𝛼11,k(𝜃)q̈i(t, 𝜃), the parameters 𝛼1 = 1

𝛽Δt2 , 𝛼2 = 𝛾

𝛽Δt
, 𝛼3 = 1

𝛽Δt
, 𝛼4 = 1

2𝛽
− 1, 𝛼5 = 𝛾

𝛽

− 1, 𝛼6 = Δt
2

(
𝛾

𝛽

− 2
)

, 𝛼7 = Δt(1 − 𝛾), 𝛼8 =
𝛾Δt are inherited from the classical Newmark method. They are fixed for the given time discretization and the chosen
parameters 𝛾 , 𝛽. Also, the parameters 𝛼9,i(𝜃), 𝛼10,i(𝜃) and 𝛼11,i(𝜃) are random variables given by 𝛼9,i(𝜃) = 𝛼1 + 𝛼2𝜛i(𝜃),
𝛼10,i(𝜃) = 𝛼3 + 𝛼5𝜛i(𝜃) and 𝛼11,i(𝜃) = 𝛼4 + 𝛼6𝜛i(𝜃). We solve Equation (21) using a nonintrusive approach

q̂i(t + Δt, ̂𝜽) = ẑi(t + Δt, ̂𝜽)⊘ ŝi(̂𝜽) ∈ R
ns
, (22)

where ⊘ is the Hadamard division operator representing the element-wise division of two vectors. It is numerically
stable since si(𝜃) > 0 holds for all 𝜃 ∈ Θ. The random variable si(𝜃) is fixed for different time t, but the random variable
zi(t + Δt, 𝜃) needs to be updated for each time step. To solve the stochastic solution of the next time step, the first and
second derivatives q̈i(t + Δt, 𝜃) and q̇i(t + Δt, 𝜃) are calculated based on q̂i(t + Δt, ̂𝜽) in a similar way to the classical
Newmark method.

3.3 Solution algorithm for SDoF stochastic static equations

In this section, we focus on solving the SDoF stochastic static equation (16). Similar to Equation (22), it is easily solved
by using the proposed non-intrusive approach

q̂i(̂𝜽) = ̂fi(̂𝜽)⊘ ̂
𝜆i(̂𝜽) ∈ R

ns
, (23)

where the the random sample vectors are given bŷfi(̂𝜽) ∈ Rns and ̂𝜆i(̂𝜽) ∈ Rns . We can thus recover the stochastic solution
u(𝜃) in Equation (12) as

u(𝜃) = D𝚷(𝜃)q(𝜃) = D𝚿(𝜃), (24)

where𝚷(𝜃) =
[
𝜼1(𝜃), … , 𝜼k(𝜃)

]
∈ Rr×k is a random variable matrix and a new random variable vector is given by𝚿(𝜃) =

𝚷(𝜃)q(𝜃) ∈ Rr. In this way, we decouple the stochastic solution u(𝜃) into stochastic and deterministic spaces and all the
randomness is embedded into the random variable vector𝚿(𝜃), which is more convenient for uncertainty quantification.
Also, we can use a similar way to recover the stochastic solution of the stochastic dynamic equation

u(t, 𝜃) = D𝚷(𝜃)q(t, 𝜃) = D𝚿(t, 𝜃), (25)

where𝚿(t, 𝜃) = 𝚷(𝜃)q(t, 𝜃) is a time-dependent random variable vector.
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8 of 22 ZHENG et al.

Remark 1. Inspired by the decoupled representation Equations (24) and (25), we can also transform the
stochastic dynamic equation (1) into a reduced-order stochastic dynamic equation

[
D TM(𝜃)D

]
q̈(t, 𝜃) +

[
D TC(𝜃)D

]
q̇(t, 𝜃) +

[
D TK(𝜃)D

]
q(t, 𝜃) = D TF(t, 𝜃) (26)

by introducing u(t, 𝜃) = D q(t, 𝜃), and transform the stochastic static equation (11) into a reduced-order
stochastic static equation

[
D TK(𝜃)D

]
q(𝜃) = D TF(𝜃) (27)

by introducing u(𝜃) = D q(𝜃), where the matrix D is given in Equation (17), q(𝜃) and q(t, 𝜃) are the unknown
stochastic coefficients that need to be solved. We can solve both Equations (26) and (27) by sample-based
methods, that is, solving them for each sample realization 𝜃(i), i = 1, … ,ns, which is still cheap since the sizes
of the reduced-order equations are small in most cases. We remark that similar reduced-order equations have
been studied in References 47 and 48, but in which the deterministic matrix D is obtained by other iterative
algorithms and they are considered as a kind of deterministic reduced-order method. As a comparison, the
proposed methods in this article are kinds of stochastic reduced-order methods. In this article, by taking
advantage of the orthogonality, only SDoF stochastic dynamic/static equations require to be solved, while one
has to solve k degrees-of-freedom systems of stochastic linear dynamic/static equations for Equations (26)
and (27), and the size k has a significant influence on the computational effort.

4 ALGORITHM IMPLEMENTATION

In this section, we give the details of algorithm implementations of the proposed methods. The method for solving stochas-
tic dynamic equations is summarized in Algorithm 1. To generate the stochastic subspace, stochastic eigenvalues and
stochastic eigenvectors are solved in step 1 via the stochastic eigenvalue Algorithm 3. After that, the SDoF stochastic
dynamic equation (9) is solved by two loops, where the outer loop that is from step 2 to step 10 is used to solve the stochas-
tic solution qi(t, 𝜃) corresponding to the ith stochastic mode, and the inner loop that is from step 3 to step 9 is used to
solve the stochastic solution qi

(
tj, 𝜃

)
of the time step tj. For the inner loop, the random sample vectors ŝi(̂𝜽) ∈ Rns is pre-

computed once, but ẑi

(
tj, ̂𝜽

)
∈ Rns is calculated for each time step based on the results of previous time step. Also, the

first and second derivatives are required to be calculated in step 8. After the two loops, the stochastic solution u(t, 𝜃) is
reconstructed in step 11.

Further, the proposed method for solving stochastic static equations is listed in Algorithm 2. The stochastic eigenvalue
Algorithm 3 is still used in step 1 to generate the stochastic subspace. Only one loop that is from step 2 to step 5 is involved

Algorithm 1. Stochastic modal decomposition for solving stochastic dynamic equations

1: Solve stochastic eigenvalues and eigenvectors via the stochastic eigenvalue Algorithm 3
2: for i = 1,… , k do
3: Calculate ŝi

(
̂𝜽

)
∈ Rns

4: for j = 1,… ,nt do
5: Calculate the ith right-side term ̂hi

(
tj, ̂𝜽

)
∈ Rns by Equation (20a)

6: Calculate ẑi

(
tj, ̂𝜽

)
∈ Rns

7: Solve the stochastic solution q̂i

(
tj, ̂𝜽

)
∈ Rns at the time step tj by Equation (22)

8: Calculate the second and first derivatives ̂q̈i

(
tj, ̂𝜽

)
, ̂q̇i

(
tj, ̂𝜽

)
∈ Rns at the time step tj

9: end for
10: end for
11: Recover the stochastic solution u (t, 𝜃) using Equation (25)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7469 by T
echnische Inform

ationsbibliothek, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHENG et al. 9 of 22

Algorithm 2. Stochastic modal decomposition for solving stochastic static equations

1: Solve stochastic eigenvalues and eigenvectors via the stochastic eigenvalue Algorithm 3
2: for i = 1,… , k do
3: Calculate the ith right-side term ̂fi

(
̂𝜽

)
∈ Rns by Equation (20b)

4: Solve the stochastic solution q̂i

(
̂𝜽

)
∈ Rns by Equation (23)

5: end for
6: Recover the stochastic solution u (𝜃) using Equation (24)

Algorithm 3. Iterative algorithm for solving stochastic eigenvalue equations

1: Assemble stochastic matrices K (𝜃) and M (𝜃) (= In if Stochastic static problems)
2: while 𝜖ev,j > 𝜖ev do
3: Initialize the random sample vector ̂𝜆(0)j

(
̂𝜽

)
∈ Rns

4: while 𝜖d,m > 𝜖d do
5: Solve the deterministic vector d(m)j by the inverse power iteration

6: Solve the random variable ̂𝜆(m)j

(
̂𝜽

)
∈ Rns by Equation (18b)

7: Calculate the iterative error 𝜖d,m, m ← m + 1
8: end while
9: Update the matrix D =

[
D,dj

]
∈ Rn×j

10: Calculate the iterative error 𝜖ev,j, j ← j + 1
11: end while
12: Calculate reduced-order eigenpairs

{
𝜆i (𝜃) , 𝜼i (𝜃)

}k
i=1 by Equation (19)

13: Calculate the ith original stochastic eigenvector 𝝋i (𝜃) = D𝜼i (𝜃) via Equation (17)

to solve the stochastic solution qi(𝜃) corresponding to the ith stochastic mode. Compared to the stochastic dynamic case,
both the random sample vector ̂𝜆i(̂𝜽) ∈ Rns and̂fi(̂𝜽) ∈ Rns are calculated once. Thus the computational effort for solving
the stochastic solution q̂i(̂𝜽) ∈ Rns in step 4 is very low. Finally the stochastic solution u(t, 𝜃) is reconstructed in step 6.
Furthermore, we highlight both Algorithms 1 and 2 have good parallelizability since Equations (9) and (16) can be solved
in parallel for each stochastic mode i = 1, … , k. Their solution processes are completely independent.

Both Algorithms 1 and 2 require generating the stochastic subspace using the stochastic eigenvalue algorithm, which
has been studied in detail in Reference 42 and only a simplified version of which is adopted in this article. To clearly
implement the proposed methods, we review its implementation in Algorithm 3. The stochastic stiffness matrices are
assembled in step 1. It is noted that only a standard stochastic eigenvalue equation is solved for stochastic static problems
and it is achieved by letting the stochastic mass matrix M(𝜃) = In. There are two loops involved, where the outer loop that
is from step 2 to step 11 is used to solve all couples {𝜆i(𝜃),di}j

i=1 and the inner loop that is from step 4 to step 8 is used
to calculate each couple {𝜆i(𝜃),di}. The stopping criteria of the inner and outer loops are given by 𝜖d,m =

‖‖‖d(m)j − d(m−1)
j

‖‖‖
and 𝜖ev,j = E

{
𝜆

2
1(𝜃)

}
∕
∑j

i=1E
{
𝜆

2
i (𝜃)

}
, respectively.

5 NUMERICAL EXAMPLES

In this section, we test the proposed stochastic modal decomposition (SMD) methods with the aid of two numerical
examples. For both examples, the stopping criterion 𝜖d,m of the inner loop of Algorithm 3 is set as 1 × 10−3, and 𝜖ev,j of
the outer loop of Algorithm 3 is set as 1 × 10−6. The parameters in Rayleigh damping are simply set as 𝜍M(𝜃) = 10 rad/s
and 𝜍K(𝜃) = 0 s/rad, which is just a simple setting and the values can be changed to fit more realistic situations. Param-
eters of the stochastic Newmark method are 𝛽 = 0.25 and 𝛾 = 0.5. Reference solutions are obtained by directly solving
Equation (1) in the time domain using the standard MCS-based stochastic Newmark method. It has been verified that
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10 of 22 ZHENG et al.

1 × 104 MCS can reach converged reference solutions. Furthermore, to eliminate the influence caused by sampling pro-
cesses, the same 1 × 104 random sample realizations are used to the proposed SMD methods too. All examples are
performed on a desktop computer (sixteen cores, Intel Core i7, 2.50 GHz), but only one core is used for the numerical
implementation.

5.1 Example 1: A two-dimensional beam

In this example, we consider a two-dimensional beam shown in Figure 1A, which is subjected to a stochastic force f (t, 𝜃),
t ∈ [0,T]. Its finite element mesh is depicted in Figure 1B and includes np = 385 nodes and ne = 672 linear triangle ele-
ments. The stochastic solution is u(x, y, 𝜃) = 0 on the boundaryΓD. Geometric and material parameters are given by length
L = 8 m, width H = 1 m, duration T = 2 s, mass density 2.75 × 103kg ⋅m−3, Poisson’s ratio 0.3. The Young’s modulus is
modeled as a Gaussian random field with the mean value E0(x, y) = 60 GPa and the modified exponential-type covariance
function49,50

CEE(x1, y1; x2, y2) = 𝜎2
E exp

(
− |x1 − x2|

lx
−
|y1 − y2|

ly

)(
1 + |x1 − x2|

lx

)(
1 +

|y1 − y2|
ly

)
, (28)

where the standard deviation 𝜎E = 0.1E0(x, y) and the correlation lengths lx = 8 m and ly = 1 m. By use of the
Karhunen–Loève (KL) expansion,7,51,52 the random field E(x, y, 𝜃) is approximated by the following series expansion

E(x, y, 𝜃) = E0(x, y) +
rE∑

i=1
𝜉i(𝜃)

√
𝜅iEi(x, y), (29)

where rE is the number of truncated terms, {𝜉i(𝜃)}
rE
i=1 are independent standard Gaussian random variables and

{𝜅i,Ei(x, y)} are the eigenvalues and eigenvectors of the covariance function solved by the following homogeneous
Fredholm integral equation of the second kind

∫


CEE(x1, y1; x2, y2)Ei(x1, y1)dx1dy1 = 𝜅iEi(x2, y2). (30)

In practical implementation, to ensure that the Young’s modulus is positive, the random samples 𝜃

(i) such that
min

x,y,z∈
E
(

x, y, z, 𝜃(i)
)
≤ 1 × 10−3 GPa are dropped out.

Further, the force f (t, 𝜃) is also considered as a Gaussian random process with the covariance function Cff =
𝜎

2
f exp(|t1 − t2|∕lt) and its mean function f0(t) (kN) is

f0(t) = 100 − 100 exp(−3t)(1 − sin(10𝜋t)). (31)

(A)

(B)

F I G U R E 1 Geometric model of the beam and its finite element mesh. (A) Beam model. (B) Finite element mesh of the beam.
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ZHENG et al. 11 of 22

The stochastic force is thus approximated by KL expansion

f (t, 𝜃) = f0(t) +
rf∑

i=1
𝜂i(𝜃)

√
𝜒ifi(t), (32)

where rf is the number of the truncation and the eigenvalues and eigenvectors {𝜒i, fi(t)} are solved by an Equation (30)-like
integral equation.

5.1.1 Case 1: Dynamic analysis

This case considers the stochastic dynamic analysis of the given model. The time step Δt = 0.01 s is adopted for the time
discretization and the number of total time steps is 201. For both this case and the static analysis in the next section,
the truncated numbers rE in (29) and rf in Equation (32) are set as 10 and 20 stochastic dimensions are thus involved
in total. The iterative errors 𝜖ev,j in Algorithm 3 corresponding to different retained terms

{
dj
}

are shown in Figure 2.
Only 6 terms are retained to achieve the specified precision, which indicates the good convergence rate of the proposed
method. It is noted that since the stochastic eigenvalues

{
𝜆j(𝜃)

}6
j=1 are recomputed by Equation (19) and those used to

calculate the iterative error 𝜖ev,j are not the final solutions, 𝜖ev,j is only considered as an indicator error. In our experience,
it is a good checker for a high-accuracy approximation of the stochastic solution. Deterministic vectors

{
dj,y

}6
j=1 in the y

direction are seen from Figure 3. Similar to the deterministic case, more high-order modes are captured as the number
of retained terms increases, which provides high-accuracy deterministic bases to approximate the stochastic solution. To
verify the computational accuracy of Algorithm 3, we compare the probability density functions (PDFs) of the stochastic
eigenvalues solved by Equation (19) and MCS in Figure 4, which demonstrates that all stochastic eigenvalues obtained
by Algorithm 3 are well matched with that by MCS.

Based on the stochastic eigenvalues and the stochastic eigenvectors obtained by Algorithm 3, we solve the original
stochastic dynamic equation using Algorithm 1. To test the computational accuracy of the proposed method, PDFs of the
stochastic displacements of the point (x, y) = (8, 0.5) at the time t = 1 s in the y direction obtained by the proposed SMD
and MCS are compared in Figure 5, which shows that the proposed SMD has a good agreement with MCS. In Figure 5,
we also provide the PDF obtained by the reduced-order method (ROM) given in Remark 1, which also achieves a good
agreement with MCS. Hence, combining Algorithm 3 and the ROM in Remark 1 is also suggested to be a good choice to
solve stochastic dynamic problems. To show the computational efficiency, computational times of all three methods are
listed in Table 1. The times for calculating the deterministic matrix D ∈ R770×6, the stochastic matrix𝚷(𝜃) ∈ R6×6 and the
time-dependent stochastic vector q(t, 𝜃) ∈ R6×201 represent the computational costs of step 2 to step 11 of Algorithm 3,

1 2 3 4 5 6

10-6

10-3

100

F I G U R E 2 Iterative errors of different numbers of retained terms.
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12 of 22 ZHENG et al.
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-5
0
5

10-3

F I G U R E 3 Deterministic vectors
{

dj,y
}6

j=1 in the y direction.
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106

2

4

6

10-7

F I G U R E 4 PDFs of the stochastic eigenvalues {𝜆i(𝜃)}6
i=1.

2 2.5 3 3.5 4 4.5

10-3

0

500

1000

1500

F I G U R E 5 PDFs of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) at the time t = 1 s in the y direction obtained by
MCS, the proposed SMD and the ROM given in Remark 1, respectively.
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ZHENG et al. 13 of 22

T A B L E 1 Computational times for solving the components in Equations (25) and (26).

Time for D 𝚷(𝜽) q(t, 𝜽) Total time (s)

SMD 1.47 1.24 5.73 8.44

ROM 1.47 – 7.12 8.59

MCS – – – 1.03 × 104

0 0.5 1 1.5 2

-2

0

2

4

10-3

F I G U R E 6 Five sample realizations of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) in the y direction obtained
by MCS and the proposed SMD, respectively.

step 12 of Algorithm 3 and step 2 to step 10 of Algorithm 1, respectively. It is seen that both SMD and ROM are much more
efficient than MCS and a thousandfold speedup is achieved. The ROM does not involve the calculation of the stochastic
matrix𝚷(𝜃) since the deterministic matrix D is used to construct the reduced-order dynamic equation directly. SMD is a
bit faster than ROM in solving the time-dependent stochastic vector q(t, 𝜃) since only SDoF stochastic dynamic equations
are solved in SMD, while small systems of linear stochastic dynamic equations require to be solved in ROM. As the number
of retained terms {di} and/or the number of total time steps increase, the computational effort for solving q(t, 𝜃) by ROM
is slightly higher than that of SMD.

We highlight that the proposed method has very high accuracy even for each sample realization 𝜃

(i). To show this
point, five sample realizations of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) in the y direction
obtained by the proposed SMD and MCS are compared in Figure 6. For each sample realization and each time step, the
solution obtained by SMD well matches that by MCS. In this sense, the proposed SMD also provides a high-accuracy
reduced-order model for the original stochastic dynamic equation. As discussed in Remark 1, the ROM can also achieve
this purpose. We do not provide further numerical illustrations for this point here.

Further, it is seen from Figure 6 that the stochastic displacements decay quickly. To demonstrate the promising per-
formance of the proposed method, we consider a slowly decaying stochastic excitation by changing the mean function
f0(t) of the stochastic force f (t, 𝜃) in Equation (32) to f ∗0 (t)

f ∗0 (t) = 100 − 100 exp(−t)(1 − sin(30𝜋t)), (33)

which decays much more slowly than f0(t), as compared in Figure 7. It is noted that only the stochastic excitation
is changed here, so the above stochastic eigenvectors can be reused. In this way, only the right-side term hi(t, 𝜃) in
Equation (9) is recalculated, which is computationally cheap. Five sample realizations of the stochastic displacements
u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) in the y direction under the slowly decaying stochastic excitation obtained by MCS
and the proposed SMD are shown in Figure 8, which indicates that the proposed method is still very accurate for each
sample realization 𝜃(i).
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F I G U R E 7 Comparison of the mean functions f0(t) in Equation (31) and f ∗0 (t) in Equation (33).
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F I G U R E 8 Five sample realizations of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) in the y direction under the
slowly decaying stochastic excitation obtained by MCS and the proposed SMD, respectively.

5.1.2 Case 2: Static analysis

In this case, we consider the stochastic static analysis of the problem and a stochastic vertical force given by f (t = T, 𝜃)
is applied to the same position. To generate the stochastic subspace, a standard stochastic eigenvalue equation is solved
using Algorithm 3 and 6 terms

{
dj
}6

j=1 are retained to meet the specified precision. As shown in Figure 9, the PDFs of
the stochastic displacements u(x, y, 𝜃) of the point (x, y) = (8, 0.5) in the y direction obtained by both the proposed SMD
and ROM have comparable accuracy with that obtained by MCS, which indicates that the proposed two methods still
work well for stochastic static problems. Computational times of the three methods for this case are listed in Table 2,
which shows that both SMD and ROM are still much more efficient than MCS. SMD is very cheap due to only the
element-wise division operation of sample vectors involved, which weakly depends on the sample size. While the com-
putational cost for solving the reduced-order stochastic finite element equation arising in ROM linearly depends on the
sample size. The total cost of ROM is a bit cheaper than that of SMD since there is no cost spent on the solution of the
stochastic matrix𝚷(𝜃).
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F I G U R E 9 PDFs of the stochastic displacements u(x, y, 𝜃) of the point (x, y) = (8, 0.5) in the y direction obtained by MCS, the proposed
SMD and the ROM given in Remark 1, respectively.

T A B L E 2 Computational times for solving the components in Equations (24) and (27).

Time for D 𝚷(𝜽) q(𝜽) Total time (s)

SMD 1.44 1.28 0.12 2.84

ROM 1.44 – 0.68 2.12

MCS – – – 467.36

T A B L E 3 Computational times for solving the components in Equations (25) and (26) when the stochastic dimension is 100.

Time for D 𝚷(𝜽) q(t, 𝜽) Total time (s) MCS

r = 20 1.47 1.24 5.73 8.44 1.03 × 104

r = 100 1.81 1.39 7.66 10.86 1.14 × 104

5.1.3 Case 3: High-dimensional dynamic analysis

In this case, we perform the dynamic analysis with high stochastic dimensions. The truncated numbers rE in Equation (29)
and rf in Equation (32) are set as 50 and 100 stochastic dimensions are involved in total. Other parameters of the problem
are the same as that given in Section 5.1.1. 10 vectors

{
dj
}10

j=1 are retained by a generalized high-dimensional stochastic
eigenproblem. Computational times of the proposed SMD and MCS for this case are shown in Table 3. As a comparison,
corresponding computational costs for the low-dimensional case studied in Section 5.1.1 are also listed in Table 3. It is
seen that SMD is still much cheaper than MCS for high-dimensional stochastic cases. Compared to the low-dimensional
case, the computational times for solving all three components D, 𝚷(𝜃) and q(t, 𝜃) has only increased a little bit, which
indicates that the proposed SMD is weakly dependent on the stochastic dimension. In this way, the curse of dimensionality
arising in high-dimensional stochastic problems is avoided successfully. Further, to show the computational accuracy of
high-dimensional stochastic cases, PDFs of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) at the time
t = 1 s in the y direction obtained by MCS and SMD are compared in Figure 10, which demonstrates that the proposed
SMD still has high accuracy for high-dimensional stochastic cases. It is noted that the PDFs in Figure 10 are close to that
in Figure 5 since some last truncated terms in Equations (29) and (32) have little contributions to the randomness. We can
adopt some truncation criteria to choose the truncated numbers. In this article, we just use high-dimensional truncation
to test the proposed method. In the practical implementation, the proposed SMD performs the same calculation for both
low- and high-dimensional cases. If the high-dimensional truncation contributes a lot to the random fields, only more
vectors dj are retained to approximate the final stochastic solution.
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F I G U R E 10 PDFs of the stochastic displacements u(x, y, t, 𝜃) of the point (x, y) = (8, 0.5) at the time t = 1 s in the y direction obtained
by MCS and the proposed SMD when the stochastic dimension is 100.

(A) (B)

F I G U R E 11 Geometric model of the mechanical part and its finite element mesh. (A) Model of the mechanical part. (B) Finite
element mesh of the mechanical part.

5.2 Example 2: A three-dimensional mechanical part

This example considers a three-dimensional mechanical part shown in Figure 11A, where the Dirichlet boundary condi-
tion u(x, y, z, 𝜃) = 0 holds on the blue surface. An external force P is applied to the red surface along the x direction (see
Figure 11B) and its value is 500 kN∕m2 for t ∈ [0, t0] and 0 for t ∈ (t0, 1], where the duration t0 = 0.1 s. The finite element
mesh is depicted in Figure 11B (unit: cm) and it includes np = 6685 nodes, ne = 26,819 linear tetrahedral elements and
20,055 degrees of freedom in total.

The Young’s modulus is modeled as a Gaussian random field with the mean value E0(x, y) = 209 GPa and the
covariance function

CEE(x1, y1, z1; x2, y2, z2) = 𝜎2
E exp

(
− |x1 − x2|

lx
−
|y1 − y2|

ly
− |z1 − z2|

lz

)
, (34)
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5 10 15 20

10-6

10-3

100

F I G U R E 12 Iterative errors of different numbers of retained terms.

F I G U R E 13 The first six deterministic vectors
{

di,x
}6

i=1 in the x direction.

where the standard derivation 𝜎E = 0.1E0(x, y), the correlation lengths are lxi = max xi −min xi, xi = x, y, z. In the numer-
ical investigation, we adopt Equation (29)-like 10-term truncated KL expansion to approximate the Young’s modulus and
the random samples 𝜃(i) such that min

x,y,z∈
E
(

x, y, z, 𝜃(i)
)
≤ 1 × 10−3 GPa are dropped out to ensure that all realizations are

positive. Other material properties are given by mass density 7.80 × 103 kg ⋅m−3 and Poisson’s ratio 0.3.

5.2.1 Case 1: Dynamic analysis

In this case, the time step Δt = 0.01 s is adopted for the time discretization and 100 time steps are thus obtained. The
iterative errors 𝜖ev,j of different retained terms

{
dj
}

j are shown in Figure 12 and it requires 22 terms to meet the specified
precision. Compared to the case in Example 5.1.1, more terms are retained due to a more complex geometry involved. The
corresponding first six deterministic vectors

{
dj,x

}6
j=1 in the x direction are depicted in Figure 13. It is seen that several

local modes of the upper part are well captured.
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F I G U R E 14 PDFs of the stochastic displacements u(x, y, z, t, 𝜃) of the red point (shown in Figure 11B) at the time t = 0.5 s in the x
direction obtained by MCS, the proposed SMD, respectively.
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F I G U R E 15 Five sample realizations obtained by MCS and the proposed SMD, respectively.

PDFs of the stochastic displacements of the red point (shown in Figure 11B) at the time t = 0.5 s in the x direction
obtained by the proposed SMD and MCS are compared in Figure 14, which again verifies the high accuracy of the proposed
method. Since the external force disappears at the time t = 0.1 s, for the time t > 0.1 s, the problem can be considered as
a free stochastic vibration with the stochastic initial displacement and velocity given at the time t = 0.1 s. The stochastic
displacement at the time t = 0.5 s induced by the free vibration is related to the stochastic initial values and the stochastic
stiffness matrix, and their values may be positive or negative. Also, five sample realizations of the stochastic displacement
u(x, y, z, t, 𝜃) of the red point in the x direction obtained by the proposed SMD and MCS are compared in Figure 15. For
each sample realization, the results obtained by the two methods are in good accordance, thus using the proposed SMD
as a stochastic reduced-order method is still accurate enough. Computational times for this case are listed in the first line
of Table 4, which indicates that the total computational time of the proposed method is much less than that of MCS. Most
computational effort is used for the deterministic matrix D ∈ R20055×22 since solving large-scale deterministic eigenvalue
equations is time-consuming. The computational time for solving the stochastic matrix 𝚷(𝜃) ∈ R22×22 only depends on
the number of retained terms, thus it is cheap to be solved in both this example and the Example 5.1. The computational
cost for the time-dependent stochastic vector q(t, 𝜃) ∈ R22×101 is a bit more expensive in this case due to a larger number
of the retained terms, but it is still cheap enough compared to the total computational time.
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ZHENG et al. 19 of 22

T A B L E 4 Computational times for solving the components in Equations (25) and (26).

Time for D 𝚷(𝜽) q(t, 𝜽) Total time (s) MCS

Dynamic case 489.29 3.14 13.25 505.68 3.89 × 104

Static case 417.81 2.90 0.21 420.92 7.02 × 103

-0.018 -0.016 -0.014 -0.012 -0.01 -0.008
0

100

200

300

400

F I G U R E 16 PDFs of the stochastic displacements u(x, y, z, 𝜃) of the red point (shown in Figure 11B) in the x direction obtained by
MCS and the proposed SMD, respectively.

5.2.2 Case 2: Static analysis

The stochastic static analysis of the problem is performed in this case. The external force P is applied to the model in
the same way but its value is fixed as 500 kN∕m2. 20 terms

{
dj
}20

j=1 are obtained by solving the standard stochastic eigen-
value equation. PDFs of the stochastic displacement u(x, y, z, 𝜃) of the red point (shown in Figure 11B) in the x direction
obtained by the proposed SMD and MCS are depicted in Figure 16, which indicates that the proposed method still pro-
vides comparable accuracy to MCS. If a higher-accuracy stochastic solution is required in some cases, it can be achieved
by increasing the number of retained terms

{
dj
}

j. Computational times for this case are listed in the second line of Table 4.
Similar to the stochastic dynamic case, the most computational cost is used for the deterministic matrix D ∈ R20055×20.
In this case, the computational cost for each component in Table 4 is less than that for the dynamic case, especially for
solving the time-independent stochastic vector q(𝜃) ∈ R20, since only 20 time-independent stochastic algebraic equations
need to be solved.

6 CONCLUSIONS

In this article, we presented novel stochastic modal decomposition-based numerical schemes for solving both stochastic
static and dynamic problems. By an efficient reduced-order method, standard/generalized stochastic eigenvalue equations
are first solved to calculate stochastic eigenvectors and generate stochastic subspaces. The stochastic solutions of both
stochastic static and dynamic problems are then represented as stochastic linear combinations of bases of the stochastic
subspaces. Original stochastic static/dynamic equations are thus transformed into a set of SDoF stochastic static/dynamic
equations. The SDoF stochastic dynamic equations can be efficiently solved by a non-intrusive stochastic Newmark
approach and the SDoF stochastic static equations are solved by an element-wise division operation of random sample vec-
tors. The proposed methods can be applied to high-dimensional stochastic problems without any modification and much
extra computational effort, which has been verified via a numerical example of up to a hundred stochastic dimensions.
In these senses, the proposed methods provide effective ways and novel perspectives for structural static and dynamic
analysis involving uncertainties.
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APPENDIX

Proof of Equation (5)

Proof. Multiplying the stochastic eigenequation (4) corresponding to the stochastic mode𝝋j(𝜃) (and𝝋i(𝜃)) by
𝝋

T
i (𝜃) (and 𝝋T

j (𝜃)) from left we have

𝝋
T
i (𝜃)K(𝜃)𝝋j(𝜃) = 𝜆j(𝜃)𝝋T

i (𝜃)M(𝜃)𝝋j(𝜃), (A1)
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𝝋
T
j (𝜃)K(𝜃)𝝋i(𝜃) = 𝜆i(𝜃)𝝋T

j (𝜃)M(𝜃)𝝋i(𝜃). (A2)

Due to 𝝋T
i (𝜃)K(𝜃)𝝋j(𝜃) ≡ 𝝋T

j (𝜃)K(𝜃)𝝋i(𝜃) and 𝝋T
i (𝜃)M(𝜃)𝝋j(𝜃) ≡ 𝝋T

j (𝜃)M(𝜃)𝝋i(𝜃), subtracting Equation (A2)
from Equation (A1) we have

(
𝜆j(𝜃) − 𝜆i(𝜃)

)
𝝋

T
i (𝜃)M(𝜃)𝝋j(𝜃) = 0 a.e., (A3)

thus 𝝋
T
i (𝜃)M(𝜃)𝝋j(𝜃) = 0 holds due to the stochastic eigenvalues 𝜆j(𝜃) ≠ 𝜆i(𝜃). Further, substituting

𝝋
T
i (𝜃)M(𝜃)𝝋j(𝜃) = 0 into Equation (A1) we have 𝝋T

i (𝜃)K(𝜃)𝝋j(𝜃) = 0. ▪
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