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Abstract
Let 𝑝 be a prime number, let g(𝑥) = 𝑥𝑝2 + 𝑝𝑟+2𝑥𝑝2+1

with 𝑟 ∈ ℤ⩾0, and let 𝜙(𝑥) = 𝑥 + 𝑂(𝑥2) be the Böttcher
coordinate satisfying 𝜙(g(𝑥)) = 𝜙(𝑥)𝑝2 . Salerno and Sil-
verman conjectured that the radius of convergence of
𝜙−1(𝑥) in ℂ𝑝 is 𝑝−𝑝

−𝑟∕(𝑝−1). In this article, we confirm
that this conjecture is true by showing that it is a special
case of our more general result.

MSC 2020
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1 INTRODUCTION

Let 𝐾 be a field of characteristic 0 and let g(𝑥) = 𝑥𝑑 + 𝑂(𝑥𝑑+1) ∈ 𝐾⟦𝑥⟧ with 𝑑 ⩾ 2. Then there is
a unique Böttcher coordinate 𝜙(𝑥) = 𝑥 + 𝑂(𝑥2) ∈ 𝐾⟦𝑥⟧ satisfying 𝜙(g(𝑥)) = 𝜙(𝑥)𝑑. It can be seen
that

𝜙(𝑥) = lim
𝑛→∞

g𝑛(𝑥)1∕𝑑
𝑛
,

where the root is chosen such that g𝑛(𝑥)1∕𝑑𝑛 = 𝑥 + 𝑂(𝑥2) ∈ 𝐾⟦𝑥⟧.
Although the Böttcher coordinate over 𝐾 = ℂ has become a fundamental tool in the area

of complex dynamics (see, e.g., [6, chapter 9] for more details), its analogue over 𝐾 = ℂ𝑝 has
only been studied from the last decade. Ingram [4] used 𝑝-adic Böttcher coordinates to study
arboreal Galois representations. DeMarco et al. [1] used 𝑝-adic Böttcher coordinates to prove
a theorem of unlikely intersections. Salerno and Silverman [7] studied the integrality proper-
ties of some 𝑝-adic Böttcher coordinates. In particular, they proposed the following conjecture
[7, Conjecture 27].
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2 FU and NIE

Conjecture 1.1 (Salerno and Silverman). Let 𝑝 be a prime number, let

g(𝑥) = 𝑥𝑝
2
+ 𝑝𝑟+2𝑥𝑝

2+1

with 𝑟 ∈ ℤ⩾0, and let𝜙(𝑥) = 𝑥 + 𝑂(𝑥2) be the Böttcher coordinate satisfying𝜙(g(𝑥)) = 𝜙(𝑥)𝑝
2 . Then

the radius of convergence of 𝜙−1(𝑥) in ℂ𝑝 is 𝑝−𝑝
−𝑟∕(𝑝−1).

In this article, we will prove a generalization of Conjecture 1.1. Before stating our main results,
we first briefly explain how we approach the solution of this problem.
Let 𝑓𝑐(𝑧) = 𝑧𝑑 − 𝑐 for some 𝑐 ∈ ℂ𝑝 and let

𝜑𝑐(𝑧) = 𝑧

(
1 +

∞∑
𝑛=1

𝑎𝑛

𝑧𝑛𝑑

)
(1.1)

satisfy the functional equation

𝑓𝑐(𝜑𝑐(𝑧)) = 𝜑𝑐(𝑧
𝑑). (1.2)

Note that here 𝜑𝑐(𝑧) is the inverse of the Böttcher coordinate, not the Böttcher coordinate itself.
Let 𝑥 = 𝑧−𝑑, then (1.2) can be simplified as(

1 +

∞∑
𝑛=1

𝑎𝑛𝑥
𝑛

)𝑑

= 1 + 𝑐𝑥 +

∞∑
𝑛=1

𝑎𝑛𝑥
𝑛𝑑. (1.3)

Let g𝑐(𝑥) = 𝑥𝑑 + 𝑐𝑥𝑑+1 for some 𝑐 ∈ ℂ𝑝 and let

𝜙𝑐(𝑥) = 𝑥

(
1 +

∞∑
𝑛=1

𝑏𝑛𝑥
𝑛

)

satisfy the Böttcher equation

𝜙𝑐(g𝑐(𝑥)) = 𝜙𝑐(𝑥)
𝑑.

Then it can be simplified as(
1 +

∞∑
𝑛=1

𝑏𝑛𝑥
𝑛

)𝑑

= 1 + 𝑐𝑥 +

∞∑
𝑛=1

𝑏𝑛𝑥
𝑛𝑑(1 + 𝑐𝑥)𝑛+1. (1.4)

Instead of working on g(𝑥) and 𝜙(𝑥) directly, we will work on their generalizations g𝑐(𝑥) and
𝜙𝑐(𝑥). Therefore, we need to study (1.4) and, in particular, the properties of 𝑣𝑝(𝑏𝑛), where 𝑣𝑝 is
the 𝑝-adic valuation in ℂ𝑝. The key idea of our proofs is to consider (1.4) as a perturbation of
(1.3). First we show that under some conditions on 𝑑 and 𝑐, the values of 𝑣𝑝(𝑎𝑛) can be explic-
itly obtained. Then we show that under the same conditions, the perturbation is small enough
so that 𝑣𝑝(𝑏𝑛) = 𝑣𝑝(𝑎𝑛), which enables us to determine the radii of convergence of 𝜙𝑐(𝑥) and
𝜙−1𝑐 (𝑥).

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13021 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [23/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 3

The conditions mentioned above can be summarized as follows. The parameters 𝑝, 𝑁, 𝑑, and
𝑐 will be used repeatedly throughout the whole article.

Condition A. Assume that 𝑝 is a prime number, 𝑁 = 0, 𝑑 is amultiple of 𝑝, and

𝑣𝑝(𝑐) < 𝑣𝑝(𝑑) +
𝑣𝑝((𝑑 − 1)!)

𝑑 − 1
. (1.5)

Condition B. Assume that 𝑝 is a prime number, 𝑁 ⩾ 1 is an integer, 𝑑 is a power of 𝑝, and

𝑁𝑣𝑝(𝑑) +
𝑣𝑝((𝑑 − 1)!)

𝑑 − 1
< 𝑣𝑝(𝑐) < (𝑁 + 1)𝑣𝑝(𝑑) +

𝑣𝑝((𝑑 − 1)!)

𝑑 − 1
. (1.6)

Now we are ready to give the main theorems of this article.

Theorem 1.2. Let 𝑝,𝑁, 𝑑, and 𝑐 satisfy Condition A or B. Then the maximal convergent open disks
of 𝜑𝑐(𝑧) and 𝜑−1𝑐 (𝑧) are both 𝐷(∞, 𝑟

1∕𝑑

𝑁
) = {𝑧 ∈ ℂ𝑝 ∶ |𝑧|𝑝 > 𝑟1∕𝑑𝑁

}, where

𝑟𝑁 =
(|𝑐∕𝑑𝑁+1|𝑝𝑝1∕(𝑝−1))1∕𝑑𝑁 > 1. (1.7)

Moreover, 𝜑𝑐(𝑧) gives a bijective isometry from 𝐷(∞, 𝑟
1∕𝑑

𝑁
) onto itself.

Theorem 1.3. Let 𝑝,𝑁, 𝑑, and 𝑐 satisfy Condition A or B. Then the maximal convergent open disks
of 𝜙𝑐(𝑥) and 𝜙−1𝑐 (𝑥) are both 𝐷(0, 𝑟

−1
𝑁
) = {𝑥 ∈ ℂ𝑝 ∶ |𝑥|𝑝 < 𝑟−1𝑁 }, where 𝑟𝑁 is the same value given

by (1.7). Moreover, 𝜙𝑐(𝑥) gives a bijective isometry from 𝐷(0, 𝑟−1
𝑁
) onto itself.

In Conjecture 1.1, we have 𝑑 = 𝑝2 and 𝑐 = 𝑝𝑟+2 with 𝑟 ∈ ℤ⩾0, so we can take 𝑁 = ⌊(𝑟 + 1)∕2⌋
to satisfy Condition A or B. Then by Theorem 1.3, the radius of convergence of 𝜙−1(𝑥) is

𝑟−1𝑁 =
(|𝑐∕𝑑𝑁+1|𝑝𝑝1∕(𝑝−1))−1∕𝑑𝑁 = 𝑝−𝑝−𝑟∕(𝑝−1),

as conjectured by Salerno and Silverman.

Corollary 1.4. Conjecture 1.1 is true.

We remark that the technical Conditions A and B are crucial for Theorems 1.2 and 1.3.

Remark 1.5. If 𝑝 = 𝑑 = 𝑐 = 2, then 𝑓2(𝑧) = 𝑧2 − 2 is a Chebyshev map. Now 𝜑2(𝑧) = 𝑧 + 𝑧−1 and

𝜑−12 (𝑧) = 𝑧

(
1 −

∞∑
𝑛=1

𝐶𝑛

𝑧2𝑛

)
, where 𝐶𝑛 =

(2𝑛 − 2)!

(𝑛 − 1)!𝑛!

are known as the Catalan numbers. Their maximal convergent open disks are 𝐷(∞, 0) and
𝐷(∞, 1), respectively. On the other hand, the maximal convergent open disks of 𝜑𝑐(𝑧) and 𝜑−1𝑐 (𝑧)
in Theorem 1.2 are always identical.
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4 FU and NIE

Remark 1.6. If 𝑑 = 𝑝 and 𝑐 is a multiple of 𝑝, then by [7, Theorem 4], both 𝜙𝑐(𝑥) and 𝜙−1𝑐 (𝑥) have
integral coefficients so that they are convergent on the open unit disk 𝐷(0, 1). On the other hand,
𝐷(0, 𝑟−1

𝑁
) in Theorem 1.3 is always strictly smaller than 𝐷(0, 1).

Theorem 1.2 can also be interpreted in a different way. For any 𝑐 ∈ ℂ𝑝, let

𝐵(𝑐) = {𝑧 ∈ ℂ𝑝 ∶ 𝑓
◦𝑛
𝑐 (𝑧) → ∞ as 𝑛 → ∞}

be the basin of infinity of 𝑓𝑐(𝑧). We say that 𝐵(𝑐1) and 𝐵(𝑐2) are analytically conjugate if there is a
bijective analytic map Φ𝑐1,𝑐2 ∶ 𝐵(𝑐1) → 𝐵(𝑐2) whose inverse is also analytic such that

𝑓𝑐2(Φ𝑐1,𝑐2 (𝑧)) = Φ𝑐1,𝑐2 (𝑓𝑐1(𝑧)). (1.8)

We know that 𝑓𝑐(𝑧) has good reduction if and only if

𝑣𝑝(𝑐) ⩾ 0 ⇔ 𝐵(𝑐) = 𝐷(∞, 1) ⇔ 0 ∉ 𝐵(𝑐),

so Theorem 1.2 tells us 𝜑𝑐(𝑧) does not give an analytic conjugacy between 𝐵(0) and 𝐵(𝑐). Indeed,
we are able to prove the following more general result.

Theorem 1.7. Let 𝑝,𝑁, 𝑑, and 𝑐 = 𝑐2 satisfy Condition A or B. Let 𝑐1 satisfy 𝑣𝑝(𝑐1) ⩾ 0 and

𝑣𝑝(𝑐
𝑑−1
1

− 𝑐𝑑−1
2

) = 𝑣𝑝(𝑐
𝑑−1
2

). (1.9)

Then 𝐵(𝑐1) and 𝐵(𝑐2) are not analytically conjugate.

We remark that Theorem 1.7 is inspired by the work of DeMarco and Pilgrim [2],
although in this article we only consider the most basic cases. A discussion for the ana-
lytic conjugacy between the basins of infinity of two tame polynomials can be found
in [5].
The structure of this article is as follows: In Section 2, we prove some preliminary lemmas that

will be needed later. In Sections 3, 4, and 5, we prove Theorems 1.2, 1.3, and 1.7, respectively.

2 SOME PRELIMINARY LEMMAS

In this section, we prove some preliminary lemmas that will be needed later.

Lemma 2.1. We have (𝑑 − 1)!𝑘𝑛𝑘 (𝑑𝑘!)𝑛𝑘𝑛𝑘! divides (𝑑𝑘𝑛𝑘)! for any 𝑑, 𝑘 ⩾ 1 and 𝑛𝑘 ⩾ 0.

Proof. We have

(𝑑 − 1)!𝑘𝑛𝑘 (𝑑𝑘!)𝑛𝑘𝑛𝑘! =

𝑛𝑘∏
𝑖=1

(𝑖𝑑𝑘)(𝑑 − 1)!𝑘(𝑘 − 1)!
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BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 5

divides

𝑛𝑘∏
𝑖=1

(
(𝑖𝑑𝑘)

𝑖𝑑𝑘−1∏
𝑗=(𝑖−1)𝑑𝑘+1

𝑗

)
= (𝑑𝑘𝑛𝑘)!.

□

Lemma 2.2 (Legendre). Let 𝑠𝑝(𝑛) be the sum of the digits in the base-𝑝 expansion of 𝑛. Then

𝑣𝑝(𝑛!) =
𝑛 − 𝑠𝑝(𝑛)

𝑝 − 1
.

Lemma 2.3. Let 𝑝 be a prime number and let 𝑑 be a power of 𝑝. If 𝑛0 + 𝑛1𝑑 = 𝑚0 + 𝑚1𝑑 for some
0 ⩽ 𝑛0 < 𝑑 and 𝑛1,𝑚0,𝑚1 ⩾ 0, then

𝑣𝑝

(
𝑚0!𝑚1!

𝑛0!𝑛1!

)
⩽ (𝑛1 − 𝑚1)𝑣𝑝(𝑑!).

Proof. By Lemma 2.2, we have

Left-hand side =
(𝑚0 − 𝑛0 + 𝑚1 − 𝑛1) − (𝑠𝑝(𝑚0) − 𝑠𝑝(𝑛0) + 𝑠𝑝(𝑚1) − 𝑠𝑝(𝑛1))

𝑝 − 1

and

Right-hand side =
(𝑛1 − 𝑚1)(𝑑 − 1)

𝑝 − 1
=
𝑚0 − 𝑛0 + 𝑚1 − 𝑛1

𝑝 − 1
.

As 𝑑 is a power of 𝑝, the base-𝑝 and base-𝑑 expansions are compatible. Hence,

(𝑝 − 1)(Right-hand side − Left-hand side) = 𝑠𝑝(𝑚0) − 𝑠𝑝(𝑛0) + 𝑠𝑝(𝑚1) − 𝑠𝑝(𝑛1)

= 𝑠𝑝(𝑚0 − 𝑛0) + 𝑠𝑝(𝑚1) − 𝑠𝑝(𝑛1)

= 𝑠𝑝((𝑛1 − 𝑚1)𝑑) + 𝑠𝑝(𝑚1) − 𝑠𝑝(𝑛1)

= 𝑠𝑝(𝑛1 − 𝑚1) + 𝑠𝑝(𝑚1) − 𝑠𝑝(𝑛1) ⩾ 0.

□

Lemma 2.4. Let 𝑝 be a prime number, let 𝑑 be a power of 𝑝, and let 𝑁 be a nonnegative integer. If
𝑛 ⩾ 1 can be decomposed as

𝑛 =

𝑁∑
𝑘=0

𝑛𝑘𝑑
𝑘 with 0 ⩽ 𝑛𝑘 < 𝑑 for any 0 ⩽ 𝑘 < 𝑁 and 𝑛𝑁 ⩾ 0,
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6 FU and NIE

then

𝑣𝑝(𝑛!) =

𝑁∑
𝑘=0

𝑣𝑝(𝑑
𝑘!𝑛𝑘𝑛𝑘!).

Proof. As 𝑑 is a power of 𝑝, the base-𝑝 and base-𝑑 expansions are compatible. Hence, by
Lemma 2.2, we have

𝑣𝑝(𝑛!) =
𝑛 − 𝑠𝑝(𝑛)

𝑝 − 1
=

𝑁∑
𝑘=0

𝑛𝑘𝑑
𝑘 − 𝑠𝑝(𝑛𝑘𝑑

𝑘)

𝑝 − 1

and

𝑁∑
𝑘=0

𝑣𝑝(𝑑
𝑘!𝑛𝑘𝑛𝑘!) =

𝑁∑
𝑘=0

𝑛𝑘(𝑑
𝑘 − 1) + 𝑛𝑘 − 𝑠𝑝(𝑛𝑘)

𝑝 − 1
=

𝑁∑
𝑘=0

𝑛𝑘𝑑
𝑘 − 𝑠𝑝(𝑛𝑘𝑑

𝑘)

𝑝 − 1
,

which are equal. □

Lemma 2.5. Let 𝑑 ∈ ℤ∖{0} and let

𝐹(𝑧) = 𝑧

(
1 +

∞∑
𝑛=1

𝛼𝑛

𝑧𝑛𝑑

)

be a formal power series. Then

𝐹−1(𝑧) = 𝑧

(
1 +

∞∑
𝑛=1

𝛽𝑛

𝑧𝑛𝑑

)
,

where

𝛽𝑛 = −
1

𝑛𝑑 − 1

∑
∑𝑛
𝑘=1 𝑘𝑚𝑘=𝑛

((
𝑛𝑑 − 1∑𝑛
𝑘=1 𝑚𝑘

)( ∑𝑛
𝑘=1 𝑚𝑘

𝑚1,… ,𝑚𝑛

) 𝑛∏
𝑘=1

𝛼
𝑚𝑘
𝑘

)
.

Proof. Let [𝑧𝑛]𝐹−1(𝑧) be the coefficient of 𝑧𝑛 in 𝐹−1(𝑧). By the Lagrange–Bürmann formula,

𝛽𝑛 = [𝑧
−𝑛𝑑+1]𝐹−1(𝑧) =

1

−𝑛𝑑 + 1
[𝑧−𝑛𝑑]

(
𝑧

𝐹(𝑧)

)−𝑛𝑑+1

= −
1

𝑛𝑑 − 1
[𝑧−𝑛𝑑]

(
1 +

∞∑
𝑘=1

𝛼𝑘

𝑧𝑘𝑑

)𝑛𝑑−1

.

Then we expand this power series to get the result. □

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13021 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [23/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 7

3 PROOF OF THEOREM 1.2

In this section, we focus on the properties of 𝑎𝑛 and give the proof of Theorem 1.2. First we show
that we can compute 𝑎𝑛 inductively from (1.3).

Proposition 3.1. The sequence 𝑎𝑛 satisfies the following inductive relations.

(1) For any 1 ⩽ 𝑛 < 𝑑, we have 𝑎𝑛 =
(1∕𝑑
𝑛

)
𝑐𝑛, where

(
1∕𝑑

𝑛

)
=

∏𝑛−1
𝑗=0 (1∕𝑑 − 𝑗)

𝑛!
.

(2) For any 𝑑𝑖 ⩽ 𝑛 < 𝑑𝑖+1 with 𝑖 ⩾ 1, we have

𝑎𝑛 =
∑

𝑛0+𝑑
∑𝑑𝑖−1
𝑘=1 𝑘𝑛𝑘=𝑛

𝛼(𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1),

where the summation is taken over all nonnegative 𝑑𝑖-tuples (𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1) such that

𝑛0 + 𝑑

𝑑𝑖−1∑
𝑘=1

𝑘𝑛𝑘 = 𝑛 (3.1)

and

𝛼(𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1) =
𝑐𝑛0

𝑑𝑛0𝑛0!

𝑑𝑖−1∏
𝑘=1

𝑎
𝑛𝑘
𝑘

𝑑𝑛𝑘𝑛𝑘!

∑𝑑𝑖−1
𝑘=0 𝑛𝑘−1∏
𝑗=0

(1 − 𝑗𝑑).

Proof. Let (
1 +

∞∑
𝑛=1

𝑎′𝑛𝑥
𝑛

)𝑑

= 1 + 𝑐𝑥, (3.2)

then

1 +

∞∑
𝑛=1

𝑎′𝑛𝑥
𝑛 = (1 + 𝑐𝑥)1∕𝑑 = 1 +

∞∑
𝑛=1

(
1∕𝑑

𝑛

)
𝑐𝑛𝑥𝑛

and 𝑎′𝑛 =
(1∕𝑑
𝑛

)
𝑐𝑛 for any 𝑛 ⩾ 1. Considering the difference of (1.3) and (3.2), we get

(
∞∑
𝑛=1

(𝑎𝑛 − 𝑎
′
𝑛)𝑥

𝑛

)⎛⎜⎜⎝
𝑑−1∑
𝑖=0

(
1 +

∞∑
𝑛=1

𝑎𝑛𝑥
𝑛

)𝑖(
1 +

∞∑
𝑛=1

𝑎′𝑛𝑥
𝑛

)𝑑−1−𝑖⎞⎟⎟⎠ =
∞∑
𝑛=1

𝑎𝑛𝑥
𝑛𝑑.
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8 FU and NIE

Comparing the degrees on both sides, we get 𝑎𝑛 = 𝑎′𝑛 =
(1∕𝑑
𝑛

)
𝑐𝑛 for any 1 ⩽ 𝑛 < 𝑑. Moreover, let

(
1 +

∞∑
𝑛=1

𝑎′′𝑛 𝑥
𝑛

)𝑑

= 1 + 𝑐𝑥 +

𝑑𝑖−1∑
𝑛=1

𝑎𝑛𝑥
𝑛𝑑,

then

1 +

∞∑
𝑛=1

𝑎′′𝑛 𝑥
𝑛 = 1 +

∞∑
𝑗=1

(
1∕𝑑

𝑗

)⎛⎜⎜⎝𝑐𝑥 +
𝑑𝑖−1∑
𝑛=1

𝑎𝑛𝑥
𝑛𝑑
⎞⎟⎟⎠
𝑗

.

By the same reasoning as above, for any 𝑑𝑖 ⩽ 𝑛 < 𝑑𝑖+1, we have

𝑎𝑛 = 𝑎
′′
𝑛 =

∑
𝑛0+𝑑

∑𝑑𝑖−1
𝑘=1 𝑘𝑛𝑘=𝑛

(
1∕𝑑∑𝑑𝑖−1
𝑘=0 𝑛𝑘

)( ∑𝑑𝑖−1
𝑘=0 𝑛𝑘

𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1

)
𝑐𝑛0

𝑑𝑖−1∏
𝑘=1

𝑎
𝑛𝑘
𝑘

=
∑

𝑛0+𝑑
∑𝑑𝑖−1
𝑘=1 𝑘𝑛𝑘=𝑛

⎛⎜⎜⎜⎝
𝑐𝑛0

𝑑𝑛0𝑛0!

𝑑𝑖−1∏
𝑘=1

𝑎
𝑛𝑘
𝑘

𝑑𝑛𝑘𝑛𝑘!

∑𝑑𝑖−1
𝑘=0 𝑛𝑘−1∏
𝑗=0

(1 − 𝑗𝑑)

⎞⎟⎟⎟⎠. □

An immediate corollary of Proposition 3.1 is that 𝑎𝑛 can be considered as a polynomial of degree
𝑛 in 𝑐. This corollary, however, will not be used in the sequel.More results of this type can be found
in [3, section 2.4.1].

Corollary 3.2. For any 𝑛 ⩾ 1, we have 𝑎𝑛 ∈
1

𝑛!
ℤ[𝑐∕𝑑] with the leading term

(1∕𝑑
𝑛

)
𝑐𝑛.

Proof. By Proposition 3.1, the assertion is true for any 1 ⩽ 𝑛 < 𝑑. Now we assume that it is true
for any 1 ⩽ 𝑛 < 𝑑𝑖 and use induction to show that it is also true for any 𝑑𝑖 ⩽ 𝑛 < 𝑑𝑖+1. For each
(𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1) such that (3.1) holds and 𝑛0 ≠ 𝑛, we have

deg𝑐𝛼(𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1) = 𝑛0 +
𝑑𝑖−1∑
𝑘=1

𝑘𝑛𝑘 < 𝑛.

Hence, the leading termof𝑎𝑛 is given by𝛼(𝑛, 0, … , 0) =
(1∕𝑑
𝑛

)
𝑐𝑛. Also, by the inductionhypothesis,

we know that

𝛼(𝑛0, 𝑛1, … , 𝑛𝑑𝑖−1) ∈
1

𝑛0!

𝑑𝑖−1∏
𝑘=1

1

(𝑑𝑘!)𝑛𝑘𝑛𝑘!
ℤ[𝑐∕𝑑]

⊆
1

𝑛0!

𝑑𝑖−1∏
𝑘=1

1

(𝑑𝑘𝑛𝑘)!
ℤ[𝑐∕𝑑] by Lemma 2.1,

⊆
1

𝑛!
ℤ[𝑐∕𝑑] by (3.1).
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BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 9

This completes the proof. □

The following proposition is the most important step of this article. It shows that under
Condition A or B, we are able to obtain all values of 𝑣𝑝(𝑎𝑛) simultaneously rather than
successively.

Proposition 3.3. Let 𝑝,𝑁, 𝑑, and 𝑐 satisfy Condition A or B. Then

(1) for any 0 ⩽ 𝑘 ⩽ 𝑁, we have

𝑣𝑝(𝑎𝑑𝑘 ) = 𝑣𝑝

(
𝑐

𝑑𝑘+1

)
(2) if 𝑛 ⩾ 1 can be decomposed as

𝑛 =

𝑁∑
𝑘=0

𝑛𝑘𝑑
𝑘 with 0 ⩽ 𝑛𝑘 < 𝑑 for any 0 ⩽ 𝑘 < 𝑁 and 𝑛𝑁 ⩾ 0, (3.3)

then

𝑣𝑝(𝑎𝑛) =

𝑁∑
𝑘=0

𝑣𝑝

(
𝑎
𝑛𝑘
𝑑𝑘

𝑛𝑘!

)

(3) consequently, for any 𝑛 ⩾ 1, we have

𝑣𝑝(𝑎𝑛) = 𝑣𝑝

(
𝑐𝑛

𝑑𝑛𝑛!

)
−

𝑁∑
𝑘=1

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝((𝑑 − 1)!)

)⌊
𝑛

𝑑𝑘

⌋
.

Proof. By Proposition 3.1, the assertions are true for any 1 ⩽ 𝑛 < 𝑑. Now we assume that they are
true for any 1 ⩽ 𝑛 < 𝑑𝑖 and use induction to show that they are also true for any 𝑑𝑖 ⩽ 𝑛 < 𝑑𝑖+1.
We know that each partition 𝜎 of 𝑛 with a particular form gives a summand 𝛼(𝜎) of 𝑎𝑛. We call

(3.3) the canonical partition 𝜎can of 𝑛. We claim that 𝑣𝑝(𝛼(𝜎)) > 𝑣𝑝(𝛼(𝜎can)) unless 𝜎 = 𝜎can.
Let 𝜎 be an arbitrary partition 𝑛 = 𝑚0 + 𝑑

∑𝑑𝑖−1
𝑗=1 𝑗𝑚𝑗 and, for each 𝑗, let 𝑗 =

∑𝑁
𝑘=0 𝑚𝑗,𝑘𝑑

𝑘 be
the canonical partition of 𝑗. Then we can produce another partition 𝜎0 that is given by

𝑛 = 𝑚0 + 𝑑

𝑑𝑖−1∑
𝑗=1

𝑗𝑚𝑗 = 𝑚0 + 𝑑

𝑑𝑖−1∑
𝑗=1

(
𝑁∑
𝑘=0

𝑚𝑗,𝑘𝑑
𝑘

)
𝑚𝑗

= 𝑚0 + 𝑑

𝑁∑
𝑘=0

⎛⎜⎜⎝𝑑𝑘
𝑑𝑖−1∑
𝑗=1

𝑚𝑗𝑚𝑗,𝑘

⎞⎟⎟⎠ = 𝑚0 + 𝑑
𝑁∑
𝑘=0

𝑑𝑘𝑀𝑑𝑘 ,

where

𝑀𝑑𝑘 =

𝑑𝑖−1∑
𝑗=1

𝑚𝑗𝑚𝑗,𝑘. (3.4)
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10 FU and NIE

Now

𝑣𝑝(𝛼(𝜎)) = 𝑣𝑝

⎛⎜⎜⎝ 𝑐𝑚0

𝑑𝑚0𝑚0!

𝑑𝑖−1∏
𝑗=1

𝑎
𝑚𝑗
𝑗

𝑑𝑚𝑗𝑚𝑗!

⎞⎟⎟⎠ as 𝑝 ∣ 𝑑,
= 𝑣𝑝

(
𝑐𝑚0

𝑑𝑚0𝑚0!

)
+

𝑑𝑖−1∑
𝑗=1

⎛⎜⎜⎝𝑚𝑗
𝑁∑
𝑘=0

𝑣𝑝

⎛⎜⎜⎝
𝑎
𝑚𝑗,𝑘

𝑑𝑘

𝑚𝑗,𝑘!

⎞⎟⎟⎠ − 𝑣𝑝(𝑑𝑚𝑗𝑚𝑗!)
⎞⎟⎟⎠ by induction,

= 𝑣𝑝

(
𝑐𝑚0

𝑑𝑚0𝑚0!

)
+

𝑁∑
𝑘=0

𝑣𝑝(𝑎
𝑀
𝑑𝑘

𝑑𝑘
) −

𝑁∑
𝑘=0

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑚𝑗,𝑘!
𝑚𝑗 ) −

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑑
𝑚𝑗𝑚𝑗!)

and

𝑣𝑝(𝛼(𝜎0)) = 𝑣𝑝

(
𝑐𝑚0

𝑑𝑚0𝑚0!

)
+

𝑁∑
𝑘=0

𝑣𝑝(𝑎
𝑀
𝑑𝑘

𝑑𝑘
) −

𝑁∑
𝑘=0

𝑣𝑝(𝑑
𝑀
𝑑𝑘𝑀𝑑𝑘 !).

If 𝜎 ≠ 𝜎0, then there is some 𝑗 ∉ {𝑑𝑘 ∶ 0 ⩽ 𝑘 ⩽ 𝑁} such that𝑚𝑗 ≠ 0. Therefore,

𝑣𝑝(𝛼(𝜎)) − 𝑣𝑝(𝛼(𝜎0)) =

𝑁∑
𝑘=0

𝑣𝑝(𝑑
𝑀
𝑑𝑘𝑀𝑑𝑘 !) −

𝑁∑
𝑘=0

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑚𝑗,𝑘!
𝑚𝑗 ) −

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑑
𝑚𝑗𝑚𝑗!)

⩾

𝑁∑
𝑘=0

𝑣𝑝(𝑑
𝑀
𝑑𝑘𝑀𝑑𝑘 !) −

𝑁∑
𝑘=0

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑚𝑗,𝑘!
𝑚𝑗 ) −

𝑑𝑖−1∑
𝑗=1

𝑣𝑝(𝑑
𝑚𝑗 ) −

𝑁∑
𝑘=0

𝑑𝑖−1∑
𝑗=1

𝑚𝑗,𝑘≠0

𝑣𝑝(𝑚𝑗!)

=

𝑑𝑖−1∑
𝑗=1

(
𝑁∑
𝑘=0

𝑚𝑗,𝑘 − 1

)
𝑚𝑗𝑣𝑝(𝑑) +

𝑁∑
𝑘=0

⎛⎜⎜⎜⎜⎝
𝑣𝑝(𝑀𝑑𝑘 !) −

𝑑𝑖−1∑
𝑗=1

𝑚𝑗,𝑘≠0

𝑣𝑝(𝑚𝑗,𝑘!
𝑚𝑗𝑚𝑗!)

⎞⎟⎟⎟⎟⎠
⩾

𝑑𝑖−1∑
𝑗=1

(
𝑁∑
𝑘=0

𝑚𝑗,𝑘 − 1

)
𝑚𝑗𝑣𝑝(𝑑) by Lemma 2.1 and (3.4),

>0 as 𝜎 ≠ 𝜎0.

Next, for each 1 ⩽ 𝑗 ⩽ 𝑁, we let 𝜎𝑗 be the partition

𝑛 =

𝑗−1∑
𝑘=0

𝑛𝑘𝑑
𝑘 + 𝑁𝑗𝑑

𝑗 +

𝑁∑
𝑘=𝑗

𝑀𝑑𝑘𝑑
𝑘+1.

We also let 𝑁0 = 𝑚0 and 𝑎𝑑−1 = 𝑐. For any 1 ⩽ 𝑗 ⩽ 𝑁, if 𝜎𝑗−1 ≠ 𝜎𝑗 , then we have

𝑁𝑗−1 +𝑀𝑑𝑗−1𝑑 = 𝑛𝑗−1 + 𝑁𝑗𝑑 (3.5)
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BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 11

and

𝑣𝑝(𝛼(𝜎𝑗−1)) − 𝑣𝑝(𝛼(𝜎𝑗)) = 𝑣𝑝

⎛⎜⎜⎝
𝑎
𝑁𝑗−1

𝑑𝑗−2

𝑑𝑁𝑗−1𝑁𝑗−1!

𝑎
𝑀
𝑑𝑗−1

𝑑𝑗−1

𝑑𝑀𝑑𝑗−1𝑀𝑑𝑗−1 !

⎞⎟⎟⎠ − 𝑣𝑝
⎛⎜⎜⎝

𝑎
𝑛𝑗−1

𝑑𝑗−2

𝑑𝑛𝑗−1𝑛𝑗−1!

𝑎
𝑁𝑗

𝑑𝑗−1

𝑑𝑁𝑗𝑁𝑗!

⎞⎟⎟⎠
= 𝑣𝑝

(
(𝑐∕𝑑𝑗)𝑁𝑗−1

𝑁𝑗−1!

(𝑐∕𝑑𝑗)𝑀𝑑𝑗−1

𝑑𝑀𝑑𝑗−1𝑀𝑑𝑗−1 !

)
− 𝑣𝑝

(
(𝑐∕𝑑𝑗)𝑛𝑗−1

𝑛𝑗−1!

(𝑐∕𝑑𝑗)𝑁𝑗

𝑑𝑁𝑗𝑁𝑗!

)
by induction,

= (𝑁𝑗 −𝑀𝑑𝑗−1)
(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑗

)
+ 𝑣𝑝(𝑑)

)
− 𝑣𝑝

(
𝑁𝑗−1!𝑀𝑑𝑗−1 !

𝑛𝑗−1!𝑁𝑗!

)
by (3.5),

> (𝑁𝑗 −𝑀𝑑𝑗−1)𝑣𝑝(𝑑!) − 𝑣𝑝

(
𝑁𝑗−1!𝑀𝑑𝑗−1 !

𝑛𝑗−1!𝑁𝑗!

)
by the left-hand side of (1.6) and 𝜎𝑗−1 ≠ 𝜎𝑗,

⩾ 0 by Lemma 2.3. (Here we need the condition 𝑑 is a power of 𝑝.)

Next, if 𝜎𝑁 ≠ 𝜎can, then by the same reasoning as above, we have

𝑣𝑝(𝛼(𝜎𝑁)) − 𝑣𝑝(𝛼(𝜎can)) = −𝑀𝑑𝑁

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑁+1

)
+ 𝑣𝑝(𝑑)

)
− 𝑣𝑝

(
𝑁𝑁!𝑀𝑑𝑁 !

𝑛𝑁!

)

>𝑣𝑝

(
𝑛𝑁!

𝑁𝑁!𝑀𝑑𝑁 !𝑑!
𝑀𝑑𝑁

)
by (1.5), the right-hand side of (1.6), and 𝜎𝑁 ≠ 𝜎can,

⩾ 0 by Lemma 2.1.

We have shown that 𝑣𝑝(𝛼(𝜎)) > 𝑣𝑝(𝛼(𝜎0)) > … > 𝑣𝑝(𝛼(𝜎𝑁) > 𝑣𝑝(𝛼(𝜎can)), so

𝑣𝑝(𝑎𝑛) = 𝑣𝑝(𝛼(𝜎can)) = 𝑣𝑝

(
𝑐𝑛0

𝑑𝑛0𝑛0!

)
+

𝑁∑
𝑘=1

𝑣𝑝

(
𝑎
𝑛𝑘
𝑑𝑘−1

𝑑𝑛𝑘𝑛𝑘!

)
,

which implies parts (1) and (2) immediately. Part (3) is a corollary of parts (1) and (2) because

𝑣𝑝(𝑎𝑛) =

𝑁∑
𝑘=0

𝑣𝑝

(
𝑎
𝑛𝑘
𝑑𝑘

𝑛𝑘!

)
=

𝑁∑
𝑘=0

𝑛𝑘𝑣𝑝

(
𝑐

𝑑𝑘+1

)
−

𝑁∑
𝑘=0

𝑣𝑝(𝑛𝑘!)

=

𝑁∑
𝑘=0

𝑛𝑘𝑣𝑝

(
𝑐

𝑑𝑘+1

)
+

𝑁∑
𝑘=0

𝑛𝑘𝑣𝑝(𝑑
𝑘!) − 𝑣𝑝(𝑛!) by Lemma 2.4,

=

𝑁−1∑
𝑘=0

(⌊
𝑛

𝑑𝑘

⌋
−

⌊
𝑛

𝑑𝑘+1

⌋
𝑑

)
𝑣𝑝

(
𝑐𝑑𝑘!

𝑑𝑘+1

)
+
⌊
𝑛

𝑑𝑁

⌋
𝑣𝑝

(
𝑐𝑑𝑁!

𝑑𝑁+1

)
− 𝑣𝑝(𝑛!)

= 𝑣𝑝

(
𝑐𝑛

𝑑𝑛𝑛!

)
+

𝑁∑
𝑘=1

⌊
𝑛

𝑑𝑘

⌋
𝑣𝑝

(
𝑐𝑑𝑘!

𝑑𝑘+1

)
−

𝑁∑
𝑘=1

⌊
𝑛

𝑑𝑘

⌋
𝑑𝑣𝑝

(
𝑐𝑑𝑘−1!

𝑑𝑘

)
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12 FU and NIE

= 𝑣𝑝

(
𝑐𝑛

𝑑𝑛𝑛!

)
−

𝑁∑
𝑘=1

⌊
𝑛

𝑑𝑘

⌋(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝

(
𝑑𝑘!

𝑑(𝑑𝑘−1!)𝑑

))

= 𝑣𝑝

(
𝑐𝑛

𝑑𝑛𝑛!

)
−

𝑁∑
𝑘=1

⌊
𝑛

𝑑𝑘

⌋(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝((𝑑 − 1)!)

)
.

This completes the proof. □

From Proposition 3.3, we can deduce that the sequence 𝑣𝑝(𝑎𝑛)∕𝑛 has a negative limit.

Proposition 3.4. Let𝑝,𝑁,𝑑, and 𝑐 satisfy ConditionA or B. Then the sequence 𝑣𝑝(𝑎𝑛) is subadditive
and

lim
𝑛→∞

𝑣𝑝(𝑎𝑛)

𝑛
= inf

𝑛

𝑣𝑝(𝑎𝑛)

𝑛
=
𝑣𝑝(𝑐∕𝑑

𝑁+1)

𝑑𝑁
−

1

(𝑝 − 1)𝑑𝑁
< 0.

Proof. The subadditivity of 𝑣𝑝(𝑎𝑛) can be easily seen from Proposition 3.3. Therefore, by Fekete’s
lemma, the limit of 𝑣𝑝(𝑎𝑛)∕𝑛 exists and is equal to the infimum of 𝑣𝑝(𝑎𝑛)∕𝑛. By Proposition 3.3
and Lemma 2.2,

inf
𝑛

𝑣𝑝(𝑎𝑛)

𝑛
= inf

𝑛

(
𝑣𝑝

(
𝑐

𝑑

)
−
𝑛 − 𝑠𝑝(𝑛)

(𝑝 − 1)𝑛
−
1

𝑛

𝑁∑
𝑘=1

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝((𝑑 − 1)!)

)⌊
𝑛

𝑑𝑘

⌋)

= 𝑣𝑝

(
𝑐

𝑑

)
−

1

𝑝 − 1
−

𝑁∑
𝑘=1

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝((𝑑 − 1)!)

)
1

𝑑𝑘

=
𝑣𝑝(𝑎𝑑𝑁 )

𝑑𝑁
−

1

(𝑝 − 1)𝑑𝑁
=
𝑣𝑝(𝑐∕𝑑

𝑁+1)

𝑑𝑁
−

1

(𝑝 − 1)𝑑𝑁
.

Moreover, the limit is negative because

𝑣𝑝(𝑐∕𝑑
𝑁+1)

𝑑𝑁
<
𝑣𝑝((𝑑 − 1)!)

(𝑑 − 1)𝑑𝑁
by (1.5) and the right-hand side of (1.6),

=
(𝑑 − 1) − 𝑠𝑝(𝑑 − 1)

(𝑝 − 1)(𝑑 − 1)𝑑𝑁
<

1

(𝑝 − 1)𝑑𝑁
by Lemma 2.2.

This completes the proof. □

The last ingredient needed for the proof of Theorem 1.2 is the following inequality.

Proposition 3.5. Let 𝑝, 𝑁, 𝑑, and 𝑐 satisfy Condition A or B. If 𝑛 =
∑𝑛
𝑘=1 𝑘𝑚𝑘 , where 𝑚𝑘 ⩾ 0 for

any 1 ⩽ 𝑘 ⩽ 𝑛, then

𝑣𝑝(𝑎𝑛) ⩽

𝑛∑
𝑘=1

𝑣𝑝

(
𝑎
𝑚𝑘
𝑘

𝑚𝑘!

)
.
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BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 13

Proof. Let

𝑒(𝑛) =

𝑁∑
𝑘=1

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑘

)
− 𝑣𝑝((𝑑 − 1)!)

)⌊
𝑛

𝑑𝑘

⌋
. (3.6)

It is clear that the sequence 𝑒(𝑛) is superadditive. Then

𝑛∑
𝑘=1

𝑣𝑝

(
𝑎
𝑚𝑘
𝑘

𝑚𝑘!

)
=

𝑛∑
𝑘=1

𝑣𝑝

(
𝑐𝑘𝑚𝑘

𝑑𝑘𝑚𝑘

)
−

𝑛∑
𝑘=1

𝑣𝑝(𝑘!
𝑚𝑘𝑚𝑘!) −

𝑛∑
𝑘=1

𝑚𝑘𝑒(𝑘) by Proposition 3.3,

⩾ 𝑣𝑝

(
𝑐𝑛

𝑑𝑛

)
− 𝑣𝑝(𝑛!) − 𝑒(𝑛) by Lemma 2.1,

= 𝑣𝑝(𝑎𝑛) by Proposition 3.3.

□

Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. By (1.1) and Proposition 3.4, 𝜑𝑐(𝑧) is convergent when

|𝑧|𝑑𝑝 > lim
𝑛→∞

|𝑎𝑛|1∕𝑛𝑝 = lim
𝑛→∞

𝑝−𝑣𝑝(𝑎𝑛)∕𝑛 = 𝑟𝑁.

By Lemma 2.5,

𝜑−1𝑐 (𝑧) = 𝑧

(
1 +

∞∑
𝑛=1

𝑎′𝑛

𝑧𝑛𝑑

)
,

where

𝑎′𝑛 = −
∑

∑𝑛
𝑘=1 𝑘𝑚𝑘=𝑛

⎛⎜⎜⎝
∑𝑛
𝑘=1 𝑚𝑘∏
𝑗=2

(𝑛𝑑 − 𝑗)

𝑛∏
𝑘=1

𝑎
𝑚𝑘
𝑘

𝑚𝑘!

⎞⎟⎟⎠.
By Proposition 3.5, 𝑣𝑝(𝑎′𝑛) ⩾ 𝑣𝑝(𝑎𝑛) for any 𝑛 ⩾ 1. Now we want to show that 𝑣𝑝(𝑎′𝑛) = 𝑣𝑝(𝑎𝑛) for
infinitely many 𝑛, which will then imply

lim inf
𝑛→∞

𝑣𝑝(𝑎
′
𝑛)

𝑛
= lim inf

𝑛→∞

𝑣𝑝(𝑎𝑛)

𝑛

and the maximal convergent open disks of 𝜑𝑐(𝑧) and 𝜑−1𝑐 (𝑧) are the same. We claim that if 𝑛 is a
power of 𝑝 and𝑚𝑛 = 0, then

𝑣𝑝

⎛⎜⎜⎝
∑𝑛
𝑘=1 𝑚𝑘∏
𝑗=2

(𝑛𝑑 − 𝑗)

𝑛∏
𝑘=1

𝑎
𝑚𝑘
𝑘

𝑚𝑘!

⎞⎟⎟⎠ > 𝑣𝑝(𝑎𝑛).
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14 FU and NIE

Suppose not, then by Propositions 3.3 and 3.5,

0 = 𝑣𝑝

⎛⎜⎜⎝
∑𝑛
𝑘=1 𝑚𝑘∏
𝑗=2

(𝑛𝑑 − 𝑗)

𝑛∏
𝑘=1

𝑎
𝑚𝑘
𝑘

𝑚𝑘!

⎞⎟⎟⎠ − 𝑣𝑝(𝑎𝑛)
=

∑𝑛
𝑘=1 𝑚𝑘∑
𝑗=2

𝑣𝑝(𝑛𝑑 − 𝑗) +

(
𝑣𝑝(𝑛!) −

𝑛∑
𝑘=1

𝑣𝑝(𝑘!
𝑚𝑘𝑚𝑘!)

)
+

(
𝑒(𝑛) −

𝑛∑
𝑘=1

𝑚𝑘𝑒(𝑘)

)
,

where 𝑒(𝑛) is given by (3.6). Therefore, we have

0 = (𝑝 − 1)

(
𝑣𝑝(𝑛!) −

𝑛∑
𝑘=1

𝑣𝑝(𝑘!
𝑚𝑘𝑚𝑘!)

)

= 𝑛 − 𝑠𝑝(𝑛) −

𝑛∑
𝑘=1

(
𝑚𝑘(𝑘 − 𝑠𝑝(𝑘)) + 𝑚𝑘 − 𝑠𝑝(𝑚𝑘)

)
by Lemma 2.2,

=

𝑛∑
𝑘=1

(
𝑚𝑘(𝑠𝑝(𝑘) − 1) + 𝑠𝑝(𝑚𝑘)

)
− 1 as 𝑛 is a power of 𝑝.

It follows that there is exactly one𝑚𝑘0 ≠ 0 and 𝑛 = 𝑘0𝑚𝑘0 . If𝑚𝑛 = 0, then𝑚𝑘0 ⩾ 𝑝 and

∑𝑛
𝑘=1 𝑚𝑘∑
𝑗=2

𝑣𝑝(𝑛𝑑 − 𝑗) ⩾ 𝑣𝑝(𝑛𝑑 − 𝑚𝑘0) > 0.

This is a contradiction, from which we conclude that 𝑣𝑝(𝑎′𝑛) = 𝑣𝑝(𝑎𝑛) if 𝑛 is a power of 𝑝. Thus,
the first assertion is proved. For the second assertion, we note that

𝜑𝑐(𝑧) − 𝜑𝑐(𝑤)

𝑧 − 𝑤
= 1 −

∞∑
𝑛=1

𝑛𝑑−1∑
𝑖=1

𝑎𝑛

𝑧𝑖𝑤𝑛𝑑−𝑖
.

If 𝑧, 𝑤 ∈ 𝐷(∞, 𝑟1∕𝑑
𝑁
), then by Proposition 3.4, we have

|||| 𝑎𝑛

𝑧𝑖𝑤𝑛𝑑−𝑖

||||𝑝 < |𝑎𝑛|𝑝
𝑟𝑛
𝑁

=

(
𝑝−𝑣𝑝(𝑎𝑛)∕𝑛

lim𝑛→∞ 𝑝
−𝑣𝑝(𝑎𝑛)∕𝑛

)𝑛

< 1.

Therefore, |𝜑𝑐(𝑧) − 𝜑𝑐(𝑤)|𝑝 = |𝑧 − 𝑤|𝑝 on 𝐷(∞, 𝑟1∕𝑑𝑁
). □

4 PROOF OF THEOREM 1.3

In this section, we focus on the properties of 𝑏𝑛 and give the proof of Theorem 1.3. In addition to
Proposition 3.5, we need two more inequalities.
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BÖTTCHER COORDINATES ATWILD SUPERATTRACTING FIXED POINTS 15

Proposition 4.1. Let 𝑝,𝑁, 𝑑, and 𝑐 satisfy Condition A or B. Then

(1) if 𝑑 ∣ 𝑛, then 𝑣𝑝(𝑑𝑎𝑛) ⩽ 𝑣𝑝(𝑎𝑛∕𝑑);
(2) if 1 ⩽ 𝑖 < 𝑛∕𝑑, then 𝑣𝑝(𝑑𝑎𝑛) < 𝑣𝑝(𝑎𝑖𝑐𝑛−𝑖𝑑).

Proof. If 𝑑 ∣ 𝑛, we let

𝑛∕𝑑 =

𝑁∑
𝑘=0

𝑚𝑘𝑑
𝑘 and 𝑛 =

𝑁−2∑
𝑘=0

𝑚𝑘𝑑
𝑘+1 + (𝑚𝑁−1 + 𝑚𝑁𝑑)𝑑

𝑁

be the canonical partitions (3.3) of 𝑛∕𝑑 and 𝑛. Then we have

𝑣𝑝(𝑑𝑎𝑛) = 𝑣𝑝(𝑑) +

𝑁−2∑
𝑘=0

𝑣𝑝

(
𝑎
𝑚𝑘
𝑑𝑘+1

𝑚𝑘!

)
+ 𝑣𝑝

⎛⎜⎜⎝
𝑎
𝑚𝑁−1+𝑚𝑁𝑑

𝑑𝑁

(𝑚𝑁−1 + 𝑚𝑁𝑑)!

⎞⎟⎟⎠ by Proposition 3.3,
= 𝑣𝑝(𝑑) +

𝑁−2∑
𝑘=0

𝑣𝑝

(
𝑎
𝑚𝑘
𝑑𝑘

𝑑𝑚𝑘𝑚𝑘!

)
+ 𝑣𝑝

⎛⎜⎜⎝
𝑎
𝑚𝑁−1
𝑑𝑁−1

𝑎
𝑚𝑁𝑑

𝑑𝑁

𝑑𝑚𝑁−1(𝑚𝑁−1 + 𝑚𝑁𝑑)!

⎞⎟⎟⎠ by Proposition 3.3,
= 𝑣𝑝(𝑑) +

𝑁∑
𝑘=0

𝑣𝑝

(
𝑎
𝑚𝑘
𝑑𝑘

𝑑𝑚𝑘𝑚𝑘!

)
+𝑚𝑁𝑣𝑝(𝑎

𝑑−1
𝑑𝑁

𝑑) − 𝑣𝑝

(
(𝑚𝑁−1 + 𝑚𝑁𝑑)!

𝑚𝑁−1!𝑚𝑁!

)

⩽ 𝑣𝑝(𝑑) +

𝑁∑
𝑘=0

𝑣𝑝

(
𝑎
𝑚𝑘
𝑑𝑘

𝑑𝑚𝑘𝑚𝑘!

)
+𝑚𝑁𝑣𝑝(𝑎

𝑑−1
𝑑𝑁

𝑑) − 𝑚𝑁𝑣𝑝(𝑑!) by Lemmas 2.1 and 2.4,

= 𝑣𝑝(𝑎𝑛∕𝑑) +

(
1 −

𝑁∑
𝑘=0

𝑚𝑘

)
𝑣𝑝(𝑑) + 𝑚𝑁

(
(𝑑 − 1)𝑣𝑝

(
𝑐

𝑑𝑁+1

)
− 𝑣𝑝((𝑑 − 1)!)

)
⩽ 𝑣𝑝(𝑎𝑛∕𝑑) by (1.5) and the right-hand side of (1.6).

If 1 ⩽ 𝑖 < 𝑛∕𝑑, then

𝑣𝑝(𝑎𝑖𝑐
𝑛−𝑖𝑑) ⩾ 𝑣𝑝(𝑑𝑎𝑖𝑑𝑐

𝑛−𝑖𝑑) by part (1),

= 𝑣𝑝(𝑑) + 𝑣𝑝

(
𝑐𝑛

𝑑𝑖𝑑(𝑖𝑑)!

)
− 𝑒(𝑖𝑑) by Proposition 3.3 and (3.6),

>𝑣𝑝(𝑑) + 𝑣𝑝

(
𝑐𝑛

𝑑𝑛𝑛!

)
− 𝑒(𝑛) as 𝑖𝑑 < 𝑛,

= 𝑣𝑝(𝑑𝑎𝑛) by Proposition 3.3.

□

As mentioned in the introduction, we can consider (1.4) as a perturbation of the sim-
pler Equation (1.3). Now we show that the perturbation is insignificant in the following
sense.
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16 FU and NIE

Proposition 4.2. Let 𝑝,𝑁, 𝑑, and 𝑐 satisfy Condition A or B. Then 𝑣𝑝(𝑏𝑛) = 𝑣𝑝(𝑎𝑛) for any 𝑛 ⩾ 1.

Proof. We use induction to show that 𝑣𝑝(𝑎𝑛 − 𝑏𝑛) > 𝑣𝑝(𝑎𝑛), which will then imply 𝑣𝑝(𝑏𝑛) =
𝑣𝑝(𝑎𝑛). Considering the degree 𝑛 terms of (1.3) and (1.4), we have

𝑑𝑎𝑛 +
∑

∑𝑛−1
𝑘=0 𝑚𝑘=𝑑∑𝑛−1
𝑘=0 𝑘𝑚𝑘=𝑛

(
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

) 𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘
=

{
𝑎𝑛∕𝑑, if 𝑑 ∣ 𝑛,
0, if 𝑑 ∤ 𝑛,

and

𝑑𝑏𝑛 +
∑

∑𝑛−1
𝑘=0 𝑚𝑘=𝑑∑𝑛−1
𝑘=0 𝑘𝑚𝑘=𝑛

(
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

) 𝑛−1∏
𝑘=1

𝑏
𝑚𝑘
𝑘
=

∑
𝑖𝑑⩽𝑛

𝑞(𝑛, 𝑖)𝑏𝑖𝑐
𝑛−𝑖𝑑, (4.1)

where 𝑞(𝑛, 𝑖) ∈ ℤ and 𝑞(𝑛, 𝑛∕𝑑) = 1 if 𝑑 ∣ 𝑛. Therefore,

𝑑(𝑎𝑛 − 𝑏𝑛) +
∑

∑𝑛−1
𝑘=0 𝑚𝑘=𝑑∑𝑛−1
𝑘=0 𝑘𝑚𝑘=𝑛

(
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

)(𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘
−

𝑛−1∏
𝑘=1

𝑏
𝑚𝑘
𝑘

)

=

{
𝑎𝑛∕𝑑 − 𝑏𝑛∕𝑑 −

∑
𝑖𝑑<𝑛 𝑞(𝑛, 𝑖)𝑏𝑖𝑐

𝑛−𝑖𝑑, if 𝑑 ∣ 𝑛,
−
∑
𝑖𝑑<𝑛 𝑞(𝑛, 𝑖)𝑏𝑖𝑐

𝑛−𝑖𝑑, if 𝑑 ∤ 𝑛.

By the induction hypothesis and Proposition 4.1, we have

𝑣𝑝(𝑎𝑛∕𝑑 − 𝑏𝑛∕𝑑) > 𝑣𝑝(𝑎𝑛∕𝑑) ⩾ 𝑣𝑝(𝑑𝑎𝑛)

and

𝑣𝑝(𝑞(𝑛, 𝑖)𝑏𝑖𝑐
𝑛−𝑖𝑑) ⩾ 𝑣𝑝(𝑎𝑖𝑐

𝑛−𝑖𝑑) > 𝑣𝑝(𝑑𝑎𝑛). (4.2)

By the induction hypothesis and Proposition 3.5, we have

𝑣𝑝

((
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

)(𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘
−

𝑛−1∏
𝑘=1

𝑏
𝑚𝑘
𝑘

))

= 𝑣𝑝

((
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

)(𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘
−

𝑛−1∏
𝑘=1

(𝑎𝑘 − (𝑎𝑘 − 𝑏𝑘))
𝑚𝑘

))

>𝑣𝑝

((
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

) 𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘

)
= 𝑣𝑝

(
𝑑!

𝑚0!

𝑛−1∏
𝑘=1

𝑎
𝑚𝑘
𝑘

𝑚𝑘!

)
⩾ 𝑣𝑝(𝑑𝑎𝑛).

Combining these inequalities together, we get 𝑣𝑝(𝑎𝑛 − 𝑏𝑛) > 𝑣𝑝(𝑎𝑛) and 𝑣𝑝(𝑏𝑛) = 𝑣𝑝(𝑎𝑛). □
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A consequence of Proposition 4.2 is that Propositions 3.3, 3.4, and 3.5 remain true if we
replace 𝑎𝑛 by 𝑏𝑛. Therefore, the proof of Theorem 1.3 is essentially the same as the proof of
Theorem 1.2.

5 PROOF OF THEOREM 1.7

In this section, we give the proof of Theorem 1.7.
If 𝑣𝑝(𝑐1) ⩾ 0 and Φ𝑐1,𝑐2 ∶ 𝐵(𝑐1) = 𝐷(∞, 1) → 𝐵(𝑐2) exists, then Φ𝑐1,𝑐2 must be of the form

Φ𝑐1,𝑐2,𝜔(𝑧) = 𝜔𝑧

(
1 +

∞∑
𝑛=1

𝑡𝑛

𝑧𝑛𝑑

)

for some 𝜔 with 𝜔𝑑−1 = 1. Let 𝑥 = 𝑧−𝑑, then (1.8) can be simplified as(
1 +

∞∑
𝑛=1

𝑡𝑛𝑥
𝑛

)𝑑

= 1 + (𝜔−1𝑐2 − 𝑐1)𝑥 +

∞∑
𝑛=1

𝑡𝑛𝑥
𝑛𝑑

(1 − 𝑐1𝑥)
𝑛𝑑−1

= 1 + (𝜔−1𝑐2 − 𝑐1)𝑥 +

∞∑
𝑛=𝑑

∑
𝑖𝑑⩽𝑛

𝑞′(𝑛, 𝑖)𝑡𝑖𝑐
𝑛−𝑖𝑑
1

𝑥𝑛,

where 𝑞′(𝑛, 𝑖) ∈ ℤ and 𝑞′(𝑛, 𝑛∕𝑑) = 1 if 𝑑 ∣ 𝑛. We can imitate the proof of Proposition 4.2 to prove
the following proposition.

Proposition 5.1. Let 𝑝,𝑁, 𝑑, and 𝑐 = 𝜔−1𝑐2 − 𝑐1 satisfy Condition A or B. Let 𝑐1 satisfy 𝑣𝑝(𝑐1) ⩾ 0
and 𝑣𝑝(𝑐1) ⩾ 𝑣𝑝(𝑐), then

(1) we have 𝑣𝑝(𝑡𝑛) = 𝑣𝑝(𝑎𝑛) for any 𝑛 ⩾ 1;
(2) the maximal convergent open disks of Φ𝑐1,𝑐2,𝜔(𝑧) and Φ

−1
𝑐1,𝑐2,𝜔

(𝑧) are both 𝐷(∞, 𝑟1∕𝑑
𝑁
), moreover,

Φ𝑐1,𝑐2,𝜔(𝑧) gives a bijective isometry from 𝐷(∞, 𝑟
1∕𝑑

𝑁
) onto itself;

(3) Φ𝑐1,𝑐2,𝜔(𝑧) does not give an analytic conjugacy between 𝐵(𝑐1) and 𝐵(𝑐2).

Proof. The proof of part (1) is essentially the same as the proof of Proposition 4.2, except that we
need to replace 𝑏𝑛 by 𝑡𝑛, replace (4.1) by

𝑑𝑡𝑛 +
∑

∑𝑛−1
𝑘=0 𝑚𝑘=𝑑∑𝑛−1
𝑘=0 𝑘𝑚𝑘=𝑛

(
𝑑

𝑚0,𝑚1, … ,𝑚𝑛−1

) 𝑛−1∏
𝑘=1

𝑡
𝑚𝑘
𝑘
=

∑
𝑖𝑑⩽𝑛

𝑞′(𝑛, 𝑖)𝑡𝑖𝑐
𝑛−𝑖𝑑
1

,

and replace (4.2) by

𝑣𝑝(𝑞
′(𝑛, 𝑖)𝑡𝑖𝑐

𝑛−𝑖𝑑
1

) ⩾ 𝑣𝑝(𝑎𝑖𝑐
𝑛−𝑖𝑑) > 𝑣𝑝(𝑑𝑎𝑛).

The proof of part (2) is essentially the same as the proof of Theorem 1.2. Part (3) follows because
𝐷(∞, 𝑟

1∕𝑑

𝑁
) is strictly smaller than 𝐵(𝑐1) = 𝐷(∞, 1). □
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18 FU and NIE

Now we are ready to give the proof of Theorem 1.7.

Proof of Theorem 1.7. By (1.9), we have 𝑣𝑝(𝑐1) ⩾ 𝑣𝑝(𝑐2) = 𝑣𝑝(𝜔−1𝑐2 − 𝑐1) for any 𝜔 with 𝜔𝑑−1 = 1.
By Proposition 5.1, none of Φ𝑐1,𝑐2,𝜔(𝑧) gives an analytic conjugacy between 𝐵(𝑐1) and 𝐵(𝑐2). □
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