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Abstract
Given a finite abelian group G and cyclic subgroups A, B, C of G of the same order,
we find necessary and sufficient conditions for A, B,C to admit a common transversal
for the cosets they afford. For an arbitrary number of cyclic subgroups, we give a
sufficient criterion when there exists a common complement. Moreover, in several
cases where a common transversal exists, we provide concrete constructions.
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1 Introduction

Suppose that G is a group with subgroups A, B of the same finite index. Then Hall’s
celebrated Marriage Theorem guarantees that we can find a common transversal for
both A, B. That is, there exists a set T whose elements comprise a complete and non-
redundant set of coset representatives for both A and B. Furthermore, the total number
of such common transversals has been computed in [1]. If three or more subgroups
are involved, common transversals may not exist. For instance, the three subgroups of
order 2 in the Klein group do not possess such a common transversal.

The recent interest in seeking a common transversal for several subgroups of an
abelian group stems from a question of Steinhaus [7] in the 1950s. Steinhaus asked
if there exists a subset of the plane which can tile the plane when translated by any
one of the lattices that arise by rotating the integer lattice around the origin. In the
language used in this paper, Steinhaus asked if there exists a common transversal of
all lattices RθZ

2, where θ ∈ [0, 2π) and Rθ denotes rotation by θ around the origin.
It was only proved in this century [4] that the answer is indeed affirmative. The

variant of the problemwhere the subset of the plane is asked to beLebesguemeasurable
(but tiling is only demanded almost everywhere) has sparked much more interest and
is still open. The best results to date for the measurable problem can be found in [6].

Variations of the Steinhaus problem have taken many forms, but the one most
relevant to this paper was first studied in [5]; where the question was posed if we can
find a subset of the plane which is a common transversal for a finite number of lattices
in the plane. Surprisingly this problem has an affirmative solution in the measurable
sense when the duals of the finite set of lattices has a direct product (the dual of
the lattice AZd is the lattice A−�

Z
d ). In [5], the problem was first posed of when a

finite set of subgroups of an abelian group of the same finite index admit a common
transversal and it was proved [5, Thm. 1] that if the subgroups A1, . . . , An of G are
direct factors in G, then they always admit a common transversal in G.

In this paper, we are interested in tackling specific instances of the general problem
outlined above. Recall that if K � G, with G being arbitrary, then K is said to have
a complement in G (or to be complemented in G) in case there exists a subgroup H
such that G = K H and K ∩H = 1. Observe that such a complement H , if it exists, is
a transversal of K in G that moreover inherits the group structure of the parent group.

The first of our two main theorems reads as follows:

Theorem A Let A1, . . . , At be complemented isomorphic subgroups of a finite abelian
group G. If the smallest prime divisor of |A1| is at least t , then A1, . . . , At have a
common complement in G.

TheoremA implies that two isomorphic complemented subgroups in abelian groups
always have a common complement. This is false for non-abelian groups as can be
seen in the dihedral group of order 8. The proof of TheoremA accompanied with more
detailed statements will be given in Sect. 3.

Our secondmain theoremprovides a complete description of the situation as regards
transversals when three cyclic subgroups are involved.
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Theorem B Let G be a finite abelian group with cyclic subgroups A, B, C of the same
order. Then A, B, C do not share a common transversal in G if and only if A (and
thus B and C) has even order and the product A2B2C2 of their Sylow 2-subgroups
satisfies

A2B2C2/I = A2/I × B2/I = A2/I × C2/I = B2/I × C2/I ,

where I :=A2 ∩ B2 ∩ C2.

When it comes to more than three subgroups, larger primes play a role. For instance
the elementary abelian group of order p2 is the union of p + 1 subgroups of order p,
but there cannot be a common transversal.

2 Reductions

We outline below some notational conventions that we will use throughout the paper.

• [n]:={1, 2, . . . , n}.
• A cyclic group of order n is denoted by Cn , while Sn is the symmetric group of
degree n.

• G will always denote a finite abelian group.
• A group is called homoyclic if it is the direct product of isomorphic cyclic groups.
• For a prime p, Gp denotes the unique Sylow p-subgroup of G.
• If H � G and a, b ∈ G we write a ≡ b (mod H) if aH = bH .
• For an integer n let �n(G):=〈g ∈ G : gn = 1〉. If G is a p-group, we use the
standard notation �(G):=�p(G).

• For A1, . . . , An � G let T G(A1, . . . , An) be the set of common transversals of
A1, . . . , An in G. Similarly, let XG(A1, . . . , An) be the set of common comple-
ments of A1, . . . , An in G.

We first observe that some (easy) reductions can be made.

Lemma 2.1 Let A � H � G be finite abelian groups. If X ∈ T G(A), then X ∩ H ∈
T H (A).

Proof For any coset hA of A in H there exists x ∈ X so that x A = hA, since X is a
transversal of A in G and hA is a coset of A in G as well. Therefore, x ∈ H and the
lemma follows. �	
Lemma 2.2 For subgroups A1, . . . , An � G we have T G(A1, . . . , An) 
= ∅ if and
only if T A1...An (A1, . . . , An) 
= ∅.
Proof If T G(A1, . . . , An) 
= ∅, then T A1...An (A1, . . . , An) 
= ∅ by Lemma 2.1.

Conversely, assume that S ∈ T A1...An (A1, . . . , An) with S = {s1, s2, . . . , sm} and
let T = {t1, t2, . . . , tk} be a transversal for A1 . . . An inG. Clearly the set ST = {si t j |
i ∈ [m], j ∈ [k]} is a transversal for A1, . . . , An inG and thus T G(A1, . . . , An) 
= ∅.
�	
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Lemma 2.3 Let A1, . . . , An � G and N � A1 ∩ . . . ∩ An. Then {g1, . . . , gm} ∈
T G(A1, . . . , An) if and only if {g1N , . . . , gmN } ∈ T G/N (A1/N , . . . , An/N ). In
particular, T G(A1, . . . , An) 
= ∅ if and only if T G/N (A1/N , . . . , An/N ) 
= ∅.
Proof This follows easily from |G : Ai | = |G/N : Ai/N | and the equivalence
between gi ≡ g j (mod A) and gi N ≡ g j N (mod A/N ). �	
The next result shows that to decide whether or not a number of subgroups of an
abelian group possess a common complement in the parent group, it suffices to decide
whether their Sylow p-subgroups are complemented, or equivalently to assume that
G has prime-power order.

Lemma 2.4 Let G be an abelian group of order |G| = pa11 · · · parr and let A be
a subgroup of G that has a complement in G. Then there is a canonical bijection
XG(A) → Śr

i=1 XGpi
(Api ).

Proof To begin with, observe that each subgroup of G (thus also G itself) is the direct
product of its Sylow p-subgroups. Since Gp is unique for each prime p, we have
Ap = A ∩ Gp � Gp. Now let f : XG(A) → Śr

i=1 XGpi
(Api ) be given by the rule

XG(A) 
 H �→ (
H ∩ Gp1 , . . . , H ∩ Gpr

)
.

We will argue that f is 1-1 and onto. To see that it is onto, let (H1, . . . , Hr ) ∈
Śr

i=1 XGpi
(Api ) and put H = ∏r

i=1 Hi . Then H ∈ XG(A) by order considerations
and f (H) = (H1, . . . , Hr ). On the other hand, let H , K � XG(A) and suppose that
f (H) = f (K ). Then

(
H ∩ Gp1 , . . . , H ∩ Gpr

) = (
K ∩ Gp1 , . . . , K ∩ Gpr

)
.

By our previous remark each Sylow subgroup of H coincides with the corresponding
Sylow subgroup of K . Since both H and K are the internal direct products of their
Sylow subgroups, it follows that H = K establishing the desired injectivity of f . �	

The preceding lemma clearly implies:

Corollary 2.5 Let G be abelian group and A1, . . . , An � G. Then A1, . . . , An share a
common complement in G if and only if their Sylow p-subgroups A1p , . . . , Anp share
a common complement in G p for all prime divisors p of |G|.

3 Common complements

Recall that the fundamental theorem of finite abelian groups asserts that G has a
primary decomposition G = G1× . . .×Gn where each Gi is a cyclic group of prime-
power order. The usual proof is based on the fact that cyclic subgroups of maximal
order have complements. The following consequence of the Krull–Remak–Schmidt
theorem gives an exact criterion.
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Lemma 3.1 Let G = G1×. . .×Gn be the primary decomposition of an abelian group
G. Then A � G has a complement in G if and only if there exists a subset I ⊆ [n]
such that the projection πI : A → Ś

i∈I Gi is an isomorphism.

Proof Suppose first thatπI is an isomorphism. Let B:= Ś

i∈[n]\I Gi . For a ∈ A∩B we
have πI (a) = 1 and therefore a = 1. Since |AB| = ∏

i∈I |Gi | ∏i∈[n]\I |Gi | = |G|,
B is a complement of A in G.

Now assume conversely that G = A × B. Let

G = A1 × . . . × Ar × B1 × . . . × Bs

be the primary decomposition. By the Krull–Remak–Schmidt theorem (see [3,
Satz I.12.3]), there exists J ⊆ [n] such that G = A1 × . . . × Ar × Ś

j∈J G j . Clearly,
πI with I :=[n]\J is an isomorphism. �	

This is already sufficient to prove Theorem A.

Proof of TheoremA ByCorollary 2.5 wemay assume thatG is a p-groupwhere p � t .
We argue by induction on the rank of A1 ∼= . . . ∼= At . Suppose first that Ai is not cyclic.
Let Ai = Ai1 × Ai2 be a non-trivial decomposition such that A1 j ∼= . . . ∼= At j for
j = 1, 2. By hypothesis, Ai has a complement Ki in G. It is easy to see that Ai2 × Ki

is a complement of Ai1 in G. Hence, by induction there exists a common complement
H of A11, . . . , At1 in G. Let Bi := Ai ∩ H . Since Ai1Bi = Ai1H ∩ Ai = Ai and
Ai1 ∩ Bi ≤ Ai1 ∩ H = 1, Ai1 is a complement of Bi in Ai . Consequently, Ai1Ki is a
complement of Bi in G. Finally, Ai1Ki ∩ H is a complement of Bi in H . Hence, by
induction there exists a common complement K of B1, . . . , Bt in H . Now we have
Ai K = Ai Bi K = Ai H = G and Ai ∩ K = Ai ∩ H ∩ K = Bi ∩ K = 1. So K is
also a complement of A1, . . . , At in G.

For the remainder of the proof, we may assume that A1, . . . , At are cyclic. Let
G = G1 × . . . × Gn be the primary decomposition. By Lemma 3.1, there exist
i1, . . . , it ∈ [n] such that the projection πi j : A j → Gi j is an isomorphism for
j = 1, . . . , t . In particular, |Gi1 | = . . . = |Git |. Let H :=Gi1 . . .Git

∼= As
1 for

some s � t (note that the Gi j are not necessarily distinct). Let G = H × K and let
πH : G → H be the projection to H . By construction, the restriction of πH to each
Ai is injective. Let Bi :=πH (Ai ) ∩ �(H) for i ∈ [t]. Since |�(H)| = ps , �(H) has
exactly ps−1

p−1 maximal subgroups. Each Bi can only be contained in the preimages of

the ps−1−1
p−1 maximal subgroups of �(H)/Bi . Since

ps − 1

ps−1 − 1
> p � t,

there must be one maximal subgroup of �(H) not containing any Bi . Consequently,
we find a subgroup L � H such that L ∼= As−1

1 and L ∩πH (Ai ) = 1 for i = 1, . . . , t
(the case s = 1 with L = 1 is allowed). Suppose that a ∈ Ai ∩ (L × K ). Then
πH (a) ∈ L ∩ πH (Ai ) = 1 and a = 1 since πH is injective on Ai . Moreover,

|Ai ||L × K | = |Ai |s |K | = |HK | = |G|.
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Hence, L × K is a common complement of A1, . . . , At in G. �	
The proof above shows that the following stronger statement holds for cyclic sub-

groups of p-groups.

Corollary 3.2 Let A1, . . . , At be complemented cyclic subgroups of the same order of a
finite abelian p-group G. If there are at most p distinct subgroups�(A1), . . . , �(At ),
then A1, . . . , At have a common complement in G.

Note that the bound t � p in the preceding corollary is sharp owing to the existence
of the elementary abelian group of order p2 and its p + 1 distinct subgroups of order
p.

Our next result addresses the existence of a common transversal.

Corollary 3.3 Let A1, . . . , At be homocyclic subgroups of the same order of a finite
abelian group G. If the smallest prime divisor of |A1| is at least t , then A1, . . . , At

have a common transversal in G.

Proof Suppose that K is the subgroup generated by A1, . . . , At . We will show that
A1, . . . , At admit a common complement in K . First, we argue that each subgroup Ai

is complemented in K and we observe that it will suffice to prove the claim for A1.
Note that since K = A1 . . . At and the Ai ’s are homocyclic, it follows that exp(K ) =
exp(A1). Now we argue by induction on the rank of A1, where the base case is true
since then A1 is cyclic of maximal order. LetC be cyclic of maximal order in A1. Then
C has a complement, say H , in K and so K = C ×H . By Dedekind’s lemma we have
A1 = C × (A1 ∩ H), where A1 ∩ H is homocyclic of rank one less than the rank of
A1. Also, the exponent of A1 ∩ H is equal to the exponent of H and so the induction
hypothesis applies to A1 ∩ H in H and ensures the existence of a complement for
A1 ∩ H in H , say D. Then it is easy to see that D is a complement for A1 in K , as
claimed. Now Theorem A applies to the collection A1, . . . , At in K proving that there
is a common complement. Thus A1, . . . , At have a common transversal in K and so
by Lemma 2.2 they admit a common transversal in G. �	

A direct consequence of the preceding corollary is that three homocyclic subgroups
of the same odd order always admit a common transversal in any parent group.

To obtain more refined results, we now start to count common complements. For
this purpose, the following basic fact is useful.

Lemma 3.4 Suppose that the abelian group G has a complemented subgroup A. Then
the number of complements is

|XG(A)| = |Hom(G/A, A)| = |Hom(A,G/A)| .

Proof Let T ∈ XG(A) be fixed. For every U ∈ XG(A) and every t ∈ T there exists
a unique element τU (t) ∈ A such that τU (t) ≡ t (mod U ). It is easy to see that τU :
T → A is a homomorphism and U is uniquely determined by τU . Conversely, every
homomorphism τ : T → A defines a complement of A as U :={τ(t)t−1 : t ∈ T }. In
particular, |XG(A)| = |Hom(T , A)| = |Hom(G/A, A)|. The last equality is a general
fact from duality. �	
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Note that there is a natural isomorphism Hom(A × B,C) ∼= Hom(A,C) ×
Hom(B,C). In some situations this cardinality simplifies considerably.

Corollary 3.5 Suppose that A ∼= Cn1 × . . . × Cnk has a complement in G. Then

|XG(A)| = |�n1(G/A)| . . . |�nk (G/A)|.

Proof Let A = 〈a1〉 × . . . × 〈ak〉 with |〈ai 〉| = ni for i = 1, . . . , k. Then every
homomorphism f : A → G/A is uniquely determined by f (ai ) ∈ �ni (G/A) for
i = 1, . . . , k and conversely, each such choice leads in fact to a homomorphism. �	
Lemma 3.6 Let G = A1 × · · · × At × B be an abelian group. Then there are exactly

t∏

i=2

|Iso(A1, Ai )| |Hom(A1, B)|

common complements for A1, . . . , At in G, where Iso(A1, Ai ) is the set of isomor-
phisms A1 → Ai .

Proof If X ∈ XG(A1, . . . , At ), then A1 ∼= G/X ∼= Ai for each i � 1. Hence, we may
assume that A1 ∼= . . . ∼= At . Obviously,

T :=
tą

i=2

Ai × B

is a complement of A1 in G. To every complement U of A1 in G there exists the
corresponding homomorphism τU : T → A1 such that U = {τU (t)t−1 : t ∈ T }, as
in Lemma 3.4. Now fix 2 � i � t and note that U can only be complement of Ai

too, if the restriction of τU to Ai is injective, the reason being that τU (t)t−1 ∈ Ai

for some t ∈ T if and only if τU (t) = 1 and t ∈ Ai . But then τU (Ai ) = A1 since
A1 ∼= Ai . In this case, τU decomposes into a product of isomorphisms Ai → A1 and
a homomorphism B → A1. Conversely, it can be checked that each such τ (that is the
product of t − 1 isomomorphisms from Ai to A along with a homomorphism from B
to A1) defines a common complement {τ(t)t−1 : t ∈ T } of A1, . . . , At . �	

For cyclic groups the above clearly implies:

Corollary 3.7 Let G = A1 × · · · × At × B with cyclic subgroups A1, . . . , At of order
n. Then

|XG(A1, . . . , At )| = ϕ(n)t−1|�n(B)|,

where ϕ is the totient function.

Now, we restrict our attention to cyclic subgroups of maximal order (which are
always complemented).
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Proposition 3.8 Let A, B be cyclic subgroups of maximal order of an abelian p-group
G. Then

|XG(A, B)| =
{

|G : A| if A ∩ B > 1,

ϕ(|G : A|) if A ∩ B = 1.

Proof Assume first that A∩B > 1. Then every complement of A is also a complement
of B and vice versa. To see this, observe that if T is a complement of A but not of
B then T ∩ B 
= 1 and thus �(B) � T ∩ B ∩ A, which is clearly a contradiction.
Hence XG(A, B) = XG(A) and Corollary 3.5 implies that XG(A) = |G : A|. So the
proposition holds in this case.
Assume now that A∩ B = 1 and thus AB = A× B = C2

pn where |A| = pn . Since by
hypothesis, pn is the maximal element order in G, it follows easily from Lemma 3.1
that AB has a complement in G say G = A × B × S. We apply Corollary 3.7 to
get exactly ϕ(pn)|�pn (S)| common complements of A and B in G. Observe that
�pn (S) = S and thus

ϕ(pn)|�pn (S)| = ϕ(pn)
|G|
p2n

= ϕ(|G|/pn) = ϕ(|G : A|).

The proof is complete. �	
Corollary 3.9 Let G be an abelian group and let A, B be cyclic subgroups of G of
maximal order and index s in G. Then the proportion of complements of A in G that
are simultaneously complements for B in G is at least ϕ(s)/s.

Proof The desired proportion is

|XG(A, B)|
|XG(A)| .

If we write n p for the number of common complements of the Sylow p-subgroups
Ap and Bp in Gp, then according to Lemma 2.4 we have

|XG(A, B)| =
∏

p | |G|
n p.

But n p equals |Gp : Ap|, if Ap ∩ Bp > 1 and ϕ(|Gp : Ap|), if Ap ∩ Bp = 1 by
Proposition 3.8. Hence in all cases we have n p � ϕ(|Gp : Ap|) and thus the number
of common complements of A, B in G is at least

∏

p | |G|
ϕ(|Gp : Ap|) = ϕ

( ∏

p | |G|
|Gp : Ap|

)
= ϕ(|G : A|) = ϕ(s).

Similarly for A we get

|XG(A)| = |�|A|(G/A)| = |G/A| = s
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complements inG byCorollary 3.7. Therefore, the desired proportion is at leastϕ(s)/s,
as wanted. �	

Notice that for each prime-power index s = pa the proportion of common com-
plements is at least 1− 1/p � 1/2, but for general n there is no positive lower bound
since

lim inf
n→∞

ϕ(n)

n
= 0

(see for example Theorem 328 in [2] for a more general result).
We can now give a quantitative version of Theorem A.

Theorem 3.10 Let G be a finite abelian p-group and let A1, . . . , At be cyclic sub-
groups of maximal order and index s in G. Let ω be the number of distinct subgroups
�(Ai ) where 1 � i � t . Then

|XG(A1, . . . , At )| � s

(
1 − ω − 1

p

)
. (3.1)

Proof We induce on ω. If ω = 1 then all Ai share the same subgroup of order p.
Hence A1 ∩ . . . ∩ At > 1 which implies that |XG(A1, . . . , At )| = |XG(A1)| = s and
thus our induction begins.

Assume now that ω > 1 and that the claim holds for smaller values of ω. Without
loss of generality let �(Au) = �(Au+1) = . . . = �(At ) and �(Ai ) 
= �(Au) for
i < u. The inductive hypothesis implies

|XG(A1, . . . , Au−1)| � s

(
1 − ω − 2

p

)
.

From Proposition 3.8 we know

|XG(A1, . . . , Au−1) ∪ XG(Au, . . . , At )| � |XG(A1) ∪ XG(Au)|
= |XG(A1)| + |XG(Au)| − |XG(A1, Au)|
= 2s − s

(
1 − 1

p

)
= s

(
1 + 1

p

)
.

By inclusion–exclusion, we conclude

|XG(A1, . . . , At )| = |XG(A1, . . . , Au−1) ∩ XG(Au, . . . , At )|
= |XG(A1, . . . , Au−1)| + |XG(Au)| − |XG(A1, . . . , Au−1) ∪ XG(Au)|
� s

(
1 − ω − 2

p

)
+ s − s

(
1 + 1

p

)

= s

(
1 − ω − 1

p

)

and the theorem follows. �	
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As an immediate corollary we have the following.

Corollary 3.11 Let G be a finite abelian p-group and let A1, . . . , At be cyclic sub-

groups of maximal order of G then |XG(A1, . . . At )| � s
(
1 − t−1

p

)
.

4 Proof of Theorem B

We start with the non-existence part of Theorem B.

Lemma 4.1 Let A, B, C be cyclic subgroups of the finite abelian group G such that
G2 = A2 × B2 = A2 × C2 = B2 × C2 
= 1. Then T G(A, B,C) = ∅.
Proof By hypothesis, �(G2) = {1, a, b, c} where a ∈ A, b ∈ B and c ∈ C . Every
complement S of A must contain an involution, which lies either in B or in C . Hence,
S cannot be a common complement of A, B,C . �	

The next theorem addresses the key configuration of Theorem B.

Theorem 4.2 Let A, B, C be cyclic subgroups of order 2n of the abelian 2-group
G = ABC. Assume further that A ∩ B = A ∩ C = 1 and that |A ∩ BC | = 2m,
|B ∩ C | = 2k for some non-negative integers k, m. In case k > 0, there is a common
complement for the three subgroups, while if k = 0 we have the following cases:

(i) if m = 0, then A, B, C share a common complement,
(ii) if m = n, then there is no common transversal, while
(iii) if 0 < m < n, there is no common complement for A, B, C, but there is a common

transversal.

Proof If k > 0, then �(B) = �(C) and the claim follows from Corollary 3.2. Now
let k = 0, that is A ∩ B = A ∩ C = B ∩ C = 1.

(i) Here G = A × B × C and it is easy to see that the subgroup H = 〈ac〉 × 〈bc〉
is a common complement for A, B, C in G, where A = 〈a〉, B = 〈b〉, C = 〈c〉.

(ii) This part follows from Lemma 4.1.
(iii) Finally, let 0 < m < n. We assume that a common complement H for A, B

and C exists and we will derive a contradiction. In this case, G ∼= C2n × C2n × C2r

with r = n−m > 0 and any common complement is a group isomorphic toC2n ×C2r .
Thus we have G = H × A = H × B = H × C and so

BC = BC ∩ G = BC ∩ BH = B × (BC ∩ H).

As BC = B × C ∼= C2n × C2n , we conclude that BC ∩ H is a cyclic group of order
2n . Now note that BC has only three involutions, namely b2

n−1
, c2

n−1
and (bc)2

n−1
.

Since H ∩ B = H ∩ C = 1, we see that the only involution in BC ∩ H is (bc)2
n−1

.
Similarly, since A ∩ B = A ∩ C = 1, the unique involution of the non-trivial cyclic
subgroup BC ∩ A is (bc)2

n−1
. We conclude that

(bc)2
n−1 ∈ A ∩ BC ∩ H ,
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contradicting the fact that A ∩ H = 1.
To conclude the proof, we must show that T G(A, B,C) is non-empty. Since A ∩

BC = 〈
a2

r 〉
, we may assume that a2

r = (bc)2
r
.

We define the map σ : {0, . . . , 2n − 1} → {0, . . . , 2n − 1}, as

σ(i) = t · 2m + i − t

2r
,

where 0 � t < 2r with i ≡ t (mod 2r ). We note first that 0 � i−t
2r < 2m and

0 � σ(i) � (2r − 1)2m + i − t

2r
< 2n .

Suppose next that σ(i) = σ( j) with j ≡ t ′ (mod 2r ). Computing modulo 2m , we
obtain i − t ≡ j − t ′ (mod 2n) and hence i − t = j − t ′. But then t2m = t ′2m
and t = t ′ as well as i = j . We have shown that σ is a permutation. We also have
i − σ(i) = −t · 2m + i(2r−1)+t

2r . Furthermore, if i ≡ v (mod 2r ) then

(i − σ(i)) − (v − σ(v)) = (i − v)(2r − 1)

2r
(4.1)

Let X = {
bi cσ(i) | i ∈ {0, . . . , 2n − 1} }

and

Y =
2r−1⋃

j=0

a j c j ·2m X .

We claim that Y ∈ T G(A, B,C).
It suffices to show that all the elements of Y are distinct (mod A), (mod B) and

(mod C), as then we would also have that |Y | = 2r · 2n .
• Let a j c j2

m
bi cσ(i) and aucu2

m
bvcσ(v) ∈ Y for some j, u ∈ {0, 1, . . . , 2r − 1} and

i, v ∈ [2n]. Suppose first that a j c j2
m
bi cσ(i) ≡ aucu2

m
bvcσ(v) (mod B). Then

a j−u ≡ c2
m (u− j)+σ(v)−σ(i) (mod B).

Hence a j−u ∈ A∩BC and thus 2r | j−u which in turn implies that j = u. Hence
cσ(v)−σ(i) ∈ B and so σ(v) ≡ σ(i) (mod 2n). But σ ∈ S2n , so i is necessarily
equal to v. Thus the elements in Y are distinct (mod B).

• Assume now that a j c j2
m
bi cσ(i) ≡ aucu2

m
bvcσ(v) (mod C) which implies that

a jbi ≡ aubv (mod C). Hence a j−u ≡ bv−i (mod C), which in turn yields that
2r | j − u and thus j = u. Therefore bv−i ∈ C and so 2n | v − i . Thus v = i and
the elements of Y are distinct (mod C).

• Lastly, assume thata j c j2
m
bi cσ(i) ≡ aucu2

m
bvcσ(v) (mod A). Then c j2

m
bi cσ(i) ≡

cu2
m
bvcσ(v) (mod A) and thus c2

m ( j−u)+σ(i)−σ(v) ≡ bv−i (mod A). So there
exists t ∈ [2m] such that

i − v ≡ t2r (mod 2n) and 2m( j − u) + σ(i) − σ(v) ≡ t2r (mod 2n).
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We conclude that

2m( j − u) ≡ (i − σ(i)) − (v − σ(v)) (mod 2n).

In view of Equation (4.1) we get

2m( j − u) ≡ (i − v)(2r − 1)

2r
(mod 2n).

But 2n = 2m+r and thus i − v ≡ 0 (mod 2n). So i = v. Hence 2m( j − u) ≡ 0
(mod 2n) and so 2r | j − u which yields that j = u.

The proof is complete. �	
We can now prove that a similar result to that of Corollary 2.5 holds for common

transversals of three cyclic subgroups.

Corollary 4.3 Let A, B, C be cyclic subgroups of G = ABC with A ∩ B ∩ C = 1.
Then A, B, C share a common transversal in G if and only if Ap, Bp, Cp share a
common transversal in G p for all prime divisors p of |G|.
Proof Assume first that Ap, Bp,Cp share a common transversal Tp inGp for all prime
divisors p of |G|. Then the product T = ∏

p Tp is a common transversal of A, B,
C in G, as we can easily verify. For the other direction, we first note that according
to Theorem A, common transversals always exist for three cyclic subgroups of odd
order in their product group. Hence we assume that G2 
= 1 and it suffices to show
that if T G2(A2, B2,C2) = ∅ then T G(A, B,C) = ∅. In view of Theorem 4.2 we
have T G2(A2, B2,C2) = ∅ if and only if A2 � B2C2 while B2 ∩C2 = 1 (after some
rearrangement of A, B, C). But A2, B2,C2 are all cyclic groups of the same order
with trivial intersection while their product is G2 
= 1 and thus G2 = A2 × B2 =
B2 × C2 = A2 × C2. We are therefore in the situation described in 4.1 and thus we
get T G(A, B,C) = ∅. �	

Theorem B is now an easy consequence of the preceding corollary.

Proof of Theorem B By Lemma 2.2, we may assume that G = ABC . Then A, B and
C are cyclic of maximal order, so they are complemented in A. If |A| is odd, then the
claim follows from Theorem A.We may assume therefore, that |A| is even. In view of
Corollary 4.3, we have that T G(A, B,C) = ∅ if and only if T G2(A2, B2,C2) = ∅.
But T G2(A2, B2,C2) is the empty set if and only if T X/Y (A2/Y , B2/Y ,C2/Y ) = ∅,
where X = A2B2C2 and Y = A2 ∩ B2 ∩ C2. Appealing to Theorem 4.2 completes
the proof. �	

5 Somemore constructions

In this section, we will provide some methods to construct a common transversal for
three subgroups A, B, C of G. We start with the following generalization of Theorem
1 in [5].
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Theorem 5.1 Let B1, . . . , Bt be subgroups of G of the same order m. Let X =∏t
i=1 Bi , and assume that T X (B1, . . . , Bt ) 
= ∅. If A � G with |A| = m and

AX = A × X, then T G(A, B1, . . . , Bt ) 
= ∅.
Proof Clearly, in view of Lemma 2.2, we may assume that G = AX = A × X . Let
T ∈ T X (B1, . . . , Bt ). Then |T | = |X |/m, while |G| = m · |X | = m2 · |T |. Observe
that for every b ∈ B1, the set bT ∈ T X (B1, . . . , Bt ). In addition,

bT ∩ b′T = ∅, for all distinct b, b′ ∈ B1, (5.1)

or else we would get bt1 = b′t2 for distinct t1, t2 ∈ T , contradicting the fact that T
is a transversal for B1. We write B1 = {b1, . . . , bm} and A = {a1, . . . , am} and we
claim that the set

D =
m⋃

i=1

aibi T

is an element of T G(A, B1, . . . , Bt ).
We first show that no two elements in D are in the same A or Bi -coset for all i ∈ [t].
Assume first that

aibi t1 ≡ a jb j t2 (mod A)

for ai , a j ∈ A, bi , b j ∈ B1 and t1, t2 ∈ T . Then bi t1 ≡ b j t2 (mod A) and so
bib

−1
j t1t

−1
2 ∈ A ∩ X . As the latter group is trivial, we get bi t1 = b j t2, i = j and

t1 = t2 by (5.1).
Regarding the cosets of Bi for i ∈ [t] we see that if

aibi t1 ≡ a jb j t2 (mod Bi ),

then aia
−1
j = b−1

i t−1
1 b j t2 ∈ X ∩ A. So ai = a j , that is i = j . Hence the last

congruence implies that t1 ≡ t2 (mod Bi ), which means that t1 = t2, since T ∈
T X (B1, . . . , Bt ).
Observe that, as no two elements in D are in the same A-coset, they are necessarily
distinct and thus |D| = m|T | = |X | equals the index of A in G, as well as that of Bi
in G, for all i ∈ [t]. We conclude that D is a common transversal for A, B1, . . . , Bt

in G, and the theorem follows. �	
As we know, if B1, B2 are subgroups of G of the same order, then a common

transversal exists. Hence Theorem 5.1 clearly implies the following.

Corollary 5.2 Let G be an abelian group and A, B,C � G of the same order m.
Assume further that ABC = A×BC and let T ∈ T BC (B,C). Then D = ⋃m

i=1 aibi T
is a common transversal of A, B, C in ABC, where A = {ai }mi=1 and B = {bi }mi=1.

The above corollary works for any three subgroups A, B, C of the same order,
without assuming that they are cyclic, but with the extra hypothesis that ABC =
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A× BC . We have not managed to relax this last hypothesis without some restrictions
on the type of A, B, C . For A, B, C cyclic subgroups we are able, in some cases, to
construct the desired common transversal as the next theorem shows.

Theorem 5.3 Let G = ABC with cyclic subgroups A, B, C of order pn where p is
an odd prime. Assume further that A ∩ B = A ∩ C = B ∩ C = 1 while A ∩ BC has
order pm. Then for a, b, c generators of A, B, C, respectively, with a pn−m = (bc)p

n−m

the set

T =
{
aib j−i c− j : i ∈ [pn−m], j ∈ [pn]

}

is in T G(A, B,C).

Proof Let A = 〈a〉 and r = n − m. Since A ∩ BC = 〈
a pr

〉
, we may assume that

a pr = (bc)p
r
for appropriate generators b, c of B and C . We argue that the set

T = {
aib j−i c− j : i ∈ [pr ], j ∈ [pn]} is in T G(A, B,C).

Let aib j−i c− j , aubv−uc−v ∈ T for some i, u ∈ [pr ] and j, v ∈ [pn]. Suppose that
aib j−i c− j ≡ aubv−uc−v (mod B). Then ai−u ≡ c j−v (mod B) and thus ai−u ∈
A∩ BC . Thus pr divides i −u and so i = u as they are in [pr ]. So c j−v ∈ B∩C = 1,
which yields that pn divides j −v and thus j = v. We see therefore that each element
in T defines a unique coset of B in G. The proof that each element in T defines a
unique coset of C in G is entirely analogous so we omit it and we deal next with
the case of A. The congruence here is b j−i c− j ≡ bv−uc−v (mod A) and it yields
b( j−v)−(i−u) ≡ c j−v (mod A). Thus b( j−v)−(i−u)c−( j−v) ∈ A ∩ BC = 〈

(bc)p
r 〉
.

Since B ∩ C = 1, it follows that there exists a t such that

( j − v) − (i − u) ≡ tpr (mod pn) and v − j ≡ tpr (mod pn).

Thus u − i ≡ 2tpr (mod pn) and so u − i ≡ 0 (mod pr ). It follows that i = u
as i, u ∈ [pr ]. Therefore j − v ≡ tpr ≡ v − j (mod pn) and so 2( j − v) ≡ 0
(mod pn). As p is an odd prime we get pn | j − v forcing j = v, as wanted.
We have therefore shown that all the elements of T are in distinct A, B and C cosets.
Hence the elements of T are pairwise distinct while the cardinality |T | = p2n−m is
the correct one and thus T ∈ T G(A, B,C). �	
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