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A B S T R A C T

This study investigates the data normalisation of modal parameters of an operating concrete–steel hybrid
onshore wind turbine tower considering also the identification uncertainty. In order to take into account
the Environmental and Operational Condition (EOC)-dependent variance, sparse heteroscedastic Gaussian
processes (GPs) are used for the data normalisation. Following a typical vibration-based Structural Health
Monitoring (SHM) scheme, data normalisation of the natural frequencies and the mode shapes is performed
first. Subsequently, a metric is defined which takes into account both the identification uncertainty and the
operation-dependent uncertainty in order to enable novelty detection.

The data normalisation methods must be able to handle uncertainties of different magnitudes due to EOCs
in the data. In this context, GPs can be a suitable tool. However, standard GPs assume homoscedasticity, which
is an unrealistic assumption in the case of EOC-dependent variance. Using a heteroscedastic GP instead, the
variance of the data is better mapped and allows comparison with the identification uncertainties of Bayesian
operational modal analysis (BAYOMA), taking into account the specifics of closely spaced modes of the tower
structure. This leads to a better interpretation of the data and enables the introduction of a probabilistic novelty
metric.

This data normalisation approach, taking into account EOC-dependent uncertainties using heteroscedastic
GPs, is being applied for the first time to a tower of a full scale 3.4 MW wind turbine in operation. Following
this approach, it is possible to detect smaller changes in natural frequencies and second-order modal assurance
criterion (S2MAC) compared to the assumption of homoscedasticity within the GP. In addition, a novelty was
detected using the S2MAC during the period under study. Therefore, it can be illustrated that mode shape-
based metrics tend to be more sensitive than purely frequency-based ones. However, it is difficult to assess
the significance of such changes for structural integrity without further information.
. Introduction

Wind energy plays a crucial role in the decarbonisation of the
nergy sector. One cost factor is operation and maintenance. Reliable
onitoring systems are needed to reduce these costs. In vibration-

ased structural health monitoring (SHM), many methods are based
n modal parameters estimated from measured vibration data [1]. The
odal parameters in terms of natural frequencies, mode shapes and
amping are often extracted using output-only or operational modal
nalysis (OMA) techniques, like Bayesian Operational Modal Analysis
BAYOMA) [2], that not only enables the identification of the modal
arameters but also of the corresponding uncertainties. This is useful
or tower structures because the mode shapes of closely spaced modes
re challenging to identify. Here, two different parts of uncertainty

∗ Corresponding author.
E-mail address: c.jonscher@isd.uni-hannover.de (C. Jonscher).

need to be considered. The first relates to the uncertainty of the mode
subspace (MSS), which is determined by the dominant vibration shapes.
The second aspect relates to the alignment of the mode shape within
the MSS [3]. As the closeness of the frequencies increases, so does
the difficulty of identifying the alignment, as noted in [4]. It has been
shown in [5] that the application of the Second Order Modal Assurance
Criterion (S2MAC) [6] has the ability to eliminate this alignment
uncertainty in the context of monitoring wind turbine towers. How-
ever, changing environmental and operational conditions (EOCs) also
affect the structure’s response [7]. This includes the variance of modal
parameters, like natural frequencies and mode shapes, due to slowly
changing EOCs, such as the nacelle position of wind turbine towers [5].
Therefore, the detection of structural damage under changing EOCs
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is an important issue in the SHM research community [8]. Typically,
measurements are taken to gather information on the response of the
structure and monitoring features are extracted. These features are then
compared with those from the healthy state of the structure. To this
end, Lucà et al. [9] use multiple vibration modes simultaneously to
develop a damage metric based on the Mahalanobis squared distance.
Similarly, Bull et al. [10] have applied this metric for damage detection
in a properly operating Vestas V27 wind turbine. However, this method
is limited by the variability of the EOC, which affects the specificity of
the features in the training data. This could lead to an undue influence
on the estimation of mean and covariance, resulting in so-called outlier
masking, which leads to increased false negatives [11]. Thus, if the
corresponding EOCs of the reference state differ from those of the
current state, false damage detection may occur [12]. The confounding
effects of EOC variations must therefore be removed [13,14] before a
suitable metric can be derived to assess the condition of the structure.
This process is referred to as data normalisation [15], which is the focus
of this work.

Clearly, the applicability of data normalisation methods depends
on the availability of reliable measurements of the EOCs [16]. When
direct measurements of EOCs are available, it is possible to model the
monitored parameters with respect to the EOC variations of the system
and to use the error of the resulting model as a robust indicator for
the structural condition [17–19]. Instead of treating the influences of
the EOCs as a regression task, they can also be viewed in terms of clas-
sification. Here, the system behaviour is divided into discrete regimes
based on the current EOC state. A clustering approach is conceivable
in this context, which automatically recognises the different classes
and then uses them for classification [20,21]. Projection methods are
also an option. These methods attempt to capture the variations in
monitoring parameters caused by changing EOCs without the need for
direct measurements of the EOCs. In SHM, one of the methods that has
been used to transform the measured data into a new EOC insensitive
coordinate system is the principal component analysis (PCA) [22].
Cointegration represents another projection method [23]. Here, the
fact that some monitored variables have common trends caused by the
changing EOCs is taken into account. A disadvantage of these methods
is that nonlinear effects can reduce their efficiency [24]. Therefore,
nonlinear extensions have been proposed in recent years [25–27].
However, those methods are preferable when direct EOC measurements
are impractical or difficult to perform [28]. In addition, these methods
cannot provide information on the uncertainty of a prediction, which
is particularly important for decision-making on potential damage in
SHM. Therefore, several Bayesian approaches have been developed in
recent years to quantify the uncertainties in the context of SHM [29].
For example, Bayesian models can be used for data-driven probabilistic
damage detection, assuming that in the range of the damage-sensitive
frequency band of the natural frequency, the relative proportions of
the real and imaginary components in the frequency domain are not
changed by EOCs, but only by the damage [30]. Another field of
application in SHM is the forecast [31] or reconstruction [32] of
measurement data with Bayesian models.

Since the Supervisory Control And Data Acquisition (SCADA) data
for the investigated hybrid concrete–steel tower in a 3.4 MW onshore
wind turbine are available, a regression-based approach to data nor-
malisation is preferable. In this case, the EOCs are the input variables
of the regression task. A simple approach would be to consider only the
parameters at the standstill of the wind turbine and to compensate for
the remaining variations, such as temperature, with a linear regression
as Botz [33] proposed for the monitoring of a concrete steel tower
of a 3 MW onshore wind turbine. An extension of this approach is
to use static and dynamic multivariate linear regressions for different
operating conditions, as presented for a steel tower of a 2 MW onshore
wind turbine by Oliveira et al. [34]. Weijtjens et al. [35] additionally
use a nonlinear regression model for data normalisation for monitoring
2

a support structure of a 3 MW offshore wind turbine. Other nonlinear
regression approaches make use of machine learning methods such as
artificial neural networks (ANNs) [36].

Another option is Gaussian process (GP) regression [37], which is
a nonparametric regression technique that is increasingly being used
in several SHM applications [38–40]. It is well-suited for combination
with BAYOMA because GPs include natural Bayesian foundations and
inherently provide confidence intervals for model predictions. This
makes it possible to develop a reliable damage detection method based
on these confidence intervals. However, one well-known limitation
of GP regression is the high computing and memory complexity for
big data applications. To overcome this, sparse GPs can be applied
to reduce the computation time. This is also of particular interest for
online learning approaches [41]. Another limitation of the standard
GP is the assumption of homoscedasticity, which means that the noise
variance is assumed to be independent of the input variables. For
systems with input-dependent (heteroscedastic) variances, this assump-
tion may lead to erroneous estimates of the uncertainties due to noise
variance. For example, in wind turbine support structures, the damping
in the fore–aft (FA) direction is dependent on the rotor speed and wind
speed due to aerodynamic damping. Higher damping leads to a higher
identification uncertainty and thus higher variance. Thus, there is a
functional dependence between the operational condition rotor speed
and the identification uncertainties of the FA-modes. In this context
the homoscedastic GP assumes that this uncertainty is constant for
all inputs and therefore cannot account for noise changes due to, for
example, aerodynamic damping. A more suitable regression approach is
therefore the use of a GP with heteroscedastic noise [42–44]. These GPs
can map epistemic (e.g.interpolation uncertainty due to missing data)
as well as aleatoric (e.g. measurement uncertainty) uncertainties and
are therefore able to map uncertainties of different amplitudes caused
by EOCs and unrecorded influences.

Heteroscedastic GPs had already been used for some SHM appli-
cations, such as mapping temperature variations of a manifold space
of natural frequencies of the Z24 bridge [45]. Additionally, Rogers
et al. [46] used sparse heteroscedastic GPs to approximate the power
curve of an offshore wind turbine, Wang et al. [47] forecasts strain
measurements of a large-scale suspension bridge using variational het-
eroscedastic GP. Moreover, heteroscedastic GPs are applied in the field
of guided waves [48] and acoustic emission [49]. For the appropriate
treatment of non-stationary problems, Tolvanen et al. [50] presented
an extended heteroscedastic GP.

The focus of this work is on the appropriate handling of the in-
fluences of natural frequencies and the S2MAC of the mode shapes
identified with BAYOMA of an onshore wind turbine tower due to
EOCs considering the uncertainties. For the data normalisation, sparse
heteroscedastic GP will be used. Based on the normalised data, a
probabilistic approach for novelty detection is then applied, using
the uncertainty quantification provided by BAYOMA and the GP. The
structure of this study is as follows: Section 2 introduces the theory
of heteroscedastic sparse GP and in Section 3 the novelty metric is
defined. Section 4 describes the wind turbine tower under investigation.
In Section 5, the application of the heteroscedastic GP for predicting
the identified natural frequencies and S2MACs using aggregated 10-
min SCADA data as the input is examined. This is followed by an
examination of the novelty detectability of theoretical system changes
with the trained heteroscedastic GPs compared to the homoscedastic
GPs as well as a more detailed examination of a real potential system
change. Finally, in Section 6, the study is summarised and an outlook
is given.

2. Gaussian process

In this paper, we only present a brief overview of Gaussian pro-

cesses (GPs) and direct interested readers to Rasmussen et al. [37] for
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more detailed information. GPs are used to model known input–output
mappings of the form

𝑦 = 𝑓 (𝐱) + (0, 𝜎2𝑛 ), (1)

where 𝑦 represents the observed target values and 𝑓 (𝐱) is a function
that is superimposed with additive Gaussian-distributed noise  (0, 𝜎2𝑛 ),
ssuming zero mean and variance 𝜎2𝑛 . GPs are a powerful Bayesian
achine learning tool with several desirable properties: They are able

o make predictions and estimate probability distributions without
pecifying a particular parametric functional form, require few a priori
nputs, and can model relationships between variables with high levels
f noise. As shown in Eq. (1), GPs can be interpreted as prior probability
istributions over functions 𝑓 (𝐱). Formally, a GP can thus be defined as

(𝐱) ∼ GP(𝑚(𝐱), 𝑘(𝐱, 𝐱′)), (2)

here 𝐱 and 𝐱′ are a pair of inputs to the function of interest. According
o Eq. (2), a GP is completely defined in terms of its mean 𝑚(𝐱) and
ts covariance function 𝑘(𝐱, 𝐱′). In particular, the covariance function
efines the smoothing characteristics of the underlying function. To
ake predictions, a joint Gaussian distribution between training and

esting data is formed as follows: Given a set of training data in which
he inputs are given in the matrix of multivariate training inputs 𝐗 =
[𝐱1, 𝐱2,… , 𝐱𝑁 ] and target values 𝐲, the joint Gaussian distribution can
be formed for a testing point 𝐱∗ and unknown output 𝑦∗ using the
raining data. Assuming a zero-mean function, the joint distribution can
e expressed as follows:
(

𝐲
𝑦∗

)

∼ 
(

𝟎,
[

𝐾(𝐗,𝐗) + 𝜎2𝑛I 𝐾(𝐗, 𝐱∗)
𝐾(𝐱∗,𝐗) 𝐾(𝐱∗, 𝐱∗) + 𝜎2𝑛

])

, (3)

here 𝐾(⋅) denotes the matrix of covariances defined by the covariance
unction, or kernel, 𝑘(⋅) between every data point. Given the joint
istribution 𝑝(𝐲, 𝑦∗), the conditional distribution 𝑝(𝐲|𝑦∗) can be recov-
red. This allows for the derivation of the expression for the posterior
redictive mean and variance as follows:

∗ ∼  (E[𝑦∗],V[𝑦∗]), (4)

here the posterior predictive mean E[𝑦∗] and variance V[𝑦∗] are given
y

E[𝑦∗] = 𝐾(𝐱∗,𝐗)[𝐾(𝐗,𝐗) + 𝜎2𝑛I]
−1𝐲, (5)

[𝑦∗] = 𝐾(𝐱∗, 𝐱∗) −𝐾(𝐱∗,𝐗)[𝐾(𝐗,𝐗) + 𝜎2𝑛I]
−1𝐾(𝐗, 𝐱∗) + 𝜎2𝑛 , (6)

espectively, expressed for the observations. To determine the values
f the kernel hyperparameters 𝜣, the marginal likelihood of the pre-
ictions 𝑝(𝐲|𝐗,𝜣) is maximised with respect to 𝜣. In log form, this is
xpressed as

og 𝑝(𝐲|𝐗,𝜣) = −1
2
𝒚T(𝐾(𝐗,𝐗)+𝜎2𝑛I)

−1𝐲−1
2
log |𝐾(𝐗,𝐗) + 𝜎2𝑛I|−

𝑁
2

log 2𝜋,

(7)

here 𝑁 is the number of training samples. In this context, the
arginal likelihood is used to quantify the joint probability of the data
nder a prior.

.1. Sparse approximation of Gaussian process

In the previous section, it was stated that GPs provide powerful
robabilistic models for regression. However, to adjust the hyperparam-
ters and to use the GP for predictions, it is necessary to calculate the
nverse of the covariance matrix including noise, denoted as [𝐾(𝐗,𝐗)+
𝜎2𝑛I]

−1. The computational complexity of this operation scales with
(𝑁3) and the memory scales with (𝑁2), where 𝑁 is the number
of training samples. Therefore, GPs become impractical to train for
large data sets with more than about ten thousand data points with
current computer hardware [37]. To overcome this limitation, several
approximation methods have been developed, which are referred to as
3

sparse approximations of Gaussian processes [51]. These methods focus on
a small set of samples and preserve the advantageous properties of GPs
by simultaneously reducing the complexity to typically (𝑁𝑀2) for
computational time and (𝑁𝑀) for memory, where 𝑀 is the number of
inducing variables selected for the approximation, with 𝑀 < 𝑁 [52].
We refer to [51] for a comprehensive review of fundamental sparse
approximation methods. For this work, we adopt an approach based on
Almosallam [53], who proposes a basis function model (BFM) approach
to improve posterior variance accuracy. For describing sparse GPs using
BFM, the underlying assumption is, given inputs 𝐱 and target values 𝐲,
that the observed target 𝑦𝑖 is generated by a linear combination of 𝑚
non-linear functions 𝝓(𝐱𝑖) = [𝜙1(𝐱𝑖),… , 𝜙𝑚(𝐱𝑖)]𝑇 ∈ R𝑚 of the inputs plus
additive noise 𝜖𝑖 ∼  (0, 𝜎2):

𝑦𝑖 = 𝝓(𝐱𝑖)T𝐰 + 𝜖𝑖. (8)

Here, 𝐰 is a vector of length 𝑚 representing the weights of the basis
functions, which are represented by radial basis functions (RBFs) for
this study. Compared to a standard GP, where the mean of the predic-
tive distribution is a linear combination of 𝑛 kernel functions, the BFM
approach assumes that the form of the function is a linear combination
of 𝑚 ≪ 𝑛 basis functions and integrates out its parameters [44]. To
favour the simplest explanation that fits the data, a prior on the weights
𝐰 can be formulated probabilistically by taking 𝑝(𝒘|𝛼) =  (𝒘|0,𝐀−1),
where 𝐀 = 𝛼I (with I as the identity matrix) is a prior precision on the

eights 𝐰, which is included in the parameter set 𝜣. It can be shown
hat the posterior probability of the weight vector 𝐰 has the following
istribution:

(𝐰|𝐲,𝐗,𝜣) =  (𝐰|𝐰,𝜮−1
𝑤 ), (9)

where the mean and covariance matrix of the distribution are given by:

𝐰 = 𝛽𝜮−1
𝒘 𝜱𝑥𝐲, (10)

𝜮𝒘 = 𝛽𝜱𝑥𝜱T
𝑥 + 𝐀, (11)

respectively, where 𝛽 = 𝜎−2 is the precision parameter. By substituting
𝒘 = 𝒘 it is possible to express the marginal likelihood as:

𝑝(𝐲|𝐗,𝜣) =  (𝒚|𝝓𝐱
T𝐰, 𝛽−1I) (𝐰|0,𝐀−1)(2𝜋)

𝑚
2
|Σ𝐰|

− 1
2 . (12)

The log marginal likelihood can then efficiently be expressed in terms
of the mean 𝐰 and the covariance 𝜮𝑤 of the posterior distribution:

log 𝑝(𝐲|𝐗,𝜣) = −
𝛽
2
‖𝜱𝑥𝐰 − 𝐲‖2 + 𝑛

2
log 𝛽 − 𝑛

2
log 2𝜋

− 𝛼
2
𝐰𝑇𝐰 + 𝑚

2
log 𝛼 − 1

2
log |𝜮𝑤|,

(13)

where 𝜱𝑥 is an 𝑛 × 𝑚 matrix whose (𝑖, 𝑗) entry is given by 𝜙𝑗 (𝐱𝑖).
Optimisation of the hyperparameters of the basis function, the precision
𝛽, and the weight precision 𝛼 is achieved by maximising the log
marginal likelihood, as defined in Eq. (13). The predictive distribution
for a test target output 𝑦∗ is given as follows:

𝑝(𝑦∗|𝐱∗, 𝐲,𝐗,𝜣) =  (𝑦∗|E[𝑦∗],V[𝑦∗]), (14)

E[𝑦∗] = 𝜱(𝐱∗)T𝐰, (15)

V[𝑦∗] = 𝜱(𝐱∗)T𝛴−1
𝑤 𝜱(𝐱∗) + 𝛽−1I. (16)

It is worth noting that BFMs are mathematically equivalent to the
subset-of-regressors sparse GP method, as shown in [53].

2.2. Heteroscedastic Gaussian process

The prediction variance, as shown in Eq. (16), can be decomposed
into two components: the model and the inherent noise variance. This
decomposition reflects the typical classification of uncertainty sources
into aleatoric and epistemic uncertainties [54]. The aleatoric uncer-
tainty, which is irreducible, stems from inherent randomness, while the

epistemic uncertainty arises from insufficient knowledge and can be
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Fig. 1. Comparison of homoscedastic and heteroscedastic noise models of sparse GPs for input-dependent noise with two basis functions. The underlying data (200 samples) is
obtained by sampling from 𝑦 ∼  (0.4𝑥, 𝜎2

𝑥) with 𝜎2
𝑥 = 0.00015 + 0.004𝑥. For training, the samples are divided into 60% training, 20% validation and 20% testing.
reduced, if more knowledge is available. Therefore, model variance is
an instance of epistemic uncertainty, and noise uncertainty is mainly
a form of aleatoric uncertainty. The level of epistemic uncertainty of
a test point 𝐱∗ is caused by the density of the samples used during
the training of the GP. This type of uncertainty can thus be reduced
by incorporating more data in the training set. For the aleatoric un-
certainty, homoscedasticity with constant precision 𝛽 was assumed
in the previous section. However, this assumption is inadequate for
many applications wherein a more flexible heteroscedasticity model
is required, in which noise variance is a function of the inputs. To
account for this, one approach is to model the noise as a second
GP [43]. Another approach is to use BFMs, which can be considered
as a sparse GP method that defines a semiparametric form via a set of
weights. To incorporate heteroscedasticity, Almosallam proposes a BFM
approach [53], where a function for the variable and input-dependent
noise is defined by a linear combination of basis functions of the form
𝛽(𝐱) = exp(𝝓(𝐱)T𝐯 + 𝑏). The exponential form is chosen to ensure the
positivity of 𝛽(𝐱). Based on this, Almosallam expressed the posterior
distribution as follows [53]:

𝑝(𝐰|𝐲,𝐗,𝜣) =  (𝐰|𝐰,𝜮−1
𝑤 ), where (17)

𝐰 = 𝜮−1
𝒘 𝜱𝑥𝐁𝐲, (18)

𝜮𝒘 = 𝜱𝑥𝐁𝜱T
𝑥 + 𝐀, (19)

and 𝐁 = diag[{𝛽(𝐱𝑖)}𝑛𝑖=1]. For a testing point 𝐱∗ and an unseen output
𝑦∗, the predictive distribution is Gaussian distributed as follows:

𝑝(𝑦∗|𝐱∗, 𝐲,𝐗,𝜣) =  (𝑦∗|E[𝑦∗],V[𝑦∗]), where (20)

E[𝑦∗] = 𝜱(𝐱∗)T𝐰, and (21)

V[𝑦∗] = 𝜱(𝐱∗)T𝛴−1
𝑤 𝜱(𝐱∗) + 𝛽(𝐱∗)−1, (22)

where 𝛽(𝐱∗)−1 is the input-dependent noise uncertainty. A simple sim-
ulation model for illustration of the GP defined above is presented
in Fig. 1. When homoscedasticity is assumed for the sparse GP, it
cannot properly capture the varying level of noise variance across the
input space, whereas a sparse heteroscedastic GP can. The cumulative
distribution function (CDF) of the uncertainty of the GP illustrates
this relationship. In the case of a purely aleatoric uncertainty, the
uncertainty of the homoscedastic GP becomes a vertical line. There-
fore, there are ranges where the homoscedastic GP overestimates the
variance and ranges where it underestimates the variance. Comparing
the underlying variance 𝜎2𝑥 of the sampled data and the heteroscedastic
GP, it is noticeable that the GP overestimates the lowest variance. The
more samples are included in the training, the better the variance of
the GP fits the model. By better reflecting the variance, the probabilis-
tic novelty metric described in the following section can make more
reliable statements.

3. Novelty metric

There are several ways to detect novelty in data when describing
data variation with a regression model, such as 𝑇 2 control charts [34].
4

Another probability-based distance metric uses the probability density
function 𝑓 of the identified monitoring parameters (MP) to calculate
the probability of the MP lying in the confidence interval of the GP [55]

𝑝healthy(CIlb ≤ MP𝑖 ≤ CIub) = 𝑝𝑀𝑃,𝑖 = ∫

CIub

CIlb
𝑓 (MP𝑖)𝑑MP𝑖, (23)

where CIlb and CIub are the lower and upper bound of the confidence
interval of the GP. Assuming that the quantities used are statistically in-
dependent, one can multiply the probabilities of 𝑁 different parameters
𝑝MP,i, 𝑖 = 1,… , 𝑁 , to obtain the joint probability

𝑝MP =
𝑁
∏

𝑖=1
𝑝MP,i. (24)

Although the independence of 𝑝MP,i, 𝑖 = 1,… , 𝑁 is likely to be violated,
the metric should perform well for real-world applications, as it known
for example from the Naive Bayes classifier [56]. In order to reduce
the influence of misidentifications and thus enable reliable statements,
observations are often averaged [34]. In this study, a moving average
over the 𝑝MP,i, 𝑖 = 1,… , 𝑁 is used, whereby the window length must be
specified. Furthermore, a threshold for detecting novelty must also be
defined. Our approach to set the threshold is achieved by choosing the
lower bound confidence interval of the averaged 𝑝MP of the training
period of the GP. In summary, the confidence interval of the GP, the
window length of the moving average, and the lower bound of the con-
fidence interval for determining the threshold must be defined. These
parameters have a direct impact on the detectability of system changes.
A too sensitive setting can lead to many false positives due to outliers.
A too conservative setting leads to a significantly degraded damage
sensitivity. The settings therefore have to be adjusted depending on
the application.

4. Monitored tower of a wind turbine

The investigations are carried out on a steel hybrid tower of an on-
shore wind turbine, which is shown in Fig. 2. The accelerations of both
horizontal measurement directions are recorded synchronously on five
measurement planes. The modal parameters used in the following were
identified with their identification uncertainties using BAYOMA [57].
In principle, all operational modal analysis methods that also determine
the identification uncertainties, such as an extension of the stochas-
tic subspace identification (SSI) [58], can be used for this approach.
In the context of closely spaced modes identified using the SSI, the
transformation of the complex mode shapes into the real space is not
possible without errors due to the splitting of the phases in the complex
plane according to spatial directions [4]. This can lead to an error in
the calculation of the 𝛼𝑆2𝑀𝐴𝐶 . The applicability of BAYOMA, as well
as the identification uncertainties, were investigated for the monitored
tower in a previous study [5]. According to the study, the natural
frequencies 𝑓0 and the 𝛼S2MAC, which is the angular representation of
the second-order modal assurance criterion (S2MAC) [6], can be used
as monitoring parameters of the first (𝐵1) and fourth (𝐵4) bending
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Fig. 2. Monitored steel–concrete hybrid tower of a wind turbine with the measurement
setup.

mode pairs. The S2MAC compares an identified mode shape 𝝋𝑖 with
a mode subspace spanned by the vectors 𝝍 𝑗 and 𝝍𝑘. In this way, the
dominant alignment uncertainty can be eliminated for closely spaced
modes. For real mode shapes, the 𝛼S2MAC is calculated as follows

𝛼S2MAC,i,jk = arccos
⎛

⎜

⎜

⎝

√

√

√

√

(𝝋𝑇
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The calculation of the 𝛼S2MAC uncertainties for each data set is done
using a Monte Carlo simulation with 3000 samples and the covariance
matrix of the identified mode shape [5].

The study evaluates data from mid-October 2021 to January 2023.
Only data indicating constant operation of the wind turbine, as de-
scribed in more detail in [5], are considered. The time histories of the
most probable values of the natural frequencies and the 𝛼S2MAC are
shown in Fig. 3. The modes are divided into fore–aft (FA) and side–
side (SS) with respect to the main direction of vibration towards the
nacelle.

5. Data normalisation with heteroscedastic Gaussian processes

The data normalisation of the natural frequencies and the 𝛼S2MAC
is done using the implementation of the sparse GP of Almosallam
et al. [53]. The GPs use basis functions models (BFM), as described
in more detail in Section 2. The widely used Radial Basis Functions
(RBF) kernel is applied as basis function [37]. The choice is made due to
the compatibility with large training data sets, as well as the existence
homoscedastic and heteroscedastic implementation in MATLAB [59].
For each monitoring parameter, a heteroscedastic and a homoscedastic
version of the GP is trained. The dimensionality should not be too high
when selecting the input variables for the GP. Otherwise this can lead
to large volumes of recorded data that may be imbalanced in their
feature space, resulting in an inadequate representation of the data
distribution leading to insufficient information to construct a reliable
model. This outcome is known as the curse of dimensionality. In this
study, the 10-min SCADA data sets used as inputs for the GP are listed
in Table 1 with the statistical quantities of the training period. In
addition to the parameters, the wind direction, rotor speed and pitch
angle are also available. The wind direction has some data gaps and
has little more information than the nacelle position during operation.
The pitch angle can be determined indirectly from the power and the
wind speed. Rotor speed is often used instead of the power for data
5

𝛼

Table 1
Inputs of the GP with the statistical quantities from October 2021 to September
2022.

Input Median 5% quantile 95% quantile

Wind speed in m
s

6.12 3.6 10.46
Power in kW 555 48 2725
Outside temperature nacelle in ◦C 9.68 2.17 23.52
Nacelle position in degrees 225 47.4 328.4

Table 2
Number of basis functions (#BF), as well as the coefficient of determination (𝑅2) of
the heteroscedastic GPs. The 𝑅2 are used to evaluate the models.

𝐵1𝐹𝐴 𝐵1𝑆𝑆 𝐵4𝐹𝐴 𝐵4𝑆𝑆
f 𝛼𝑆2𝑀𝐴𝐶 f 𝛼𝑆2𝑀𝐴𝐶 f 𝛼𝑆2𝑀𝐴𝐶 f 𝛼𝑆2𝑀𝐴𝐶

#BF 9 24 13 23 5 46 23 18
𝑅2

training 0.55 0.544 0.34 0.602 0.561 0.691 0.633 0.795

𝑅2
validation 0.541 0.518 0.348 0.606 0.570 0.691 0.633 0.791

𝑅2
testing 0.531 0.51 0.354 0.594 0.561 0.68 0.614 0.795

𝑅2
phase 1 0.484 0.263 0.407 0.313 0.422 0.746 0.763 0.765

𝑅2
phase 2 0.645 −0.193 0.281 −1.878 0.615 0.691 0.588 0.722

ormalisation, like [34]. However, for the wind turbine under study,
he rotor speed data is not as reliable as the power data. SCADA data
hat are not physically explainable, such as 0 ◦C outside temperature
n summer, or full power at zero wind speed, are further excluded.
rom a previous study [5] it was found that the natural frequencies
uring operation are dependent on the wind speed and power, and the
S2MAC more on the nacelle position. The temperature has less impact
n both. For learning, the data set from October 2021 to the end of
eptember 2022 was randomly divided into three disjoint subsets to
void overfitting: Training (60%), validation (20%) and testing (20%).
he validation set is used to ensure that the GP is always evaluated
n unknown data during training. The total training data contains data
ver one year to cover the usual EOC space. This long learning time
s intended to compensate for the imbalance in the data caused by
requently occurring wind speeds and directions together with rare
ind conditions. The same accounts for temperature imbalances within

he temperature coverage. Based on the training data, the GPs learn
he relationships between EOCs and MPs, such as the well-known
elationship between natural frequencies and wind speed. Mode shapes
re also influences by EOCs, meaning that shape-based metrics, like
he 𝛼S2MAC are also EOC-dependent. These are often influenced by the
emperature and, in the case of wind turbines, even more by the nacelle
osition. These correlations are also learned by the GPs in the applied
egression-based data normalisation approach.

For the underlying GP in this study, the decisive hyperparameter
s the number of basis functions. For an initial guess of this hyper-
arameter, the Akaike Information Criterion (AIC) [60] based on the
ean log likelihood probability is used. In order to obtain the most

ccurate prediction and sparse representation of the model, an Auto-
atic Relevance Determination (ARD) is finally used, following the

mplementation of Almosallam [53]. Table 2 lists the resulting number
f basis functions as well as the coefficients of determination (𝑅2) of
he training, validation and test period. Here, if the predictions exactly
atch the considered measurements, 𝑅2 is equal to one. A GP that

lways predicts the mean of the measurement data has 𝑅2 = 0, and GP
odels that are worse than this have a negative 𝑅2 score. Therefore,

hese values are used to evaluate the GPs and should always be greater
han 0. For the validation of the proposed data normalisation scheme,
wo further periods from October 10th, 2022 to December 10th, 2022
phase 1) and from December 19th, 2022 to January 18th, 2023 (phase
) are considered, which are outside the original 12 month period.
he 𝑅2-values of the individual parameters, with the exception of the

of the first bending mode pair, change only slightly for all time
𝑆2𝑀𝐴𝐶
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Fig. 3. Time course of the monitored natural frequencies for the bending mode pairs B1 and B4 and the corresponding 𝛼S2MAC.
Fig. 4. Data section of the 99% CI identification results of BAYOMA for the natural frequency and the 𝛼𝑆2𝑀𝐴𝐶 for the first FA bending mode for 500 data points in the training
period and 750 in the phase 1. The data sets of the training period are randomly divided into training, validation and testing data sets for training the GP. In addition, the
predicted 99% CI of the heteroscedastic GP is shown. A zoom area in phase 1 is marked with black dashed lines and is shown on the right.
periods. This scatter occurs due to the varying EOC distributions of the
different time periods. For the 𝛼𝑆2𝑀𝐴𝐶 of the first bending mode pair,
the 𝑅2 values of phase 1 are significantly lower and in phase 2 even less
than 0. This mismatch is discussed in more detail in Section 5.2. Fig. 4
shows a part of the 99% confidence interval of the GP prediction of the
natural frequency as well as the 𝛼𝑆2𝑀𝐴𝐶 for the first bending mode in
the FA direction. The 99% confidence interval of the identification of
BAYOMA is also shown. In the case of 𝛼S2MAC, it can be seen around
data set 1.72 ⋅ 104 that the identified values in phase 1 no longer
correspond to the GP regression, which was already indicated by the
𝑅2 score. This effect is explained in Section 5.2.

In the following it is investigated whether the use of a sparse het-
eroscedastic GP represents the data better than the sparse homoscedas-
tic variant. Theoretically, for good training data density, the means
of the heteroscedastic and homoscedastic GPs should be identical.
Therefore the differences in the standard deviations of the two GPs are
studied in more detail.

The homoscedastic GP has, as expected, a nearly constant standard
deviation throughout the period. This suggests that there is a good
data coverage of the EOCs throughout this time period. In contrast, the
heteroscedastic GP has varying uncertainties in the observation period.
The reason is the system variability due to EOCs of the wind turbine
tower, which leads to higher identification uncertainties, as shown
in [5]. When comparing the levels of the uncertainty, the identification
uncertainties of BAYOMA are lower than the uncertainties determined
from the heteroscedastic GP. In the ideal, probably unattainable case,
the GP can explain the entire deterministic variation of the MP, so
that the CDF of the standard deviation identification uncertainty cor-
responds to that of the heteroscedastic GP, as shown in Fig. 1. The
6

deviation is plausible, as there are further uncertainties in addition
to the identification uncertainties, such as the aggregated SCADA data
not being fully synchronised and possibly not all influencing EOCs are
included as input in the GP. Moreover, the assumptions of BAYOMA
are violated, so that the actual uncertainties differ. The deviation can
be regarded as epistemic uncertainty of the models. A similar trend
in the uncertainties indicates that the GPs reflect the input-dependent
uncertainties well. The largest deviations between the identification
uncertainty and the GP uncertainty are observed in the cumulative
distribution function of the 𝛼𝑆2𝑀𝐴𝐶 of the fourth bending mode pair.
As already shown in [5], the 𝛼𝑆2𝑀𝐴𝐶 depends on the nacelle position,
thus the high uncertainty is likely due to the fuzziness of the nacelle
position. As known from other studies like [5], the identification of SS
natural frequencies is more reliable than the FA natural frequencies and
higher natural frequencies are less uncertain than lower ones. These
trends are also represented in the uncertainties of the heteroscedastic
GPs in Fig. 5. For the detection of state changes, it is important that
the data normalisation represents the healthy state as accurately as
possible. System states that are unreliable according to the uncertainty
of the GP therefore give no added value, and lead to less reliable
results. To increase accuracy, one possibility is to consider only certain
operating states on the basis of prior knowledge. Another option is a
purely data-based approach, which considers solely data sets where the
standard deviation of the GP is below a certain value. This limit can be
defined by a determined quantile using the training period data. The
numerical value of this quantile must be chosen carefully, as it can
greatly reduce the amount of data considered. For this application, a
reasonable limit seems to be 99%.
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Fig. 5. Cumulative distribution function (CDF) of the standard deviation of the considered natural frequencies for bending mode pairs B1 and B4 and the corresponding 𝛼𝑆2𝑀𝐴𝐶
of the heteroscedastic and homoscedastic GP as well as of the identification results of BAYOMA during the training period from October 2021 to October 2022.
Fig. 6. Investigation of the detectability of the novelty using the natural frequencies and the 𝛼S2MAC of the first and fourth bending mode pairs.
Table 3
Settings from the applied novelty metric.

Parameter Setting

CI of the GP 99%
Window length moving average 144 (one day full data)
Lower bound of the CI of 𝑝MP 0.5%

In conclusion, the heteroscedastic GP represents the uncertainties
much more realistically and should be preferred to the homoscedastic
formulation in the context of monitoring wind turbine supporting
structures. In the following section, we will examine which changes in
the investigated parameters can be detected.

5.1. Novelty sensitivity

This section examines whether the use of a heteroscedastic GP in
the data normalisation of natural frequencies and 𝛼𝑆2𝑀𝐴𝐶 enables the
detection of smaller system changes than a homoscedastic GP. For this
purpose, the novelty metric 𝑝MP from Section 3 with the settings listed
in Table 3 is used. The natural frequencies and the 𝛼𝑆2𝑀𝐴𝐶 are consid-
ered separately. The investigation will be based on the phase 1 period
from the beginning of October 2022 to the middle of December 2022.
As suggested in the previous chapter, only data sets that are within the
lower 99% quantile of the standard deviation of the GPs of the training
period are included in the metric. The aim of the investigation is a sen-
sitivity comparison between the homoscedastic and heteroscedastic GP
to validate whether the consideration of the EOC-dependent variance
enables the detection of smaller system changes.

As with Oliviera et al. [34], it is assumed that damage results in a
reduction of the natural frequency. How the natural frequencies change
in reality depends on the structure and the type and severity of the
7

damage. For simplicity, in this study, it is assumed that the natural
frequencies investigated decrease by the same percentage. In the case
of the 𝛼𝑆2𝑀𝐴𝐶 , it is assumed that all angles increase by the same
amount. It should be noted at this point that this is a simplified damage
scenario. The results of the study are shown in Fig. 6. The Q(0.25) –
where Q(0.25) is the 25%-quantile – Q(0.5), Q(0.75) and Q(0.9) of the
averaged 𝑝𝑀𝑃 are shown for the homoscedastic and heteroscedastic
GPs. Since damage cannot necessarily be detected equally well in
every operating state due to higher variance of the GPs as well as the
identification uncertainty, an average observation is performed using
quantiles. The choice of these are based on representability and help
to estimate how sensitive the novelty metric is. A novelty is detected
when 𝑝𝑀𝑃 is less than the threshold. This means that if, for example,
Q(0.25) is below the threshold, the lowest 25% of 𝑝𝑀𝑃 are below the
threshold and these values detect the novelty. The data normalisation
using a heteroscedastic GP can detect smaller system changes for all
considered quantiles than the homoscedastic GP, as shown in Fig. 6.
This is due to the fact that the uncertainties are better represented with
a heteroscedastic noise model, as shown in Fig. 5. For example, when
using the Q(0.9) a 0.45% change in natural frequencies can be detected
when normalised with the homoscedastic GP and a 0.37% change in
natural frequencies when normalised with the heteroscedastic GP.

Examining the novelty sensitivity of the 𝛼S2MAC in Fig. 6, confirms
the trend that the heteroscedastic GP can detect smaller changes than
the homoscedastic one. However, the Q(0.25) of the 𝛼S2MAC for both GP
methods is already below the threshold in the initial state. In addition,
the Q(0.9) of the two data normalisation methods are nearly identical
in the threshold range. For further consideration, Fig. 7 shows the
𝛼S2MAC separately for the modes. If only the second bending mode
is considered, the effect already known from the natural frequencies
becomes apparent, that in the initial state the quantiles are above the
threshold and the data normalisation with the heteroscedastic GP can
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Fig. 7. Investigation of the detectability of novelty using the 𝛼S2MAC of the first bending mode pair on the left and the fourth bending mode pair on the right.
Fig. 8. Time course of the monitoring parameters for the entire observation period separated by natural frequencies and 𝛼S2MAC.
detect smaller changes. However, the Q(0.9) has a significant distance
from the Q(0.75), indicating a large variation of the variance of the
GP, which is also evident in Fig. 5. The 𝛼𝑆2𝑀𝐴𝐶 of the first bending
mode is more sensitive to smaller angle changes. It is noticeable that the
Q(0.5) of the 𝛼𝑆2𝑀𝐴𝐶 of solely the first bending mode pair for both GP
types is already below the threshold in the original state. This suggests
a potential system change, which is discussed in the following section.

5.2. Potential system change

Considering the 𝑅2 scores in Table 2, as well as the damage de-
tectability presented in the previous chapter, the GP for the 𝛼𝑆2𝑀𝐴𝐶 of
the first bending mode pair for phase 1 and especially for phase 2 no
longer seems to correspond to the identified 𝛼𝑆2𝑀𝐴𝐶 . This section de-
scribes the deviation in more detail. Fig. 8 shows the evaluated novelty
metric for the natural frequencies and 𝛼S2MAC defined in Section 3 with
the settings in Table 3 for the entire period. After the training period, it
can be observed that the density of the 𝑝𝑀𝑃 is below the threshold. This
is evident in the 𝛼S2MAC, where the moving average drops significantly
below the threshold. For phase 1, this behaviour can be assumed as a
usual effect of the regression model, because it is well-known that the
model is not as suitable for unknown data from outside the training
period. However, in phase 2 after a two-week data gap, where the
turbine was shut down due to icing, the moving average of the 𝑝𝑀𝑃
values of 𝛼S2MAC drops significantly. In contrast, the probabilities of
the natural frequencies, do not change significantly. The cause for these
deviations is in particular the 𝛼S2MAC of the first bending mode in SS
direction. The most probable values of the 𝛼S2MAC in the top panel and
S2MAC in the bottom panel, as well as the 99% confidence interval
of the GP, are shown in Fig. 9 for a half-year period. It can be seen,
that the identified S2MAC and 𝛼 values systematically exceed the
8

S2MAC
99% confidence intervals of the GP in phase 2. Hence, a novelty can be
assumed.

There are various explanations for the detected novelty. The possi-
bility that the GP did not properly approximate the system behaviour
at rarely represented EOCs can be ruled out, as no unknown EOCs
occurred and the novelty was detected over a longer period of time.
This is supported by the fact that the training of the other parameters
was successful. Another indication, that is contrary to a failure of the
model itself, is that a change can be observed in the historical trend
of the 𝛼𝑆2𝑀𝐴𝐶 of the first SS bending mode depending on the nacelle
position, which is shown in the panels of Fig. 10. Compared to the
training period, a higher 𝛼𝑆2𝑀𝐴𝐶 can be observed in phases 1 and 2
at a nacelle position of around 200◦.

Another reasonable explanation for the inconsistent behaviour of
the actual system and the GP is that the MSS of the first bending mode
pair has changed slightly. Either the cause could lie in the measurement
device, or there may actually be a small structural system change.
In contrast to the natural frequencies, the relative amplitude ratio
between the sensors also affects the mode shapes. This tends to make
the metrics based on mode shapes not only more sensitive to system
changes but also more prone to measurement errors than metrics based
on frequency tracking. Omitting the top measurement level 5 for the
calculation of the 𝛼𝑆2𝑀𝐴𝐶 , the increase of the 𝛼𝑆2𝑀𝐴𝐶 in phase 1 and 2
at around 200◦ is no longer visible, as can be seen in the lower panels
of Fig. 10. In this case, the novelty can no longer be detected using
the method presented, as shown in Fig. 11. It is therefore more likely
that the reason for the detected novelty is a change in the measurement
technology than a change in the structure. Basically, this illustrates a
typical challenge in the context of SHM, i.e. deciding whether a novelty
is linked to a relevant system change or to an effect unrelated to the
observed structure itself. In order to make reliable decisions, rugged
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Fig. 9. Section of the identified and with the 99% CI of the GP predicted 𝛼S2MAC and S2MAC of the first bending mode in SS direction from the middle of June 2022 to middle
of January 2022.
Fig. 10. The identified 𝛼S2MAC of the first bending mode in SS direction depending on the nacelle angle. On the left only the training period, on the right the training and test
periods. Upper panels 𝛼S2MAC calculated with all measurement levels, lower panels without measurement level 5.
Fig. 11. Time course of the monitoring parameters 𝛼S2MAC for the entire observation period without measurement level 5.
sensor technology as well as expert knowledge is essential for practical
SHM applications.

6. Summary and outlook

In this study the data normalisation of natural frequencies and
the 𝛼𝑆2𝑀𝐴𝐶 of bending modes of a tower of a full scale 3.4 MW
wind turbine in operation was applied for the first time using sparse
heteroscedastic GP regression considering the EOC dependent uncer-
tainty. Unlike standard homoscedastic GP, the utilised GP incorporates
9

heteroscedastic noise as a function of the input variables. In the context
of wind turbine towers, this is a useful extension, since, for example,
aerodynamic damping increases with wind speed, leading to larger
identification uncertainties for the natural frequencies. When inves-
tigating the novelty detectability of a simplified damage scenario by
decreasing natural frequencies, taking into account the identification
and GP uncertainties, the data normalisation with a heteroscedastic GP
can detect smaller changes than the homoscedastic variant. The results
make it clear that the inclusion of input-dependent variance by means
of heteroscedastic GPs are a useful addition to data normalisation
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for this application. The 𝛼S2MAC was used to investigate the damage
detectability based on mode shapes. The results show that very small
changes could be detected, which is also in line with experience from
other studies [4,55]. In subsequent work, the detectability of various
more realistic damage scenarios can be investigated with the aid of FE
models, or small-scale experiments. In addition, an actual change in the
𝛼S2MAC of the first bending mode was detected. A cause for the change
could not be found so far. Plausible explanations are either a very small
system change or minimal changes in the measurement device. The
latter is more likely because, without the upper measuring level, the
novelty is no longer detectable.

This study also revealed the strengths and weaknesses of mode
shape-based condition metrics. These are often more damage-sensitive
than natural frequencies but are also susceptible to changes in the mea-
surement device. Therefore, it is essential for a monitoring system to be
able to guarantee the reliability of the employed sensors over many
years. Consequently, strategies on how to deal with possible ageing
processes as well as ruggedisation and standardisation are required. In
addition, the question of an optimal sensor setup is particularly relevant
for such metrics. Here, it is crucial to clarify which system change
would be detectable with a given distribution of sensors.

The data normalisation of natural frequencies and 𝛼S2MAC with
sparse heteroscedastic GPs has proven to be an adequate method for
the presented application case. In the future, the identification uncer-
tainties could be incorporated into the training of the GP as well. In
addition, a further measurement campaign could investigate in detail
which inputs should be included in the GP and whether, for example,
the temperature gradient of the structure could have an influence, as
in the case of bridges. As part of further research on wind turbine
monitoring, different variants of sparse heteroscedastic GP need to be
investigated and compared, but this is not the scope of this study. In
addition, the incorporation of physical knowledge into the kernel or
the basis function for the application domain could also be researched.
To avoid a long learning period for each new wind turbine to be
monitored, the transferability of the GP from one wind turbine to
another with a transfer learning approach should also be investigated.
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