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In this work, the dual-weighted residual (DWR) method is applied to obtain an error-controlled 
incremental proper orthogonal decomposition (POD) based reduced order model. A novel 
approach called MORe DWR (Model Order Reduction with Dual-Weighted Residual error 
estimates) is being introduced. It marries tensor-product space-time reduced-order modeling with 
time slabbing and an incremental POD basis generation with goal-oriented error control based 
on dual-weighted residual estimates. The error in the goal functional is being estimated during 
the simulation and the POD basis is being updated if the estimate exceeds a given threshold. 
This allows an adaptive enrichment of the POD basis in case of unforeseen changes in the 
solution behavior. Consequently, the offline phase can be skipped, the reduced-order model is 
being solved directly with the POD basis extracted from the solution on the first time slab and 
–if necessary– the POD basis is being enriched on-the-fly during the simulation with high-fidelity 
finite element solutions. Therefore, the full-order model solves can be reduced to a minimum, 
which is demonstrated on numerical tests for the heat equation and elastodynamics using time-
averaged quantities of interest.

1. Introduction

Model order reduction (MOR) by means of the proper orthogonal decomposition (POD) has been applied for cheap surrogate 
modeling to a plethora of partial differential equations (PDEs) [1–11]. Therein, the dynamics is projected onto a set of POD modes 
that constitute an approximate basis for the solution manifold to reduce the cost of running expensive high-fidelity simulations. This 
proper orthogonal decomposition based reduced-order modeling (POD-ROM) is a truth approximation because it yields a compressed 
representation of an a priori known solution trajectory. To avoid the necessity of these expensive high-fidelity simulations beforehand, 
we use error estimates to only locally perform high-fidelity calculations.

The dual-weighted residual method is used in this work to switch between ROM and high-fidelity computations. The space-time 
dual-weighted residual (DWR) method is an extension of the DWR method for stationary problems introduced in [12–14], which is 
based on seminal prior work of Johnson and co-workers [15]; an overview on the usage with adaptive predictive multiscale modeling 
was published by Oden [16]. The space-time DWR method has been applied to parabolic PDEs by Schmich (Besier) and Vexler [17], 
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Schmich (Besier) [18] and Besier and Rannacher [19], Endtmayer et al. [20], and in the authors’ own works [21,22]. Moreover, it 
has been applied to hyperbolic PDEs in the dissertation of Rademacher [23] and to the wave equation by Bangerth et al. [24]. Since 
the theory for the error estimation is formulated in spatio-temporal function spaces and requires space-time variational formulations, 
we employ a space-time finite element method (FEM) discretization; see for instance [25] and the many references cited therein. 
Space-time finite elements for the heat equation have been studied, e.g., in [17,26] and for the elastodynamics equation, e.g., in 
[27,24,28]. Similar space-time FEM implementations can be found in FEniCS in [29] and in NGSolve in [30,31].

In recent years, space-time formulations have been applied to model order reduction [32–35], including a windowed space-
time approach for more efficiency [36]. Additional applications of space-time model order reduction include optimal control [37]
and classical error estimates and hyper-reduction estimates using discrete empirical interpolation [38]. Further, the advantages of 
space-time formulations in the context of certified reduced basis methods were extensively investigated in [39–42]. It has been 
demonstrated that in long-time settings, where traditional time-marching 𝐿2 error bounds grow exponentially in time and are not 
efficient, space-time formulations allow sharp and effective error bounds.

A lot of research on DWR error estimates for hyper-reduction with reduced quadrature rules has been done by Yano [43,44]. 
Another reduced-order modeling approach employing goal-oriented error estimates has been proposed by Meyer and Matthies [45], 
where the estimates have been used to remove POD basis vectors that are not relevant for the accurate computation of the quantity 
of interest. Finally, related methods include the proper generalized decomposition (PGD) [46] and hierarchical model (HiMod) 
reduction [47–49], which uses estimates for the POD in the transverse direction of the dynamics.

In this work, we propose a different methodology for POD-ROM computations in which only a small portion of the solution 
trajectory is being computed with the expensive full-order-model (FOM) and the reduced-order-model (ROM) is being updated 
on-the-fly when the error estimates exceed a prescribed tolerance. This is being accomplished by combining POD-ROM with the 
incremental POD and space-time dual-weighted residual error estimates. We work out the algorithmic details, resulting in a final 
newly proposed algorithm for incremental ROM. The presented incremental POD implementation relies on additive rank-b updates of 
the singular value decomposition [50,51] and has successfully been applied in a parallel SIMD framework to the incremental model 
order reduction of high-dimensional turbulent fluid flows [52]. In contrast to previous work on incremental POD, e.g. [53,54], 
this allows updates with multiple snapshots at once, which is beneficial in a space-time setting. In addition, the SIMD parallelization 
provides scalability [52] for future work without the disadvantage of a priori knowledge of the final POD size required in hierarchical 
approaches such as in [55].

As previously mentioned, as an overall framework, we employ a space-time setting. More concretely, we rely on the tensor-
product space-time FEM implementation from [22] based on the FEM library deal.II [56,57]. The final algorithm is implemented 
and demonstrated for time-averaged goal functionals with various settings that include parabolic problems (heat equation) and 
second-order hyperbolic problems (elastodynamics). The main objective is to show the decrease in computational cost by keeping 
the accuracy of the numerical solutions. Moreover, the error estimator and the goal functional are compared in terms of effectivities.

The outline of this paper is as follows: In Section 2, we formulate the problem for the heat equation and elastodynamics and 
discretize them with tensor-product space-time finite elements. Next, in Section 3 we recapitulate POD-based reduced-order modeling 
and depict its extension to tensor-product space-time POD-ROM. Then, in Section 4 the theories for the space-time error estimates and 
the incremental model order reduction are elucidated. In Section 5, numerical tests in 1+1D, 2+1D and 3+1D are being conducted 
for the heat equation and elastodynamics. Finally, our findings are summarized in Section 6.

2. Problem formulation and discretization

2.1. Model problem formulation

Let 𝑑 ∈ℕ with 𝑑 depending on whether the problem is vector- or scalar-valued, i.e. for the heat equation we have 𝑑 = 1, whereas 
for elastodynamics in 𝑢-formulation (where 𝑢 denotes the displacements) we have 𝑑 = 𝑑 and for the (𝑢, 𝑣)-formulation (where 𝑢 is 
as before and 𝑣 denotes the velocity), we have 𝑑 = 2𝑑, where 𝑑 ∈ {1, 2, 3} is the spatial dimension. In the problem description, 
𝐼 ∶= (0, 𝑇 ) denotes the temporal domain and Ω ⊂ ℝ𝑑 a sufficiently smooth spatial domain. Here, the spatial boundary is split into 
a Dirichlet boundary Γ𝐷 ⊆ 𝜕Ω and a Neumann boundary Γ𝑁 ⊊ 𝜕Ω with Γ𝐷 ∩ Γ𝑁 = ∅. We consider the abstract time-dependent 
problem: Find 𝑢 ∶ Ω̄ × 𝐼 →ℝ𝑑 such that

𝜕𝑡𝑢+(𝑢) = 𝑓 in Ω× 𝐼,

𝑢 = 𝑢𝐷 on Γ𝐷 × 𝐼,

(𝑢) = 𝑔𝑁 on Γ𝑁 × 𝐼,

𝑢 = 𝑢0 in Ω× {0},

(1)

with possibly nonlinear spatial operator , boundary operator  and sufficiently regular right-hand side 𝑓 . Here, 𝑢𝐷 is the Dirichlet 
boundary function, 𝑔𝑁 is the Neumann boundary function and 𝑢0 is the initial condition. Choosing a suitable continuous spatial 
function space 𝑉 ∶= 𝑉 (Ω), a continuous temporal functional space 𝑋 ∶= 𝑋(𝐼, ⋅) and time-dependent Sobolev space 𝑋(𝐼, 𝑉 (Ω))
(see e.g., [58–60]) mapping from 𝐼 into 𝑉 (Ω), we can define the continuous spatio-temporal variational formulation as: Find 𝑢 ∈
𝑢𝐷 +𝑋(𝐼, 𝑉 (Ω)) such that
2

𝐴(𝑢)(𝜑) ∶= ((𝜕𝑡𝑢,𝜑)) + (((𝑢), 𝜑)) + (𝑢(0), 𝜑(0))
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= ((𝑓,𝜑)) + ⟨⟨𝑔𝑁 −(𝑢), 𝜑⟩⟩Γ𝑁 + (𝑢0, 𝜑(0)) =∶ 𝐹 (𝜑) ∀𝜑 ∈𝑋(𝐼,𝑉 (Ω)),

where we use the notation

(𝑓, 𝑔) ∶= (𝑓, 𝑔)𝐿2(Ω) ∶= ∫
Ω

𝑓 ⋅ 𝑔 d𝑥, ((𝑓, 𝑔)) ∶= (𝑓, 𝑔)𝐿2(𝐼,𝐿2(Ω)) ∶= ∫
𝐼

(𝑓, 𝑔) d𝑡,

⟨𝑓, 𝑔⟩ ∶= ⟨𝑓, 𝑔⟩𝐿2(Γ) ∶= ∫
Γ

𝑓 ⋅ 𝑔 d𝑠, ⟨⟨𝑓, 𝑔⟩⟩ ∶= (𝑓, 𝑔)𝐿2(𝐼,𝐿2(Γ)) ∶= ∫
𝐼

⟨𝑓, 𝑔⟩ d𝑡.
In this notation, 𝑓 ⋅ 𝑔 represents the Euclidean inner product if 𝑓 and 𝑔 are scalar- or vector-valued and it stands for the Frobenius 
inner product if 𝑓 and 𝑔 are matrices. We notice that some partial differential equations that fall into this framework are the heat 
equation and more generally parabolic problems. With a bit of abuse of notation, elastodynamics formulated as a first-order-in-time 
system can also be written in the above form, which we however specify below for the sake of mathematical precision.

2.1.1. Heat equation

The strong formulation of the heat equation reads: Find the temperature 𝑢 ∶ Ω̄ × 𝐼 →ℝ such that

𝜕𝑡𝑢−Δ𝑥𝑢 = 𝑓 in Ω× 𝐼,

with (𝑢) ∶= −Δ𝑥𝑢 in (1). The initial and boundary conditions are given by

𝑢 = 𝑢0 on Ω× {0},

𝑢 = 0 on 𝜕Ω× 𝐼.

For the functional framework of the weak formulation, we follow [17] and first setup 𝑉 (Ω) ∶=𝐻1
0 (Ω), the dual space 𝐻1

0 (Ω)
∗ (it is 

well known that 𝐻−1(Ω) =𝐻1
0 (Ω)

∗), where we have the Gelfand triple 𝑉 ↪𝐿2(Ω) ↪ 𝑉 ∗. With this, we define the Hilbert space

𝑋(𝐼,𝑉 (Ω)) ∶= {𝑢| 𝑢 ∈𝐿2(𝐼,𝑉 (Ω)), 𝜕𝑡𝑢 ∈𝐿2(𝐼,𝐻1
0 (Ω)

∗)}.

It is well known that the space 𝑋(𝐼, 𝑉 (Ω)) is embedded continuously in 𝐶(𝐼, 𝐿2(Ω)); see e.g., [60][Paragraph 5.9.2, Theorem 3] or 
[58][Chapter XVIII] such that the initial conditions 𝑢0 are well defined. Moreover, we notice that

{𝑢| 𝑢 ∈𝐿2(𝐼,𝑉 (Ω)), 𝜕𝑡𝑢 ∈𝐿2(𝐼,𝐻1
0 (Ω)

∗)} ≅ {𝑢 ∈𝐿2(𝐼,𝐻1
0 (Ω)) ∩𝐻1(𝐼, (𝐻1

0 (Ω))
∗)}.

Consequently, 𝑋(𝐼, 𝑉 (Ω)) constitutes the trial space in the weak form. The test functions are defined in the sense of distributions 
and due to density arguments (see again [60][Chapter 7] or [58][Chapter XVIII]) they can be taken as well from 𝑋(𝐼, 𝑉 (Ω)). We 
thus arrive at the continuous variational formulation:

Formulation 2.1 (Continuous variational formulation of the heat equation). Find 𝑢 ∈𝑋(𝐼, 𝑉 (Ω)) such that

𝐴(𝑢)(𝜑) ∶= ((𝜕𝑡𝑢,𝜑)) + ((∇𝑥𝑢,∇𝑥𝜑)) + (𝑢(0), 𝜑(0)) = ((𝑓,𝜑)) + (𝑢0, 𝜑(0)) =∶ 𝐹 (𝜑) ∀𝜑 ∈𝑋(𝐼,𝑉 (Ω)).

For this variational formulation, we use 𝑢0 ∈𝐿2(Ω) and 𝑓 ∈𝐿2(𝐼, 𝐻1
0 (Ω)

∗) [59,58,60].

2.1.2. Elastodynamics equation

The strong formulation of linear elastodynamics in three spatial dimensions reads: Find the displacement 𝑢 ∶ Ω̄ × 𝐼 → ℝ𝑑 such 
that

𝜕𝑡𝑡𝑢−∇𝑥 ⋅ 𝜎(𝑢) = 𝑓 in Ω× 𝐼,

with an external force 𝑓 ∶= 𝑓 (𝑡, 𝑥) and

𝜎(𝑢) = 2𝜇𝐸(𝑢) + 𝜆 tr(𝐸(𝑢))1𝑑×𝑑 , (stress tensor)

𝐸(𝑢) = 1
2
(∇𝑥𝑢+ (∇𝑥𝑢)𝑇 ), (linearized strain tensor)

where 1𝑑×𝑑 ∈ℝ𝑑×𝑑 is the identity matrix and the Lamé parameters are 𝜇 > 0 and 𝜆 > −2
3𝜇. The initial conditions are given by

𝑢 = 𝑢0 on Ω× {0},

𝜕𝑡𝑢 = 𝑣0 on Ω× {0}.
3

As boundary conditions, we prescribe
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𝑢 = 0 on Γ𝐷 × 𝐼,

(𝑢) = 𝜎(𝑢) ⋅ 𝑛 = 𝑔𝑁 on Γ𝑁 × 𝐼,

with 𝑛 denoting the normal unit vector to Γ𝑁 . We convert this into a first-order system (as it is usually done in the literature [27,24]
and [28][Chapter 1]) in time and solve for displacement 𝑢 ∶ Ω̄ × 𝐼 →ℝ𝑑 and velocity 𝑣 ∶ Ω̄ × 𝐼 →ℝ𝑑 such that

𝜕𝑡𝑣−∇𝑥 ⋅ 𝜎(𝑢) = 𝑓 in Ω× 𝐼,

𝜕𝑡𝑢− 𝑣 = 0 in Ω× 𝐼,

with (𝑢, 𝑣) ∶=
(

−𝑣
−∇𝑥 ⋅ 𝜎(𝑢)

)
and 𝜕𝑡(𝑢, 𝑣) ∶=

(
𝜕𝑡𝑢

𝜕𝑡𝑣

)
in (1). We still have the same initial and boundary conditions with the only 

difference that we now have

𝑣 = 𝑣0 on Ω× {0},

𝑣 = 0 on Γ𝐷 × 𝐼.

For setting up the functional framework, we refer to [60][Chapter 7.2]. Specifically, for the variational formulation, we use 𝑢0 ∈
𝐻1

Γ𝐷,0(Ω)
𝑑 , which is the space of weakly differentiable functions that vanish on Γ𝐷, 𝑣0 ∈ 𝐿2(Ω)𝑑 , 𝑔𝑁 ∈ 𝐿2(𝐼, 𝐿2(Γ𝑁 )𝑑 ). First, as 

for the heat equation, we notice that for the scalar-valued wave equation the initial conditions are well-defined for [60][Paragraph 
5.9.2, Theorem 2]

𝑢 ∈𝐿2(𝐼,𝐻1
0 (Ω)), 𝜕𝑡𝑢 ∈𝐿2(𝐼,𝐿2(Ω)), 𝜕𝑡𝑡𝑢 ∈𝐿2(𝐼,𝐻−1(Ω),

then 𝑢 ∈ 𝐶(𝐼, 𝐿2(Ω) and 𝜕𝑡𝑢 ∈ 𝐶(𝐼, 𝐻−1(Ω)). These results transfer to the elastic wave equation that we consider here such that we 
can define the Hilbert space (with respect to our boundary conditions):

𝑋(𝐼,𝑉 (Ω)) ∶= {𝑢| 𝑢 ∈𝐿2(𝐼,𝐻1
Γ𝐷,0(Ω)

𝑑 ), 𝜕𝑡𝑢 ∈𝐿2(𝐼,𝐿2(Ω)𝑑 ), 𝜕𝑡𝑡𝑢 ∈𝐿2(𝐼,𝐻1
Γ𝐷,0(Ω)

𝑑 )∗}.

The corresponding isometric isomorphic function spaces for the displacements and velocities are:

𝑋(𝐼,𝑉 𝑢(Ω)) ∶=𝐿2(𝐼,𝐻1
Γ𝐷,0(Ω)

𝑑 ) ∩𝐻1(𝐼,𝐿2(Ω)𝑑 ) ∩𝐻2
(
𝐼, (𝐻1

Γ𝐷,0(Ω)
𝑑 )∗

)
,

𝑋(𝐼,𝑉 𝑣(Ω)) ∶=𝐿2(𝐼,𝐿2(Ω)𝑑 ) ∩𝐻1
(
𝐼, (𝐻1

Γ𝐷,0(Ω)
𝑑 )∗

)
,

𝑋(𝐼,𝑉 (Ω)) ∶=𝑋(𝐼,𝑉 𝑢(Ω)) ×𝑋(𝐼,𝑉 𝑣(Ω)).

We thus solve the continuous variational formulation:

Formulation 2.2 (Continuous variational formulation of the elastodynamics equation). Find 𝑈 = (𝑢, 𝑣) ∈𝑋(𝐼, 𝑉 (Ω)) such that

𝐴(𝑈 )(Φ) = 𝐹 (Φ) ∀Φ = (𝜑𝑢,𝜑𝑣) ∈𝑋(𝐼,𝑉 (Ω)),

where

𝐴(𝑈 )(Φ) ∶= ((𝜕𝑡𝑣,𝜑𝑢)) + ((𝜎(𝑢),∇𝑥𝜑
𝑢)) + (𝑣(0), 𝜑𝑢(0)) + ((𝜕𝑡𝑢,𝜑𝑣)) − ((𝑣,𝜑𝑣)) + (𝑢(0), 𝜑𝑣(0)),

𝐹 (Φ) ∶= ((𝑓,𝜑𝑢)) + (𝑣0, 𝜑𝑢(0)) + ⟨⟨𝑔𝑁 ,𝜑𝑢⟩⟩Γ𝑁 + (𝑢0, 𝜑𝑣(0)).

2.2. Tensor-product space-time FEM discretization

We follow our recent work on space-time adaptivity for the Navier-Stokes equations [22] and use tensor-product space-time finite 
elements (FEM) with discontinuous Galerkin finite elements in time (dG) and continuous Galerkin finite elements in space (cG). 
Using the tensor-product of the temporal and spatial basis functions is a special case of the broad class of space-time finite element 
methods [25]. We will now explain tensor-product space-time FEM at the example of the heat equation, where the function spaces 
can be found in [17] and the slabwise tensor-product space-time implementation is being outlined in [21] and [61]. We assume that 
the spatial mesh remains fixed, which simplifies the analysis and the implementation. Furthermore, we outline the extension of this 
methodology to elastodynamics.

2.2.1. Discretization in time

Let 𝑘 ∶= {𝐼𝑚 ∶= (𝑡𝑚−1, 𝑡𝑚) ∣ 1 ≤ 𝑚 ≤𝑀} be a partitioning of time, i.e. 𝐼 = [0, 𝑇 ] =
⋃𝑀

𝑚=1 𝐼𝑚, where the subscript 𝑘 denotes the 
temporal discretization parameter. We now introduce broken continuous level function spaces

𝑋̃(𝑘, 𝑉 (Ω)) ∶= {𝑣 ∈𝐿2(𝐼,𝐿2(Ω)) ∣ 𝑣|𝐼𝑚 ∈𝑋(𝐼𝑚,𝑉 (Ω)) ∀𝐼𝑚 ∈ 𝑘}
4

for the heat equation and
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𝑋̃(𝑘, 𝑉 𝑢(Ω)) ∶= {𝑣 ∈𝐿2(𝐼,𝐿2(Ω)𝑑 ) ∣ 𝑣|𝐼𝑚 ∈𝑋(𝐼𝑚,𝑉 𝑢(Ω)) ∀𝐼𝑚 ∈ 𝑘},
𝑋̃(𝑘, 𝑉 𝑣(Ω)) ∶= {𝑣 ∈𝐿2(𝐼,𝐿2(Ω)𝑑 ) ∣ 𝑣|𝐼𝑚 ∈𝑋(𝐼𝑚,𝑉 𝑣(Ω)) ∀𝐼𝑚 ∈ 𝑘},
𝑋̃(𝑘, 𝑉 (Ω)) ∶= 𝑋̃(𝑘, 𝑉 𝑢(Ω)) × 𝑋̃(𝑘, 𝑉 𝑣(Ω))

for the elastodynamics equation. These broken function spaces [62] are required, since we want to perform a conforming (w.r.t. the 
broken spaces) discontinuous Galerkin discretization in time and thus need to allow for discontinuities between time intervals/tem-
poral elements. Due to these discontinuities, we define the limits of 𝑓 at time 𝑡𝑚 from above and from below for a function 𝑓
as

𝑓±
𝑚
∶= lim

𝜖↘0
𝑓 (𝑡𝑚 ± 𝜖),

and the jump of the function value of 𝑓 at time 𝑡𝑚 as

[𝑓 ]𝑚 ∶= 𝑓+
𝑚
− 𝑓−

𝑚
.

The function spaces enable us to include discontinuities in the variational formulations:

Formulation 2.3 (Time-discontinuous variational formulation of the heat equation). Find 𝑢 ∈ 𝑋̃(𝑘, 𝑉 (Ω)) such that

𝐴̃(𝑢)(𝜑) = 𝐹 (𝜑) ∀𝜑 ∈ 𝑋̃(𝑘, 𝑉 (Ω)),

where

𝐴̃(𝑢)(𝜑) ∶=
𝑀∑
𝑚=1

∫
𝐼𝑚

(𝜕𝑡𝑢,𝜑) + (∇𝑥𝑢,∇𝑥𝜑) d𝑡+
𝑀−1∑
𝑚=1

([𝑢]𝑚,𝜑+
𝑚
) + (𝑢+0 , 𝜑

+
0 ),

𝐹 (𝜑) ∶= ((𝑓,𝜑)) + (𝑢0, 𝜑+
0 ).

Formulation 2.4 (Time-discontinuous variational formulation of the elastodynamics equation). Find 𝑈 = (𝑢, 𝑣) ∈ 𝑋̃(𝑘, 𝑉 (Ω)) such that

𝐴̃(𝑈 )(Φ) = 𝐹 (Φ) ∀Φ = (𝜑𝑢,𝜑𝑣) ∈ 𝑋̃(𝑘, 𝑉 (Ω)),

where

𝐴̃(𝑈 )(Φ) ∶=
𝑀∑
𝑚=1

∫
𝐼𝑚

(𝜕𝑡𝑣,𝜑𝑢) + (𝜎(𝑢),∇𝑥𝜑
𝑢) + (𝜕𝑡𝑢,𝜑𝑣) − (𝑣,𝜑𝑣) d𝑡

+
𝑀−1∑
𝑚=1

(([𝑣]𝑚,𝜑𝑢,+
𝑚

) + ([𝑢]𝑚,𝜑𝑣,+
𝑚

)) + (𝑣+0 , 𝜑
𝑢,+
0 ) + (𝑢+0 , 𝜑

𝑣,+
0 ),

𝐹 (Φ) ∶= ((𝑓,𝜑𝑢)) + (𝑣0, 𝜑𝑢,+
0 ) + ⟨⟨𝑔𝑁 ,𝜑𝑢⟩⟩Γ𝑁 + (𝑢0, 𝜑𝑣,+

0 ).

We have the inclusions 𝑋(𝐼, ⋅) ⊂ 𝑋̃(𝑘, ⋅), since for continuous functions the jump terms vanish, and thus the variational Formu-
lation 2.3 and Formulation 2.4 are consistent.

Next, we define the semi-discrete space for the heat equation as

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 (Ω)) ∶=
{
𝑣𝑘 ∈𝐿2(𝐼,𝐿2(Ω)) |||𝑣𝑘|𝐼𝑚 ∈ 𝑃𝑟(𝐼𝑚,𝐻1

0 (Ω))
}
⊂ 𝑋̃(𝑘, 𝑉 (Ω))

and for the elastodynamics equation as

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑢(Ω)) ∶=
{
𝑣𝑘 ∈𝐿2(𝐼,𝐿2(Ω)𝑑 ) |||𝑣𝑘|𝐼𝑚 ∈ 𝑃𝑟(𝐼𝑚,𝐻1

Γ𝐷,0(Ω)
𝑑 )
}
⊂ 𝑋̃(𝑘, 𝑉 𝑢(Ω)),

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑣(Ω)) ∶=𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑢(Ω)),

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 (Ω)) ∶=𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑢(Ω)) ×𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑣(Ω)),

where the space-time function spaces 𝑋̃(𝑘, ⋅) have been discretized in time with the dG method of order 𝑟 ∈ ℕ0 (dG(𝑟)). Typical 
choices in our work for the temporal degree are 𝑟 = 1 and 𝑟 = 2. Here, 𝑃𝑟(𝐼𝑚, 𝑌 ) is the space of polynomials of order 𝑟, which map 
from the time interval 𝐼𝑚 into the space 𝑌 . The dG(𝑟) time discretization for the case 𝑟 = 1 is illustrated in Fig. 1.
The locations of the temporal degrees of freedom (DoFs) are defined by quadrature rules. Due to the discontinuity of the temporal 
discretization, various quadrature rules can be chosen, the most common being Gauss-Lobatto, Gauss-Legendre and Gauss-Radau. In 
Fig. 1 the locations of the temporal degrees of freedom are chosen at the ends of the time intervals, which corresponds to Gauss-
Lobatto quadrature. In Section 5, we use Gauss-Legendre and Gauss-Lobatto quadrature in time to demonstrate the versatility of our 
5

method concerning the choice of the temporal quadrature formula.
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Fig. 1. dG(1) time discretization.

It has been derived in [63] (see also the classical textbooks [64,65]) that the dG(0) time-discretization is a variant of the backward 
Euler scheme. Higher-order schemes are derived as well and it was established that 𝑑𝐺(𝑟𝑝) discretizations, where 𝑟𝑝 ∈ ℕ0 is the 
polynomial degree, are generically implicit and 𝐴-stable.

2.2.2. Discretization in space

For the spatial discretization of the variational formulation, we use a fixed mesh ℎ, which consists of intervals in one dimension 
and of quadrilateral (2D) or hexahedral (3D) elements in higher dimensions. Here, the subscript ℎ represents the spatial discretization 
parameter We can then use element-wise polynomial functions of up to order 𝑠 ∈ ℕ as our spatial function space, i.e.,

𝑉 𝑠
ℎ
∶= 𝑉 𝑠

ℎ
(ℎ) ∶=

{
𝑣 ∈ 𝐶(Ω̄)|||𝑣|𝐾 ∈𝑠(𝐾) ∀𝐾 ∈ ℎ

}
for the heat equation and for the elastodynamics equation

𝑉
𝑠,𝑢

ℎ
∶= 𝑉

𝑠,𝑢

ℎ
(ℎ) ∶=

{
𝑣 ∈ 𝐶(Ω̄)𝑑 |||𝑣|𝐾 ∈ (𝑠(𝐾))𝑑 ∀𝐾 ∈ ℎ

}
=∶ 𝑉 𝑠,𝑣

ℎ
(ℎ) =∶ 𝑉 𝑠,𝑣

ℎ
,

where 𝑠(𝐾) is being constructed by mapping tensor-product polynomials of degree 𝑠 from the reference element (0, 1)𝑑 to the 
element 𝐾 . The fully discrete function space for the heat equation is then given by

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
) ∶=

{
𝑣𝑘ℎ ∈𝐿2(𝐼,𝐿2(Ω)) |||𝑣𝑘ℎ|𝐼𝑚 ∈ 𝑃𝑟(𝐼𝑚,𝑉 𝑠

ℎ
) ∀𝐼𝑚 ∈ 𝑘

}
and for the elastodynamics equation

𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
) ∶=

{
𝑣𝑘ℎ ∈𝐿2(𝐼,𝐿2(Ω)2𝑑 ) |||𝑣𝑘ℎ|𝐼𝑚 ∈ 𝑃𝑟(𝐼𝑚,𝑉 𝑠

ℎ
) ∀𝐼𝑚 ∈ 𝑘

}
,

𝑉 𝑠
ℎ
∶= 𝑉

𝑠,𝑢

ℎ
× 𝑉

𝑠,𝑣

ℎ
.

Thus, the fully discrete variational formulation reads for the heat equation:
Find 𝑢𝑘ℎ ∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
) such that

𝐴̃(𝑢𝑘ℎ)(𝜑𝑘ℎ) = 𝐹 (𝜑𝑘ℎ) ∀𝜑𝑘ℎ ∈𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
).

Moreover, the fully discrete variational formulation for the elastodynamics equation reads:
Find 𝑈𝑘ℎ ∶= (𝑢𝑘ℎ, 𝑣𝑘ℎ) ∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
) such that

𝐴̃(𝑈𝑘ℎ)(Φ𝑘ℎ) = 𝐹 (Φ𝑘ℎ) ∀Φ𝑘ℎ = (𝜑𝑢
𝑘ℎ
,𝜑𝑣

𝑘ℎ
) ∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 𝑠
ℎ
).

2.2.3. Slabwise discretization

Finally, we want to remark that the fully discrete variational formulations do not need to be solved on the entire space-time 
cylinder Ω × 𝐼 , but can also be solved sequentially on space-time slabs

𝑆𝑛
𝑙
∶= Ω×

(
𝑛⋃

𝑚=𝑙
𝐼𝑚

)
,

where 1 ≤ 𝑙 ≤ 𝑛 ≤𝑀 . As mentioned previously, we can then get the space-time FEM basis on 𝑆𝑛
𝑙

by taking the tensor-product of the 
spatial and the temporal finite element basis functions. This simplifies the finite element discretization of the abstract time-dependent 
problem (1), since the main prerequisite is a FEM code for the stationary problem (𝑢) = 𝑓 in Ω. Furthermore, tensor-product space-
time FEM allows for larger flexibility in the choice of temporal discretization, since changing the temporal degree of the space-time 
discretization can be performed simply by changing the polynomial degree of the temporal finite elements. Due to the tensor-product 
structure of the space-time FE basis, it is straightforward how proper orthogonal decomposition (POD) based reduced-order modeling 
6

can be performed, since on an abstract level only the spatial finite element basis needs to be replaced by the spatial POD basis.
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For the heat equation on the space-time slab 𝑆𝑛
𝑙

with 𝑛 − 𝑙 + 1 time intervals, we arrive at the linear equation system

⎛⎜⎜⎜⎜⎜⎝

𝐴 𝟎
𝐵 𝐴

𝐵 𝐴

. . .
. . .

𝟎 𝐵 𝐴

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑈𝑙

𝑈𝑙+1
𝑈𝑙+2
...

𝑈𝑛

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

𝐹𝑙 −𝐵𝑈𝑙−1
𝐹𝑙+1
𝐹𝑙+2
...

𝐹𝑛

⎞⎟⎟⎟⎟⎟⎠
(2)

or in brevity

𝐴𝑆𝑛
𝑙
𝑈𝑆𝑛

𝑙
= 𝐹𝑆𝑛

𝑙
(3)

with

𝐴 = 𝐶𝑘 ⊗𝑀ℎ +𝑀𝑘 ⊗𝐾ℎ,

𝐵 = −𝐷𝑘 ⊗𝑀ℎ,

where we use the spatial matrices

𝑀ℎ =
{
(𝜑(𝑗)

ℎ
,𝜑

(𝑖)
ℎ
)
}#DoFs(ℎ)
𝑖,𝑗=1

,

𝐾ℎ =
{
(∇𝑥𝜑

(𝑗)
ℎ
,∇𝑥𝜑

(𝑖)
ℎ
)
}#DoFs(ℎ)
𝑖,𝑗=1

,

and the temporal matrices

𝑀𝑘 =
⎧⎪⎨⎪⎩∫𝐼𝑚 𝜑

(𝑗)
𝑘

⋅𝜑(𝑖)
𝑘

d𝑡
⎫⎪⎬⎪⎭
#DoFs(𝐼𝑚)

𝑖,𝑗=1

,

𝐶𝑘 =
⎧⎪⎨⎪⎩∫𝐼𝑚 𝜕𝑡𝜑

(𝑗)
𝑘

⋅𝜑(𝑖)
𝑘

d𝑡+𝜑
(𝑗),+
𝑘,𝑚−1 ⋅𝜑

(𝑖),+
𝑘,𝑚−1

⎫⎪⎬⎪⎭
#DoFs(𝐼𝑚)

𝑖,𝑗=1

,

𝐷𝑘 =
{
𝜑
(𝑗),−
𝑘,𝑚−1 ⋅𝜑

(𝑖),+
𝑘,𝑚−1

}#DoFs(𝐼𝑚)

𝑖,𝑗=1
.

Note that 𝑈𝑙, … , 𝑈𝑛 are space-time vectors themselves, where 𝑈𝑚 ∈ ℝ#DoFs(𝐼𝑚) ⋅#DoFs(ℎ) with 𝑚 = 𝑙, … , 𝑛 is the coefficient vector of 
the solution 𝑢𝑘ℎ on the time interval 𝐼𝑚, i.e., for the dG(𝑟) method in time with temporal quadrature points 𝑡1, … , 𝑡𝑟+1 we have

𝑈𝑚 =
⎛⎜⎜⎜⎝
𝑈𝑚(𝑡1)

...

𝑈𝑚(𝑡𝑟+1)

⎞⎟⎟⎟⎠ , 𝑚 = 1,… ,𝑀,

where 𝑀 is the total number of time intervals. In particular, if we use space-time slabs that contain only one temporal element, then 
we only need to solve the linear system

𝐴𝑈𝑚 = 𝐹𝑚 −𝐵𝑈𝑚−1

for each time slab 𝑆𝑚 ∶= 𝑆𝑚
𝑚
= ℎ × 𝐼𝑚. For efficiency reasons, in the remainder of this paper, we only consider such slabs of size one.

For the elastodynamics equation, the space-time FEM linear system can be derived similarly. The linear system and time-stepping 
formulations for dG(1) and dG(2) with Gauss-Lobatto quadrature in time can be found in Appendix A.

Remark 2.5. Although the linear systems for the heat equation in this section and for the elastodynamics equation in Appendix A
have been presented as the tensor product of temporal and spatial matrices, tensor-product space-time FEM can be applied to a much 
larger class of problems. For example, if the PDE contains coefficients that depend on space and time, it is not always possible to 
decompose a space-time linear system into this tensor-product structure. Nevertheless, our implementation of tensor-product space-
time FEM is general enough to also deal with these kinds of problems, since it does not rely on a tensor-product of the linear system 
7

but only on the tensor-product structure of the finite element basis.
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3. Reduced-order modeling

3.1. POD-ROM

The increase in computational power in the last decades has made it possible to exploit high-performance computing for large-
scale numerical simulations. Nevertheless, in some scenarios, e.g. for multiphysics problems, high-performance computing can be 
computationally expensive, in particular also having a large carbon footprint and enormous energy consumption. These circumstances 
motivate the application of model order reduction (MOR) techniques on the premise of a large computational speedup to satisfy 
these demands. In this work, we mainly deal with projection-based reduced basis methods (RBM) [66–72] since this methodology 
aims at efficient treatments by providing both an approximate solution procedure and efficient error estimates [66]. Here, the 
critical observation is that instead of using projection spaces with general approximation properties (e.g. finite element method) 
problem-specific approximation spaces are chosen and then can be used for the discretization of the original problem [73]. Based 
on these spaces and the assumption that the solution evolves smoothly in a low-dimensional solution manifold (equivalent to a 
small Kolmogorov N-width [74,6,67]), a reduced-order model (ROM) can be constructed that represents with sufficient accuracy the 
physical problem of interest using a significantly smaller number of degrees of freedom [73].

In order to construct the reduced spaces, the solution manifold is empirically explored by means of solutions of the full-order 
model as developed in Section 2.2. Then, a proper orthogonal decomposition (POD) is conducted on these snapshots of the high-
fidelity solution to obtain the reduced basis functions [69,6,75,76,1,77–81]. The following Theorem 3.1 states that the POD basis is 
optimal in a least-squares sense. The proof is provided by Gubisch and Volkwein in [82].

Theorem 3.1 (POD basis). Let 𝑌 = [𝑌1, … , 𝑌𝑞] ∶= [𝑈1(𝑡1), … , 𝑈1(𝑡𝑟+1), 𝑈2(𝑡1), … , 𝑈𝑀 (𝑡𝑟+1)] ∈ ℝ𝑛×𝑞 with 𝑞 = 𝑀 ⋅ #DoFs(𝐼𝑚), 𝑛 =
#DoFs(ℎ) and rank 𝑑 ≤ min(𝑛, 𝑞) be the snapshot matrix with a (spatial) column vector for each temporal degree of freedom. Moreover, 
let 𝑌 = ΨΣΦ𝑇 be its singular value decomposition with Σ = diag(𝜎1, … , 𝜎𝑑 ) ∈ ℝ𝑑×𝑑 and orthogonal matrices Ψ = [𝜓1, … , 𝜓𝑑 ] ∈ ℝ𝑛×𝑑 , 
Φ = [𝜙1, … , 𝜙𝑑 ] ∈ℝ𝑞×𝑑 . Then for 1 ≤𝑁 ≤ 𝑑 the optimization problem is

min
𝜓̃1 ,…,𝜓̃𝑁∈ℝ𝑛

𝑞∑
𝑗=1

‖‖‖𝑌𝑗 − 𝑁∑
𝑖=1

(
𝑌𝑗 , 𝜓̃𝑖

)
ℝ𝑛 𝜓̃𝑖

‖‖‖2ℝ𝑛
s.t. (𝜓̃𝑖, 𝜓̃𝑗 )ℝ𝑛 = 𝛿𝑖𝑗 ∀1 ≤ 𝑖, 𝑗 ≤𝑁, (P𝑁 )

where {𝜓̃𝑖}𝑁𝑖=1 ⊂ℝ𝑛, and which is being solved by the left-singular vectors {𝜓𝑖}𝑁𝑖=1 ⊂ℝ𝑛 and it holds that

𝑞∑
𝑗=1

‖‖‖𝑌𝑗 − 𝑁∑
𝑖=1

(
𝑌𝑗 ,𝜓𝑖

)
ℝ𝑛 𝜓𝑖

‖‖‖2ℝ𝑛
=

𝑑∑
𝑖=𝑁+1

𝜎2
𝑖
=

𝑑∑
𝑖=𝑁+1

𝜆𝑖 (4)

with 𝜆𝑖 = 𝜎2
𝑖

being the positive eigenvalues of 𝑌 𝑇 𝑌 .

Thus, the decay rate of the singular values plays an essential role in the feasibility of the POD approach. If the sum of the squared 
truncated singular values is sufficiently small for a relatively small 𝑁 , we can utilize a linear combination of a few basis functions 
𝜓𝑖 for a good approximation of elements 𝑌𝑗 living in the high-dimensional FE space. Although the error of an obtained rank-𝑁
approximation can be determined by Equation (4), this does not yield an intuitive measure for rank determination. Thus, a widely 
used criterion to determine the quality of the POD basis heuristically refers to its retained energy or information content 𝜀(𝑁), cf. 
[83,82,69]. The latter is defined by

𝜀(𝑁) =
∑𝑁

i=1 𝜎
2
𝑖∑𝑑

𝑖=1 𝜎
2
𝑖

=
∑𝑁

𝑖=1 𝜎
2
𝑖∑q

𝑖=1 ||𝑈𝑖||2ℝ𝑛

. (5)

For a detailed presentation of the construction possibilities of the POD basis, we refer to [6][Chap. 2].

3.2. Tensor-product space-time POD-ROM

In order to reduce the space-time full-order system (2) of Section 2.2 the general spatial FEM space 𝑉ℎ is replaced by a problem-
specific low-dimensional space 𝑉𝑁 = span{𝜑1

𝑁
, … , 𝜑𝑁

𝑁
} obtained by means of POD. This yields the reduced variational formulation: 

Find 𝑢𝑁 ∈𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉𝑁 ) such that

𝐴̃(𝑢𝑁 )(𝜑) = 𝐹 (𝜑) ∀𝜑 ∈𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉𝑁 ).

The reduced basis matrix can be formed by the concatenation of the reduced basis vectors, viz.

Ψ𝑁 =
[
𝜓1 … 𝜓𝑁

]
∈ℝ#DoFs(ℎ)×𝑁. (6)

Subsequently, the slabwise discretization for the space-time slab 𝑆𝑛
𝑙

with 𝑛 − 𝑙 + 1 time intervals is obtained in analogy to the full-
order model of Section 2.2.3. In the case of the heat equation, we utilize the linear equation system described in (2) and reduce the 
8

given matrices in an affine manner. Thus, we arrive at
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⎛⎜⎜⎜⎜⎜⎝

𝐴𝑁 𝟎
𝐵𝑁 𝐴𝑁

𝐵𝑁 𝐴𝑁

. . .
. . .

𝟎 𝐵𝑁 𝐴𝑁

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

𝑈𝑁𝑙

𝑈𝑁𝑙+1
𝑈𝑁𝑙+2

...

𝑈𝑁𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝐹𝑁𝑙
−𝐵𝑁𝑈𝑁𝑙−1
𝐹𝑁𝑙+1
𝐹𝑁𝑙+2

...

𝐹𝑁𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
(7)

or in brevity

𝐴𝑁𝑈𝑁,𝑆𝑛
𝑙
= 𝐹𝑁,𝑆𝑛

𝑙
(8)

with the reduced components

𝐴𝑁 = 𝐶𝑘 ⊗𝑀𝑁 +𝑀𝑘 ⊗𝐾𝑁, (9a)

𝐵𝑁 = −𝐷𝑘 ⊗𝑀𝑁, (9b)

𝐹𝑁𝑖
=𝑍𝑇

𝑁
𝐹𝑖, 𝑙 ≤ 𝑖 ≤ 𝑛 , (9c)

based on the spatial reduced matrices

𝑀𝑁 =𝑍𝑇
𝑁
𝑀𝑍𝑁,

𝐾𝑁 =𝑍𝑇
𝑁
𝐾𝑍𝑁.

4. A posteriori goal-oriented error-controlled reduced-order modeling

For further analysis, we consider homogeneous Dirichlet boundary conditions to simplify the presentation, i.e. 𝑢𝐷 = 0. Let a goal 
functional, also called output functional, 𝐽 ∶ 𝑋̃(𝑘, 𝑉 (Ω)) →ℝ of the form

𝐽 (𝑢) =

𝑇

∫
0

𝐽1(𝑢(𝑡)) d𝑡+ 𝐽2(𝑢(𝑇 )) (10)

be given, which represents a physical quantity of interest (QoI). Here, 𝑇 denotes the end time as before. In this work, we consider 
time-averaged goal functionals, i.e., 𝐽2 = 0 and leave 𝐽2 ≠ 0 for future studies. Now, we want to reduce the difference between the 
quantity of interest of a fine solution 𝑢fine and a coarse solution 𝑢coarse, i.e.,

𝐽 (𝑢fine) − 𝐽 (𝑢coarse) (11)

subject to the constraint that the variational formulation of the time-dependent problem (1) is being satisfied for 𝑢fine, 
i.e. 𝐴̃(𝑢fine)(𝜑) = 𝐹 (𝜑) for all test functions 𝜑. Possible choices for the fine and the coarse solution could be 𝑢fine ∶=
𝑢 ∈ 𝑋(𝐼, 𝑉 (Ω)), 𝑢coarse ∶= 𝑢𝑘 ∈ 𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 (Ω)) to control the error caused by the temporal discretization or 𝑢fine ∶= 𝑢𝑘 ∈
𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 (Ω)), 𝑢coarse ∶= 𝑢𝑘ℎ ∈ 𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉ℎ), with 𝑉ℎ ∶= 𝑉 𝑠
ℎ

for the heat equation and 𝑉ℎ ∶= 𝑉 𝑠
ℎ
= 𝑉

𝑠,𝑢

ℎ
× 𝑉

𝑠,𝑣

ℎ
for the elasto-

dynamics equation, to control the error caused by the spatial discretization. For more information on space-time error control, we 
refer the interested reader to [18,21,22] and for general information on spatial error control to [12–14,84]. As an extension, in 
this work we restrict ourselves to the control of the error introduced by reduced-order modeling and thus we consider the full-
order-model (FOM) solution 𝑢fine ∶= 𝑢FOM

𝑘ℎ
∈ 𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

) as the fine solution, and the reduced-order-model (ROM) solution 
𝑢coarse ∶= 𝑢ROM

𝑘ℎ
∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

) as the coarse solution, with 𝑉 ROM
ℎ

⊂ 𝑉 FOM
ℎ

=∶ 𝑉ℎ. First efforts of incorporating the dual-weighted 
residual (DWR) method in reduced-order modeling have been undertaken by Meyer and Matthies [45], where after computing some 
snapshots and creating the reduced basis, they used the DWR error estimator to determine which basis vectors have the largest error 
contribution and only use them for the reduced-order model. This can be thought of as a goal-oriented adaptive coarsening of the 
reduced basis. In this work, we focus on another objective, namely the enrichment of the reduced basis depending on the temporal 
evolution of the quantities of interest. This can be thought of as a goal-oriented adaptive refinement1 of the reduced basis, in which 
we propose to accurately and efficiently compute the solution over the whole temporal domain.

4.1. Space-time dual-weighted residual method

For the constrained optimization problem (11), we define the Lagrange functional for the fine problem as

fine ∶𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

) ×𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

)→ℝ,

1 In principle coarsening would also be possible, but is not the objective in this work. For coarsening, we would need to follow the work of Meyer and Matthies 
9

[45].
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(𝑢fine, 𝑧fine)↦ 𝐽 (𝑢fine) − 𝐴̃(𝑢fine)(𝑧fine) + 𝐹 (𝑧fine),

and for the coarse problem as

coarse ∶𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

) ×𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

)→ℝ,

(𝑢coarse, 𝑧coarse)↦ 𝐽 (𝑢coarse) − 𝐴̃(𝑢coarse)(𝑧coarse) + 𝐹 (𝑧coarse).

The stationary points (𝑢fine, 𝑧fine) and (𝑢coarse, 𝑧coarse) of the Lagrange functionals fine and coarse need to satisfy the Karush-Kuhn-
Tucker first-order optimality conditions.

4.1.1. Primal problem

Firstly, these stationary points are solutions to the equations

′
fine,𝑧(𝑢

fine, 𝑧fine)(𝛿𝑧fine) = −𝐴̃(𝑢fine)(𝛿𝑧fine) + 𝐹 (𝛿𝑧fine) = 0 ∀𝛿𝑧fine ∈𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

),

′
coarse,𝑧(𝑢

coarse, 𝑧coarse)(𝛿𝑧coarse) = −𝐴̃(𝑢coarse)(𝛿𝑧coarse) + 𝐹 (𝛿𝑧coarse) = 0 ∀𝛿𝑧coarse ∈𝑋
dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

).

We call these equations the primal problems and their solutions 𝑢fine and 𝑢coarse the primal solutions. We observe that the primal 
solution can be obtained by solving the original problem, e.g. the heat or the elastodynamics equation, forward in time.

4.1.2. Adjoint problem

Secondly, the stationary points must also satisfy the equations

′
fine,𝑢(𝑢

fine, 𝑧fine)(𝛿𝑢fine) = 𝐽 ′
𝑢
(𝑢fine)(𝛿𝑢fine) − 𝐴̃′

𝑢
(𝑢fine)(𝛿𝑢fine, 𝑧fine) = 0 ∀𝛿𝑢fine ∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

),

′
coarse,𝑢(𝑢

coarse, 𝑧coarse)(𝛿𝑢coarse) = 𝐽 ′
𝑢
(𝑢coarse)(𝛿𝑢coarse) − 𝐴̃′

𝑢
(𝑢coarse)(𝛿𝑢coarse, 𝑧coarse) = 0 ∀𝛿𝑢coarse ∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

).

These equations are called the adjoint or dual problems and their solutions 𝑧fine and 𝑧coarse are the adjoint solutions. Hence, to obtain 
the adjoint solution, we need to solve an additional equation, the adjoint problem

𝐴̃′
𝑢
(𝑢)(𝛿𝑢, 𝑧) = 𝐽 ′

𝑢
(𝑢)(𝛿𝑢). (12)

Note that even for nonlinear PDEs and goal functionals the adjoint problem is linear since the semi-linear form in the variational 
formulation of the PDE is linear in the test functions, however the primal solution enters as it is well-known [13].

Remark 4.1. For linear PDEs, like the heat or the elastodynamics equation, the left-hand side of the adjoint problem (12) simplifies 
to

𝐴̃′
𝑢
(𝑢)(𝛿𝑢, 𝑧) = 𝐴̃(𝛿𝑢)(𝑧).

For linear goal functionals, like the mean-value functional, the right-hand side of the adjoint problem (12) reduces to

𝐽 ′
𝑢
(𝑢)(𝛿𝑢) = 𝐽 (𝛿𝑢).

In particular for a linear problem, i.e. linear PDE and goal functional, we have the adjoint problem

𝐴̃(𝛿𝑢)(𝑧) = 𝐽 (𝛿𝑢), (13)

which does not depend on the primal solution 𝑢 anymore.

By Remark (4.1), the adjoint problem for the heat equation reads

𝐴̃(𝛿𝑢)(𝑧) = 𝐽 ′
𝑢
(𝑢)(𝛿𝑢)

⇔
𝑀∑
𝑚=1

∫
𝐼𝑚

(𝜕𝑡𝛿𝑢, 𝑧) + (∇𝑥𝛿𝑢,∇𝑥𝑧) d𝑡+
𝑀−1∑
𝑚=1

([𝛿𝑢]𝑚, 𝑧+𝑚) + (𝛿𝑢+0 , 𝑧
+
0 ) = 𝐽 ′

𝑢
(𝑢)(𝛿𝑢).

We now use integration by parts in time to move the time derivative from the test function 𝛿𝑢 to the adjoint solution 𝑧 and we get

𝑀∑
𝑚=1

∫
𝐼𝑚

(𝛿𝑢,−𝜕𝑡𝑧) + (∇𝑥𝛿𝑢,∇𝑥𝑧) d𝑡−
𝑀−1∑
𝑚=1

(𝛿𝑢−
𝑚
, [𝑧]𝑚) + (𝛿𝑢−

𝑀
,𝑧−

𝑀
) = 𝐽 ′

𝑢
(𝑢)(𝛿𝑢).

For the elastodynamics equation the adjoint problem can be derived in a similar fashion as

𝑀∑
(𝛿𝑣,−𝜕𝑡𝑧𝑢) + (𝜎(𝛿𝑢),∇𝑥𝑧

𝑢) + (𝛿𝑢,−𝜕𝑡𝑧𝑣) − (𝛿𝑣, 𝑧𝑣) d𝑡
10

𝑚=1
∫
𝐼𝑚
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−
𝑀−1∑
𝑚=1

(
(𝛿𝑣−

𝑚
, [𝑧𝑢]𝑚) + (𝛿𝑢−

𝑚
, [𝑧𝑣]𝑚)

)
+ (𝛿𝑣−

𝑀
,𝑧

𝑢,−
𝑀

) + (𝛿𝑢−
𝑀
,𝑧

𝑣,−
𝑀

) = 𝐽 ′
𝑈
(𝑈 )(𝛿𝑈 ).

We notice that both adjoint problems now run backward in time.

4.1.3. Error identity and temporal localization for linear problems

For the sake of simplicity, we assume that we are dealing with a linear PDE and goal functional. Then we have the error identity

𝐽 (𝑢fine) − 𝐽 (𝑢coarse) = −𝐴̃(𝑢coarse)(𝑧fine) + 𝐹 (𝑧fine) =∶ 𝜂. (14)

The proof relies on both the linearity of the goal functional and the PDE, and the definition of the adjoint and primal problems:

𝐽 (𝑢fine) − 𝐽 (𝑢coarse) = 𝐽 (𝑢fine − 𝑢coarse) = 𝐴̃(𝑢fine − 𝑢coarse)(𝑧fine) = −𝐴̃(𝑢coarse)(𝑧fine) + 𝐹 (𝑧fine).

In the DWR literature, first, for obtaining spatial and temporal discretization error control, due to Galerkin orthogonality the discrete 
solutions may be inserted, and then estimates by interpolation estimates. Next, we remark that this kind of error identity (14) would 
be useless, because for most applications 𝑧fine is the analytical solution which is not known a priori and replacing it by 𝑧coarse yields 
bad error estimates, even identical to zero results if 𝑧coarse is in the discrete function space corresponding to 𝑧fine. Thus, for FEM 
discretization error control the dual weights 𝑧fine − 𝑧coarse are being used, often as previously written in terms of interpolation error 
estimates, which can be approximated by post-processing of the dual solution. However, in our case 𝑧fine ∶= 𝑧FOM

𝑘ℎ
∈𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 FOM
ℎ

)
is the full-order-model dual solution, which is computable but comes with an expense. Moreover, in our numerical experiments 
we will observe that using a reduced-order-model dual solution 𝑧coarse ∶= 𝑧ROM

𝑘ℎ
∈ 𝑋

dG(𝑟)
𝑘

(𝑘, 𝑉 ROM
ℎ

) still produces excellent error 
estimates for our problems if the dual reduced basis is sufficiently large. We point out that the reduced dual spatial function space 
𝑉 ROM
ℎ

needs to differ from the reduced primal spatial function space 𝑉 ROM
ℎ

if we want to capture the dynamics of the dual problem 
and want to have a non-zero error estimator.

To localize the error in time, we just need to assemble the primal residual (14) slabwise. In particular, to localize the error to 
each time interval 𝐼𝑚, we simply need to assemble the primal residual on each time interval separately. More concretely, for the heat 
equation the error on the time interval can be computed from the primal linear equation system, the coarse primal solution and the 
fine dual solution by

𝜂|𝐼𝑚 =
#DoFs(𝐼𝑚)∑

𝑖=1

{
(𝑍coarse

𝑚
)𝑇

(
−𝐴𝑈 coarse

𝑚
+ 𝐹𝑚 −𝐵𝑈 coarse

𝑚−1
)}

𝑖
. (15)

The error estimator on the time interval 𝐼𝑚 for elastodynamics can be derived analogously by using the linear system (A.1) of the 
primal problem.

To test whether we need to use the fine dual solution for our error estimates or whether we can replace it with a coarse dual 
solution, we use the effectivity index as a measure of the quality of our error estimator. The effectivity index is the ratio of the 
estimated and the true errors, i.e.,

Ieff ∶=
|||| 𝜂

𝐽 (𝑢fine) − 𝐽 (𝑢coarse)
|||| . (16)

We desire Ieff ≈ 1, since then the error estimator can reliably predict the reduced-order-modeling error and we also observe this in 
the numerical tests in Section 5.

4.1.4. Space-time dual-weighted residual method for nonlinear problems

For nonlinear problems, like the heat equation with nonlinear goal functional in Section 5.2, we do not have an error identity 
anymore as in (14) for the linear case. Based on the proof in [13][Proposition 2.3], we have the following error representation 
formula.

Theorem 4.2 (Error representation for nonlinear problems).

𝐽 (𝑢fine) − 𝐽 (𝑢coarse) = −𝐴̃(𝑢coarse)(𝑧fine) + 𝐹 (𝑧fine) +𝑅,

with the quadratic remainder term

𝑅 =

1

∫
0

[
𝐴̃′′
𝑢𝑢
(𝑢coarse + 𝑠(𝑢fine − 𝑢coarse))(𝑢fine − 𝑢coarse, 𝑢fine − 𝑢coarse, 𝑧fine)

− 𝐽 ′′
𝑢𝑢
(𝑢coarse + 𝑠(𝑢fine − 𝑢coarse))(𝑢fine − 𝑢coarse, 𝑢fine − 𝑢coarse)

]
⋅ 𝑠 d𝑠.

Proof. In the following we will show that 𝑅 = 𝐽 (𝑢fine) − 𝐽 (𝑢coarse) + 𝐴̃(𝑢coarse)(𝑧fine) − 𝐹 (𝑧fine) holds. For abbreviation, we use the 
11

notation 𝑢 ∶= 𝑢fine, 𝑢̃ ∶= 𝑢coarse and 𝑧 ∶= 𝑧fine. Then, using integration by parts we get
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𝑅 =

1

∫
0

[
𝐴̃′′
𝑢𝑢
(𝑢̃+ 𝑠(𝑢− 𝑢̃))(𝑢− 𝑢̃, 𝑢− 𝑢̃, 𝑧) − 𝐽 ′′

𝑢𝑢
(𝑢̃+ 𝑠(𝑢− 𝑢̃))(𝑢− 𝑢̃, 𝑢− 𝑢̃)

]
⋅ 𝑠 d𝑠

= −

1

∫
0

[
𝐴̃′
𝑢
(𝑢̃+ 𝑠(𝑢− 𝑢̃))(𝑢− 𝑢̃, 𝑧) − 𝐽 ′

𝑢
(𝑢̃+ 𝑠(𝑢− 𝑢̃))(𝑢− 𝑢̃)

]
⋅ 1 d𝑠+

[
𝐴̃′
𝑢
(𝑢)(𝑢− 𝑢̃, 𝑧) − 𝐽 ′

𝑢
(𝑢)(𝑢− 𝑢̃)

]
⋅ 1 − 0.

We observe that 𝐴̃′
𝑢
(𝑢)(𝑢 − 𝑢̃, 𝑧) − 𝐽 ′

𝑢
(𝑢)(𝑢 − 𝑢̃) = 0, since 𝑧 ∶= 𝑧fine is the solution of the fine dual problem. Thus, by the fundamental 

theorem of calculus and 𝐴̃(𝑢)(𝑧) = 𝐹 (𝑧), we have

𝑅 = −
[
𝐴̃(𝑢)(𝑧) − 𝐽 (𝑢) − 𝐴̃(𝑢̃)(𝑧) + 𝐽 (𝑢̃)

]
= 𝐽 (𝑢) − 𝐽 (𝑢̃) + 𝐴̃(𝑢̃)(𝑧) − 𝐹 (𝑧).

This completes the proof. □

To make the error estimator computable, we neglect the quadratic remainder term and arrive at the same primal error estimator 
(14) as for linear problems

𝜂 ∶= −𝐴̃(𝑢coarse)(𝑧fine) + 𝐹 (𝑧fine).

Similarly as before, we replace the full-order dual solution 𝑧fine in the error estimator with a reduced-order-model dual solution 
𝑧coarse. Note that due to these approximations, the effectivity index for nonlinear problems is expected not to be close to 1. Clearly, 
for highly nonlinear problems (e.g., quasi-linear or fully nonlinear) and nonlinear goal functionals, both estimator parts are necessary 
as demonstrated in [85][Figure 4] and [86][Sec. 6.5]. However, in our numerical tests, we see that the estimated error still yields a 
reasonable approximation to the true error.

4.2. Error estimator based ROM updates

In this section, we present our novel approach of a goal-oriented incremental reduced-order model. In the MORe DWR method, we 
marry a reduced-order model with a DWR-based error estimator and an incremental version of the POD algorithm. The MORe DWR 
method addresses the problems that occur when a reduced-order model has to deal with solution behavior that is not already captured 
and incorporated during basis generation. In general, this yields an increasing error between full- and reduced-order solutions. Thus, 
the presented approach aims to detect changes in solution behavior, or more precisely, differences in the evaluated quantities of 
interest by means of the full or reduced model during the temporal evolution. If the error increases to intolerable heights, the method 
allows an adaptive on-the-fly basis enrichment with snapshots of the new behavior. Hence, the reduced model can be incrementally 
modified until the error is sufficiently small.

In more detail, we rely on the space-time reduced-order model presented in Section 3.2 and apply our findings on error control 
of Section 4.1. The use of an error estimate rather than an analytical error bound entails practical advantages since its application is 
more versatile and we can use the method even if no error bounds are known. Further, an incremental basis generation is mandatory 
for the method to reduce computational operations and thus to be fast. The incremental SVD satisfies these requirements and allows 
an update only requiring the prior SVD and the new snapshots. The incremental SVD is presented in Section 4.2.1. In this context, we 
also introduce the incremental POD as a trimmed version of the incremental SVD. Subsequently, the overall MORe DWR framework 
is depicted in Section 4.2.2. Here, all the ingredients are assembled and the final algorithm is presented.

In summary, our novel approach avoids a computationally heavy offline phase and directly solves the reduced model. Full-order 
solves are only required for the basis enrichment and are held to a minimum. Moreover, the reduced evaluation of the quantity of 
interest can be error-controlled.

4.2.1. Incremental proper orthogonal decomposition

This section aims to derive an algorithm that updates an already existing truncated SVD (tSVD) or solely its left-singular (POD) 
vectors according to modifications of the snapshot matrix without recomputing the whole tSVD or requiring access to the snapshot 
matrix. This methodology can then be used to update the POD incrementally by appending additional snapshots to the snapshot 
matrix. For this purpose, we rely on the general approach of an additive rank-b modification of the SVD, mainly developed by [50,51]
and applied to the model-order reduction of fluid flows in [52]. Although this approach provides a variety of possible modifications, 
e.g. resizing of the matrix, modification of individual values, or exchanging rows and columns, we are merely interested in the 
updates of columns, i.e. adding columns to the matrix, and thus restrict the proceeding on this. The following steps are based on 
[52][Section 2.2].

We start with a given snapshot matrix 𝑌 ∈ ℝ#DoFs(ℎ)×m̃ that includes 𝑚̃ > 0 snapshots. Usually, 𝑚̃ is equal or connected to the 
number of already computed time steps. Further, we have the rank-𝑁 tSVD ΨΣΦT of the matrix 𝑌 . Additionally, let 𝑏 ∈ ℕ newly 
computed snapshots {𝑈1, … , 𝑈𝑏} be stored in the bunch matrix

𝐵 =
[
𝑢1 … 𝑢𝑏

]
∈ℝ#DoFs(ℎ)×𝑏. (17)
12

We now aim to compute the tSVD that is updated by the information contained in the bunch matrix 𝐵 according to
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Ψ̃Σ̃Φ̃𝑇 = 𝑌 =
[
𝑌 𝐵

]
without explicitly recomputing 𝑌 or 𝑌 due to performance and memory reasons which was the original motivation of Brand’s work 
on the incremental SVD, cf. [50,51].

Therefore, we write the column update as an additive operation given as[
𝑌 𝐵

]
=
[
𝑌 0#DoFs(ℎ)×𝑏

]
+𝐵

[
0𝑏×𝑚̃ 𝐼𝑏×𝑏

]
(18)

to apply the additive rank-b modification to the SVD according to [52] and obtain the rank-𝑁̃ tSVD of 𝑌 with 𝑁̃ ≤𝑁 + 𝑏 and

Φ̃ =
[
Φ 0
0 𝐼

]
Φ′(∶,1 ∶ 𝑁̃) , (19)

Σ̃ = Σ′(1 ∶ 𝑁̃,1 ∶ 𝑁̃) , (20)

Ψ̃ =
[
Ψ 𝑄B

]
Ψ′(∶,1 ∶ 𝑁̃) , (21)

where 𝐹 =Ψ′Σ′Φ′𝑇 ∈ℝ(𝑁+𝑏)×(𝑁+𝑏) is the SVD of

𝐹 =
[
Σ ΨT𝐵
0 𝑅B

]
(22)

and 𝑄𝐵 ∈ℝ#DoFs(ℎ)×𝑏 and 𝑅𝐵 ∈ℝ𝑏×𝑏 are given by the QR decomposition

𝑄B𝑅B = (𝐼 −ΨΨT)𝐵 ∈ℝ#DoFs(ℎ)×𝑏. (23)

For the POD basis update, we identify Ψ and Ψ̃ with the previous and updated versions of the reduced basis matrix Ψ𝑁 including the 
POD vectors, respectively. We also neglect the update of the right-singular vectors in (19), since it does not provide any additional 
benefit apart from extra computational effort for the reduced-order model, cf. Theorem 3.1. The singular values are considered for 
the rank determination but they come within zero computational cost. In conclusion, (20)-(22) serve as the basis for the on-the-fly 
or incrementally computed POD (iPOD) in this paper.

An additional technical observation: For bunch matrices with small column rank 𝑏, the iPOD algorithm is invoked frequently, and 
algebraic subspace rotations possibly involved do not preserve orthogonality, cf. [51,87–90]. Hence, a numerically induced loss of 
orthogonality of the POD basis vectors can occur. In order to deal with this problem an additional orthonormalization of 

[
Ψ 𝑄B

]
is recommended. Algorithm 1 drafts the implementation of an incremental POD update. Here, Ψ𝑁 is the reduced basis matrix of (6)
with its singular values Σ = [𝜎1,… , 𝜎𝑁 ] ∈ℝ𝑁 , and Ψ̃𝑁 and Σ̃ = [𝜎̃1, … , ̃𝜎𝑁̃ ] denote their incremental updates.

In addition, the bunch matrix 𝐵 introduced in (17) including 𝑏 snapshots is used as an input. The information content captured 
by the reduced basis is determined by the energy threshold 𝜀. We provide a prototypical implementation of the incremental POD in 
Python under https://github .com /Hendrik240298 /Incremental _POD.

Algorithm 1 Incremental POD update.

Input: Reduced basis matrix Ψ𝑁 ∈ℝ#DoFs(ℎ )×𝑁 , singular value vector Σ = [𝜎1,… , 𝜎𝑁 ] ∈ℝ𝑁 , bunch matrix 𝐵 ∈ℝ#DoFs(ℎ )×𝑏 , and energy threshold 𝜀 ∈ [0, 1].
Output: Reduced basis matrix Ψ̃𝑁 ∈ℝ#DoFs(ℎ )×𝑁̃ , singular value vector Σ̃ = [𝜎̃1, … , ̃𝜎𝑁̃ ]

1: 𝐻 =Ψ𝑇
𝑁
𝐵

2: 𝑃 = 𝐵 −Ψ𝑁𝐻

3: [𝑄𝑃 , 𝑅𝑃 ] = QR(𝑃 )
4: 𝑄 = [Ψ𝑁 𝑄𝑃 ]

5: 𝐹 =
[

diag(Σ) 𝐻

0 𝑅𝑃

]
6: if Q not orthogonal then

7: [𝑄, 𝑅] = QR(𝑄)
8: 𝐹 =𝑅𝐹

9: [Ψ′, Σ′] = SVD(𝐹 )
10: 𝑁̃ =min{𝑁 ∈ℕ | 𝜀(𝑁)≥ 𝜀, 1 ≤𝑁 ≤ 𝑑}
11: Σ̃ = diag(Σ′)(1 ∶ 𝑁̃)
12: Ψ̃𝑁 =𝑄Ψ′(∶, 1 ∶ 𝑁̃)

Note that checking if the orthogonality is preserved can be computationally expensive. Thus, we resort to a heuristic approach by 
sole validation if the first and last columns of a matrix are orthogonal.

4.2.2. Goal-oriented error-controlled incremental ROM

In this section, we assemble the space-time ROM presented in Section 3.2 and the incremental POD of Section 4.2.1 with the 
findings on goal-oriented error control of Section 4.1. This yields an adaptive goal-oriented incremental reduced-order model. Firstly, 
next to the slab definition we introduce the parent-slab notion as a further decomposition of the space-time domain. A parent-slab 
unifies several slabs that are consecutive in time and is defined as

𝑟 𝑛
13

𝑃
𝑘
= {𝑆

𝑙
| 𝑙 ≥ 𝑘 ∧ 𝑛 ≤ 𝑟}.

https://github.com/Hendrik240298/Incremental_POD
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Now, our approach is designed to work without any prior knowledge or exploration of the solution manifold while also attempting 
to minimize the full-order operations. Thus, we aim to solve the reduced-order model parent-slab wise and –if necessary– adaptively 
enrich the reduced basis by means of the iPOD with full-order solutions of the parent-slab until the reduced basis is good enough to 
meet a given estimated error tolerance for the chosen goal functional. For this, we identify the fine and coarse solutions introduced 
in the DWR method with the finite element and reduced basis solutions, respectively, and estimate the error on each slab of the 
parent-slab. The full-order solution used for the basis enrichment is computed on the slab where the error is the largest. We remark 
that both the primal and dual full-order solutions are computed on this slab and are used to enrich the primal and dual bases. So, 
for each enrichment two full-order solves are conducted. After having finished this iterative process on a parent-slab, the obtained 
basis is transferred to the proceeding parent-slab and is used as a starting point to solve the reduced-order model where the whole 
procedure is repeated. So if the solution behavior on the next parent-slab only differs slightly from the already observed behavior, 
the reduced basis at hand should be able to reproduce most of the behavior. Thus, few basis updates would be sufficient such that 
a fast computation of the reduced solution can be expected. However, if the solution behavior changes drastically the error estimate 
will detect this and further refinements of the basis will be conducted to ensure that the solution meets the error tolerance. We 
emphasize that the dual problem is solved on each parent slab independently, without using the dual solutions of the following slabs 
as an initial condition since these are not computed yet. Instead, on each parent slab the dual problem is solved with a zero initial 
condition. This division into subproblems does not fully equal the system described in Section 4.1.2 but yields an approach without 
needing to solve the dual problem over the whole time domain, thus enabling an efficient solution process. Nevertheless, there may 
be certain problems or goal functionals for which this shortcut does not yield good results. Especially, for end-time functionals, i.e. 
𝐽1 = 0 and 𝐽2 ≠ 0, the dual solution would be zero on all but the last parent slab. We try to possibly counteract the induced error of 
employing a surrogate for the exact dual problem by adding a validation loop at the end of the simulation. There, the ROM and error 
estimation are conducted on a single parent slab, which translates to the computation of the dual problem over the full temporal 
domain as stated in Section 4.1.2.

We observe that this procedure is perfectly compatible with the adaptive basis selection based on DWR estimates presented by 
Meyer and Matthies in [45] to reduce the dimension of the reduced space. Thus, if incorporated it would be possible to either enrich 
or delude the reduced basis adjusted to the problem statement.

The resulting approach is outlined in detail in Algorithm 2 and illustrated in Fig. 2 for two consecutive parent slabs. For the sake of 
simplicity, we decompose the space-time cylinder in 𝐾 parent-slabs of fixed length 𝐿 and enumerate them with respect to time, viz. 
𝑃1, 𝑃2, … , 𝑃𝐾 . In order to identify the affiliation of a slab to a parent-slab 𝑃𝑘, the slabs it contains are denoted by 𝑆1

𝑃𝑘
, 𝑆2

𝑃𝑘
, … , 𝑆𝐿

𝑃𝑘

with 1 ≤ 𝑘 ≤𝐾 . The discretized primal systems for each slab 𝑆𝑗

𝑃𝑘
are expressed in (3) and (8) for the full- and reduced-order models, 

respectively. For the dual problem

𝐴′𝑍𝑆𝑙
𝑃𝑘

= 𝐽𝑆𝑙
𝑃𝑘

and (24)

𝐴′
𝑁𝑑

𝑍𝑁𝑑,𝑆
𝑙
𝑃𝑘

= 𝐽𝑁𝑑,𝑆
𝑙
𝑃𝑘

(25)

denote the discretized full- and reduced-order systems of the adjoint problem (12). To distinguish the components of the primal 
and dual reduced-order model they got the labels 𝑝 and 𝑑, respectively. Further, the evaluation of the error estimator (15) on slab 

𝑆𝑙
𝑃𝑘

is given by 𝜂𝑁,𝑆𝑙
𝑃𝑘

(
𝑈𝑁𝑝,𝑆

𝑙
𝑃𝑘

,𝑍𝑁𝑑,𝑆
𝑙
𝑃𝑘

)
. Note that the reduced primal and dual solutions are deployed to enable an evaluation 

independent of the full-order system size and thus a fast error evaluation. In addition, the incremental POD (Algorithm 1) is referred 
to by the abbreviation iPOD with the reduced basis, new snapshots bundled in the snapshot matrix, and singular values as input and 
the new POD basis as output. Lastly, in Algorithm 2 the incremental ROM has both a primal and a dual reduced basis as input in 
the form of the reduced basis matrix. Depending on the situation, these inputs may be different. If no prior information is available, 
the bases can be initialized by computing the primal and dual solution snapshots on the first single slab in time. However, if prior 
reduced bases are available, e.g. from a previous simulation on a different parameter configuration, these bases can be used as an 
initial guess and then be altered by the goal-oriented adaptation performed in the algorithm. This indicates the applicability of the 
MORe DWR approach to reduced-order modeling of parameterized problems. Here, the method can be an efficient substitute for the 
full-order model in the offline phase and build a reduced basis tailored to a quantity of interest with a minimum of full-order model 
solves.

Furthermore, we note that similar to the mere approximation error of the POD in (4) the physical interpretation of the error 
estimate is not intuitive. Therefore, we are considering a relative measurement of the approximation quality. However, the full-order 
solutions are not available for a normalization of the error so that we resort to

𝐽

(
𝑈𝑆𝑙

𝑃𝑘

)
≈ 𝐽

(
𝑈𝑁𝑝,𝑆

𝑙
𝑃𝑘

)
+ 𝜂𝑁,𝑆𝑙

𝑃𝑘

.

This results in the relative error estimator 𝜂𝑟𝑒𝑙
𝑁,𝑆𝑙

𝑃𝑘

on slab 𝑆𝑙
𝑃𝑘

defined by

𝜂𝑟𝑒𝑙
𝑁,𝑆𝑙

𝑃𝑘

=
𝜂𝑁,𝑆𝑙

𝑃𝑘

𝐽

(
𝑈 𝑙

) ≈
𝜂𝑁,𝑆𝑙

𝑃𝑘

𝐽

(
𝑈 𝑙

)
+ 𝜂 𝑙

. (26)
14

𝑆
𝑃𝑘

𝑁𝑝,𝑆𝑃𝑘
𝑁,𝑆

𝑃𝑘
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Parent slab 𝑃1 ∶= ∪𝐿
𝑙=1𝑆

𝑙
𝑃1

Primal ROM
for

𝑆1
𝑃1
, 𝑆2

𝑃1
,… , 𝑆𝐿

𝑃1

Dual ROM
for

𝑆𝐿
𝑃1
, 𝑆𝐿−1

𝑃1
,… , 𝑆1

𝑃1

Error estimates on 𝑃1
+

𝑙𝑚𝑎𝑥 = argmax
1≤𝑙≤𝐿

||||𝜂𝑟𝑒𝑙𝑁,𝑆𝑙
𝑃𝑘

||||
|𝜂𝑟𝑒𝑙

𝑁,𝑆
𝑙max
𝑃𝑘

| < tol

Primal FOM on slab 𝑆
𝑙max
𝑃1

+
Enrich Ψ𝑝

𝑁𝑝
by iPOD

Dual FOM on slab 𝑆
𝑙max
𝑃1

+
Enrich Ψ𝑑

𝑁𝑑
by iPOD

Parent slab 𝑃2 ∶= ∪𝐿
𝑙=1𝑆

𝑙
𝑃2

Primal ROM
for

𝑆1
𝑃2
, 𝑆2

𝑃2
,… , 𝑆𝐿

𝑃2

Dual ROM
for

𝑆𝐿
𝑃2
, 𝑆𝐿−1

𝑃2
,… , 𝑆1

𝑃2

Error estimates on 𝑃2
+

𝑙𝑚𝑎𝑥 = argmax
1≤𝑙≤𝐿

||||𝜂𝑟𝑒𝑙𝑁,𝑆𝑙
𝑃𝑘

||||
|𝜂𝑟𝑒𝑙

𝑁,𝑆
𝑙max
𝑃𝑘

| < tol

Primal FOM on slab 𝑆
𝑙max
𝑃2

+
Enrich Ψ𝑝

𝑁𝑝
by iPOD

Dual FOM on slab 𝑆
𝑙max
𝑃2

+
Enrich Ψ𝑑

𝑁𝑑
by iPOD

...

No

Yes

No

Yes

enrich𝜂𝑟𝑒𝑙

tol

...
𝑡

𝑃1 𝑃2

Fig. 2. MORe DWR algorithm illustrated for two consecutive parent slabs.

Algorithm 2 MORe DWR algorithm.

Input: Initial condition 𝑈0 ∶=𝑈 (𝑡0), primal and dual reduced basis matrices Ψ𝑝

𝑁𝑝
and Ψ𝑑

𝑁𝑑
, energy threshold 𝜀 ∈ [0, 1] and error tolerance tol > 0.

Output: Primal and dual reduced basis matrices Ψ𝑝

𝑁𝑝
and Ψ𝑑

𝑁𝑑
and reduced primal solutions 𝑈𝑁𝑝,𝐼𝑚

for all 1 ≤𝑚 ≤𝑀 .

1: for 𝑘 = 1, 2, … , 𝐾 do ⊳ Loop over parent slabs
2: while 𝜂𝑚𝑎𝑥 > 𝑡𝑜𝑙 do

3: for 𝑙 = 1, 2, … , 𝐿 do ⊳ Primal ROM on 𝑘-th parent slab
4: Solve reduced primal system (8): 𝐴𝑁𝑝

𝑈𝑁𝑝,𝑆
𝑙
𝑃𝑘

= 𝐹𝑁𝑝,𝑆
𝑙
𝑃𝑘

5: for 𝑙 =𝐿, 𝐿 − 1, … , 1 do ⊳ Dual ROM on 𝑘-th parent slab
6: Solve reduced dual system (25): 𝐴′

𝑁𝑑
𝑍𝑁𝑑 ,𝑆

𝑙
𝑃𝑘

= 𝐽𝑁𝑑 ,𝑆
𝑙
𝑃𝑘

7: for 𝑙 = 1, 2, … , 𝐿 do ⊳ Error estimates on 𝑘-th parent slab

8: Compute error estimate: 𝜂𝑟𝑒𝑙
𝑁,𝑆𝑙

𝑃𝑘

(
𝑈𝑁𝑝,𝑆

𝑙
𝑃𝑘

,𝑍𝑁𝑑 ,𝑆
𝑙
𝑃𝑘

)
9: 𝜂𝑚𝑎𝑥 = max

1≤𝑙≤𝐿
||||𝜂𝑟𝑒𝑙𝑁,𝑆𝑙

𝑃𝑘

||||
10: if 𝜂𝑚𝑎𝑥 > 𝑡𝑜𝑙 then

11: 𝑙𝑚𝑎𝑥 = argmax
1≤𝑙≤𝐿

||||𝜂𝑟𝑒𝑙𝑁,𝑆𝑙
𝑃𝑘

||||
12: Solve primal full-order system (3): 𝐴𝑈

𝑆
𝑙𝑚𝑎𝑥
𝑃𝑘

= 𝐹
𝑆

𝑙𝑚𝑎𝑥
𝑃𝑘

13: Update primal reduced basis: Ψ𝑝

𝑁𝑝
= iPOD(Ψ𝑝

𝑁𝑝
, Σ𝑁𝑝

, [𝑈
𝑆

𝑙𝑚𝑎𝑥
𝑃𝑘

(𝑡1), … , 𝑈
𝑆

𝑙𝑚𝑎𝑥
𝑃𝑘

(𝑡𝑟+1)], 𝜀)
14: Solve dual full-order system (24): 𝐴′𝑍

𝑆
𝑙𝑚𝑎𝑥
𝑃𝑘

= 𝐽
𝑆

𝑙𝑚𝑎𝑥
𝑃𝑘

15: Update dual reduced basis: Ψ𝑑
𝑁𝑑

= iPOD(Ψ𝑑
𝑁𝑑

, Σ𝑁𝑑
, [𝑍

𝑆
𝑙𝑚𝑎𝑥
𝑃𝑘

(𝑡1), … , 𝑍
𝑆

𝑙𝑚𝑎𝑥
𝑃𝑘

(𝑡𝑟+1)], 𝜀)
16: Update reduced system components and error estimator w.r.t. (9)

17: ———– Validation loop ———– ⊳ This is an optional validation of the model
18: for 𝑘 = 1, 2, … , 𝐾 do ⊳ Primal ROM on whole temporal domain
19: for 𝑙 = 1, 2, … , 𝐿 do

20: Solve primal reduced system: 𝐴𝑁𝑝
𝑈𝑁𝑝,𝑆

𝑙
𝑃𝑘

= 𝐹𝑁𝑝,𝑆
𝑙
𝑃𝑘

21: for 𝑘 =𝐾, 𝐾 − 1, … , 1 do ⊳ Dual ROM on whole temporal domain
22: for 𝑙 =𝐿, 𝐿 − 1, … , 1 do

23: Solve dual reduced system: 𝐴′
𝑁𝑑

𝑍𝑁𝑑 ,𝑆
𝑙
𝑃𝑘

= 𝐽𝑁𝑑 ,𝑆
𝑙
𝑃𝑘

24: for 𝑘 = 1, 2, … , 𝐾 do ⊳ Error estimates on whole temporal domain
25: for 𝑙 = 1, 2, … , 𝐿 do

𝑟𝑒𝑙
15

26: Compute slab estimate: 𝜂
𝑁,𝑆𝑙

𝑃𝑘

(𝑈𝑁𝑝,𝑆
𝑙
𝑃𝑘

, 𝑍𝑁𝑑 ,𝑆
𝑙
𝑃𝑘

)
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In addition to the previously mentioned steps, we add an optional validation loop whose purpose depends on the application. 
Specifically, it consists in recomputing the whole reduced solutions with the final reduced basis and evaluating its error again. If the 
generated reduced basis is meant to be reused, the additional validation of its accuracy ensures that the reduced basis is well suited 
to approximate the solution for the whole time domain. This is mainly the case in multi-query evaluations, e.g. in an optimization 
process or if the MORe DWR method is used for manifold exploration. However, if the only purpose is a one-time evaluation of a 
quantity of interest, the validation can be ignored for performance reasons.

5. Numerical tests

In order to demonstrate our methodology, we perform numerical tests on three different problem configurations. For the first two 
numerical tests, we perform computations for the heat equation in 1+1D and 2+1D. For the former, we use a linear goal functional 
and for the latter, we use a nonlinear goal functional. To demonstrate the flexibility of our temporal discretization, we use Gauss-
Legendre quadrature points in time for the heat equation and a dG(1) time discretization. As the third problem configuration, we 
consider a 3+1D cantilever beam as a benchmark problem from elastodynamics. For this problem, we use Gauss-Lobatto quadrature 
points in time, which are the support points for conventional time-stepping schemes, and we use a dG(2) time discretization.

All our computations have been performed on a personal computer with an Intel i5-7600K CPU @ 3.80GHz × 4 and 16GB of 
RAM. The space-time FEM codes have been written in deal.II [56,57] and the reduced-order modeling has been performed with 
NumPy [91] and SciPy [92]. The data between the codes is exchanged via the hard disk.

5.1. 1+1D heat equation

For our first numerical test, we construct a 1+1D heat equation problem; see Formulation 2.1. We consider the spatial domain 
Ω = (0, 1) and the temporal domain 𝐼 = (0, 4). We use a single moving heat source that changes its temperature after each second 
and moves through the spatial domain with a heating interval width of 0.1 from 𝑥 = 0.1 to 𝑥 = 0.9 and then back to 𝑥 = 0.1. For this, 
we use the right-hand side function

𝑓 (𝑡, 𝑥) ∶=

⎧⎪⎪⎨⎪⎪⎩
0.2 𝑡 ∈ (0,1), −0.05≤ 𝑥− 0.4𝑡− 0.1 ≤ 0.05,
−0.5 𝑡 ∈ (1,2), −0.05≤ 𝑥− 0.4𝑡− 0.1 ≤ 0.05,
1.0 𝑡 ∈ (2,3), −0.05≤ 𝑥+ 0.4(𝑡− 2) − 0.9 ≤ 0.05,
−0.75 𝑡 ∈ (3,4), −0.05≤ 𝑥+ 0.4(𝑡− 2) − 0.9 ≤ 0.05.

We use a zero initial condition, homogeneous Dirichlet boundary conditions, and the time-averaged mean value goal functional 

𝐽 (𝑢) ∶= 1
4 ∫ 4

0 ∫ 1
2

0 𝑢(𝑡, 𝑥) d𝑥 d𝑡. We point out that the goal functional does not have support on the entire spatial domain, but only on 
its lower half (0, 12 ) ⊊Ω.

For the reduced-order model, we choose that the primal and dual reduced bases have to preserve 𝜀 = 1 −10−8 of the information. 
As previously stated, we resort to the relative error estimate 𝜂𝑟𝑒𝑙

𝑁,𝑆𝑙
𝑃𝑘

developed in (26) and allow errors up to a tolerance of 1%. We 

consider this to be a reasonable tolerance for many applications. The full-order model is characterized by 𝑛 = 513 and 𝑞 = 1, 280
DoFs in space and time, respectively. This gives us a total of 𝑛 ⋅ 𝑞 = 656, 640 space-time degrees of freedom. The resulting full-order 
system is solved in 0.27 𝑠. Further, the temporal domain is split up into 𝑀 = 640 time slabs. For the incremental ROM, we choose a 
total amount of 𝐾 = 32 parent-slabs on which the slabs are evenly distributed, i.e. 𝐿 = 40.

In Fig. 3, we display the full-order space-time solution 𝑢ℎ as well as the true error 𝑢ℎ − 𝑢𝑁 between the full-order space-time 
solution 𝑢ℎ and the reduced-order space-time solution 𝑢𝑁 obtained using MORe DWR. Looking at the error, we observe that the 
reduced-order model becomes less accurate for 𝑥 ∈ ( 12 , 1) than for 𝑥 ∈ (0, 12 ), which is the spatial support of the goal functional. This 
shows that our incremental POD is goal-oriented. In Fig. 4a, we compare the time trajectories of the goal functional restricted to each 
time slab for the full-order space-time solution 𝑢ℎ and the reduced-order space-time solution 𝑢𝑁 . It illustrates that both trajectories 
are not distinguishable from each other indicating that the reduced-order model captures the temporal evolution of the quantity of 
interest accurately even with changing solution behavior. This good approximation quality can also be observed when regarding the 
time-averaged goal functional. We obtain 𝐽 (𝑢ℎ) = 2.0607 ⋅10−4 and 𝐽 (𝑢𝑁 ) = 2.0585 ⋅10−4 yielding a relative error of 𝜂𝑚𝑎𝑥 = 0.1095%. 
We compare the temporal error estimate with the exact temporal error on each slab in Fig. 4b. The general tendencies of both curves 
are similar. The exact error is on average more than one magnitude smaller than the error tolerance of 1% (indicated by a green 
dashed line). Furthermore, the error tolerance acts as a real error bound since it is never violated, despite the use of error estimates 
in the MORe DWR approach.

Table 1 gives an overview of simulation results for different error tolerances comprised between 0.1% and 10%. The listed 
characteristics are: the relative error, computational speedup, the total number of FOM solves, POD basis sizes for the primal and 
dual problem, prediction capability of error estimator, and the effectivity index from (16). Here, the number of FOM solves sums up 
all primal and dual solves and the basis sizes are shown in the pattern primal | dual. The prediction capability is visualized by means 
of a confusion matrix. The prediction on each slab is assigned to one of the four cases:
16

error > tol ∧ estimate < tol | error < tol ∧ estimate > tol | error > tol ∧ estimate > tol | error < tol ∧ estimate < tol.
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Fig. 3. Space-time solution and error for the 1+1D heat equation.

Fig. 4. Temporal evolution of (a) the goal functional and (b) the time slab-wise error estimator compared to the true error for the 1+1D heat equation. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We note that the four possible scenarios are sorted according to the severity of the consequences of their occurrence. So, the 
first two cases indicate mispredictions of the estimator. Here, the first case is the least desirable since then the error estimator 
underestimates the true error, which can lead to a too small reduced basis to meet the desired error tolerance. The second case is less 
fatal since then the true error is being overestimated by the error estimator, which can cause the reduced basis to be slightly larger 
than necessary. The last two cases are less harmful since the estimate correctly predicts the error. However, the third case is also not 
optimal, since it shows that after the incremental basis enrichment, in the validation loop, there are still slabs on which the error 
tolerance is being exceeded. Therefore, we expect that for an efficient method (almost) all slabs fall in the last category, where the 
error tolerance is being met and the error estimate is also below the tolerance.

We observe that with a rise in the tolerance the relative error as well as the speedup –compared to our highly resolved full-order 
model– increase. We remark that the actual computational speedups strongly depend on multiple variables such as the chosen time 
and space discretization of the full-order model, the implementation of the method and hardware specifications. Overall our method 
also benefits from more efficient full-order models but for coarse discretizations the speedup obtained by adaptive model order 
reduction will be less prominent or in the worst case not existent. Note that the relative error is at least one order of magnitude 
smaller than the tolerance, which aligns with the results of Fig. 4b. The difference in magnitude can be explained by the fact that 
the tolerance has to be met slabwise while the relative error is evaluated over the whole time domain. The speedup is explained 
17

by the decreasing amount of FOM solves and smaller POD bases for both the primal and dual problem w.r.t. the given tolerance. 
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Table 1

Performance of MORe DWR for the 1+1D heat equation depending on the tolerance in the goal functional.

Tolerance Relative error Speedup FOM solves Basis size Prediction Effectivity

0.1% 0.0001% 1.0203 48 29 | 26 0 | 2 | 0 | 638 1.0143
1% 0.0011% 1.7060 30 20 | 17 0 | 0 | 0 | 640 1.0121
2% 0.0015% 2.3779 22 17 | 13 0 | 1 | 0 | 639 1.0142
5% 0.0095% 2.6840 16 14 | 10 0 | 4 | 0 | 636 1.0288
10% 0.0089% 2.6919 16 15 | 10 0 | 0 | 0 | 640 1.0165

Fig. 5. Temporal evolution of the reduced basis size for a relative error tolerance of (a) 1% and (b) 10% for the 1+1D heat equation.

Furthermore, the estimator predicts the relationship of the error to the tolerance in over 99% of the cases right with the incorrect 
predictions being overestimations. Similarly, for the effectivity index, a slight worsening can be seen with rising tolerance since then 
replacing the full-order dual solution in the error estimator with the reduced-order dual solution introduces additional errors.

Finally, we demonstrate the incremental nature of our MORe DWR approach in Fig. 5. In this context, we illustrate the on-the-fly 
basis generation by plotting the primal and dual reduced basis size over the time domain and compare its evolution for the tolerances 
of 1% and 10%. The results indicate a steeper and more granular increase of both the primal and dual basis size if the tolerance is 
smaller. Nevertheless, we observe a steady basis size for all bases and tolerances after around 2 seconds. If we take the movement of 
the heat source into account, this is exactly the time the source needs to travel once through the spatial domain. Thus, after this, no 
new information is added to the system that would trigger a further basis enrichment.

5.2. 2+1D heat equation

In the second numerical experiment, we test MORe DWR on a 2+1D heat equation problem. We consider the spatial domain 
Ω = (0, 1)2 and the temporal domain 𝐼 = (0, 10). We create a moving heat source of oscillating temperature that rotates around the 
midpoint of the spatial domain Ω as shown in Fig. 6. For this, we use the right-hand side function

𝑓 (𝑡, 𝑥) ∶=

{
sin(4𝜋𝑡) if (𝑥1 − 𝑝1)2 + (𝑥2 − 𝑝2)2 < 𝑟2,

0 else,

with 𝑥 = (𝑥1, 𝑥2), midpoint 𝑝 = (𝑝1, 𝑝2) = ( 12 + 1
4 cos(2𝜋𝑡), 

1
2 + 1

4 sin(2𝜋𝑡)) and radius of the trajectory 𝑟 = 0.125. In addition, a zero 
initial condition and homogeneous Dirichlet boundary conditions are applied. In contrast to the goal functional in Section 5.1, we 
test the method for a nonlinear goal functional 𝐽 (𝑢) ∶= 1

10 ∫ 10
0 ∫Ω 𝑢(𝑡, 𝑥)2 d𝑥 d𝑡.

For the reduced-order model, we choose that the primal and dual reduced bases have to preserve 𝜀 = 1 −10−8 of the information. 
Similar to the previous one-dimensional scenario, we resort to the relative error estimate 𝜂𝑟𝑒𝑙

𝑁,𝑆𝑙
𝑃𝑘

and allow errors up to a tolerance 

of 1%. The full-order model is characterized by 𝑛 = 4, 225 and 𝑞 = 4, 096 DoFs in space and time, respectively. This gives us a total 
of 𝑛 ⋅ 𝑞 = 17, 305, 600 space-time degrees of freedom. The resulting full-order system is solved in 220 𝑠. Further, the temporal domain 
is split up into 𝑀 = 2, 048 time slabs. Note that we chose this temporal discretization to ensure a sufficiently accurate full-order 
solution. However, it might be possible that a coarser temporal discretization would be enough. For the incremental ROM, we choose 
a total amount of 𝐾 = 128 parent-slabs on which the slabs are evenly distributed, i.e. 𝐿 = 16.

Firstly, in Fig. 7a we compare the time trajectories of the goal functional restricted to each time slab for the full-order space-
18

time solution 𝑢ℎ and the reduced-order space-time solution 𝑢𝑁 . It illustrates that both trajectories are not distinguishable from each 
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Fig. 6. Full-order solution snapshots for the 2+1D heat equation.

Fig. 7. Temporal evolution of (a) the goal functional and (b) the time interval-wise error estimator compared to the true error for the 2+1D heat equation.

other although the solution behavior is constantly changing. Furthermore, good approximation quality can also be observed when 
regarding the time-averaged goal functional. We obtain 𝐽 (𝑢ℎ) = 6.4578 ⋅ 10−5 and 𝐽 (𝑢𝑁 ) = 6.4577 ⋅ 10−5 yielding a relative error of 
𝜂𝑚𝑎𝑥 = 0.0016%. This implies that the incremental ROM can replicate nonlinear goal functionals within a given tolerance.

In Fig. 7b, the exact temporal errors and their estimation on each slab are compared. Further, for illustration we indicate the 
error tolerance of 1% in this plot. The results show that both the exact and estimated errors meet the given error tolerance on all 
slabs. Overall, the estimate shows a similar trajectory to the exact error. However, we can observe spikes in the exact error that are 
not completely covered by the estimation. Nevertheless, these deflections remain without consequences. Table 2 presents simulation 
results for a range of error tolerances. The quantities we consider are the following: the relative error, computational speedup, the 
total number of FOM solves, POD basis sizes for the primal and dual problem, prediction capability of the error estimator, and the 
effectivity index. For definitions of these quantities, we refer to Section 5.1. We can observe that with a rise in the tolerance the 
relative error as well as the speedup increase. Again, the relative error is much smaller than the tolerance. Note in contrast to the 1D 
19

linear scenario the relaxation of the error tolerance has a greater impact on the speedup. This can be explained by the evolution of 
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Table 2

Incremental reduced-order modeling summary for the 2+1D heat equation depending on the tolerance in the 
goal functional.

Tolerance Relative error Speedup FOM solves Basis size Prediction Effectivity

0.1% 0.0019% 7.7 150 92 | 78 0 | 35 | 0 | 2013 0.7524
1% 0.0017% 27.5 80 55 | 44 0 | 1 | 0 | 2047 0.2771
2% 0.0628% 29.6 66 47 | 36 0 | 9 | 0 | 2039 3.9181
5% 0.9162% 44.8 44 33 | 25 0 | 1 | 0 | 2047 1.2254
10% 0.9243% 50.0 38 31 | 23 79 | 28 | 17 | 1924 1.5474

Fig. 8. Temporal evolution of the reduced basis size for a relative error tolerance of (a) 1% and (b) 10% for the 2+1D heat equation.

the amount of FOM solves and the POD bases w.r.t. the given tolerance. Furthermore, the estimator predicts the relationship of the 
error to the tolerance in approximately 94 − 99% of the cases right with most of the incorrect predictions being overestimations. An 
exception exists for tol = 10% where a drop of 5% in the prediction capability can be observed indicating the dual basis is too small 
to accurately estimate the error. An adapted tolerance for the information content of the dual basis could counteract that problem. 
Nevertheless, the obtained reduced goal functional still meets the error tolerance. The largest difference with the linear case holds 
the evaluation of the effectivity index. We observe that in contrast to the linear case, the effectivity indices show larger fluctuations 
around 1, which have been expected due to the nonlinear goal functional. However, the effectivity indices are still in an acceptable 
range yielding good results. Finally, we observe that for a large tolerance of 10% we have a few mispredictions, i.e. on 79 slabs the 
true error is greater than the tolerance while the estimated error is smaller than the tolerance, and on 28 slabs the error estimator 
is greater than the tolerance while the true error is smaller than the tolerance. Additionally, for this tolerance we have 17 slabs on 
which both true and estimated errors are larger than the tolerance. This decay of MORe DWR performance can be explained by the 
replacement of the fine dual solution 𝑧fine in the DWR error estimator by the coarse dual solution 𝑧coarse. If we make the POD bases 
for the primal and dual problems too small, then this approximation might cause additional errors and lead to a worse performance 
of our method. Next, Fig. 8 sketches the incremental nature of the MORe DWR approach. The on-the-fly basis generation is shown 
by plotting the primal and dual reduced basis size over the time domain and comparing its evolution for the tolerances of 1% and 
10%. The results indicate a steep increase of both the primal and dual basis sizes in the first second of the simulation that reflects one 
round trip of the oscillating heat source through the spatial domain. Again, for a more restrictive tolerance, more basis refinements 
can be observed, yielding a faster increase in basis sizes. After the first round trip of the heat source, the basis size remains almost 
unchanged with only one basis enlargement for the tolerance of 1% at around 𝑡 = 4 s. This is grounded in the periodic behavior of 
the chosen numerical experiment that does not add any further information to the system. Thus, less or no further basis enrichments 
have to be performed to meet the given error tolerance.

So far, we have used the strategy of replacing the dual problem with an approximate dual problem to avoid unnecessary computa-
tions because of the backward time flow as discussed in Section 4.2.2. The above results demonstrate the successful application of this 
strategy. However, from a theoretical perspective, an inexact dual problem is solved. Hence, we now use the 2+1D heat problem to 
examine the MORe DWR method conducted on a single parent slab by setting 𝐾 = 1 and thus using the exact dual problem. For this, 
Fig. 9 depicts the corresponding temporal evolution of the time interval-wise error estimator evaluation for the error tolerances 0.1%, 
1.0% and 10.0%. The error behavior for all tolerances is very similar. In each instance, the actual error and its estimate coincide, and 
are generally slightly below the specified tolerance. But, several small overshoots of the real error where the estimate stays below the 
tolerance can be observed. Compared to the multi parent slab counterpart above, more of these mispredictions happen. Nevertheless, 
the comparison of the effectivity indices of the one parent slab with the multiple parent slab scenarios shows an improvement if using 
20

a single slab. More precisely, the effectivity indices change from 0.752 to 1.2148, from 0.2771 to 1.1846 and from 1.5474 to 1.3907
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Fig. 9. Temporal evolution of the time interval-wise error estimator compared to the true error for (a) tol = 0.1%, (b) tol = 1.0% and (c) tol = 10.0% on a single parent 
slab (𝐾 = 1) for the 2+1D heat equation.

Fig. 10. Full-order solution snapshot at t = 5.75 for the elastodynamics equation.

for the relative tolerances 0.1%, 1.0% and 10.0% respectively. In summary, using the fully backward dual problem yields improved 
effectivity indices but also suffers from small mispredictions which could be counterbalanced by reducing the MORe DWR tolerance 
slightly below the real desired error tolerance. Besides the error estimation capability, also the resulting speed-ups are of interest. 
If using a single parent slab, the MORe DWR method obtains the speed-up factors 2.6, 6.3 and 20.2 for the relative tolerances 0.1%, 
1.0% and 10.0% respectively. Compared to Table 2, this shows that the usage of multiple parent slabs and thus approximating the 
dual problem yields better speed-ups while retaining similar quality in error control.

5.3. 3+1D elastodynamics equation

In the third numerical experiment, we choose Formulation 2.2 and investigate the method on a 3+1D elastodynamics problem. 
We consider a rectangular beam spanning the spatial domain Ω = (0, 6) × (0, 1) × (0, 1). Further, the temporal domain 𝐼 = (0, 40) is 
regarded. We induce an oscillation in the vertical direction by defining a force 𝑓 (𝑡, 𝑥) acting on the upper boundary of the beam 
Γup = (0, 6) × (0, 1) × {𝑥3 = 1}. In the first part of the experiment the beam is lifted up by means of the acting force as shown in 
Fig. 10. Thereafter, the force is slowly eliminated such that the beam begins to swing.

For this, we use

𝑔(𝑡) ∶=
⎧⎪⎨⎪⎩
𝑓max

𝑡

𝑡1
𝑥3 = 1 ∧ 𝑡 ≤ 𝑡1,

𝑓max

(
1 − 𝑡−𝑡1

𝑡2−𝑡1

)
𝑥3 = 1 ∧ 𝑡1 < 𝑡 ≤ 𝑡2,

0 else,

with maximal acting force 𝑓max = 0.5 and 𝑡1 = 5 and 𝑡2 = 6 being the time points until the force increases or decreases, respectively. 
Together with the beam being clamped at the boundary Γclamped = {𝑥1 = 0} × (0, 1) × (0, 1) this yields the boundary conditions in 
Section 2.1.2

𝑢 = 0 in 𝐼 × Γclamped,

𝑣 = 0 in 𝐼 × Γclamped,

𝜎(𝑢) ⋅ 𝑛 = 0 in 𝐼 × 𝜕Ω ⧵ (Γclamped ∪ Γup),

𝜎(𝑢) ⋅ 𝑛 = 𝑔(𝑡) in 𝐼 × Γ𝑢𝑝.
21

Furthermore, the homogeneous initial conditions are given by
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Fig. 11. Temporal evolution of (a) the goal functional and (b) the time interval-wise error estimator compared to the true error for the 3+1D elastodynamics equation.

𝑢(0) = 0 in Ω,

𝑣(0) = 0 in Ω.

We choose the time-averaged stress acting on the clamped boundary Γclamped denoted by 𝐽 (𝑢) ∶= 1
40 ∫ 40

0 ∫Γclamped
𝜎(𝑢(𝑡, 𝑥)) ⋅ 𝑛 d𝑥 d𝑡 as 

the goal functional. For the reduced-order model, we decide that the primal and dual reduced bases have to preserve 𝜀 = 1 − 10−11
of the information. Again, we resort to the relative error estimate 𝜂𝑟𝑒𝑙

𝑁,𝑆𝑙
𝑃𝑘

and allow errors up to a tolerance of 1%. The full-order 

model is characterized by 𝑛 = 1, 875 and 𝑞 = 4, 800 DoFs in space and time, respectively. This gives us a total of 𝑛 ⋅ 𝑞 = 9, 000, 000
space-time degrees of freedom. The resulting full-order system is solved in 62.7 𝑠. For the sake of concentrating on reasonable run 
times, we employ a not too fine spatial discretization. This ensures that the use of a direct solver is still feasible with respect to 
memory consumption such that the numerical tests can be reproduced on a desktop computer. It is important to emphasize that the 
central objective of this work is not the enhancement of preconditioners for the full-order model, but rather the development of an 
efficient adaptive reduced-order model. Note that similar to the 2+1D heat equation, the temporal discretization might be finer than 
necessary.

Further, the temporal domain is split up to 𝑀 = 1, 600 time slabs. For the incremental ROM, we choose a total amount of 𝐾 = 50
parent-slabs on which the slabs are evenly distributed, i.e. 𝐿 = 32.

We compare the time trajectories of the goal functional restricted to each time slab for the full-order space-time solution 𝑢ℎ and 
the reduced-order space-time solution 𝑢𝑁 in Fig. 11a. The results show that both trajectories are indistinguishable from each other 
and the oscillating behavior can be mimicked by the reduced goal functional. Furthermore, the good approximation quality can also 
be observed when regarding the time-averaged goal functional. We obtain 𝐽 (𝑢ℎ) = −1.3100 and 𝐽 (𝑢𝑁 ) = −1.3097 yielding a relative 
error of 𝜂𝑚𝑎𝑥 = 0.0023% which is smaller than the desired error tolerance of 1%.

In Fig. 11b, we plot the exact temporal errors and their estimation on each slab for comparison. For illustration purposes, we 
indicate the error tolerance of 1% in this plot. The results show that both quantities are on average in the same order of magnitude 
while the standard deviation of the real error appears to be larger. Thus, there exist spikes in the error that are not captured by 
the error estimation. Most of the time, this has no consequence but on one slab the error tolerance is exceeded slightly. In order to 
investigate the violation of the error tolerance, we present in Table 3 simulation results for a range of error tolerances. Therefore, we 
show the relative error, the prediction measures and the effectivity indices to examine the error estimation. Further, the computa-
tional speedup, total number of FOM solves and the POD basis sizes for the primal and dual problems are displayed. For definitions 
of these quantities, we refer to Section 5.1. We can observe that while most of the mispredictions are poor underestimations of the 
error, there are only a few of them. In addition, except for a relative tolerance of 2% the effectivity indices are near to the optimum 
of 1 and the relative errors meet the tolerance in all scenarios. Additionally, when reviewing the performance measurement, we 
can determine differences to the previous heat problems. The resulting speedups as well as the FOM solves are near constant for all 
tolerances. We also observe that the total amount of FOM solves and the size of the POD bases are not monotonically decreasing 
w.r.t. the error tolerance like in the heat equation setting. A reason for this behavior can be assigned to the behavior of the error 
itself. Using a smaller tolerance can lead to more reduced basis enrichment early on. Larger tolerances lead to smaller initial reduced 
basis and so errors further on due to the small basis size, which is compensated by enlarging the basis in a later stage.

Finally, the incremental nature of our MORe DWR approach is depicted in Fig. 12. We allow insights into the on-the-fly basis 
generation by plotting the primal and dual reduced basis size over the time domain and comparing its evolution for the tolerances of 
1% and 10%. Similar to the previous scenarios, we observe a steep increase in both the primal and dual basis sizes at the beginning 
of the simulation. In addition, we see further changes in the reduced basis sizes in the latter course of the simulation. While in the 
22

case of a tolerance of 10% the basis sizes only experience one additional ascent and then remain constant, in the case of a relative 
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Table 3

Incremental reduced-order modeling summary for the 3+1D elastodynamics equation depending on the tolerance 
in the goal functional.

Tolerance Relative error Speedup FOM solves Basis size Prediction Effectivity

0.1% 0.0067% 6.5 50 118 | 96 14 | 0 | 1 | 1585 1.0346
1% 0.0229% 5.4 56 108 | 111 8 | 0 | 1 | 1591 0.9987
2% 0.0025% 6.2 46 117 | 99 2 | 0 | 0 | 1598 0.5741
5% 0.0020% 4.7 52 118 | 111 1 | 0 | 0 | 1599 1.0123
10% 0.0511% 6.0 46 116 | 111 10 | 0 | 0 | 1590 0.9985

Fig. 12. Temporal evolution of the reduced basis size for a relative error tolerance of (a) 1% and (b) 10% for the 3+1D elastodynamics equation.

tolerance of 1%, more dynamic basis size adjustments can be observed. Specifically, the primal basis size decreases shortly after 
the steep initial increase, but then remains approximately constant. In contrast, the dual basis size remains stable after the initial 
enrichment for a while but then again increases steeply after around 24 𝑠.

6. Conclusion and outlook

In this work, we proposed a novel incremental POD-ROM method with on-the-fly basis enrichment based on space-time DWR error 
estimates for linear PDEs, namely the heat equation and elastodynamics, and linear and nonlinear time-averaged goal functionals. 
This methodology can be applied to a wide class of problems since its efficiency has been demonstrated. The effectivity indices for 
linear problems are almost exactly one, which makes the error estimates reliable in practice, and for nonlinear goal functionals, we 
had also good effectivity indices. For nonlinear PDEs and goal functionals possibly full DWR is needed. Additionally, we had speedups 
of up to 50, while the error between the FOM and the ROM solution remained within our prescribed tolerance. Consequently, e.g. 
the expensive high-fidelity computations in the offline stage of the reduced basis method could be replaced by our incremental 
POD method. A future aspect is time point error control using 𝐽2 at 𝑇 (or some intermediate 𝑡∗ ∈ (0, 𝑇 ]) in (10). The extreme case 
are end time values 𝐽2(𝑢(𝑇 )) within our proposed incremental approach since such goal functionals may nonetheless need dual 
sensitivity measures on the entire time interval 𝐼 , which is a priori jeopardized by our proposed incremental approach. Nevertheless, 
if conducted on a single parent slab, the MORe DWR method yields satisfying findings of the adjoint measures on the entire time 
interval 𝐼 . This gives hope that 𝐽2 cases can be treated as well using a single parent slab, which we however refer to ongoing work. 
Another interesting topic for future work would be the extension of this method to dynamical, adaptive spatial meshes to further 
speed up the computations.
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Appendix A. Space-time linear system and 𝐝𝐆(𝒓) time-stepping formulation for elastodynamics

The space-time discretization of the elastodynamics equation on a slab with a single temporal element and a dG(𝑟) in time 
discretization is discussed in this appendix. Using the fully discrete variational formulation 2.4 of elastodynamics, we arrive at the 
linear equation system[

𝐶𝑘 ⊗𝑀ℎ +𝑀𝑘 ⊗𝐾ℎ +𝐷1
𝑘
⊗𝑀ℎ

]
𝑈𝑚 = 𝐹𝑚 +

[
𝐷2

𝑘
⊗𝑀ℎ

]
𝑈𝑚−1, (A.1)

where we use the spatial matrices

𝑀ℎ =
{
(𝜑𝑣,(𝑗)

ℎ
,𝜑

𝑢,(𝑖)
ℎ

) + (𝜑𝑢,(𝑗)
ℎ

,𝜑
𝑣,(𝑖)
ℎ

)
}#DoFs(ℎ)
𝑖,𝑗=1

,

𝐾ℎ =
{
(𝜎(𝜑𝑢,(𝑗)

ℎ
),∇𝑥𝜑

𝑢,(𝑖)
ℎ

) + (𝜑𝑣,(𝑗)
ℎ

,𝜑
𝑣,(𝑖)
ℎ

)
}#DoFs(ℎ)
𝑖,𝑗=1

,

and the temporal matrices

𝑀𝑘 =
⎧⎪⎨⎪⎩∫𝐼𝑚 𝜑

(𝑗)
𝑘

⋅𝜑(𝑖)
𝑘

d𝑡
⎫⎪⎬⎪⎭
#DoFs(𝐼𝑚)

𝑖,𝑗=1

,

𝐶𝑘 =
⎧⎪⎨⎪⎩∫𝐼𝑚 𝜕𝑡𝜑

(𝑗)
𝑘

⋅𝜑(𝑖)
𝑘

d𝑡
⎫⎪⎬⎪⎭
#DoFs(𝐼𝑚)

𝑖,𝑗=1

,

𝐷1
𝑘
=

⎛⎜⎜⎜⎜⎝
1 0 ⋯ 0
0 0
...

. . .

0 0

⎞⎟⎟⎟⎟⎠
, 𝐷2

𝑘
=

⎛⎜⎜⎜⎜⎝
0 ⋯ 0 1

0 0

. .
. ...

0 0

⎞⎟⎟⎟⎟⎠
.

Here, the solution vector 𝑈𝑚 for the dG(𝑟) method in time with temporal quadrature points 𝑡1, … , 𝑡𝑟+1 is given by

𝑈𝑚 =
⎛⎜⎜⎜⎝
𝑈𝑚(𝑡1)

...

𝑈𝑚(𝑡𝑟+1)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝

𝑢𝑚(𝑡1)
𝑣𝑚(𝑡1)

...

𝑢𝑚(𝑡𝑟+1)
𝑣𝑚(𝑡𝑟+1)

⎞⎟⎟⎟⎟⎟⎠
.

To derive the dG(𝑟) time-stepping formulation, we now only need to evaluate the temporal matrices 𝑀𝑘 and 𝐶𝑘 by integrating over 
(0, 𝑘), where 𝑘 ∶= 𝑡𝑚 − 𝑡𝑚−1 is the time step size, and by plugging in the dG−𝑄𝑟 basis functions on (0, 𝑘), which coincide with the 𝑄𝑟
24

basis functions since we only have one single element and use Gauss-Lobatto quadrature.
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A.1. dG(1) formulation of elastodynamics

By inserting the basis functions 𝜑(1)
𝑘

= 1 − 𝑡

𝑘
, 𝜑(2)

𝑘
= 𝑡

𝑘
into the temporal matrices 𝑀𝑘 and 𝐶𝑘 we get

𝑘

∫
0

𝜑
(1)
𝑘

⋅𝜑(1)
𝑘

d𝑡 =

𝑘

∫
0

(
1 − 𝑡

𝑘

)2
d𝑡 =

𝑘

∫
0

1 − 2𝑡
𝑘

+ 𝑡2

𝑘2
d𝑡 = 𝑘

3
=

𝑘

∫
0

𝜑
(2)
𝑘

⋅𝜑(2)
𝑘

d𝑡,

𝑘

∫
0

𝜑
(1)
𝑘

⋅𝜑(2)
𝑘

d𝑡 =

𝑘

∫
0

𝜑
(2)
𝑘

⋅𝜑(1)
𝑘

d𝑡 =

𝑘

∫
0

(
1 − 𝑡

𝑘

)
⋅
𝑡

𝑘
d𝑡 =

𝑘

∫
0

𝑡

𝑘
− 𝑡2

𝑘2
d𝑡 = 𝑘

6
,

as well as

𝑘

∫
0

𝜕𝑡𝜑
(1)
𝑘

⋅𝜑(2)
𝑘

d𝑡 =

𝑘

∫
0

𝜕𝑡

(
1 − 𝑡

𝑘

)
⋅
𝑡

𝑘
d𝑡 =

𝑘

∫
0

− 𝑡

𝑘2
d𝑡 = −1

2
=

𝑘

∫
0

𝜕𝑡𝜑
(1)
𝑘

⋅𝜑(1)
𝑘

d𝑡,

𝑘

∫
0

𝜕𝑡𝜑
(2)
𝑘

⋅𝜑(2)
𝑘

d𝑡 =

𝑘

∫
0

𝜕𝑡

(
𝑡

𝑘

)
⋅
𝑡

𝑘
d𝑡 =

𝑘

∫
0

𝑡

𝑘2
d𝑡 = 1

2
=

𝑘

∫
0

𝜕𝑡𝜑
(2)
𝑘

⋅𝜑(1)
𝑘

d𝑡.

Consequently, the dG(1) time-stepping formulation for elastodynamics reads[
1
2

(
1 1
−1 1

)
⊗𝑀ℎ +

𝑘

6

(
2 1
1 2

)
⊗𝐾ℎ

](
𝑈𝑚(𝑡𝑚−1)
𝑈𝑚(𝑡𝑚)

)
=
(
𝐹𝑚(𝑡𝑚−1) +𝑈𝑚−1(𝑡𝑚−1)𝑀ℎ

𝐹𝑚(𝑡𝑚)

)
,

where we use the fact that the temporal quadrature points for dG(1) are 𝑡𝑚−1 and 𝑡𝑚.

A.2. dG(2) formulation of elastodynamics

Repeating the procedure from A.1 with quadratic basis functions, we arrive at the dG(2) time-stepping formulation for elastody-
namics

⎡⎢⎢⎣16
⎛⎜⎜⎝
3 4 −1
−4 0 4
1 −4 3

⎞⎟⎟⎠⊗𝑀ℎ +
𝑘

30

⎛⎜⎜⎝
4 2 −1
2 16 2
−1 2 4

⎞⎟⎟⎠⊗𝐾ℎ

⎤⎥⎥⎦
⎛⎜⎜⎜⎝
𝑈𝑚(𝑡𝑚−1)
𝑈𝑚(𝑡𝑚− 1

2
)

𝑈𝑚(𝑡𝑚)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝐹𝑚(𝑡𝑚−1) +𝑈𝑚−1(𝑡𝑚−1)𝑀ℎ

𝐹𝑚(𝑡𝑚− 1
2
)

𝐹𝑚(𝑡𝑚)

⎞⎟⎟⎟⎠ ,
where we use the fact that the temporal quadrature points for dG(2) are 𝑡𝑚−1, 𝑡

𝑚− 1
2
∶= 𝑡𝑚−1 +

𝑘

2 and 𝑡𝑚.

Remark A.1. The dG(1)and dG(2) formulations can also be found in Section 7.1 and Section 7.2 in [93] for an ODE model.
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