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A B S T R A C T   

Novel Ru-embedded bulk graphitic carbon nitride (g-C3N4) photocatalysts containing different wt% of Ru (0.5–2 
% wt) were synthesized by a simple mixing method of ruthenium complex with g-C3N4. The photocatalytic 
activity of the synthesized photocatalysts was assessed for hydrogen production in an aqueous solution con
taining methanol with and without Pt. The optimal hydrogen production rate of the most active photocatalyst 
(0.8 % Ru/CN) was 246 μmol/h without Pt and 1021 μmol/h with Pt, which was more than two times higher 
than pure g-C3N4. Various physiochemical techniques such as X-ray diffraction (XRD), N2 adsorption-desorption 
isotherms, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse 
reflectance spectroscopy (UV–vis DRS), photoluminescence spectroscopy (PL) and transition photocurrent 
response (PC) were applied to investigate the origin of activity of the Rux/CN photocatalysts. Results indicated 
that the loading of g-C3N4 with Ru nanoparticles enlarged its surface area and enhanced visible light absorption. 
Importantly, Ru nanoparticles promoted the charge carrier separation and transfer efficiency of g-C3N4 revealed 
by the PL and PC measurements, enhancing the photocatalytic activity of the embedded photocatalyst. 
Furthermore, XPS proved the existence of Ru (II) of RuO2 and metallic Ru0. The Ru-embedded g-C3N4 showed 
high photocatalytic activity, which makes them attractive materials for further applications in photocatalysis.   

1. Introduction 

Environmental pollution, rising CO2 levels in the atmosphere, and 
energy shortages are quickly turning into serious issues for human so
ciety. To overcome these two issues, scientists have been compelled to 
create a clean, renewable energy source that may supplant fossil fuels as 
the primary source of energy for the entire world. Given its reputation as 
a clean and sustainable energy source and zero-emission, hydrogen has 
the potential to reduce the use of harmful fossil fuels in transportation 
[1]. The conventional method of producing hydrogen from fossil fuels is 
well advanced, but it consumes a lot of energy and produces a lot of CO2 
which contributes to the greenhouse effect. For that, photocatalysis 
technology using solar energy and water is an ideal and promising 
method for efficient hydrogen production [2,3]. The benefits of this 
approach include the fact that solar energy is limitless and that the 
photocatalytic hydrogen products are clean. In this context, many re
searchers concur that water photolysis can transform solar energy into 
pure hydrogen energy, providing a long-term and viable solution to the 
energy crisis and environmental issues. Since photocatalytic materials 
are the core of photocatalytic technology, a multitude of photocatalytic 

materials have been explored as candidates for photocatalytic water 
splitting, but only a few of these materials have great attention [4–8]. 
Among them, graphitic carbon nitride (g-C3N4) as a non-metallic 
organic photocatalytic material has become one of the hot spots in 
photocatalytic hydrogen production owing to its abundance, inexpen
sive, physiochemical stability, suitable bandgap energy (2.7 eV), and 
appropriate banding width [9–12]. As a graphene-like n-type semi
conductor, g-C3N4 can be easily prepared on a large scale using thermal 
condensation from available and cheap nitrogen-containing precursors 
[13–15]. These properties induce g-C3N4 to show good performance in 
various photocatalytic reactions, including CO2 photoreduction [16], 
hydrogen production [17,18], organic pollutants degradation [19,20], 
organic transformation [21,22], and N2 fixation [23,24]. However, the 
photocatalytic activity of pristine g-C3N4 is still limited due to its 
restricted visible-light harvesting capacity in the long-wavelength re
gion, poor electrical response, high degree of copolymerization, high 
recombination of photogenerated charge carriers, and low surface area 
[25,26]. 

Thus far, several routes have been developed to enhance the pho
tocatalytic activity of g-C3N4, such as designing mesoporous structure 
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[27,28], exfoliation to nanosheets [29,30], elemental loading [31,32], 
dye sensitization [33,34], and coupling with other semiconductors 
[35,36]. Among all these strategies, anchoring or coupling metal ions 
onto g-C3N4 has emerged attractive attention because it enhances solar 
energy conversion by narrowing the bandgap energy, extends the light 
response toward a longer wavelength (visible region), and creates more 
surface-active sites [37,38]. Additionally, the six nitrogen lone-pair 
electrons in the g-C3N4 nitrogen tank make it simple to form ion- 
dipole interactions with the cations that are added to the tank for ion 
loading to enhance its energy band and electronic structure [39,40]. 
Thus, loading of g-C3N4 with precious metals such as Pt [41], Au [42], or 
non-precious metals like Cu [43] or Zn [44] has been found not only to 
play a major role in changing the electronic properties of g-C3N4 but also 
to improve the whole photocatalytic performance of the photocatalyst. 

Recently, ruthenium (mainly Ru (III)) has been explored as a Pt 
substitute due to its many advantages, including low cost, excellent 
stability, and potential for electron trapping and transport [45]. Due to 
its excellent activity, selectivity, and stability properties, Ru (III) has 
been widely utilized in thermal catalytic CO2 reforming of CH4, Fischer- 
Tropsch synthesis, and CO2 methanation [46]. Ruthenium (Ru) can 
efficiently shift the absorption edge of the semiconductor toward the 
visible region arising from the creation of an intermediate energy level 
of the semiconductor [47,48]. Similarly, Ru (II) complex-based dyes 
sensitized g-C3N4 were tested under visible light and observed enhanced 
hydrogen evolution rate due to faster charge carrier separation [49]. 
However, there aren't many publications on the usage of Rux as a co- 
catalyst for photocatalytic hydrogen generation applications. For 
instance, Wang et al. [50] successfully synthesized ruthenium phos
phide/C3N4 composites via in situ-growth method for determining the 
hydrogen production activity. Their findings revealed that 0.1%RP/ 
C3N4 exhibited the highest activity (2110 μmol/h g− 1). Besides, the 
photocatalytic activities of Ru/g-C3N4 photocatalyst in ammonia borane 
reactions were also reported. In that case, Garcia et al. [51] prepared 
Ru/C/g-C3N4 photocatalysts by a conventional impregnation method, 
which demonstrated enhanced ammonia borane dehydrogenation re
action under dark and visible light irradiation conditions. They attrib
uted the developed photocatalytic to enhancing the optical properties of 
the Ru/C/g-C3N4 photocatalyst arising from the presence of both C and 
Ru. Similarly, Li et al. used Ru/porous g-C3N4 photocatalysts to produce 
H2 from ammonia borane hydrolysis with NaOH and various NH4Cl 
doses [52]. They also produced Ru/porous g-C3N4 photocatalysts from 
melamine and NH4Cl using a simple adsorption-in situ reduction tech
nique. Their findings showed that a 1 (melamine): 3 (NH4Cl) ratio is 
ideal and exhibits the highest hydrogen production activity, which was 
attributed to the porous structure's role in increasing the reactants' 
surface-active sites and diffusion channels as well as the role of Ru metal 
in improving the photocatalytic activity. Ru/g-C3N4 can also be used as a 
heterogeneous catalyst, the work of Sharma et al. [53] for example, 
demonstrated that a Ru/g-C3N4 photocatalyst was successfully achieved 
by simple mixing of g-C3N4 and RuCl3 in an ethanol solution, showing 
highly effective visible-light performance for selective transfer hydro
genation of nitroarenes and olefins in the presence of hydrazine. The 
conjugated structure of g-C3N4 and the addition of ruthenium, which 
acts as an improved active semiconductor, were thought to be respon
sible for the greater activity of the Ru/g-C3N4 photocatalysts. Also, Ru/ 
g-C3N4 photocatalyst can be applied in alcohol oxidation, hydrogen 
transfer reactions of aldehyde and ketones [54,55] and for visible-light 
CO2 photoreduction [56,57]. To the best of our knowledge, no research 
has previously been done on the influence of Ru (III) on the bulk g-C3N4 
photocatalyst for photocatalytic H2 production. Herein we for the first 
time report a simple, and environmentally friendly method to synthesize 
novel Ru-embedded g-C3N4 photocatalyst using [Ru(bpy)2Cl2]+ and 
melamine as precursors for ruthenium and g-C3N4, respectively. The 
photocatalytic activity was assessed for hydrogen production with and 
without Pt. Several experimental studies were performed to investigate 
the origin of the high-activity performance of the as-synthesized 

photocatalysts. 

2. Experimental 

2.1. Synthesis of [Ru(bpy)2Cl2]+ [58] 

All chemicals used in this work were analytical grade and were used 
without further treatment. 2,2-Bipyridine (2.34 g, 15 mmol), ruthenium 
chloride trihydrate RuCl3•3H2O (1.95 g, 7.45 mmol), and lithium 
chloride (2.1 g, 50 mmol) were dissolved in DMF (20 mL) and refluxed 
for 8 h. After allowing the reaction mixture to settle to ambient tem
perature, 125 mL of acetone was gradually added. The resulting mixture 
was refrigerated for 12 h at 0 ◦C. A membrane filter was used to filter the 
separated product while it was under vacuum. To eliminate contami
nants from the unreacted substrates, the red-like result was repeatedly 
washed with deionized water and diethyl ether. The product was 
eventually vacuum-dried and used for the following steps. 

2.2. Synthesis of bulk g-C3N4 photocatalysts 

Melamine was employed as a precursor for the synthesis of g-C3N4 
powder was placed in a covered alumina crucible and heated in a muffle 
furnace up to 520 ◦C in the air at the heating rate of 10 ◦C min− 1 for 4 h. 
After the thermal treatment, the crucible was cooled down to room 
temperature, the resultant yellow products were collected and ground 
into powders using a mortar and pestle. 

2.3. Synthesis of Ru/g-C3N4 photocatalysts 

Ru/g-C3N4 photocatalysts were prepared by mixing g-C3N4 with an 
appropriate amount of [Ru(bpy)2Cl2]+ for 2 h in ethanol solution 
(Scheme. 1). The mixture was heated at 80 ◦C for 3 h. After solvent 
evaporation and drying, Ru/g-C3N4 photocatalysts were obtained at a 
calcination temperature of 400 ◦C for 1 h. The grey-like powder samples 
were collected and titled as follows: 0.5 % Ru/CN, 0.8 % Ru/CN, 1 % 
Ru/CN, and 2 % Ru/CN. According to Shimoyama et al. [59], the 
amount of RuO2 in RuO2/g-C3N4 was calculated using the inductively 
coupled plasma-optical emission spectroscopy (ICP-OES) system. Based 
on this technique, 1.0 wt% of RuCl3⋅nH2O has around 0.62 RuO2, thus 
for the most active photocatalyst in this study that contains 0.8 % Ru- 
complex should be expected to have about 0.5 % RuO2. 

2.4. Characterization 

X-ray diffraction (XRD) patterns of the prepared photocatalysts were 
conducted using PANalytical X'pert PRO theta-theta X-ray diffraction 
system with Cu Kα radiation (λ = 1.540598 nm). High-resolution 
transmission electron microscopy (HRTEM) images were taken on a 
JEM 2100F microscope operated at 200 kV, together with energy- 
dispersive X-ray spectroscopy (EDX) obtained from an attached Oxford 
Link EDX spectrometer. UV–vis absorption and diffuse reflection spectra 
(DRS) were measured using a UV–vis spectrophotometer (VARIAN Cary 
4000) equipped with an integrating sphere attachment. The photo
luminescence (PL) spectra were obtained using a VARIAN Cary Eclipse 
Fluorescence Spectrophotometer at room temperature with excitation 
by incident light of 350 nm. X-ray photoelectron microscopy (XPS) was 
conducted in an ultra-high vacuum in a Thermo Scientific ESCALAB 250 
Xi with Al Kα radiation as the excitation source (hv = 1486.6 eV). To 
compensate surface charges effect, the binding energies were calibrated 
using C1s peak at 284.60 eV as the reference. The Brunauer-Emmett- 
Teller (BET) specific surface area of the photocatalysts was investi
gated by N2 gas adsorption experiments equipped with a Tri Star II 
(Micrometrics). The Fourier transform infrared (FT-IR) spectra were 
captured using a Bruker FT-IR Tensor 27 spectrometer with platinum 
ATR in the wavenumber range of 400–4000 cm− 1. Electrochemical ex
periments including electrode preparations, and electrochemical 
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parameters were investigated according to Ismael et al. [19]. 

2.5. Photocatalytic hydrogen production test 

The photocatalytic hydrogen production reaction was carried out in 
a typical double-wall-inner irradiation-type quartz reactor connected to 
a glass-closed gas system, using a 500 W Hg mid-pressure immersion 
lamp as the light source. The photocatalyst (0.5 g) was loaded with 0.5 
wt% Pt by in situ photodeposition method using H2PtCl6 as the pre
cursor and dispersed in an aqueous solution (500 mL) containing 
methanol (10 %) as a hole scavenger (sacrificial electron donor). The 
reaction solution was degassed under flowing Argon gas with the flow of 
50 N mL min− 1 for 20 min to remove air completely, before starting the 
H2 evolution experiment, the reaction solution was cooled with double- 
wall quartz using a thermostat (LAUDA). The amount of evolved 
hydrogen was analyzed using a multichannel analyzer (Emerson) 
equipped with a thermal conductivity detector. 

3. Results and discussion 

3.1. XRD analysis 

The crystal and phase structures of the pure g-C3N4 and different Ru- 
embedded g-C3N4 photocatalysts were characterized by X-ray diffrac
tion (XRD) analysis and the results are shown in Fig. 1. The weak 
diffraction peak was located at 13◦, which can be indexed as (100) 
crystal planes, while the strong diffraction peak positioned at 27.3◦ is 
the (002) crystal plane of g-C3N4. The former is ascribed to the 
interlayer-stacking peak of the aromatic system and the latter corre
sponds to the interplanar structural packing motif of g-C3N4 [60]. 
Furthermore, in the XRD patterns of g-C3N4, there were no discernible 
melamine diffraction peaks, indicating that the precursors were fully 
transformed into the g-C3N4 structure during calcination. Importantly, 
weak signals at 35.2◦ and 43.9◦ appear in the spectra of Ru-embedded g- 
C3N4 samples, corresponding to the (101) planes of rutile RuO2 and 
metal ruthenium (Ru0), respectively. Similarly, the intensity of these 
peaks is also weak, which could be due to good dispersion or small 
particle sizes of ruthenium metal on the support [61]. This reveals that 

the graphitic-like structure of g-C3N4 was retained after Ru loading. In 
contrast, the 0.8 % Ru/CN (the most active photocatalyst in this study) 
exhibits greater crystallinity, as evidenced by the higher peak intensity 
at (100) in comparison to others, confirming a reduction in particle size 
and enhancing the specific surface area as shown later. Most signifi
cantly, the absence of any additional impurity peaks in any of the 
samples indicates that the crystal structure remained unaltered during 
the melamine-assisted synthesis of g-C3N4. The same XRD structural 
behavior was reported by Tahir et al. in the synthesis of Ru-embedded 
3D g-C3N4 hollow nanosheets for photocatalytic hydrogen production 
[62]. In other studies, the absence of Ru peaks in the Ru-embedded g- 
C3N4 also can be ascribed to the low amount of Ru, smaller size, and a 
high dispersion degree of Ru nanoparticles over g-C3N4. The same ob
servations were reported for Ru/g-C3N4 porous and Ru/g-C3N4− x pho
tocatalysts described by Li et al., and Yang et al., respectively [52,63]. 
Furthermore, Ru-based dye was previously combined with g-C3N4, but 
no Ru peaks were discovered [64]. On the other hand, a defect structure 
was observed in the Ru-supported g-C3N4 prepared by Li et al. [65], 
which may be attributed to the induction of Ru atoms that affected the 

Scheme 1. Synthesis outline of Ru/g-C3N4 photocatalysts  

Fig. 1. XRD patterns of pure g-C3N4 and different Ru/g-C3N4 photocatalysts.  
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development of g-C3N4 molecular chains during the synthesis process 
and changed the bonding mode of part of C and N in the skeleton of g- 
C3N4. This result is in good agreement with the following TEM and XPS 
results. 

3.2. FT-IR analysis 

FT-IR spectra were investigated to determine the molecular structure 
of the pure g-C3N4 and 0.8 % Ru/CN photocatalysts. As illustrated in 
Fig. 2, the sharp characteristic peak observed at 810 cm− 1 stemmed from 
the breathing mode of the s-triazine ring which normally appeared as a 
typical peak in the g-C3N4 structure [66]. The prominent bands in the 
region of 1248–1624 cm− 1 were assigned to a typical stretching vibra
tion of aromatic C ̶ N in the graphite-like structure of carbon nitride [67]. 
The broad peak at around 3100 cm− 1 could be attributed to the 
stretching vibrational modes of residual –NH–, NH2 components asso
ciated with uncondensed amino groups in the structure of g-C3N4 and to 
O ̶ H from atmospheric absorbed water [68]. Additionally, there is no 
discernible difference in the spectra of pure g-C3N4 and Ru-embedded g- 
C3N4, demonstrating that Ru loading does not affect the structural 
properties of g-C3N4. The same results were reported for Ru/g-C3N4 
described by Sharma and her team [55]. The retention of the g-C3N4 
structure following ruthenium loading is indicated by the similarities 
between the FT-IR spectra of the Ru/g-C3N4 catalysts and the g-C3N4 
supports. Additionally, as established in the literature [69], it implies a 
non-covalently linked interaction between g-C3N4 and metal nano
particles in the catalysts (Table 1). 

3.3. TEM and HRTEM analysis 

Fig. 3a–c presents the transmission electron microscopy (TEM) im
ages of bulk g-C3N4 and the most active photocatalysts (0.8 % Ru/CN). 
As shown in Fig. 3a, pure g-C3N4 exhibits thin and large sheets without 
any porosity. Furthermore, for the most active photocatalyst (0.8 % Ru/ 
CN), TEM images revealed an almost similar pattern of thin sheet 
structure of g-C3N4 loaded with the darker spotted area (marked in red 
for ruthenium and blue for platinum), corresponding to the presence of 
both ruthenium and platinum nanoparticles over the g-C3N4 sheet 
(Fig. 3b & c). Platinum nanoparticles were added to the photocatalytic 
reaction through in situ deposition and used as a cocatalyst to enhance 
the hydrogen production activity. Obviously, smaller, and different sizes 

of Ru are uniformly dispersed over the entire g-C3N4 surface and similar 
results were obtained during the corresponding EDX spectra (Fig. 3d). 
Previously, Ru nanoparticles were loaded over g-C3N4 and reported very 
small Ru nanoparticles distributed over nanosheets [52]. On the other 
hand, EDX spectra were applied to determine the presence of the ele
ments on the photocatalyst. Fig. 3d & e showed that carbon (C), nitrogen 
(N), oxygen (O), ruthenium (Ru), and platinum (Pt) are the only ele
ments in the two spectra. Fig. 3d presents the existence of ruthenium 
nanoparticles marked by the red square in Fig. 3b. On the other hand, 
Fig. 2e represents the existence of platinum marked by the blue square in 
Fig. 2c, carbon, nitrogen, and oxygen elements are related to the 
graphitic carbon nitride. The TEM and the EDX analysis of the most 
active photocatalyst confirmed the successful loading of Ru on the sur
face of the g-C3N4 which is inconsistent with the XPS discussed later. 

3.4. N2 adsorption/desorption isotherm and surface area analysis 

The BET surface areas of the different Ru-embedded g-C3N4 photo
catalysts and pure g-C3N4 were investigated by N2 adsorption/desorp
tion isotherms. Fig. 4 displays the nitrogen adsorption/desorption 
isotherms for all photocatalysts. All the samples exhibit type IV iso
therms (Brunauer-Deming-Deming-Teller (BDDT) classification), indi
cating the presence of well-defined mesopores [70]. These isotherms 
present an H3-type hysteresis loop, indicating the presence of slit-like 
pores, derived from the presence of aggregates [71]. All Ru/CN photo
catalysts have larger surface areas than pure g-C3N4, indicating that the 
Ru ion contributes to the graphitic carbon nitride's increased surface 
area, which is beneficial for increasing photocatalytic hydrogen pro
duction. The increased activity of the Ru-embedded g-C3N4 is explained 
by the fact that, in general, a larger surface area can provide more sites 
for metal anchoring, increasing metal dispersity and, consequently, the 
catalytic activity of the photocatalyst [72]. 

3.5. XPS analysis 

XPS was performed to analyze the chemical and valence states of the 
most active photocatalysts (0.8 % Ru/CN). As shown in Fig. 5a, the 
survey spectra of the photocatalyst before adding Pt nanoparticles show 
that the sample contains N, C, Ru, and a trace amount of O, which 
confirms the successful loading of Ru onto g-C3N4 in agreement with the 
XRD results. The peaks of O1s might initiate from O2 or H2O absorbed on 
the surface of g-C3N4. On the other hand, the survey spectra of the 
photocatalysts after the photocatalytic reaction (with Pt cocatalyst) are 
shown in Fig. 5b and observe the presence of Pt nanoparticles, which 
were used as a cocatalyst to enhance the photocatalytic performance. 
For the C 1s spectra partially overlapped by those of Ru 3d (Fig. 5c) and 
display the main core level peaks at 281.9, 284.8, 287.9, and 293.3 eV, 
which can be assigned to the Ru 3d5/2 and external carbon contamina
tion, the sp2-bonded carbon to the three nitrogen atoms in the g-C3N4 
lattice, and the π–π* excitation, respectively [73,74]. Furthermore, The 

Fig. 2. FT-IR absorption spectra of pure g-C3N4 and 0.8 % Ru/g-C3N4 
photocatalysts. 

Table 1 
summarizes the stretching vibration and the specific functional groups in the g- 
C3N4 structure with the corresponding wavenumbers and literature.  

Photocatalysts Frequency peak 
value or 
wavenumbers 
(cm− 1) 

Stretching vibration and 
specific functional group 

References 

0.8 % Ru/CN, 
and g-C3N4 

810 S-triazine ring in g-C3N4 

structure  
64 

0.8 % Ru/CN, 
and g-C3N4 

1248–1624 Aromatic C ̶ N in the 
graphite-like structure of  

65 

0.8 % Ru/CN, 
and g-C3N4 

3100 Residual –NH–, NH2 

components, and O ̶ H 
from atmospheric 
absorbed water  

66  
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N 1s spectra (Fig. 5d) can be deconvoluted into four peaks at 398,1, 400, 
401.2, and 404.2 eV. The first peak can be ascribed to sp2 N involved in 
the triazine rings corresponding to C=N ̶ C groups. The next two peaks 
can be attributed to the tertiary nitrogen (N ̶ (C)3), and terminal amino 
groups (C ̶ N ̶ H), respectively. The last one can be ascribed to the positive 
charge localization or charging effects of the π-excitation in the g-C3N4 
structure [75,76]. The presence of amino groups in the final structure of 
g-C3N4 indicates that melamine was not fully condensed during the 
synthesis process, which fits with the previously reported [77,78]. For 
the Ru 3d XPS spectra (Fig. 5e), two peaks appeared at the binding 
energy of 284.1, and 280.3 eV which attributed to the Ru0 3d3/2, and 
Ru0 3d5/2, respectively, confirming the presence of metallic Ru0 [79]. 
Meanwhile, two other peaks were observed at 285.1, and 281.4 eV 
which can be ascribed to Ru 3d3/2, and Ru 3d5/2 of RuO2, respectively 
[80]. The synthesis of Ru0 and RuO2 was thought to be caused by the 
calcination of Ru precursor on carbon nitride at 300 ◦C in air. Similarly, 
the thermal breakdown of Ru and RuO2 in the air was reported, with a 

combination of RuO2 as the main phase and Ru detected in the sample 
calcined between 200 ◦C and 400 ◦C [81]. The organic substrate is most 
likely acting as a reductant [82]. In contrast, Tahir et al. prepared Ru- 
embedded 3D g-C3N4 hollow nanosheets without applying tempera
ture and only RuO2 without any metallic Ru0 was observed [62]. Fig. 5f 
presents the XPS of the Ru 3p, which shows two peaks for the Ru 3p3/2 
and Ru 3p1/2 spin-orbit state at BE values around 462.2 eV and 484.5 eV, 
indicating that Ru dominantly existed in the presence of Ru0 species 
[83]. Thus, according to the XPS results, the Ru complex which was used 
as a precursor was decomposed to RuO2 at 400 ◦C, and after contact with 
g-C3N4 which acts as a reductant, it reduced to Ru0. In combination, XPS 
results confirm the presence of Ru on the g-C3N4 surface. 

3.6. Optical properties 

UV–vis diffuse reflectance spectroscopy (DRS) of the obtained pho
tocatalysts is shown in Fig. 6. The photoabsorption edge of pure g-C3N4 
is located at around 440 nm, indicating its bandgap of 2.87 eV (Fig. 6a) 
[84]. The absorption edges of Ru-loading g-C3N4 photocatalysts 
increased within the visible light region and red-shifted compared with 
the pure g-C3N4, accompanied by a change in the color of the sample 
from yellow to grey. Furthermore, the loading of g-C3N4 with Ru ions 
leads to the enhancement of the absorption ability in the visible light 
region, extending the absorption edge of a photocatalyst to 480 nm. It is 
worthwhile to note that the absorption tails in the wavelength range of 
650–800 nm were increased with an increasing amount of ruthenium, 
which was ascribed to the internal d-d transition of Run+ and the exci
tation of an electron from one ruthenium ion to another on the neigh
boring cationic sites [85]. To learn more about how element doping 
affects samples, the bandgap (Eg) energies of all photocatalytic samples 
were estimated from the UV–vis absorption spectra by applying the 
Kubelka-Munk formula [86]. Therefore, the bandgaps energy can be 
estimated from the Tauc plots (Fig. 6b) and were 2.87, 2.8, 2.76, 2.6, 
2.52, and 1.68 eV, for pure g-C3N4, 0.5 % Ru/CN, 0.8 % Ru/CN, 1 % Ru/ 
CN, 2 % Ru/CN, and Ru(bpy)2Cl2.2H2O, respectively. The results imply 
that the loading of g-C3N4 with Ru ion improves the visible-light activity 
of g-C3N4 by narrowing the bandgap energy. This result agrees with that 
reported for heteroatom loading g-C3N4 such as Fe [87], B [88], I [89], 
and P [90]. 

Fig. 3. TEM images of pure g-C3N4 (a), the 0.8 % Ru/CN photocatalyst showing the presence of ruthenium and platinum (b & c), and the corresponding EDX spectra 
of the selected area (spectrum 2: for Ru) (d), and the corresponding EDX spectra of the selected area (spectrum 3: for Pt) (e) of 0.8 % Ru/CN photocatalyst. 

Fig. 4. N2 adsorption-desorption isotherms of pure g-C3N4 and different Ru/g- 
C3N4 photocatalysts. 

M. Ismael                                                                                                                                                                                                                                         



Diamond & Related Materials 144 (2024) 111024

6

3.7. Mott-Schottky plots, photoluminescence, photocurrent, and 
electrochemical impedance spectroscopy analysis 

The flat band potential of the pure g-C3N4 and 0.8 % Ru/CN pho
tocatalysts were analyzed by the Mott–Schottky plots. The Mott- 
Schottky plots measurements of the photocatalyst electrodes were car
ried out using a standard three-electrode cell system at the frequency of 
1 kHz in the dark using the Mott-Schottky relationship: [91]. The linear 
regions of Mott–Schottky plots of pure g-C3N4 and 0.8 % Ru/CN pho
tocatalysts (Fig. 7) have a positive slope, indicating that both are typical 
n-type semiconductors [92]. Based on these plots, the flat band potential 
of pure g-C3N4 and 0.8 % Ru/CN photocatalysts were determined to be 
− 0.65, and − 0.75 V eV (vs Ag/AgCl), respectively, and can be converted 
to the NHE using the conversion relation of ENHE = EAg/AgCl + 0.197 [93] 
which is equivalent to the − 0.45, and − 0.55 V vs. NHE, respectively. It's 
known that the flat band potentials of n-type semiconductors are 0.1 V 
more negative than Efb [94], resulting in CB edges at about − 0.55 and 
− 0.65 V for the pure g-C3N4 and 0.8 % Ru/CN photocatalysts, respec
tively. It's clearly shown in Fig. 7 that loading of ruthenium over g-C3N4 
caused a negative shift of flat band potential, resulting in decreasing the 
charge recombination that is responsible for the enhancement of the 
photocatalytic performance of the photocatalyst [93]. By combing the 
results obtained from the Tauc-plot (Fig. 6) and the Mott-Schottky plots 
(Fig. 7), the valence band positions of pure g-C3N4 and 0.8 % Ru/CN 
photocatalysts were calculated using the following equation Evb = Ecb 
+ Eg [94], resulting in 2.32, and 2.11 V, respectively. 

3.8. The origin of photoactivity enhancement of Ru/g-C3N4 
photocatalysts 

To verify the proposed mechanism, photoluminescence (PL) emis
sion spectra and transient photocurrent (PC) were performed to study 
the charge recombination and transfer behavior of as-prepared photo
catalysts. As shown in Fig. 8a, all samples displayed similar emission 
trends with a main emission peak centered at 460 nm, which is equiv
alent to the bandgap energy of pure g-C3N4 and can be assigned to the 
charge recombination in g-C3N4 [95]. The 0.8 % Ru/g-C3N4 photo
catalyst presents the same peak with much lower intensity, indicating 
that the electron generated on the surface of g-C3N4 can be easily 
transferred to Ru, inhibiting charge recombination than that of pure g- 
C3N4. The data in Fig. 8b showed that the 0.8 % Ru/g-C3N4 has a much 
higher photocurrent density than the pure g-C3N4. The results can be 

Fig. 5. XPS survey spectra of 0.8 % Ru/CN photocatalyst before (a) and after (b) the photocatalytic reaction, core level XPS spectra of C 1s (c), N 1s (d), Ru 3d (e), 
and Ru 3p (f) for 0.8 % Ru/CN photocatalyst. 

Fig. 6. Typical UV–vis absorption spectra (a), and Estimated bandgap energy 
employing Tauc plots of as prepared different Ru-embedded g-C3N4 compared 
to bare g-C3N4 and Ru-complex (b). 

Fig. 7. Mott-Schottky plot of pure g-C3N4 and 0.8 % Ru/CN film electrodes 
measured in the dark at the frequency of 1 kHz in an aqueous solution of 
Na2SO4 (0.1 M). 

M. Ismael                                                                                                                                                                                                                                         



Diamond & Related Materials 144 (2024) 111024

7

implied by the fact that the 0.8 % Ru/CN photocatalyst can significantly 
boost the interfacial charge separation and transfer, which agrees with 
the enhancement of photocatalytic hydrogen production. 

3.9. Photocatalytic hydrogen production of Ru/g-C3N4 photocatalysts 

The photocatalytic activity of the different Ru/g-C3N4 photo
catalysts, as well as pure g-C3N4, was evaluated for photocatalytic H2 
evolution reaction under light irradiation of 500 W Hg lamp using 
methanol as a hole scavenger with and without Pt as a co-catalyst. Pure 
g-C3N4 has a hydrogen production activity in the absence (Fig. 9a) and 
presence (Fig. 9b) of Pt nanoparticles. However, its photocatalytic ac
tivity performance is lower compared to all Ru/g-C3N4 photocatalysts. 
When g-C3N4 is exposed to irradiation, the electrons are excited from the 
valence band to the conduction band. After that, these excited electrons 
are captured by the metallic Ru which can be used later for water 

reduction. In the meantime, the VB hole can be transferred to RuO2 and 
then hunted with methanol to produce H2O and CO2 (Fig. 8c). The same 
observations were reported by Wang et al. Their investigation showed 
that the presence of both metallic Ru0 and RuO2 is very beneficial for 
efficient ammonia synthesis [96]. Additionally, the photocatalytic ac
tivity of pure g-C3N4 and all Ru/g-C3N4 was further increased in the 
presence of Pt nanoparticles (Fig. 8b). It is known that Pt nanoparticles 
are outstanding inorganic co-catalysts and are commonly used to reduce 
the overpotential of water reduction. Pt nanoparticles were loaded via 
the in situ photodeposition method on the surface of g-C3N4 forming the 
Schottky barrier at the interface, which can promote the electron 
transfer from the CB of g-C3N4 to the Pt nanoparticles, facilitating the 
charge separation and further increase the photocatalytic hydrogen 
production (Fig. 8d) [97]. Among all Ru/g-C3N4 photocatalysts, 0.8 % 
Ru/CN exhibited the highest activity (246 μmol/h without Pt, and 1021 
μmol/h with Pt). Further, an increase in the concentration of the Ru 
leads to a decrease in the photocatalytic activity, which is attributed to 
the shielding effect arising from the heavy Ru metal which acts as a 
recombination center [98]. Recently, Ismael [99] successfully synthe
sized Ru/TiO2 via the precipitation method for determining hydrogen 
activity. Their finding revealed that the 0.1 % Ru-embedded TiO2 pho
tocatalyst was optimum and had the highest activity. Herein, the pho
tocatalytic hydrogen activity of the Ru/g-C3N4 was assigned to the role 
of Ru in narrowing the bandgap energy and the role of both Ru and Pt in 
enhancing the charge separation at the interface. To investigate the 
stability of the photocatalyst after the reaction, XRD patterns were 
confirmed. As shown in Fig. 9e, similar diffraction peaks were seen in 
the XRD pattern of the recovered catalyst and the freshly generated 
catalyst (Fig. 9e), indicating that the catalyst's active metal sites 

Fig. 8. Photoluminescence spectra excited at 320 nm (a), and transient 
photocurrent response (b) of pure g-C3N4 and 0.8 % Ru/CN electrodes. 

Fig. 9. Photocatalytic hydrogen production on pure g-C3N4 and different wt% Ru/CN without (a) and with Pt (b), the corresponding interfacial charge separation 
and reaction mechanism of Ru/CN photocatalyst without Pt (c), with Pt (d), and the stability test using XRD patterns (e). 

M. Ismael                                                                                                                                                                                                                                         



Diamond & Related Materials 144 (2024) 111024

8

exhibited exceptional stability during the hydrogen production reaction. 

4. Conclusion 

Novel Ru-embedded g-C3N4 photocatalysts were synthesized via a 
simple mixing method using Ru(bpy)2Cl2.2H2O and melamine as the 
precursors of Ru and g-C3N4, respectively. 0.8 % Ru/CN revealed the 
highest hydrogen production activity under light irradiation in meth
anol solution with and without Pt nanoparticles. The higher activity of 
the Ru-embedded g-C3N4 compared to the pure g-C3N4 was attributed to 
the enlarged surface verified by the BET surface area experiment, and 
the role of Ru in enhancing the charge separation and transfer was 
proven by the photoluminescence (PL) and photocurrent (PC) experi
ments. In addition, the XPS results confirmed the existence of RuO2 (Ru 
(II)) and metallic Ru (Ru0). Hence, the synthetic strategy to incorporate 
both Ru and RuO2 to form in the photocatalytic system, where Ru acts as 
H2 adsorption and activation sites for the reduction reaction and RuO2 
serves as fast hole extraction sites for the oxidation reaction, leads to the 
enhanced photocatalytic activity. Furthermore, Pt nanoparticles play a 
major role in increasing the hydrogen production rate over Ru- 
embedded photocatalysts. This study demonstrates a new low-cost 
synthesis method for the preparation of metal ion-embedded g-C3N4 
for hydrogen evolution under light irradiation. This synthesis could be 
applied in the future for the synthesis of other metals embedded in g- 
C3N4 for different applications in photocatalysis. 
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