
Industrial Anomaly Detection
with Normalizing Flows

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Marco Rudolph, M.Sc.

geboren am 1. Juli 1996 in Hannover

2024



Hauptreferent:
Korreferent:
Vorsitzender:

Prof. Dr.-Ing. B. Rosenhahn
Prof. Dr.-Ing. Bastian Wandt
Prof. Dr.-Ing. J. Ostermann

Tag der Promotion: 5. April 2024



C O N T E N T S

1 Introduction 1

1.1 Anomaly Detection in the Industrial Context . . . . . . . . 3

1.2 Addressed Applications . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . 5

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Anomaly Detection . . . . . . . . . . . . . . . . . . 7

1.4.2 Other Publications . . . . . . . . . . . . . . . . . . . 10

2 Fundamentals 13

2.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Semi-Supervised Anomaly Detection . . . . . . . . 13

2.1.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Traditional Approaches . . . . . . . . . . . . . . . . 17

2.2.3 Generative Models . . . . . . . . . . . . . . . . . . . 19

2.2.4 Student-Teacher Networks . . . . . . . . . . . . . . 20

2.2.5 Density Estimation . . . . . . . . . . . . . . . . . . . 21

2.2.6 Synthetic Data . . . . . . . . . . . . . . . . . . . . . 22

2.2.7 Methods for Multivariate Machine Data . . . . . . 22

3 Datasets and Metrics 24

3.1 MVTec AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 MVTec 3D-AD . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Magnetic Tile Defects . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 DifferNet 31

4.1 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Real-NVP . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Scoring Function . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Localization . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Implementation Details . . . . . . . . . . . . . . . . 42

4.3.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Localization . . . . . . . . . . . . . . . . . . . . . . . 44

I



II contents

4.3.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . 45

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Cross-Scale-Flow 50

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Cross-Scale Flow . . . . . . . . . . . . . . . . . . . . 52

5.1.2 Learning Objective . . . . . . . . . . . . . . . . . . . 54

5.1.3 Localization . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Implementation Details . . . . . . . . . . . . . . . . 55

5.2.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Localization . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . 59

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Asymmetric Student-Teacher Networks 63

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Teacher . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 Student . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 3D Preprocessing . . . . . . . . . . . . . . . . . . . . 68

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Implementation Details . . . . . . . . . . . . . . . . 70

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . 75

6.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Comparison with DifferNet and CS-Flow . . . . . . . . . . 79

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Voraus-AD dataset 82

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Robot and Signals . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 Pick-And-Place Operation . . . . . . . . . . . . . . . . . . . 88

7.5 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5.1 Process Errors . . . . . . . . . . . . . . . . . . . . . 88

7.5.2 Gripping Errors . . . . . . . . . . . . . . . . . . . . 91

7.5.3 Robot axis wear . . . . . . . . . . . . . . . . . . . . 91

7.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6.1 Normal Data . . . . . . . . . . . . . . . . . . . . . . 91

7.6.2 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6.3 Comparison to AURSAD . . . . . . . . . . . . . . . 94

7.6.4 Evaluation Protocol . . . . . . . . . . . . . . . . . . 95

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



contents III

8 MTS-Flow 96

8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1.3 Temporal Analysis . . . . . . . . . . . . . . . . . . . 99

8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.1 Implementation Details . . . . . . . . . . . . . . . . 100

8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . 105

8.2.4 Temporal Analysis . . . . . . . . . . . . . . . . . . . 107

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 Conclusion 110

Bibliography 115



A C R O N Y M S

AD Anomaly Detection

AE Autoencoder

AOI Automatic Optical Inspection

AST Asymmetric Student-Teacher

AUROC Area Under the Receiver Operating Characteristic Curve

CAE Convolutional Autoencoder

CS-Flow Cross-Scale Flow

GAN Generative Adversarial Network

HMM Hidden Markov Model

LSTM Long Short-term Memory

ML Machine Learning

MLP Multilayer Perceptron

MTD Magnetic Tile Defects Dataset

MVT Multivariate Time Series

ND Novelty Detection

NF Normalizing Flow

NN Neural Network

OCSVM One-Class Support Vector Machine

OOD out-of-distribution

OSR Open Set Recognition

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RGB red, green, blue (image channels)

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SSAD Semi-supervised Anomaly Detection

SVM Support Vector Machine

VAE Variational Autoencoder

IV



N O TAT I O N S

Numbers and Arrays

a Vector

aT Transpose of vector a

A Matrix

A Space

A−1 Inverse of quadratic matrix A

∥a∥2 ℓ2-norm of vector a

In Identity matrix of dimension n × n

0 Vector of all zeros

⊙ Hadamard-Product

det(A) Determinant of matrix A

dim(x) number of dimensions of x

∇x Gradient of x

Symbols

x Input data (usually image or multivariate signal)

µ Mean

C Covariance Matrix

θ Decision Threshold

α Clamping Parameter

η Learning rate

w Image width

h Image height

c Condition

V



VI notations

pX(x) Density of the sample x regarding the variable X

N (µ, Σ) Normal distribution with mean µ and covariance Σ

si(·) Internal network for scaling coefficients

ti(·) Internal network for translation coefficients

f↓(·) Image downscaling operator

G Gaussian kernel

S Number of signals

T Number of time steps

C Number of (image) channels

X Data space

Y Feature space

Z Latent space

R Real numbers

L Loss function



A B S T R A C T

This thesis addresses deep learning-based methods for automatic anomaly
detection in an industrial context. It involves image- or sensor-based de-
tection of defects in the production process that can affect the quality
of products. Automating this task provides a reliable and cost-effective
alternative to humans, who perform this task manually by sighting.
Since this setup has special requirements such as detecting previously
unknown defects that traditional approaches cannot fulfill, this paper
presents anomaly detection methods that learn without any examples of
anomalies and include only normal data in the training process.
Most of our proposed methods address the problem from a statistical
perspective. Based on a deep-learning-based density estimation of the
normal data, it is assumed that anomalies are considered unlikely ac-
cording to the modeled distribution. The density estimation is performed
by so-called Normalizing Flows, which, in contrast to conventional neural
networks, can model a formally valid probability distribution due to their
bijective mapping. Moreover, due to their flexibility, Normalizing Flows
allow modeling of more complex distributions in contrast to traditional
methods, which usually use strong simplifications about the distribution.
The first chapters focus on anomaly detection on RGB images, which is
the standard case for most optical-based scenarios. We show that density
estimation based on feature vectors of a pre-trained neural network is
an effective solution. The likelihood of different augmentations of the
image are combined to form a final prediction. Thereby, by considering
the gradients of the input image, in addition to the instance-based de-
tection, a localization of the anomaly can be given. In the further course,
this method is optimized with respect to runtime and detection perfor-
mance. Instead of vectors, fully resolved feature maps of different sizes
are combined and processed by an adapted Normalizing Flow architec-
ture. Another proposed method shows how the Normalizing Flow can
be integrated into a student-teacher approach, which is motivated by the
fact that a student network fails to mimic the teacher on anomalous data.
Here, a Normalizing Flow is used as the teacher for density estimation
and a conventional convolutional network is used as the student. We
can show that this asymmetry between the networks favors anomaly
detection by further hindering the student to predict the behavior of the
teacher for anomalies. Besides RGB data, this can also be demonstrated
on 3D scans and their combination.
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VIII abstract

In addition to image-based detection, the application to machine data
time series from a robot is addressed towards the end of this work. Since
there has been a lack of datasets in this area, we first present our own
dataset, which includes 130 signals from a robot performing a pick-and-
place task. We induced 12 different types of anomalies for the test set,
which are divided into process errors, wear, and gripping errors. The
previously proposed concept of density estimation with Normalizing
Flows is then transferred to this data domain.

keywords – Automation, anomaly detection, density estimation, Nor-
malizing Flows.



K U R Z FA S S U N G

Diese Arbeit thematisiert deep-learning-basierte Methoden zur automa-
tischen Anomaliedetektion im industriellen Kontext. Dabei ist das Ziel,
bild- oder sensorbasiert Fehler im Produktionsprozess zu erkennen, wel-
che die Qualität von Produkten beeinträchtigen. Die Automatisierung
dieser Aufgabe stellt eine zuverlässige und kostengünstige Alternative zu
Menschen dar, die diese Sichtung manuell durchführen. Da die Detektion
spezielle Anforderungen wie das Erkennen vorher unbekannter Fehler
aufweist, die mit klassischen Verfahren nicht erfüllt werden können,
werden in dieser Arbeit Verfahren der Anomaliedetektion vorgestellt,
welche ohne jegliche Beispiele von Anomalien lernen und ausschließlich
Normaldaten ins Training einbeziehen.
Die hier vorgestellten Verfahren betrachten das Problem zum Großteil
aus einer statistischen Perspektive. Dabei wird eine mittels deep-learning
eine Dichte der Normaldaten modelliert und angenommen, dass An-
omalien gemäß der modellierten Verteilung als unwahrscheinlich gelten.
Eine solche Dichteschätzung wird durch sogenannte Normalizing Flows
durchgeführt, welche im Gegensatz zu konventionellen neuronalen Net-
zen aufgrund ihrer besonderen Eigenschaft der Bijektivität eine formal
gültige Wahrscheinlichkeitsverteilung modellieren können. Außerdem
ermöglichen diese durch ihre Flexibiltät der komplexere Verteilungen
abzubilden, wohingegen klassischen Methoden meist starke Annahmen
zur Verteilung treffen.
Die ersten Kapitel konzentrieren sich auf die Fehlererkennung auf RGB-
Bildern als Standardfall für die meisten optisch-basierten Szenarien. Wir
zeigen, dass eine Dichteschätzung auf Grundlage von Merkmalsvektoren
eine effektive Lösung darstellt. Dabei werden die Likelihood verschiede-
ner Augmentierungen des Bildes zu einer Prädiktion zusammengefasst.
Es kann durch Betrachtung der Gradienten des Eingangsbildes neben
der instanzbasierten Detektion zusätzlich auch das örtliche Auftreten der
Anomalie prädiziert werden. Im weiteren Verlauf wird dieses Verfahren
in Bezug auf Laufzeit und Güte optimiert. Anstatt von Vektoren werden
vollaufgelöste Merkmalskarten verschiedener Skalen zusammengefasst
und mittels einer speziell angepasste Normalizing-Flow-Architektur ver-
arbeitet. In einem weiteren Verfahren wird der Normalizing Flow in
einen Student-Teacher-Ansatz integriert, wobei ausgenutzt wird, dass
ein Student die Ausgabe eines Teacher-Netzwerk auf Anomalien nicht
nachbilden kann. Als Teacher wird ein Normalizing Flow zur Dichte-
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X kurzfassung

schätzung und als Student ein klassisches Faltungsnetz verwendet. Wir
zeigen, dass diese Asymmetrie zwischen den Netzwerken die Anoma-
liedetektion verbessert, da es dem Student-Netzwerk erschwert wird,
die Ausgaben des Teacher-Netzwerkes auf Anomalien zu rekonstruieren.
Dies wird neben RGB-Daten auch auf 3D-Scans und deren Kombination
demonstriert.
Neben der bildbasierten Detektion wird gegen Ende der Arbeit auch
die Anwendung auf Zeitreihen von Maschinendaten eines Roboters the-
matisiert. Da es in diesem Bereich bisher einen Mangel an Datensätzes
gab, stellen wir zunächst einen eigenen Datensatz vor. Dieser beinhaltet
den zeitlichen Verlauf von 130 Signalen eines Roboters, welcher eine
Pick-and-Place-Operation durchführt. Das Testset enthält 12 verschiedene
Anomalietypen, welche sich in Prozessfehler, Verschleiß und Greiffehler
gliedern. Anschließend wird das eingangs vorgestellte Konzept der Dich-
teschätzung mit Normalizing Flows auf diese Datendomäne erfolgreich
übertragen und evaluiert.

Stichworte – Automatisierung, Anomaliedetektion, Dichteschätzung,
Normalizing Flows.



1
I N T R O D U C T I O N

An anomaly, which is derived from the Greek word ανωµαλια (anomalía)
meaning "deviation from the rule", is an unusual event that is unexpected
from the known behavior. For example, a hurricane in Central Europe, the
outbreak of a global disease or an uncommon coloration of a species (as
in Figure 1.1) would be seen as anomalies. The nature of anomalies can
be diverse: They may include phenomena that have never been observed
before in any form, as known structures with unusual properties in detail.
In general, anomalies can be defined by being "out-of-distribution" while
assuming that the normal behavior is "in-distribution".

This work addresses the automatic detection of such anomalies using
machine learning. Usually, this cannot be implemented with traditional
supervised methods, since these can only reliably detect familiar con-
cepts that have been learned in training. Unfortunately, the data for all
possible types of anomalies cannot be collected. Instead, the problem is
formulated itself as a task named anomaly detection (AD). In the semi-
supervised anomaly detection investigated in this work, only normal
(i. e. anomaly-free) data is made available to the system during train-
ing. After training, the task is to output whether or to what extent a
given observation fits the already known normality or shows unusual
characteristics. Figure 1.2 shows a 2D toy example of a dataset showing
normal and anomalous samples. It can be observed that an anomaly can

Figure 1.1: Illustration of anomaly detection by Isura Nimalasiri. The color and
the orientation make the central fish appear anomalous.

1



2 introduction

Figure 1.2: Examples of anomalies in a 2D data set. The data shows two normal
regions N1 and N2 in blue, where the majority of observations are
concentrated. However, points that are significantly distant from these
regions, such as o1 and o2, as well as points in region O3, are considered
anomalies (in red).

deviate from the distribution of normal samples to varying degrees, as
for example o3 is far more distant to the normal clusters compared to o2.
Although this deviation could be differentiated in principle and existing
methods provide such an indication with a so-called anomaly score, the
research community considers a binary distinction between normal and
anomalous for simplification. Details on the anomaly score as well as a
more detailed and technical definition of anomaly detection is given in
Section 2.1.

Anomaly detection is a critical technique used in various real-world
applications, to identify unusual or abnormal behavior in data, systems,
or processes. One of the significant applications of anomaly detection is
in cybersecurity, where it is used to detect potential security breaches,
network intrusions, and anomalous user activities that may indicate cyber
attacks or data breaches [1]. Anomaly detection is also utilized in financial
fraud detection, where it helps identify suspicious transactions, unusual
trading patterns, or fraudulent activities that may indicate fraudulent
behavior in banking and financial systems [2]. In healthcare, it is used to
detect anomalies in patient health data, identify potential health risks, or
detect abnormal behaviors in medical devices [3]. There are also appli-
cations in Internet of Things (IoT) systems to detect unusual behavior in
sensor data from connected devices, such as abnormal energy consump-
tion or unexpected behavior in smart home devices [4]. Furthermore, as
a focus of this work, anomaly detection is highly relevant in industrial
manufacturing to detect production failures on images, unusual patterns
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Figure 1.3: Defective examples from the MVTec AD dataset [7]. Possible errors
include for example cracks, missing components, cuts, scratches and
dents.

in sensor data, or deviations in production processes that may lead to
quality issues [5], [6] as shown in Figure 1.3.

1.1 anomaly detection in the industrial context

This thesis focuses on the design of anomaly detection methods for
applications in the industrial context of manufacturing. Manufacturing
represents one of the most important economic sectors worldwide, ac-
counting for 17% of global GDP in 2021

1, or about $16 trillion, and
providing the basis for any goods. This makes the automation and opti-
mization of processes in this sector, which the public refers to as Industry
4.0, of great interest.

In the context of industrial production, anomaly detection is an es-
sential tool for identifying and preventing equipment failures, process
deviations, and other irregularities that can cause significant downtime,
product defects, and safety hazards. Traditionally, this is made by hu-
mans which is costly and error-prone in practice [8] since operators may
suffer from fatigue and give different assessments. Anomaly detection
algorithms can analyze large volumes of sensor data in real-time to de-
tect any deviations from expected patterns or behaviors. By detecting
anomalies early, proactive steps can be taken to ensure safety, prevent
further equipment failures and reduce follow-up costs. In the case of
defect detection, a model identifying an anomaly triggers either a fully
automatic rejection of the product or a semi-automatic inspection of the
operator.

Although defects or irregularities could in principle be detected with a
traditional classification, semi-supervised anomaly detection is of partic-
ular interest in the industry [7]. Firstly, there are only normal examples
at the beginning of production with no anomalies at all, since these
rarely occur in most scenarios. Secondly, it is impossible to ensure that
examples are collected for all defect scenarios [9]. An incomplete training

1 source: World Bank
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Figure 1.4: Example for a setup of automatic optical inspection. A camera is placed
over the object of interest. Image is taken from geospacemfg.com.

set in a supervised setting often results in the model being insensitive to
unknown defects. In contrast, AD is considered to be more robust against
any deviations by estimating the normality directly.

1.2 addressed applications

This work addresses anomaly detection on image data as part of a manu-
facturing pipeline, and machine data from a robot. Most of the methods
and experiments focus on RGB images which are typically used in the
context of an automatic optical inspection (AOI). In practice, this is im-
plemented by placing a camera at a specific position on the production
line as in Figure 1.4 to predict, usually in real-time, whether a visually
determinable defect is present [8]. However, not all defects are necessarily
visually determinable as in the case of small surface changes [9]. Further-
more, RGB images are sensitive to various illuminations and shadows,
which in practice are sometimes difficult to keep constant over time.
Therefore, we also conduct experiments on mostly illumination-invariant
3D scans of a stereo camera which are used instead or as an add-on
for the inspection of surface anomalies. This work focuses its evaluation
on image-level detection (Does this instance contain any defect?), since in
practice a decision is usually made on this level [8]. As a secondary task,
we investigate the defect segmentation [10] which can be used to interpret
at which location the system has detected a defect to offer explainability
to the user (Where is the defect?).

In addition to the inspection of the product, it is also of interest to
examine the machines involved in production for defects, as these are
often the source of defects that subsequently occur in the product. Their
behavior can be precisely observed by the machine data, which are



1.3 structure of the thesis 5

usually recorded for their control anyway. We present a data set for AD
in the context of a robot application which is described in Chapter 7. In
addition, we introduce an AD method adapted to the data domain of
high-dimensional machine data in Chapter 8.

1.3 structure of the thesis

This thesis is organized into the following parts and visualized in Fig-
ure 1.5:

Chapter 2: Fundamentals
The problem of anomaly detection is first formally defined and differenti-
ated from related problems. Furthermore, an overview of existing work
is given, presenting both general classical methods alongside those in the
context of industrial applications.
Chapter 3: Datasets and Metrics
The image data sets used to evaluate the methods of this thesis are pre-
sented. These are MVTec AD [7], MVTec 3D-AD [9] and the Magnetic
Tile dataset [11] which include various objects such as electrical compo-
nents, food or drugs, and textures such as textiles and building materials.
Besides, the evaluation metric AUROC is presented.
Chapter 4: DifferNet
This chapter introduces DifferNet, a method for image-based anomaly de-
tection. It employs a pretrained neural network to extract image features
across multiple scales. Based on these feature vectors, DifferNet estimates
feature density from normal data and uses the likelihood of an obser-
vation as an anomaly score. The density estimation is performed by a
Normalizing Flow, which maps the feature distribution to a well-defined
distribution to quantify individual likelihoods. DifferNet also identifies
anomalous regions within the image by backpropagating the anomaly
score and highlighting pixels with a high gradient magnitude.
Chapter 5: Cross-Scale-Flow
Based on DifferNet, an extension of the method is given by introducing
a new architecture called Cross-Scale-Flow (CS-Flow). CS-Flow enables a
density estimation on a set of multi-scale feature maps, instead of feature
vectors, allowing for the usage of fine-grained image information. The
architecture is designed for joint processing of these multi-scale feature
maps to enable the utilization of correlations between different-sized
feature maps.
Chapter 6: Asymmetric Student-Teacher Networks
In this chapter, we introduce a Asymmetric Student-Teacher Network that
combines concepts from CS-Flow with student-teacher networks. It uti-
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Figure 1.5: Thesis overview.
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lizes the distance from an NF-based teacher and a standard convolutional
network as student, mimicking the teacher, to indicate anomalies. This ad-
dresses both the issue of undesired generalization of symmetric student-
teacher pairs in previous work and the limitations of Normalizing-Flow-
based density estimation.
Chapter 7: voraus-AD Dataset
This chapter introduces our voraus-AD dataset, which contains machine
data of a robot in a non-deterministic pick-and-place task, from which var-
ious anomalies are to be detected. voraus-AD represents the first anomaly
detection dataset in robotics with such a wide range of anomalies and
signals.
Chapter 8: MVT-Flow
We used the concepts of Chapters 4 and 5 to transfer NF-based den-
sity estimation for AD to multivariate time series as in voraus-AD. This
chapter demonstrates that our proposed MVT-Flow outperforms existing
methods on voraus-AD by a large margin.
Chapter 9: Conclusion
The thesis is concluded and some options for future work are given.

1.4 list of publications

In this section, an overview of all the publications during my work is
given. Subsection 1.4.1 focuses on publications related to the present
thesis, which serve as the basis for Chapter 4-8 of the thesis. In Subsec-
tion 1.4.2, other publications in the fields of dimensionality reduction,
human pose estimation and interpretable machine learning are listed.

1.4.1 Anomaly Detection

[12] Marco Rudolph, Bastian Wandt, Bodo Rosenhahn. Same Same
but DifferNet: Semi-supervised Defect Detection with Normalizing
Flows. In: Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, 2021.

The detection of manufacturing errors is crucial in fabrication pro-
cesses to ensure product quality and safety standards. Since many
defects occur very rarely and their characteristics are mostly un-
known a priori, their detection is still an open research question.
To this end, we propose DifferNet: It leverages the descriptive-
ness of features extracted by convolutional neural networks to
estimate their density using Normalizing Flows. Normalizing flows
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are well-suited to deal with low-dimensional data distributions.
However, they struggle with the high dimensionality of images.
Therefore, we employ a multi-scale feature extractor which enables
the Normalizing Flow to assign meaningful likelihoods to the im-
ages. Based on these likelihoods we develop a scoring function
that indicates defects. Moreover, propagating the score back to the
image enables pixel-wise localization. To achieve a high robustness
and performance we exploit multiple transformations in training
and evaluation. In contrast to most other methods, ours does not
require a large number of training samples and performs well with
as low as 16 images. We demonstrate superior performance over
existing approaches on the challenging and newly proposed MVTec
AD and Magnetic Tile Defects datasets.

[13] Marco Rudolph, Tom Wehrbein, Bastian Wandt, Bodo Rosenhahn.
Fully Convolutional Cross-scale-flows for Image-based Defect De-
tection. In: Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, 2022.

In industrial manufacturing processes, errors frequently occur at
unpredictable times and in unknown manifestations. We tackle this
problem, known as automatic defect detection, without requiring
any image samples of defective parts. Recent works model the
distribution of defect-free image data, using either strong statis-
tical priors or overly simplified data representations. In contrast,
our approach handles fine-grained representations incorporating
the global and local image context while estimating flexibly the
density. To this end, we propose a novel fully convolutional cross-
scale Normalizing Flow (CS-Flow) that jointly processes multiple
feature maps of different scales. Using Normalizing Flows to as-
sign meaningful likelihoods to input samples allows for efficient
defect detection on image-level. Moreover, due to the preserved
spatial arrangement the latent space of the Normalizing Flow is
interpretable, ie it is applicable to localize defective regions in the
image. Our work sets a new state-of-the-art in image-level defect
detection on the benchmark datasets Magnetic Tile Defects and
MVTec AD showing a 100% AUROC on 4 out of 15 classes.

[14] Marco Rudolph, Tom Wehrbein, Bastian Wandt, Bodo Rosenhahn.
Asymmetric Student-Teacher Networks for Industrial Anomaly
Detection. In: Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 2023.
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Industrial defect detection is commonly addressed with anomaly
detection (AD) methods where no or only incomplete data of poten-
tially occurring defects is available. This work discovers previously
unknown problems of student-teacher approaches for AD and pro-
poses a solution, where two neural networks are trained to produce
the same output for the defect-free training examples. The core
assumption of student-teacher networks is that the distance be-
tween the outputs of both networks is larger for anomalies since
they are absent in training. However, previous methods suffer from
the similarity of student and teacher architecture, such that the
distance is undesirably small for anomalies. For this reason, we
propose asymmetric student-teacher networks (AST). We train a
Normalizing Flow for density estimation as a teacher and a conven-
tional feed-forward network as a student to trigger large distances
for anomalies: The bijectivity of the Normalizing Flow enforces a
divergence of teacher outputs for anomalies compared to normal
data. Outside the training distribution, the student cannot imitate
this divergence due to its fundamentally different architecture. Our
AST network compensates for wrongly estimated likelihoods by
a Normalizing Flow, which was alternatively used for anomaly
detection in previous work. We show that our method produces
state-of-the-art results on the two currently most relevant defect
detection datasets MVTec AD and MVTec 3D-AD regarding image-
level anomaly detection on RGB and 3D data.

[15] Jan Thieß Brockmann, Marco Rudolph, Bodo Rosenhahn, Bastian
Wandt. The voraus-AD Dataset for Anomaly Detection in Robot
Applications. Transactions on Robotics, 2023.

During the operation of industrial robots, unusual events may en-
danger the safety of humans and the quality of production. When
collecting data to detect such cases, it is not ensured that data from
all potentially occurring errors is included as unforeseeable events
may happen over time. Therefore, anomaly detection (AD) delivers
a practical solution, using only normal data to learn to detect un-
usual events. We introduce a dataset that allows training and bench-
marking of anomaly detection methods for robotic applications
based on machine data which will be made publicly available to the
research community. As a typical robot task, the dataset includes a
pick-and-place application which involves movement, actions of the
end effector and interactions with the objects of the environment.
Since several of the contained anomalies are not task-specific but
general, our dataset offers value for other robotics applications as
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well. Additionally, we present MVT-Flow (multivariate time-series
flow) as a new baseline method for anomaly detection: It relies on
deep-learning-based density estimation with Normalizing Flows,
tailored to the data domain by taking its structure into account.

1.4.2 Other Publications

[16] Marco Rudolph, Bastian Wandt, Bodo Rosenhahn. Structuring
Autoencoders. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, 2019.

In this paper we propose Structuring AutoEncoders (SAE). SAEs
are neural networks which learn a low-dimensional representation
of data and are additionally enriched with a desired structure in
this low-dimensional space. While traditional Autoencoders have
proven to structure data naturally they fail to discover semantic
structure that is hard to recognize in the raw data. The SAE solves
the problem by enhancing a traditional Autoencoder using weak
supervision to form a structured latent space. In the experiments
we demonstrate, that the structured latent space allows for a much
more efficient data representation for further tasks such as classifi-
cation for sparsely labeled data, an efficient choice of data to label,
and morphing between classes. To demonstrate the general appli-
cability of our method, we show experiments on the benchmark
image datasets MNIST, Fashion-MNIST, DeepFashion2 and on a
dataset of 3D human shapes.

[17] Bastian Wandt, Marco Rudolph, Petrissa Zell, Helge Rhodin, Bodo
Rosenhahn. CanonPose: Self-Supervised Monocular 3D Human
Pose Estimation in the Wild . In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021.

Human pose estimation from single images is a challenging prob-
lem in computer vision that requires large amounts of labeled train-
ing data to be solved accurately. Unfortunately, for many human
activities (e.g. outdoor sports) such training data does not exist and
is hard or even impossible to acquire with traditional motion cap-
ture systems. We propose a self-supervised approach that learns a
single image 3D pose estimator from unlabeled multi-view data. To
this end, we exploit multi-view consistency constraints to disentan-
gle the observed 2D pose into the underlying 3D pose and camera
rotation. In contrast to most existing methods, we do not require
calibrated cameras and can therefore learn from moving cameras.
Nevertheless, in the case of a static camera setup, we present an
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optional extension to include constant relative camera rotations
over multiple views into our framework. Key to the success are
new, unbiased reconstruction objectives that mix information across
views and training samples. The proposed approach is evaluated
on two benchmark datasets (Human3.6M and MPII-INF-3DHP)
and on the in-the-wild SkiPose dataset.

[18] Tom Wehrbein, Marco Rudolph, Bastian Wandt, Bodo Rosenhahn.
Probabilistic Monocular 3D Human Pose Estimation with Normal-
izing Flows. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

3D human pose estimation from monocular images is a highly ill-
posed problem due to depth ambiguities and occlusions. Nonethe-
less, most existing works ignore these ambiguities and only esti-
mate a single solution. In contrast, we generate a diverse set of
hypotheses that represents the full posterior distribution of feasi-
ble 3D poses. To this end, we propose a normalizing-flow-based
method that exploits the deterministic 3D-to-2D mapping to solve
the ambiguous inverse 2D-to-3D problem. Additionally, uncertain
detections and occlusions are effectively modeled by incorporating
uncertainty information of the 2D detector as a condition. Further
keys to success are a learned 3D pose prior and a generalization
of the best-of-M loss. We evaluate our approach on the two bench-
mark datasets Human3. 6M and MPI-INF-3DHP, outperforming
all comparable methods in most metrics. The implementation is
available on GitHub.

[19] Thomas Norrenbrock, Marco Rudolph, Bodo Rosenhahn. Take 5:
Interpretable Image Classification with a Handful of Features. In:
Progress and Challenges in Building Trustworthy Embodied AI (NeurIPS
Workshop), 2022.

Deep Neural Networks use thousands of mostly incomprehensi-
ble features to identify a single class, a decision no human can
follow. We propose an interpretable sparse and low-dimensional
final decision layer in a deep neural network with measurable as-
pects of interpretability and demonstrate it on fine-grained image
classification. We argue that a human can only understand the de-
cision of a machine learning model if the features are interpretable
and only very few of them are used for a single decision. For that
matter, the final layer has to be sparse and – to make interpreting
the features feasible – low-dimensional. We call a model with a
Sparse Low-Dimensional Decision “SLDD-Model”. We show that



12 introduction

a SLDD-Model is easier to interpret locally and globally than a
dense high-dimensional decision layer while being able to maintain
competitive accuracy. Additionally, we propose a loss function that
improves a model’s feature diversity and accuracy. Our more inter-
pretable SLDD-Model only uses 5 out of just 50 features per class,
while maintaining 97% to 100% of the accuracy on four common
benchmark datasets compared to the baseline model with 2048

features.



2
F U N D A M E N TA L S

This chapter describes the problem of anomaly detection in Section 2.1
and gives an overview of existing work in this area in Section 2.2. In
addition to generalized AD, we address the challenges and the associated
methods in the industrial context of production. We assume a basic
knowledge of deep learning, computer vision and stochastics. For a more
detailed introduction, we refer the reader to standard literature [20]–[23].

2.1 anomaly detection

Anomaly detection describes the problem of finding patterns that de-
viate from expected behavior [24]. In other words, we want to identify
the samples that differ from the majority of observations [25] which
is often referred to as normal. Formally, this is a binary classification
A : X → {0, 1} where an input x ∈ X is to be assigned to one of the
classes anomaly (A(x) = 1) or normal (A(x) = 0). There are many
sub-problems and related problems in the literature, all of which pursue
this goal, but assume different conditions regarding existing training data
or types of anomalies. In the following, we specify the setting addressed
in this paper and compare it to related problems. Note that the research
area in AD shows parallel existing terminologies and taxonomies. We
take the definitions of [26] and [27].

2.1.1 Semi-Supervised Anomaly Detection

This work considers the following setting of semi-supervised anomaly
detection (SSAD): Given a training set Xtr with all x ∈ Xtr known to
be normal, a model should decide whether unseen examples are normal
or anomalous. In practice, models do not directly output this binary
decision since a decision boundary is hardly determinable without any
anomalous examples. Instead, the model usually represents a function
f : X → R that maps from the input space X to a scalar anomaly score
a ∈ R that indicates an anomalous input. The higher the score, the more

13



14 fundamentals

is the input considered to be anomalous. In practice, the binary decision
is taken by thresholding:

A(x) =

1 for a ≥ θ

0 for a < θ
. (2.1)

The threshold parameter θ can be calibrated with a hold-out validation set.
A particular setting depends strongly on the use case and the associated
requirement at the trade-off between sensitivity and specificity. More
details for the evaluation are given in Section 3.4.

2.1.2 Taxonomy

Anomaly detection is seen as a part of generalized out-of-distribution detec-
tion which includes many related tasks which aim to identify unusual ob-
servations regarding a given dataset. For example, the definition of SSAD
simultaneously describes novelty detection (ND) and out-of-distribution
detection (OOD detection) and are sometimes used as synonyms, al-
though they are often motivated differently: While anomaly detection
primarily should detect erroneous or malicious examples that deviate
from the "good" or normal observations, ND aims to complement the
model with anomalous examples ([25], [28]) and OOD detection aims
to reject anomalous examples as the model cannot perform a reliable
prediction [27]. Open Set Recognition (OSR) shares the same motivation
as ND but is specialized to multi-class problems and is additionally
supported with "known unknown class" samples in training which can
be interpreted as adding labeled anomalies to the training set for AD
which is called supervised anomaly detection. In contrast, for unsuper-
vised anomaly detection there are no labels given at all, although there
may be a small ratio of anomalies in the training set. Outlier detection
also operates on a contaminated data set, whereby no train-test-split is
assumed here. Instead, outliers or anomalies are to be identified directly
on the given data which makes OD transductive rather than inductive.

All of the mentioned problems deal with a shift from the known major-
ity in training. The type of this shift can be divided into covariate shifts
and semantic shifts [25]: Covariate shifts are considered to be changes
in the sensory space which includes adversarial examples and style or
domain changes. In contrast, semantic shifts deal with the occurrence
of new concepts or classes. Anomaly detection can in principle be used
for the detection of both shifts: It can be divided into sensory AD for
identifying covariate shifts and semantic AD for semantic shifts. However,
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Figure 2.1: Overview of the taxonomy of tasks in generalized out-of-distribution
detection, grouped in shift type, class modalities and learning charac-
teristics. This work focuses the sensory anomaly detection. Image is
taken from [25].

the defect and event detection discussed in this work is a sensory AD
task. The problems ND, OOD detection and OSR deal with semantic
shifts. A visual overview of the taxonomy is given in Figure 2.1.

2.2 related work

This section gives an overview of the literature related to anomaly de-
tection. First, we provide a summary of image-based anomaly detection
concepts in Subsection 2.2.1. Subsequently, Subsection 2.2.2 introduces
traditional machine learning approaches for general AD. Contrary, Sub-
section 2.2.3 to 2.2.6 are related to more recent work dealing with image-
based AD for defect detection and are mostly based on deep learning.
Finally, we review the literature that focuses AD on multivariate machine
data in Subsection 2.2.7. For a general overview of recent anomaly detec-
tion methods and their usage in other data domains, we refer the reader
to [29]–[31].
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Group Method

Traditional approaches OCSVM [32]

Isolation Forest [33]

Local Outlier Factor [34]

Nearest Neighbor [35], [36]

Generative Models ℓ2-Autoencoder [37], [38]

SSIM-based Autoencoder [39]

MemAE [40]

GANomaly [41]

ARNet [42]

Student-Teacher Networks Uninformed Students [43]

3D-ST [44]

DTSNE [45]

STFPM [46]

Density Estimation Rippel et al. [47]

PaDiM [48]

Synthetic Data CutPaste [49]

DRÆM [50]

NSA [51]

Anoseg [52]

Table 2.1: Overview of common AD methods for image-based defect detection
grouped in concepts.

2.2.1 Overview

In the following, we give an overview of the different concepts of state-
of-the-art methods regarding image-based anomaly detection. Classical
approaches often adapt existing concepts from supervised learning like
decision trees, nearest-neighbor classification or support vector machines
so that they are applicable for anomaly detection. Approaches based
on generative models attempt to reconstruct a given example and use
the resulting error as an anomaly indicator. Whereas, density estimation
methods directly measure how likely the occurrence of the observation is
under the assumption that a sample would be normal. Student-teacher
networks exploit the mechanism that the student overfits to the teacher
causing that the teacher cannot be imitated as precisely on anomalies. In
approaches based on synthetic data, the problem is transformed into a
supervised problem by generating artificial anomalies. Table 2.1 lists the
most common image-based AD methods grouped by the aforementioned
concepts. In the following, we review the mentioned concepts in more
detail.
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2.2.2 Traditional Approaches

This subsection summarizes selected classical approaches for anomaly
detection with most of them being published before the deep learning
era.

2.2.2.1 One-Class Support Vector Machines

A One-class Support Vector Machines (OCSVM) [32] is a max-margin
method which is an adaption of the classical support vector machine
(SVM [53]) for AD. One-Class SVMs aim to learn a boundary around the
normal data points so that data points that fall outside the boundary are
classified as anomalies.

The OCSVM uses a kernel ϕ to map the data into a high-dimensional
feature space and then finds a hyperplane w that maximally separates
the n data points from the origin with distance ρ. The hyperplane is
constructed such that it contains as many data points as possible, while
still having a maximum distance to the nearest data point. The points
that fall outside this hyperplane are considered anomalies. This can be
formulated as the following minimization problem

min
w,ξ,ρ

1
2
||w||2 − ρ +

1
νn

n

∑
i=1

ξi

s.t. ⟨w, ϕ(xi)⟩ ≥ ρ − ξi, ξi ≥ 0, i = 1, . . . , n

(2.2)

with ξi being the slack variables of the data point xi, which allow
training errors, and ν as the upper bound of the fraction of training
errors and lower bound of the fraction of support vectors. The OCSVM
heavily depends on the choice of the kernel function and the ν parameter.
Since this technique cannot deal with the high dimensionality of images,
Andrews et al. [54] propose to apply it on image features obtained by a
pretrained neural network.

2.2.2.2 Isolation Forests

An Isolation Forest (IF) [33] is a type of tree-based AD algorithm that
is inspired by common decision trees [55]. In inference, they recursively
partition the data into subsets, using random feature subsampling to
create an ensemble of decision trees that aim to isolate one data point
from all others. The anomaly score for each data point is calculated as the
average path length of these isolation trees required to isolate the point.
IFs are especially efficient for small datasets as they do not tend to overfit
heavily. However, the performance of isolation forests is often sensitive
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to the choice of hyperparameters such as the subsample size per tree and
the maximum tree depth.

2.2.2.3 Local Outlier Factor

The Local Outlier Factor (LOF) [34] algorithm is a density-based anomaly
detection method that measures the local deviation of a data point with
respect to its neighbors. LOF computes the density of each data point
by considering the number and distance of its k-nearest neighbors and
compares this density to the densities of its neighbors. Data points with
low densities relative to their neighbors are considered anomalies. LOF
shows to be effective in detecting anomalies in datasets with complex
structures and varying densities. The drawbacks of LOFs are the sensitiv-
ity to hyperparameters and the application to high-dimensional datasets.
Note that this method does not directly compute the density in statistical
terms as in 2.2.5.

2.2.2.4 Nearest-Neighbor Approaches

Inspired by the k-Nearest-Neighbor algorithm [56] for supervised clas-
sification, Amer and Goldstein [57] propose to use the distance to the
nearest neighbor among normal samples as an anomaly score. As the
distance between images is not meaningful in pixel space, Nazare et
al. [35] computes the distance in a PCA-reduced feature space obtained
by a pretrained neural network. The PCA [58] helps for reducing the run-
time and space complexity, being linear dependent from the number of
dimensions d, while maintaining the essential information of the features.

The nearest-neighbor approach was revisited and enhanced with Patch-
Core by Roth et al. [36]. They extend the approach by replacing the feature
vectors with the original full-sized feature maps. Nearest neighbors are
obtained for vectors of all feature map positions where the candidate
set of neighbors is reduced to a patch around the original location. The
PCA is replaced with a random projection to d dimensions for complex-
ity reduction. However, the inference time also depends on the size of
the memory bank size |M|, which includes candidates for the nearest
neighbors search. For reducing the size of the memory bank, a training
stage that performs a minimax facility location coreset selection [59], [60]
is integrated. This greedy algorithm adds samples iteratively from the
original memory bank to the coreset MC if this sample has the maximal
distance to its nearest neighbor among other candidates in the MC. Us-
ing this selection, the performance is nearly maintained with 1% of the
original data in the memory bank.
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2.2.3 Generative Models

Generative models are a class of unsupervised machine learning models
that learn to generate new data that is similar to a given dataset by
capturing the underlying structure of it. One popular example is an
Autoencoder [61] containing an encoder that compresses the input to a
low-dimensional latent space from which a decoder aims to reconstruct
the input again by applying any reconstruction loss in training. Another
common technique is a Generative Adversarial Network (GAN) [62]
which is able to create synthetic data examples from random noise by its
generator model. During training, the generator is trained alternating in
an adversarial manner with another model, the discriminator, which is
optimized to correctly identify real examples from the generated ones,
while the generator aims to trick the discriminator with its generated
samples.

Many anomaly detection methods are based on generative models as
Autoencoders and GANs. These techniques exploit the limitation of the
generative model after being trained on normal data only, preventing it
from reconstructing anomalies. In the simplest case, the input and the
reconstruction of an autoencoder is compared [37], [38]. A high recon-
struction error is interpreted as an indicator of an anomaly. Bergmann et
al. [63] replace the common l1 or l2 error with the structural similarity
index measure (SSIM) [39] to have a more powerful metric for visual sim-
ilarity. However, in some cases, autoencoder-based methods fail because
they generalize too strongly, i. e.anomalies can be reconstructed as well as
normal samples. Gong et al. [40] use memory modules in the latent space
to prevent the autoencoder from generalizing to anomalous data. Zhai et
al. [64] combine energy-based models and regularized autoencoders to
model the data distribution. Denoising autoencoders are used by Huang
et al. [42] by letting autoencoders learn to restore transformed images.

Similar to the decoding part of autoencoders, generators of GANs
are utilized for anomaly detection. Schlegl et al. [65] propose to learn
an inverse generator after training a GAN, utilizing both together for
reconstruction. A combination of autoencoders and GANs is proposed
by Akcay et al. [41]. They apply the autoencoder directly as the GAN’s
generator to ensure the generation of normal data only.

Although autoencoders in particular are used for many data domains
and applications for AD, autoencoders and GANs perform moderate on
defect detection tasks, as later seen in the experimental sections. Since
different types of anomalies with individual size, shape and structure
have inconsistent characteristics regarding reconstruction errors, they are
not widely applicable for defect detection. For example, structures with
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Figure 2.2: Visualization of the output space of student-teacher networks for AD as
in [43]: The regression error e between the mean of student predictions
(black dots) and the respective teacher outputs (red dots) is taken
together with the variance v of the student ensemble (yellow dots)
as an anomaly score. As shown by the examples, both terms should
be higher for anomalies as student and teacher were trained only on
normal samples. Image is taken from [43].

high frequency cannot be represented and reconstructed accurately in
general and small defect areas cause smaller errors.

Most of the methods introduced in this thesis are based on Normal-
izing Flows [66] which are also generative models. Unlike the methods
described above, this model is not used to generate images that resem-
ble the input. Instead, we measure how likely a given image would be
generated by the model.

2.2.4 Student-Teacher Networks

In student-teacher-based approaches, two neural networks are trained
consecutively such that the student network imitates the teacher network.
First, the teacher is trained on a certain task. In the second step, the
student is trained to match the output of the teacher by minimizing the
distance between their outputs. Originally, the motivation for having
a student network is to distill knowledge and save model parameters
[67]–[69]. For AD, student and teacher are both used in inference, using
the distance between its outputs as an indicator of an anomaly at test
time. This is motivated by the fact that the student is able to match the
outputs of the teacher better on normal data as it is optimized exclusively
on these, which is why the distance is assumed to be larger for defective
examples compared to defect-free examples. As the teacher cannot make
use of any labels for semi-supervised AD, it is trained on any pretext
task to create an embedding that carries semantics being sensitive to
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anomalies. This is for example a self-supervised task or any pretraining
with other datasets on any task as classification [43].

Bergmann et al. [43] propose to train an ensemble of students regressing
the output of a teacher. This teacher is either a distilled version of a
pretrained network or trained via metric learning on the given data.
The anomaly score is composed of the student uncertainty, measured
by the variance of the ensemble, and the regression error as visualized
in Figure 2.2. In another work, Bergmann and Sattlegger [44] adapt the
student-teacher concept to 3D point clouds. Local geometric descriptors
are extracted to train the teacher by reconstructing a set of neighbored
points. Wang et al. [46] extend the student task by regressing a feature
pyramid obtained by an ImageNet-pretrained feature extractor. Xiao et
al. [45] let teachers learn to classify applied image transformations. The
regression error and the class score entropy of an ensemble of students are
linearly combined to obtain an anomaly score. All of the existing work is
based on identical and conventional (non-injective) networks for student
and teacher, which causes undesired generalization of the student. This
motivates our asymmetric student-teacher network in Chapter 6.

2.2.5 Density Estimation

AD can be viewed from a statistical perspective: Estimating the density
of normal samples, a model identifies anomalies by their low likelihood.
The concept of density estimation for AD is naively realized by assuming
a multivariate normal distribution N (µ, Σ) having the covariance Σ of
normal samples x ∼ X with dim(x) = d to approximate the likelihood as

pX(x) ≈ 1√
(2π)d|Σ|

exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
. (2.3)

For example, the Mahalanobis distance [70] of pre-extracted features can
be applied as an anomaly score [47], [48] which is practically equivalent
to computing the negative log likelihood of a multivariate Gaussian
as in Eq. 2.3. However, this method is inflexible to most real training
distributions, since the assumption of a Gaussian distribution is a strong
simplification. To this end, most of our proposed methods are based on a
more flexible density estimation with a Normalizing Flow [66] which is
introduced in Chapter 4 and further used in Chapters 5, 6 and 8.
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2.2.6 Synthetic Data

Some work reformulates semi-supervised anomaly detection as a self-
supervised problem by synthetically generating anomalies. Either parts
of training images [49], [51], [52] or random images [50] are patched
into normal images dynamically during the training process. The shape
of the pasted patches are mostly simple rectangles with random aspect
ratio [49], [51], [52] or come from a noise generator as proposed by Zavr-
tani et al. [50]. While [51], [52] uses the corresponding synthetic masks
to optimize a segmentation map which is postprocessed for image-level
detection in inference, [50] and [49] additionally or optionally optimize
an image-level classification. While these approaches often provide a
clear segmentation map and perform solidly on most benchmarks, they
are not considered robust as the distributional shift of a real occurring
anomaly type to synthetic examples severely affects the detection.

2.2.7 Methods for Multivariate Machine Data

In the following, we provide an overview of past work regarding semi-
supervised AD methods in the context of robotic applications. Note that
we focus on machine data where no external sensors are used.

Chen et al. [71] and Sölch et al. [72] introduce adapted versions of vari-
ational autoencoders [73] to detect anomalies using the reconstruction
error which resemble the image-based approaches described in Subsec-
tion 2.2.3. While [71] is based on convolutional layers, [72] integrates
residual neural networks (RNNs [74]). Park et al. [75] makes also use of
RNN-based VAEs by integrating LSTMs, however, it utilizes the evidence
lower bound (ELBO) as the anomaly score. Learning a progress-based
latent space that can be partitioned by only a small set of nominal obser-
vations but is also built with unlabeled examples is proposed by Azzalini
et al. [76]. Also using the reconstruction error as an anomaly indica-
tor, Hornung et al. [77] identify anomalies by performing a principal
component analysis (PCA [58]). It is assumed that anomalies cause high
reconstruction errors due to existing variance on the non-principal com-
ponents not modeled by the PCA. However, anomalies are not detected
if their deviations are within the principal components.

Addressing the problem from a statistical perspective, [78] and [79] try
to model the distribution of normal samples similar to the approaches
in Subsection 2.2.5. Khalastchi et al. [78] assume the data to be Gaussian
distributed and apply the Mahalanobis distance [70] within a sliding
window as an anomaly score. Romeres et al. [79] evaluate Gaussian pro-
cess models and several extensions of these. This necessitates identifying
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suitable kernels to ensure the validity of the Gaussian process assump-
tion. In contrast, our baseline models the distribution of normal samples
while being capable of handling any data distribution without any hard
assumptions or manual kernel search.

Zhang et al. [80] analyze the time series with an autoregressive model
that predicts future torques. The error between this prediction and the
actual signals should identify anomalies for real-time collision detection.
Again, more complex mechanisms cannot be modeled as it relies on
linear models.

Park et al.[81] employ Hidden Markov Models (HMMs[82]) by lever-
aging the observation probability to detect unusual events subsequent
to fitting an HMM to normal data, a process further enhanced through
Gaussian process regression [83]. Azzalini et al.[84] propose two alterna-
tive approaches for HMMs: The online approach utilizes the Hellinger
distance[85] to compute the emission distribution between normal data
and test data in the current state. In an offline version, a distinct HMM is
fitted on test data, and the states are aligned with those of the normal
data, prior to applying the Hellinger distance between these models as
an anomaly score.
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D ATA S E T S A N D M E T R I C S

This chapter summarizes the data on which the methods of this thesis are
evaluated. In Sections 3.1 to 3.3, we introduce the three image datasets
MVTec AD [7], MVTec 3D-AD [9] and Magnetic Tile Defects [11] which
are all obtained from the literature. In Chapter 7, we present our own
dataset voraus-AD, including time series of robot machine data. At the
end of this chapter in Section 3.4, we give detailed information about
the evaluation metrics used to assess the performance of the anomaly
detection models.

3.1 mvtec ad

The MVTec Anomaly Detection (MVTec AD) dataset [7], introduced by
Bergmann et al. in 2019, serves as the most common image dataset for AD
in the industrial context. It addresses the challenge of detecting defects in
product images having only normal images in training without any prior
knowledge about the defects in the test set. MVTec AD contains in total of
5354 high-resolution RGB images from 10 object and 5 texture categories.
The categories are from various industries, including electronics (cable,
transistor), medicine (capsule, pill), consumables (hazelnut, bottle), materials
(wood, tile, grid) and textiles (zipper, carpet). All defect types, namely 1 to 7

per category, were manually induced. The defects include deviations in
color, orientation and shape, as well as common errors such as scratches,
cracks, dents and bends. In addition to the labels normal vs. anomaly,
the test set also provides the defect type and a segmentation mask of
the defect. The anomalous images may also have multiple defect types
or defect regions per instance. Figure 3.1 visualizes some anomalies
and their corresponding segmentation mask. Table 3.1 shows detailed
information about the dataset statistics, broken down into the different
categories. The number of training samples per category ranges from 60

to 320, which makes AD challenging as this number is comparatively
low for machine learning purposes. The dataset simulates a controlled
environment of a production floor, meaning that the images were taken
from the same angle, camera and lighting.

24
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Figure 3.1: Samples of defect-free (green framed) and defective images (red
framed) from the categories hazelnut, metal nut and carpet in MVTec
AD. Image is taken from [7].

Type Category # Train
# Test

(good)

# Test

(defective)

# Defect

groups

# Defect

regions

Image

side length

Textures

Carpet 280 28 89 5 97 1024

Grid 264 21 57 5 170 1024

Leather 245 32 92 5 99 1024

Tile 230 33 84 5 86 840

Wood 247 19 60 5 168 1024

Objects

Bottle 209 20 63 3 68 900

Cable 224 58 92 8 151 1024

Capsule 219 23 109 5 114 1000

Hazelnut 391 40 70 4 136 1024

Metal Nut 220 22 93 4 132 700

Pill 267 26 141 7 245 800

Screw 320 41 119 5 135 1024

Toothbrush 60 12 30 1 66 1024

Transistor 213 60 40 4 44 1024

Zipper 240 32 119 7 177 1024

Total 3629 467 1258 73 1888 -

Table 3.1: Statistical overview of the MVTec AD dataset. For each category, the
number of images in training and test set is given together with addi-
tional details about the defects in the test set. The table is taken from [7].
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Figure 3.2: Visualization of the spatial channels (x, y, z) of the 3D scans in MVTec
3D-AD (left) which are aligned with the RGB image and the ground
truth annotation (right). White pixels in the scans denote areas that
were missed by the sensor. Image is taken from [9].

3.2 mvtec 3d-ad

The MVTec 3D-AD dataset, similar to MVTec AD [7] and again published
by Bergmann et al., is also designed for the detection of previously
unknown defects on various products. In addition to RGB images, the
dataset also provides a 3D scan of the object for each sample. This is
motivated by the fact that some defects, such as surface irregularities,
are often more difficult to detect on RGB images. Furthermore, 3D scans
are more independent from the illumination. The high-resolution 3D
scans were obtained using an industrial sensor that utilizes structured
light which is projected on the object lying on a background plane that
is tilted relative to the camera. The sensor captures the data in the form
of a three-channel image corresponding to the x, y and z coordinates,
which are measured with respect to the local camera coordinate frame
and visualized in Figure 3.2. The (x, y, z) values in the image can be
directly associated with the corresponding point cloud, thus providing
a one-to-one mapping between the two representations. Note that some
pixels are missing in 3D as the sensor may find no correspondence for a
given pixel.

The dataset contains 10 object categories as shown in Figure 3.3, which
include deformable and non-deformable objects and 5 cases of natural
variation, which are considered more challenging. There are anomalies
that are exclusively apparent in one of the two data domains, which
motivates the use of models that can handle multimodal data. Table 3.2
shows a statistical overview of the dataset. The number of training sam-
ples (approx. 270 per category), test samples (approx. 120 per category)
and defect types (3 to 5 per category) is similar to MVTec AD. Like-
wise, MVTec 3D-AD provides segmentations of the defects next to the
image-level labels (normal or anomaly) in the test set.
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Figure 3.3: Visualization of examples of all classes in MVTec 3D-AD [9] by pro-
jecting the RGB values on the 3D point clouds. The green-frames left
column shows an anomaly-free example of each category. To the right,
a close-up of a defective example is shown along with the respective
annotation of it. The background plane has been removed for better
visibility. Image is taken from [9].
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Category # Train # Val
# Test

(good)

# Test

(anomalous)

# Defect

types

# Annotated

regions

Image size

(width × height)

bagel 244 22 22 88 4 112 800 × 800

cable gland 223 23 21 87 4 90 400 × 400

carrot 286 29 27 132 5 159 800 × 800

cookie 210 22 28 103 4 128 500 × 500

dowel 288 34 26 104 4 131 400 × 400

foam 236 27 20 80 4 115 900 × 900

peach 361 42 26 106 5 131 600 × 600

potato 300 33 22 92 4 115 800 × 800

rope 298 33 32 69 3 72 900 × 400

tire 210 29 25 87 4 95 600 × 800

total 2656 294 249 948 41 1148

Table 3.2: Statistical overview of the MVTec 3D-AD dataset. The columns show
the number of training, validation, and test images for each category.
Additionally, the number of different defect types and annotated regions,
along with the image resolution is given. The table is taken from [9].

3.3 magnetic tile defects

Magnetic Tile Defects [11] (MTD) comprises grayscale images of magnetic
tiles under different illuminations with and without defects. Magnetic
tiles should provide a constant magnetic potential in engines. If the
magnetic field is not consistent or stable, the motion of the conductor and
therefore the overall engine performance can be affected. This can lead to
reduced efficiency, increased wear and tear on the engine components,
and potential damage to the engine itself.

The dataset was originally released for a standard supervised defect
classification and converted to an anomaly detection dataset [12]. We split
the 952 defect-free images randomly into a train and a test set, where the
test set contains 20% of the defect-free data. All 392 defect images are
used for testing. These show uneven or frayed regions, cracks, breaks and
blowholes as anomalies, as seen in Figure 3.4. MTD offers a large variance
within the defect-free examples due to the differences in illumination
and non-uniform textures which is a more challenging setup compared
to MVTec AD [7].

In addition to the image datasets presented in this chapter, we also
created our own dataset vorausAD with time series of robot machine data,
which is presented in Chapter 7.
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Figure 3.4: Samples of defect-free and defective images together with the corre-
sponding anomaly masks from Magnetic Tile Defects [11].

3.4 metrics

We measure and compare the performance of the proposed methods
with the area under the receiver operating characteristic curve (AUROC)
which is the most common evaluation metric for anomaly detection.
While this work mainly focuses on image-level detection of anomalies,
the pixel-level AUROC is also reported. The ROC curve reflects the trade-
off between the true positive rate (TPR) and the false positive rate (FPR)
for varying classification thresholds.

The TPR
TPR =

TP
P

(3.1)

is the proportion of actual positive samples (P) that are correctly identified
as positive (TP) by the model, while the FPR

FPR =
FP
N

(3.2)

is the proportion of negative samples (N) that are incorrectly identified
as positive (FP) by the model. In other words, TPR is the sensitivity or
recall of the model, and FPR is the probability of a false alarm. The ROC
curve is obtained by plotting TPR against FPR for different classification
thresholds θ ∈ [−∞, ∞] on the anomaly score, with each point on the
curve representing a different threshold.

The AUROC is a scalar metric that quantifies the performance of a
binary classification by computing the area under the ROC curve:

AUROC =
∫ 1

0
TPR(FPR−1(u))du (3.3)

where TPR(FPR−1(u)) is the TPR at the threshold where the FPR is
equal to u. The AUROC ranges between 0 and 1, where a higher AU-
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Figure 3.5: Distribution of anomaly scores (left) with their corresponding ROC
curve (right). The points of the ROC curve are obtained by varying the
decision threshold value, exemplarily marked by the dashed line.

ROC indicates better performance: A value of 0.5 indicates a random
classifier, and a value of 1 indicates a perfect classifier. The AUROC is
insensitive to the ratio of anomalies and the threshold which are both
highly application-dependent. Figure 3.5 shows an example of a score
distribution and the corresponding AUROC.

In the following chapters, we introduce the methodological contri-
butions of this thesis. These are presented in chronological order of
publication. The next chapter presents DifferNet, which provides a basis
for the following chapters with the application of Normalizing Flows for
image-based AD.



4
D I F F E R N E T

Figure 4.1: DifferNet estimates likelihoods of data being normal in order to detect
anomalies. In contrast to the top left image being defect-free, the top
middle image is estimated as unlikely to be intact due to the defect (see
enlarged patch on the right side), resulting in a high anomaly score.
Additionally, DifferNet identifies the defective region by propagating
the likelihood back to the input which gives a gradient map (top right
image).

This chapter is adapted from the work "Same Same But DifferNet: Semi-
Supervised Defect Detection with Normalizing Flows" [12]. DifferNet
is a method for image-based anomaly detection, which is based on
estimating the density of features from normal data. It exploits the
likelihood of an observation as an anomaly score having the intuition
that anomalies should be unlikely according to the estimated density
as illustrated in Figure 4.1. Image features are extracted by a pretrained
neural network, which processes multiple scales of the image. The density
is estimated by a Normalizing Flow, which is a bijective neural network
that is optimized to map the distribution of features to a well-defined

31
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Figure 4.2: Histogram of single features from MVTec AD images extracted with
EfficientNet [86]. Assuming a Gaussian, which is shown by the blue
line, appears to be insufficient to capture the real data distribution.

distribution, making the likelihoods measurable. In addition to detecting
anomalous instances, DifferNet also identifies anomalous regions within
the image by propagating the anomaly score back to the input image and
highlighting pixels with a high gradient magnitude. The implementation
is publicly available at GitHub1github.com/marco-rudolph/differnet.

DifferNet makes use of Normalizing Flows for density estimation as
they allow for approximating arbitrary distributions, unlike classical
density estimators explained in Subsection 2.2.5, without making any
assumptions about the given data distribution. This is an important
property since a given data distribution may be in practice multimodal
and/or not follow a particular parametrization which is commonly a
multivariate Gaussian distribution [47], [48]. Figure 4.2 demonstrates that
the Gaussian assumption already struggles to model the distribution of
single features of a given dataset.

In addition to being used as density estimators, Normalizing Flows are
also considered as generative models. As reviewed in Subsection 2.2.3,
there are several approaches based on generative models such as au-
toencoders and GANs. These usually attempt to recreate the given input
image and use the error between the input and the reconstruction as
an anomaly indicator [63], [65]. However, the reconstruction error de-
pends on many factors that are independent of anomalies. For example,
high-frequency patterns are harder to reconstruct in general. Thus, the
reconstruction error is only an indirect measure of how well the model

1 github.com/marco-rudolph/differnet
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could generate the given sample. In contrast, we directly measure how
likely the given input is to be generated according to the model. Vari-
ational autoencoders [73] are also able to map to a given distribution,
but unlike Normalizing Flows, they do not ensure the modelling of a
valid distribution. While the model may map data from the training
distribution to a desired distribution properly, out-of-distribution data is
mapped arbitrarily and thus possibly to high-likelihood regions, as no
injective mapping is ensured such that multiple inputs can be mapped
to the same output. In contrast, a Normalizing Flow learns to maximize
the probability mass of the training data, leaving low-probability regions
to remain for out-of-distribution samples as they are constrained to be
mapped elsewhere due to bijectivity.

DifferNet estimates the density of universal high-level features of a
pretrained deep neural network, as these already carry significantly more
semantics than the raw RGB data, on which a Normalizing Flow would
learn local pixel correlations rather than consider the visual concepts [87].
However, these are not scale invariant [21], which is why we concate-
nate the features vectors of the image from different scales as shown
in Figure 4.6, allowing us to cover a wider range of potentially useful
features. Furthermore, as common convolutional-based feature extractors
are generally not rotation invariant [21], [88], multiple rotations of the
image during optimization and evaluation are processed, making our
detection much more robust. Taking into account the feature sensitivity
in terms of brightness and contrast, these two factors are partially varied
as well.

4.1 normalizing flows

This section introduces Normalizing Flows on which the density esti-
mation of our proposed methodology is based. First, a general overview
of the concept of NFs and related work is given. Then, the real-NVP
architecture used for DifferNet is explained.

4.1.1 Introduction

A Normalizing Flow (NF [66]) is a generative model that learns trans-
formations between data distributions and well-defined densities as
visualized in Figure 4.3. Unlike conventional neural networks, Normal-
izing Flows map bijectively. With this property, inference can be done
in both directions: First, they are capable of assigning a likelihood to a
given sample. Second, they enable data generation by sampling from the
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Data Space Y Latent Space Z

NF

⇔
z = fNF(y)

y ∼ pY z ∼ pZ with pZ = N (0, I)

Figure 4.3: A Normalizing Flow learns a transformation between an unknown
data distribution to a well-defined distribution, which is typically a
Gaussian. Image is adapted from [89].

modeled distribution. The bijectivity is ensured by implementing a series
of K invertible transformations fi with i = 1, ..., K on the input y as

z = fNF(y) = fK ◦ fK−1 ◦ . . . ◦ f1(y) (4.1)

with z ∈ Z as the latent output and ◦ as the function composition
operator. The inverse of this mapping is given by passing a z in reverse
order through the inverse of these transformations

y = f−1
NF (z) = f−1

1 ◦ f−1
2 ◦ . . . ◦ f−1

K (z). (4.2)

The bijectivity of the transformations ensures that there is a one-to-one
mapping between the input y and the latent output z. This property,
along with the requirement for differentiability of each transformation,
allows us to compute the likelihood of a given sample by evaluating the
density of the latent space distribution, which is typically assumed to be
a simple distribution (e.g., a standard Gaussian), and the Jacobian of fNF.
Based on the change-of-variable formula

pY(y) = pZ(z)
∣∣∣∣det

(
∂z
∂y

)∣∣∣∣ (4.3)

we can factorize the Jacobian determinant det
(

∂z
∂y

)
[89], defining the

output after the i-th transformation hi as

hi = fi ◦ fi−1 ◦ . . . ◦ f1(y) (4.4)



4.1 normalizing flows 35

to formulate the likelihood of a data sample y as

pY(y) = pZ(z)

∣∣∣∣∣ K

∏
i=1

det
(

∂hi
∂hi−1

)∣∣∣∣∣ (4.5)

with det
(

∂hi
∂hi−1

)
being the Jacobian determinant of the transformation fi.

Due to this relation, the Jacobian determinant of each fi should be effi-
ciently computable.

4.1.2 Related Work

A common class of NFs are masked autoregressive flows (MAFs) as
MADE (Germain et al. [90]) which makes use of the Bayesian chain rule
to decompose the density. So far, masked autoregressive flows have been
used to learn distributions of large datasets containing mostly small
images. In contrast, we capture the distribution of a comparably small
number of images at a high resolution. Masked autoregressive flows com-
pute likelihoods fast, but are slow at sampling. Inverse autoregressive
flows, proposed by Kingma et al. [91], show the exact opposite behavior.
Real-NVP [89] can be seen as a special inverse autoregressive flow which
is simplified such that both forward and backward pass is processed
quickly. It utilizes affine transformations as fi which enables a fast com-
putation of the Jacobian which is needed for the likelihood computation
in Eq. 4.3.

Ardizzone et al. [92] propose to use NFs for inverse problems where
non-deterministic backward processes of deterministic forward processes
are to be predicted. They explicitly model the deterministic and non-
deterministic variables in the mapping and refer to their Real-NVP-based
network as Invertible Neural Network (INN). Due to the invertibility, the
stochastic backward process is indirectly learned by training the fixed
forward process. In this way, inverse kinematics and other real-world
problems in medicine and astronomy are modeled. Ardizzone et al.
propose a conditional variant of this approach in a follow-up work [93].
As an application, the ambiguous problem of image coloring is addressed
by extending the INN concept with the grayscale image as a condition.
Fig. 4.4 shows some results obtained by this method. Wehrbein et al. [18]
utilized the conditional INN approach for the ambigious problem of
3D Pose estimation from 2D keypoint detections. It is shown that the
uncertainty in prediction can be obtained from the set of the sampled 3D
hypotheses.



36 differnet

Figure 4.4: Diverse image colorization results obtained by a conditional INN [93].

Figure 4.5: Architecture of one block in the Real-NVP architecture: After a fixed
random permutation, the input is split into two parts that regress scale
and shift parameters to transform their respective counterpart. Symbols
⊙ and ⊕ denote element-wise multiplication and addition, respectively.

The property of Normalizing Flows as an adequate estimator of prob-
ability densities to detect anomalies has not raised much attention in
previous work to this point, although some works present promising
results using Real-NVP and MADE [94]–[96]. However, none of the works
deal with visual data.

4.1.3 Real-NVP

Real-NVP [89] is a specific NF architecture that we used to realize the
bijective transformation for density estimation in DifferNet. This architec-
ture is composed of so-called coupling blocks to implement the series of
invertible transformations f1, f2, ... fn as in Eq. 4.1. The detailed structure
of one block is shown in Figure 4.7. The entire mapping of the flow fNF
is a chain of such blocks.
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Inside the block, the input is first randomly permuted in a fixed manner
which is defined individually for each block before training. After that,
the input yin is split into yin,1 and yin,2 which are usually of the same size.
These parts are used to manipulate each other by calculating element-wise
scale and shift coefficients in the subnetworks s and t; these manipulations
are applied to their respective counterpart successively. The scale and
shift operations are described by

yout,2 = yin,2 ⊙ es1(yin,1) + t1(yin,1)

yout,1 = yin,1 ⊙ es2(yout,2) + t2(yout,2),
(4.6)

with ⊙ as the element-wise product. It can be shown that this computa-
tion is invertible by turning additions into subtractions and multiplica-
tions into divisions (or by using the negative exponent) as

yin,1 = (yout,1 − t2(yout,2))⊙ e−s2(yout,2)

yin,2 = (yout,2 − t1(yin,1))⊙ e−s1(yin,1).
(4.7)

Using an exponential function before scaling preserves the invertibility
by ensuring non-zero coefficients. The internal functions s and t can be
realized by any differentiable function and are usually learned with a
neural network.

Each block first performs a predefined random permutation on the
features to allow each dimension to affect all other dimensions at some
point. The output of one coupling block is given by the concatenation of
yout,1 and yout,2. Note that the input, which may be n-dimensional, could
be permuted, split and concatenated along any axis and may be reshaped
arbitrarily between blocks.

4.2 method

Figure 4.6: Overview of our pipeline: Multiple scales of a transformed input image
are fed into a feature extractor. The distribution of its concatenated
outputs is captured by transforming it via a Normalizing Flow (NF)
into a normal distribution by maximum likelihood training.
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⊙ and ⊕ denote element-wise multiplication and addition, respectively.
Numerical operations are symbolized by grey blocks. White blocks
contain variable names.

Figure 4.6 shows an overview of our pipeline. Our method is based
on density estimation of image features y ∈ Y from the anomaly-free
training images x ∈ X with x ∼ X and y ∼ Y. Let fex : X −→ Y
be the mapping of a pretrained feature extractor which is not further
optimized. The estimation of pY(y), provided by fex(x), is achieved by
mapping from Y to a latent space Z – with a well-defined distribution
pZ(z) – by applying a Normalizing Flow fNF : Y −→ Z. Likelihoods for
image samples are directly calculated from pZ(z). Features of anomalous
samples should be out of distribution and hence have lower likelihoods
than normal images. Likelihoods of multiple transforms on the image
are maximized in training and used in inference for a robust prediction
of the anomaly score. To capture structures at different scales and thus
have a more descriptive representation in y, we define the output of fex
as the concatenation of features at 3 scales.

4.2.1 Architecture

We use the Real-NVP architecture for the NF which is described in sub-
section 4.1.3. The network is fed with vectors, which are the features for
the first block and are randomly permuted and equally split at the begin-
ning of each block. The internal networks si and ti are implemented as a
single fully connected network with ReLU nonlinearities. This network
provides both the scaling and translation coefficients which are obtained
by splitting the output (see Figure 4.7).

Similar to Ardizzone et al. [93], we apply soft-clamping to the values
of s to preserve model stability which is crucial in our case for better
convergence. This is achieved by using the activation

σα(s) =
2α

π
arctan

s
α

(4.8)
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as the last layer of s. This prevents large scaling components by restricting
them to the interval (−α, α).

4.2.2 Training

The goal during training is to find parameters for fNF that maximize
likelihoods for extracted features y ∼ Y which are quantifiable in Z.
With the mapping z = fNF(y) and according to the change-of-variables
formula Eq. 4.3, we describe the optimization problem as maximizing

pY(y) = pZ(z)
∣∣∣∣det

∂z
∂y

∣∣∣∣. (4.9)

This is equivalent to maximizing the log-likelihood, which is more conve-
nient by simplifying log pZ(z) in our case of a Gaussian Z to

log pZ(z) = log

(
1

(2π)
d
2

e−
1
2 ∥z∥2

2

)

= C − ∥z∥2
2

2

(4.10)

with d as dim(z) and C = − d
2 log 2π as a constant which can be ignored

for optimization. We use the negative log-likelihood loss L(y) to obtain a
minimization problem:

L(y) = − log pY(y) = − log pZ(z)− log
∣∣∣∣det

∂z
∂y

∣∣∣∣
L(y) = ∥z∥2

2
2

− log
∣∣∣∣det

∂z
∂y

∣∣∣∣.
(4.11)

Intuitively, the flow fNF is optimized to map all y as close as possible
to z = 0 while penalizing trivial solutions with scaling coefficients close
to zero2. The latter is ensured by the negative log determinant of the
Jacobian ∂z

∂y in L(y). In our case, the log determinant of the Jacobian is
the sum of scaling coefficients before exponentiation.

During Training, L(y) is optimized for features y which are extracted
from various transformations of the training images for a fixed epoch
length. Subsection 4.3.1 describes the training in more detail.

2 The exponentiation inhibits the coefficients from being zero.
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Figure 4.8: Visualization of the procedure for localization: First, a backpropagation
of several rotations of the image is performed up to the input. The
gradients are translated into a map by summing the absolute gradient
of each input channel per pixel. These maps are rotated back and
aggregated by averaging.

4.2.3 Scoring Function

We use the calculated likelihoods as a criterion to classify a sample as
anomalous or normal. To get a robust anomaly score τ(x), the negative
log-likelihoods using multiple transformations Ti(x) ∈ T of an image x
are averaged:

τ(x) = ETi∈T [− log pZ( fNF( fex(Ti(x))))]. (4.12)

As T we choose rotations and manipulations of brightness and contrast.
An image is classified as anomalous if the anomaly score τ(x) is above
the threshold value θ. Thus, the decision can be expressed as

A(x) =

1 for τ(x) ≥ θ

0 for τ(x) < θ
, (4.13)

where A(x) = 1 indicates an anomaly. In Section 4.3, we vary θ to
calculate the Receiver Operating Characteristic (ROC).

4.2.4 Localization

In contrast to several other approaches, DifferNet is not optimized for
localizing the defects on the image. Nevertheless, it localizes areas where
anomalous features occur as it allows for propagating the negative log-
likelihood L back to the input image x. The gradient ∇xc of each input
channel xc is a value indicating how much the pixels influence the error
which relates to an anomaly. For better visibility, we blur these gradients
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Method GeoTrans GANomaly DSEBM OCSVM* 1-NN* DifferNet DifferNet

[97] [41] [64] [54] [35] (ours) (16 shots)

Grid 61.9 70.8 71.7 41.0 55.7 84.0 65.8

Leather 84.1 84.2 41.6 88.0 90.3 97.1 92.9

Tile 41.7 79.4 69.0 87.6 96.9 99.4 98.9

Te
xt

ur
es

Carpet 43.7 69.9 41.3 62.7 81.1 92.9 77.0

Wood 61.1 83.4 95.2 95.3 93.4 99.8 99.2

Bottle 74.4 89.2 81.8 99.0 98.7 99,0 98.5

Capsule 67.0 73.2 59.4 54.4 71.1 86.9 61.4

Pill 63.0 74.3 80.6 72.9 83.7 88.8 65.1

Transistor 86.9 79.2 74.1 56.7 75.6 91.1 76.6

Zipper 82.0 74.5 58.4 51.7 88.6 95.1 88.3

O
bj

ec
ts

Cable 78.3 75.7 68.5 80.3 88.5 95.9 86.4

Hazelnut 35.9 78.5 76.2 91.1 97.9 99.3 97.3

Metal Nut 81.3 70.0 67.9 61.1 76.7 96.1 77.7

Screw 50.0 74.6 99.9 74.7 67.0 96.3 75.9

Toothbrush 97.2 65.3 78.1 61.9 91.9 98.6 92.3

Average 67.2 76.2 70.9 71.9 83.9 94.7 87.3

Table 4.1: Area under ROC in % for detected anomalies of all categories of MVTec
AD [7] by the time of the submission in 2020. DifferNet could set a new
state of the art for most categories and on average. Best results are in
bold, second best underlined. OCSVM and 1-NN are performed on the
same features as DifferNet. 16 shots denotes a model trained on only 16
images.

with a Gaussian kernel G and sum the absolute values over the channels
C according to

gx = ∑
c∈C

|G ∗ ∇xc|, (4.14)

with ∗ as 2D convolution and | · | as the element-wise absolute value,
which results in the gradient map gx. Averaging the maps of multiple
rotations of one single image – after rotating back the obtained maps –
gives a robust localization. This procedure is visualized in Figure 4.8.

4.3 experiments

Within this subsection, we detail the experimental methodology and
outcomes of the proposed approach. This includes implementation de-
tails, a quantitative evaluation of detection performance, a qualitative
analysis of localization, and ablation studies to analyze the characteristics
of DifferNet.
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Figure 4.9: ROC-Curve for different methods for detecting defects in MTD by the
time of the submission in 2020. DifferNet is significantly more accurate
in detecting the defects compared to other approaches.

4.3.1 Implementation Details

For all experiments, the convolutional part of AlexNet [98] serves as the
feature extractor and global average pooling is applied on the feature
maps at each scale. We tested more complex topologies, for instance,
ResNet [99] and VGG [100], but did not observe better performance.
The feature extractor is pretrained on ImageNet [101] and remains fixed
during training. We use features at 3 scales with input image sizes of
448 × 448, 224 × 224 and 112 × 112 pixels - resulting in 3 · 256 = 768
features. The Normalizing Flow consists of 8 coupling blocks with fully
connected networks as internal functions s and t. These include 3 hidden
dense layers with a size of 2048 neurons and ReLU activations. The
clamping parameter is set to α = 3. For training, we use the Adam
Optimizer [102] with the author-suggested β- parameters and a learning
rate of 2 · 10−4. As transformations T , random rotations, which are
uniformly distributed in the interval [0, 2π], are applied. In addition, we
manipulated the contrast and brightness of the magnetic tiles with a
uniformly distributed random factor in the interval [0.85, 1.15]. In each
case of training and inference, the same transformations are applied. The
models are trained for 192 epochs with a batch size of 96.
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Figure 4.10: Normalized histogram of DifferNet’s anomaly scores for the test
images of MTD. As can be seen, the score is a reliable indicator for
defects except for a narrow range of borderline cases. Note that the
rightmost bar summarizes all scores above 3.

4.3.2 Detection

For reporting the performance of our method regarding the detection
of anomalies, we follow [41] and compute the Area Under Receiver
Operator Characteristics (AUROC) depending on the scoring function
described in Section 3.4. It measures the area under the true positive
rate as a function of the false positive rate. The AUROC metric is not
sensitive to any threshold or the percentage of anomalies in the test
set. Besides other anomaly detection methods, we compare our method
to the baselines one-class SVM (OCSVM) [54] and the distance to the
nearest neighbor (1-NN) after PCA reduction to 64 dimensions and z-
score normalization [35]. Note that both methods OCSVM and 1-NN
are adapted to our setting: We used every technique of our pipeline (see
Figure 4.1) but replaced the Normalizing Flow with them. Consequently,
the mean score over several transformations is evaluated. Apart from
these approaches and some state-of-the-art models, we compare our
method with GeoTrans [97] which computes an anomaly score based
on the classification error of applied transformations. Table 4.1 shows
the results for MVTec AD. Compared to other approaches, our method
outperforms existing methods in almost every category, up to a large
margin of 15%. In all of the 15 categories, our method achieves an AUROC
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Method AUROC [%]

GeoTrans[97] 75.5

GANomaly[41] 76.6

DSEBM [64] 57.2

ADGAN [103] 46.4

OCSVM [54] 58.7

1-NN [35] 80.0

DifferNet (ours) 97.7

Table 4.2: Area under ROC in % for detecting anomalies on MTD

of at minimum 84%, which shows that our approach is not limited to
a specific set of defects or features. The fact that 1-NN outperforms
other competitors except us, demonstrates that our feature extraction and
evaluation is well-suited for the problem.

We can observe similar characteristics on MTD, seen in Table 4.2. The
ROC-Curve in Figure 4.9 shows that our method provides a much higher
true positive rate for any false positive rate. DifferNet achieves a recall of
about 50% without any false positives among 191 defect-free test images.
The histogram of anomaly scores is visualized in Figure 4.10. There is a
large subset of defective samples whose scores differ significantly from
all scores of non-defective samples. The assignment of extremely high
scores without any false positives is a characteristic of our method and
can be similarly observed for other evaluated product categories.

4.3.3 Localization

Results of the localization procedure described in Subsection 4.2.4 are
shown in Figure 4.11. The localizations are accurate for many types,
sizes and shapes of anomalies; despite the average pooling of feature
maps before being processed by the Normalizing Flow. Our architecture
produces meaningful gradients which can be explained by the model’s
architecture: First, AlexNet is relatively shallow such that noisy or van-
ishing gradients are prevented. Second, the bijectivity of the Normalizing
Flow causes a direct relation between all image features y and all values
of z with non-zero gradients. The gradients tend to appear speckled for
larger anomalous regions. We conject that the reason is that pixels, whose
features influencing the anomaly score, are usually not located evenly
distributed in the corresponding region. For some cases, the localization
does not sharply segment the error as in Fig. 4.12. However, our method
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Figure 4.11: Localization of anomalous regions of different categories in MVTec
AD. The upper rows show the original anomaly images, the mid
rows the localizations provided by DifferNet and the lower rows the
superimposition of both. They were generated by backpropagating
the negative log-likelihood loss to the input image.

enables the human to perceive the defective region in most cases and
interpret which areas influenced the network’s decision to what extent.

4.3.4 Ablation Studies

To quantify the effects of individual strategies used in our work, we
performed an ablation study by comparing the performance on MVTec
AD [7] when modifying the strategies. In addition, the model’s behavior
for different characteristics of the training set is analyzed.
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Figure 4.12: Failure cases of the localization. Although the error is highlighted,
there is a noise pattern with high gradients in places in the surround-
ing area.

Config. A B C D E F G

multi-scale ✗ ✗ ✓ ✓ ✓ ✓ ✓

train transf. ✗ ✓ ✗ ✓ ✓ ✓ ✓

# test transf. 1 64 1 1 4 16 64

AUROC [%] 84.4 90.2 86.6 86.5 91.6 94.1 94.7

Table 4.3: Average detection performance for all categories of MVTec AD when
modifying our proposed training and evaluation strategy. The columns
show parameter configurations named from A to F. Parameters that
differ from our proposed configuration are underlined.
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Figure 4.13: Detection performance of DifferNet, measured by AUROC, depending
on the training set size of MTD and of some categories of MVTec AD.

preprocessing pipeline and evaluation

Table 4.3 compares the detection performance on MVTec AD for differ-
ent configurations regarding multi-scaling, the usage of transformations
in training and the number of used transformations Ti for evaluation.
Having one test transformation means that only the original image was
used for evaluation. Note that we outperform existing methods even
without the proposed transformations and multi-scale strategy. Since
relevant features could appear at any scale, it is beneficial to include
features at multiple scales which is shown by an AUROC improvement
of 4.7%. Having transformed samples in training is crucial as it enables
multi-transform evaluation and helps with generalization and data aug-
mentation. The similar performances of configurations C and D reflect
that applying transformations in training is only useful if they are per-
formed in inference as well. The more of these transformations are then
used, the more meaningful the score is, as the rising performance of
configurations D to G shows.

number of training samples

We investigate the effect of the training set size on the detection
performance as shown on Figure 4.13 and on the right of Table 4.1. The
reported results are the average over three runs with different random
subsets per training set size. It can be seen that our model and training
procedure allow for a stable training even on small training sets. This can
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be explained by the usage of multiple transformations and the averaging
of feature maps. Our model profits from this strategy which is a mixture
of augmentation and compression. DifferNet requires only 16 training
samples to outperform existing approaches that use the whole training
set with 369 samples per class on average. For some classes, the subsets
cannot represent the feature variation of normal samples.

multimodality

The feature distributions of the evaluated categories are unimodal. We
also investigated the performance on multimodal distributions. Therefore,
a model was trained on all 15 categories of MVTec as training data. To
capture this more complex distribution, we increased the number of
coupling blocks to 12. This experiment led to a mean AUROC of 90.2%
which shows that our method is able to handle multimodal distributions
well. The regressing sub-blocks inside the NF appear to capture the
modes and switch between them depending on their input.

4.4 conclusion

This chapter presents DifferNet which detects defects on images by uti-
lizing a normalizing-flow-based density estimation of image features at
multiple scales. Likelihoods of several transformations of a single image
are used to compute a robust anomaly score. Therefore, there is no need
for a large amount of training samples. The design and scoring function
is chosen such that image gradients can be exploited to localize defects.
As shown, the method also scales to multimodal distributions which
resemble many real-world settings.

4.5 open problems

Even though the approach seems effective via its theoretical foundation
and some measure of robustness, several problems still remain: The
average pooling of features into vectors makes the representation much
more compact and facilitates the optimization and processing of the data,
but introduces a massive loss of important local information. First, the
averaging suppresses small-scale anomalies, and second, the local context
of features cannot be included in the decision due to the information loss
regarding neighborhoods. For example, a feature may in principle occur
in non-anomalous images, but only in the neighborhood of certain other
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features. Thus, processing the entire feature maps would in principle
allow for much more precise anomaly detection.

Furthermore, the method strongly benefits from the fact that different
augmentations of the image are processed during the evaluation in order
to detect or localize defects. While this can be solved by parallelization, it
would be costly in many real-world industrial applications, where CPU-
based embedded devices are today rather used than high-tech GPUs.
Therefore, evaluation with only one network pass would be desirable.

In principle, localization enables a useful highlighting of many fault
types, but struggles in some cases as it produces noisy maps in which the
error is hardly identifiable as in Figure 4.12. Besides, backpropagation
requires a potentially critical time and memory overhead. Ideally, regular
inference should already bring a local interpretation of the anomaly score.

These issues motivate several changes in the methodology, which we
implement in the following chapter with the extension CS-Flow.



5
C R O S S - S C A L E - F L O W

In the last chapter, we introduced DifferNet to show how NFs can be used
to identify anomalous examples on image data by performing density
estimation on previously extracted feature vectors. This chapter is largely
based on the publication "Fully Convolutional Cross-Scale-Flows for
Image-based Defect Detection" [13] which retains the principle from
DifferNet of density estimation on image features while addressing the
open problems listed in Section 4.5 by introducing a new flow architecture.
The implementation is freely accessible at GitHub1github.com/marco-
rudolph/cs-flow.

Instead of performing density estimation on feature vectors as in
DifferNet, which causes a massive information loss due to the average
pooling of feature maps, density estimation in CS-Flow is based on a
set of multi-scale feature maps as visualized in Fig. 5.1. Estimation on
the composite of different-sized feature maps is explicitly targeted since
chapter 4.3.4 and subsequent experiments of this chapter show that
multi-scale approaches have benefits for detection performance due to
broader coverage of detectable features. We aim for interacting feature
maps that enables the utilization of correlations of different-sized feature
maps which is why the architecture is designed for parallel processing
of multi-scale feature maps. The size of the respective maps should be
maintained to allow for interactions inside the internal networks between
fine-grained local features (on the larger maps) as well as more global
features (on the smaller maps).

In CS-Flow, the inputs and outputs consist of a pyramid of multi-scale
feature maps. On each scale, these are split along the channel dimension
within the coupling blocks as in DifferNet, also resulting in feature
pyramids. The internal networks receive these pyramids as input and
output pyramids for scaling and shift coefficients. We keep the local
structure of the feature maps to consider the local neighborhood for the
occurrence of features. The fully connected networks from DifferNet are
replaced with small fully convolutional subnetworks with parallel paths
that act across scales: The addition of feature maps after performing
resizing operations within the internal networks enables the interactions

1 github.com/marco-rudolph/cs-flow

50
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Figure 5.1: CS-Flow detects and localizes defects based on the density estimation
of feature maps from the differently sized input images. We process
the multi-scale feature maps jointly, using a fully convolutional Nor-
malizing Flow with cross-connections between scales.

between the scales. By using fully convolutional internal networks in
combination with shuffling, splitting, and recombining the channels
within the coupling blocks, the local structure of the feature maps is
maintained. In this way, the output maps give a direct indication of
the occurrence of anomalies as they implicitly represent a likelihood
for the respective image region. This is because all image regions as a
composite are optimized to a Gaussian distribution for normal images.
Feeding the flow with significantly more data, as feature maps have
far more dimensions compared to feature vectors, and preserving more
information while not having a massive increase in model parameters by
using convolutions causes the network to be more robust such that the
inference of multiple augmentations as for DifferNet is not necessary here.
This saves a lot of computation time with better detection performance.
The following chapter describes the method formally and in detail.

5.1 method

To detect defects in images, we first learn a statistical model of features
y ∈ Y of defect-free images x ∈ X similar to DifferNet in the previous
chapter. During inference, we assign a likelihood to the input image x by
using a density estimation on image features y, assuming a low likelihood
is an indicator of a defect. The density estimation is learned via a bijective
mapping of the unknown distribution pY of the feature space Y to a latent
space Z with a Gaussian distribution pZ. Thus, as shown in Figure 5.1,
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our method is divided into the steps feature extraction ffe : X → Y and
density estimation fcsf : Y → Z .

From the input image x we extract the features y by using a pretrained
neural network ffe(x) = y which will remain unchanged during training.
To have a more descriptive representation of x, feature maps of different
scales are included in y via extracting features from s different resolutions
of the image. In contrast to DifferNet from Chapter 4, CS-Flow is able to
perform density estimation on different scaled full-sized feature maps
in parallel instead of concatenated feature vectors. Thus, important fine-
grained positional and contextual information is better maintained. We
define y = [y(1), ..., y(nmaps)] with y(i) as the 3D feature tensor of the
image x(i) at scale i ∈ {1, ..., nmaps}. Our proposed cross-scale-flow fcsf
transforms the feature tensors bijectively and in parallel to

fcsf(y
(1), ..., y(nmaps)) = [z(1), ..., z(nmaps)] = z ∈ Z (5.1)

with the same dimensionality2 as y. The likelihood pZ(z) is measured
according to the target distribution which in our case is a multivariate
standard normal distribution N (0, I).

We use the likelihood of pZ(z) to decide whether x is anomalous
according to a threshold θ:

A(x) =

1 for pZ(z) < θ

0 else
. (5.2)

5.1.1 Cross-Scale Flow

The cross-scale flow is a chain of so-called coupling blocks, each performing
affine transformations. As the base architecture of the coupling block we
chose Real-NVP [89] as described in Subsection 4.1.3. In the following,
we describe how we integrated different-sized feature tensors into this
concept.

The detailed structure of one block with s = 3 is shown in Figure 5.2.

Inside, each input tensor y(i)in is first randomly permuted and evenly

split across its channel dimension into the two parts y(i)in,1 and y(i)in,2. Both
parts, each as a compound of the s scales, manipulate each other by
regressing scale-wise and element-wise scale and shift parameters that
are successively applied to their respective counterparts. Finally, we

2 For better readability, in the following z without any index represents a vector which is the
concatenation of the flattened tensors [z(1) , ..., z(nmaps) ]. The same applies for y.
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Figure 5.2: Architecture of one block inside the cross-scale flow: After a fixed
random permutation, every input tensor is split into two parts across
the channel dimension where each ensemble is used to estimate scale
and shift parameters that transform the respective counterpart. Symbols
⊙ and ⊕ denote element-wise multiplication and addition, respectively.

obtain the outputs [y(i)out,1, y(i)out,2] which are concatenated for each scale to
form the output of the block.

The scale and shift parameters are estimated by coupling block-
individual subnetworks r1 and r2 whose output is split into [s1, t1] and
[s2, t2] and is then used as follows:

yout,2 = yin,2 ⊙ eγ1 s1(yin,1) + γ1 t1(yin,1)

yout,1 = yin,1 ⊙ eγ2 s2(yout,2) + γ2 t2(yout,2),
(5.3)

with ⊙ as the element-wise product. To initialize the model stably, we
introduce the learnable block-individual scalar coefficients γ1 and γ2.
They are initialized to 0 and thus cause yout = yin. The affinity property is
preserved by having non-zero scaling coefficients with the exponentiation
in Equation 5.3. The internal networks r1 and r2 is implemented as a
fully convolutional network that regresses both components by splitting
the output (see Figure 5.3 for details of the architecture). Features are
processed with one hidden layer per scale on which the number of
channels is increased. Motivated by HRNet [104], we adjust the size of
individual feature maps of different scales by bilinear upsampling or
strode convolutions before aggregation by summation.

As for DifferNet in Chapter 4, we apply soft-clamping to the scale
components s, as proposed by Ardizzone et al. [93], to preserve model
stability in spite of the exponentiation. The clamping is applied as the
last layer to the outputs s1 and s2 by the activation

σα(s) =
2α

π
arctan

s
α

. (5.4)
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Figure 5.3: Architecture of the internal networks r inside the coupling blocks. Con-
volutions are performed at two levels, with cross-connections between
scales at the second level. Feature map resizing is implemented by
upsampling and strode convolutions. Aggregation is implemented by
summation. The output is split across the channel dimension to obtain
the scale and shift parameters.

This prevents extreme scaling components by restricting the values to the
interval (−α, α).

5.1.2 Learning Objective

During training, we want the cross-scale flow fcsf to maximize the likeli-
hoods of feature tensors pY(y) which we obtain by mapping them to the
latent space Z where we model a well-defined density pZ. As shown in
Subsection 4.2.2, this results in minimizing

L(y) = − log pY(y) =
∥z∥2

2
2

− log
∣∣∣∣det

∂z
∂y

∣∣∣∣ (5.5)

with
∣∣∣det ∂z

∂y

∣∣∣ denoting the absolute determinant of the Jacobian. The
logarithm of this term simplifies in our case to the sum of all values of s
since the Jacobian of the element-wise product operator in Equation 5.3
is a diagonal matrix. The training is conducted over a fixed number of
epochs. To stabilize it further, we limit the ℓ2-norm of the gradients to 1.
Subsection 5.2.1 describes the training in more detail.
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5.1.3 Localization

In Chapter 4, the latent space of the Normalizing Flow has been used such
that all entries of z are considered to produce a score at the image level.
Since CS-Flow processes feature maps fully convolutionally, positional
information is preserved. This allows for the interpretation of the output
in terms of the likelihood of individual image regions, which in our
application is the localization of the defect.

Analogous to the definition of the anomaly score of the entire image,
we define an anomaly score for each local position (i, j) of the feature map
y(k) by aggregating the values along the channel dimension with ∥zk

i,j∥2
2.

Thus, we can localize the defect by marking image regions with high
norms in the output feature tensors zs.

5.2 experiments

In this section, the experimental methodology and results of the proposed
approach is presented. This comprises the implementation details, a quan-
titative evaluation of the detection performance, a qualitative analysis of
the localization, and ablation studies to demonstrate the effectiveness of
CS-Flow.

5.2.1 Implementation Details

We utilize the output of layer 36 of EfficientNet-B5 [86] as the feature ex-
tractor for all experiments as it provides feature maps having a good bal-
ance between feature semantic and spatial resolution. The feature extrac-
tor remains fixed during training after being trained on ImageNet [101].
For MVTec AD, we use features at nmaps = 3 scales with input image
sizes of 768 × 768, 384 × 384 and 192 × 192 pixels - resulting in feature
maps with spatial dimensions 24 × 24, 12 × 12 and 6 × 6 and each 304
channels. Due to the smaller original image size of MTD samples, we
resized the images to 384 × 384, 192 × 192 and 96 × 96 pixels. We use
nblocks = 4 coupling blocks inside CS-Flow using 3 × 3 convolutional
kernels in internal networks for the first 3 blocks and 5× 5 kernels for the
last block. The clamping parameter is set to α = 3 and the negative slope
of the leaky ReLU is set to 0.1. For optimization, we use Adam [102] with
a learning rate of 2 · 10−4, a weight decay of 10−5 and momentum values
β1 = 0.5 and β2 = 0.9. We train our models with a batch size of 16 for
a fixed number of 240 epochs for MVTec AD and 60 epochs for MTD,
respectively, since there is no validation set to define a stopping criterion.
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2020

Category GeoTrans GAN DSEBM 1-NN DifferNet ARNet Rippel PaDiM CS-Flow (ours)

[42] [97] [41] [64] [47] [35] [12] [48] (16 shots/full set)

Grid 61.9 70.8 71.7 81.8 84.0 88.3 93.7 - 93.3 99.0

Leather 84.1 84.2 41.6 100 97.1 86.2 100 - 100 100

Tile 41.7 79.4 69.0 100 99.4 73.5 100 - 99.9 100

Carpet 43.7 69.9 41.3 98.5 92.9 70.6 99.6 - 100 100

Te
xt

ur
es

Wood 61.1 83.4 95.2 95.8 99.8 92.3 99.3 - 99.5 100

Avg. Text. 59.6 77.5 63.8 96.1 94.6 82.2 98.5 99.0 98.5 99.8

Bottle 74.4 89.2 81.8 99.6 99.0 94.1 99.0 - 100 99.8

Capsule 67.0 73.2 59.4 89.4 86.9 68.1 96.3 - 83.1 97.1

Pill 63.0 74.3 80.6 79.9 88.8 78.6 91.4 - 90.9 98.6

Transistor 86.9 79.2 74.1 95.4 91.1 84.3 98.2 - 98.0 99.3

Zipper 82.0 74.5 58.4 97.1 95.1 87.6 98.8 - 95.3 99.7

Cable 78.3 75.7 68.5 95.1 95.9 83.2 99.1 - 94.4 99.1

O
bj

ec
ts

Hazelnut 35.9 78.5 76.2 98.2 99.3 85.5 100 - 97.9 99.6

Metal Nut 81.3 70.0 67.9 91.1 96.1 66.7 97.4 - 99.1 99.1

Screw 50.0 74.6 99.9 91.4 96.3 100 94.5 - 65.2 97.6

Toothbrush 97.2 65.3 78.1 94.7 98.6 100 94.1 - 85.6 91.9

Avg. Obj. 71.6 75.5 74.5 93.2 94.7 84.8 96.9 97.2 91.0 98.2

Average 67.2 76.2 70.9 93.9 94.7 83.9 97.5 97.9 93.5 98.7

Table 5.1: Area under ROC in % for detecting defects of all categories of MVTec
AD [7] by the time of the submission in 2021. CS-Flow could set a new
state of the art for most categories and on average. Best results are
in bold. 16 shots denotes that a subset of only 16 random images per
category was used in training. Besides the average value, detailed results
of PaDiM [48] were not provided by the authors. Methods listed to the
right of the central vertical line have been published after the submission
of DifferNet.

Method AUROC [%] ↑
GeoTrans [42] 75.5

GANomaly [41] 76.6

DSEBM [64] 57.2

1-NN [35] 97.8

DifferNet [12] 97.7

Rippel [47] 98.0

PaDiM [48] 98.7

CS-Flow (ours) 99.3

Table 5.2: Area under ROC in % for detecting anomalies on MTD.
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Figure 5.4: Distribution of negative log-likelihood for test images of MTD as a
normalized histogram. By this criterion, the defective samples are
almost completely separable from the non-defective samples. Note that
for clarity, the rightmost bar summarizes all scores above 3.

A training run of one class of MVTec AD takes about 45 minutes on
average using a NVIDIA RTX 2080 Ti.

5.2.2 Detection

In order to measure and compare the defect detection performance of
our models, we follow [12] and calculate the area under ROC (AUROC)
at image-level on the respective test sets as described in Section 3.4. The
ROC (Receiver Operating Characteristics) curve relates the true positive
rate to the false positive rate with respect to a parameter (in our case the
threshold θ). Thus, it is invariant to the ratio of anomalies in the set and
is therefore representative of realistic settings. Table 5.1 shows the defect
detection performance of our method and other state-of-the-art works
on the individual categories of MVTec AD. For a fair comparison, we
evaluated [35] and [47] on the same multi-scale features as our method
which improved their performance in every case. Here, we averaged
the feature maps of different scales individually, resulting in a feature
vector with 3 · 304 = 912 dimensions. Note that PaDiM [48] is originally
based on EfficientNet-B5 [86]. Since the results of [12] dropped heavily
with this backbone, we report the paper-given results with AlexNet [98].
We outperform or match the competitors on 12 of 15 categories with
an average AUROC of 98.7%, which considerably closes the gap to the
optimum of 100% compared to competitors. CS-Flow works reliably on a
wide range of defects having an AUROC over 97% in 14 of 15 categories.
Our method remains competitive when training on only 16 samples
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Figure 5.5: Comparison of defect detection performance of different methods on
MTD by the time of the submission in 2020. The graphs are the ROC
Curves of the individual methods. Best viewed in color.

per category, with even showing roughly the same performance on the
texture categories.

We also set a new state of the art of 99.3% AUROC on MTD as shown
in Table 5.2. As shown in Figure 5.4, the likelihood assigned by our model
clearly distinguishes the defective from the non-defective parts, with only
a few exceptions. Being just 0.7% AUROC close to an optimal ROC, we
want to emphasize that in this metric a margin of a few percent compared
to competitors is a relatively strong increase in performance as visualized
in Figure 5.5.

5.2.3 Localization

Although the objective of our approach is to detect defects on image
level, it can also be used to localize defective regions in images, due to
its global and local feature-preserving nature. In this section, we study
the localization, as described in Subsection 5.1.3. Our goal is to give
quick visual feedback to an operator. Figure 5.6 shows the visualization
of the highest scale outputs z(1). These were scaled up with a bilinear
interpolation after summing up the squared values along the channel
dimension. It can be seen that the magnitude of the output values is
directly related to the occurrence of anomalous regions at the respective
position. Therefore, our method localizes anomalies of various sizes
with respect to color, pattern and shape. Except for dilations due to the
convolutional receptive field, defective regions are determined properly.
We do not aim to provide pixel-precise segmentations as the method
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Method AUROC [%] ↑
single scale NF (768 × 768) 97.8

single scale NF (384 × 384) 96.8

single scale NF (192 × 192) 96.1

separate multi-scale 98.2

concat multiscale 98.0

CS-Flow (ours) 98.7

Table 5.3: Ablation study on MVTec AD with varying strategies regarding the
usage of scales.

nblocks 1 2 3 4 5 6

AUROC [%] ↑ 94.6 97.8 98.5 98.7 98.7 98.6

Table 5.4: Ablation study on MVTec AD for a different number of coupling blocks.

is not optimized for it and processes small-resolution feature maps.
Nevertheless, this visualization helps in the interpretation of the output
in practice to quickly find or assess the potential error.

5.2.4 Ablation Studies

To quantify the influence of the individual design decisions of our model,
we report results obtained when varying the hyperparameters of our
method. Table 5.3 shows the results of these experiments. We measure the
impact of the multi-scale approach on the defect detection performance.
To this end, we train models on feature maps from one of the three scales
at a time (denoted as single scale NF). The results confirm that the features
of a single scale are weaker with respect to the discriminability between
defective and non-defective samples. Furthermore, we set another base-
line by adding the log-likelihoods provided by the networks from every
scale (denoted as separate multi-scale). The increase in AUROC compared
to the individual performance for the single scale models demonstrates
that the features of different scales complement each other well to obtain
a more robust score. Nevertheless, this method is 0.5% AUROC below the
performance of our joint training of the individual scales with CS-Flow.
To test our architecture against a naive approach of joint training, we
feed a single-scale NF the concatenation of differently sized feature maps
along the channel dimension after upscaling each of them to the highest
feature map size with bilinear interpolation, comparable to [48]. This
setup (denoted as concat mutiscale) results in a performance drop of 0.7%,
which justifies our cross-convolutional multi-scale procedure.
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Figure 5.6: Defect localization of one defective example per category of MVTec AD
and MTD. The rows each show the original image, the localization and
the overlay of both images, from top to bottom. The localization maps
show the sum of squares along the channel dimension of the network’s
output at the highest scale.
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In another experiment, we studied the influence of the number of
coupling blocks. The results in Table 5.4 show that the performance
improves with increasing number of coupling blocks up to nblocks = 4
and then saturates.

To test our model on a setting with more intra-class variance in the
normal data, we additional experiment training simultaneously with all
15 classes of MVTec AD as normal data. The average detection AUROC is
98.2% which shows that our model can handle multi-modal distributions.

5.3 conclusion

This chapter presents the semi-supervised method CS-Flow to effectively
detect and localize defects on feature tensors of different scales using
Normalizing Flows. We utilize the context within and between multi-
scale feature maps by integrating cross-convolution blocks inside the
Normalizing Flow to assign likelihoods and detect unlikely samples as
defects. This addresses weaknesses of previous methods that struggle
either due to restrictions of overly simplified data representations or
limited distribution models and enables our method to set state-of-the-art
performance on MVTec AD and MTD. CS-Flow is robust to few training
samples, provides an image-level result with just one inference step, and
provides localization directly at the same time.

5.4 open problems

Even though CS-Flow already shows near-perfect results on current
benchmarks, the detection performance drops for more challenging sce-
narios when the intra-class variance of normal data is more complex as
shown in the following chapter. This raises the question of what inherent
weaknesses the usage of Normalizing Flow has, which in theory should
provide near-ideal results in terms of density estimation. To this end, we
hypothesize the following:

The architecture of the Normalizing Flow is susceptible to unstable
training. The transformations within the blocks can trigger chain reac-
tions of noise, which are amplified by the exponentiation of the scaling
coefficients, resulting in a potential of exploding gradients, as discussed
in [93]. Instability can, for example, lead to normal data being mapped
outside the normal distribution, as the network is sensitive to small input
changes which is further enhanced by rewarding a high Jacobian deter-
minant in the training (see Eq. 5.5). Although the instability is partially
mitigated by limiting the gradients and soft-clamping the scaling coef-
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ficients, the latter limits the flexibility of the transformation, creating a
tradeoff between stability and flexibility.

In addition, density estimation optimization includes the background,
which often takes up more than half of the image. Consequently, the
NF will optimize to assign this portion of the probability mass to the
background and model minimal changes in it, although the detection
of it should be trivial and anomalies usually cannot be found in this
area. As a result, the capacity of parameters and probability mass of the
NF is not concentrated on the relevant part of the foreground. Ideally, a
separate treatment of foreground and background would be desirable.

These concerns drive us to alternate the methodology in the subsequent
chapter introducing Asymmetric Student-Teacher Networks.



6
A S Y M M E T R I C S T U D E N T- T E A C H E R N E T W O R K S

In the previous two chapters, we have shown how a Normalizing Flow
can provide density estimation for effective anomaly detection on RGB
images. However, there are also limitations of CS-Flow pointed out
in chapter 5.4, which include the flexibility-stability tradeoff of NFs
and the lack of missing foreground/background distinction. Based on
these problems, we introduce in this chapter a method based on our
work "Asymmetric Student-Teacher Networks for Industrial Anomaly
Detection" [14]. Here, we adopt some techniques from CS-Flow and
combine them with the concept of student-teacher networks which we
want to briefly recap in the following.

As reviewed in detail in chapter 2.2.4, several AD methods are based on
student-teacher networks [43]–[46], [105] where first the teacher is trained
on a pretext task to learn a semantic embedding and in a second step, the
student is trained to match the output of the teacher. The motivation is
that the student can only match the outputs of the teacher on normal data
since it is trained only on normal data. Thus, the distance between the
outputs of student and teacher is used as an indicator of an anomaly at
test time which is visualized in Figure 6.1. It is assumed that this distance
is larger for defective examples compared to defect-free examples.

However, this is not necessarily the case in previous work, since we
discovered that both teacher and student are conventional (i. e. non-

Figure 6.1: Concept of student-teacher approaches: Anomaly scores are deter-
mined by evaluating the regression error between the student and
teacher network. Increased regression indicates anomalous observa-
tions. Image is taken from [44].
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Figure 6.2: Toy example with mini-MLPs: The students were optimized to match
the outputs in the grey area. While the symmetric student-teacher
pair (top) generalizes unintentionally and maps anomalous data very
similarly, the distance between student and teacher outputs can be used
for anomaly detection in the asymmetric student-teacher pair (bottom).

injective) neural networks with identical architecture. A student with
similar architecture tends to undesired generalization, such that it ex-
trapolates similar outputs as the teacher for inputs that are out of the
training distribution, which, in turn, gives an undesired low anomaly
score. This effect is shown in Figure 6.2 using an explanatory experiment
with one-dimensional data: If the same neural network with one hidden
layer is used for student and teacher, the outputs are still similar for
anomalous data in the yellow area of the upper plot. In contrast, the
outputs for anomalies diverge if an MLP with 3 hidden layers is used as
the student.

In general, it is not guaranteed that an out-of-distribution input will
cause a sufficiently large change in both outputs due to the missing
injectivity of common neural networks. In contrast to Normalizing Flows,
conventional networks have no guarantee to provide out-of-distribution
outputs for out-of-distribution inputs. These issues motivate us to use an
asymmetric student-teacher pair (AST): A bijective Normalizing Flow [66]
acts as a teacher while a conventional backbone model acts as a student.
In this way, the teacher guarantees to be sensitive to changes in the input
caused by anomalies. Furthermore, the usage of different architectures
and thus of different sets of learnable functions enforces the effect of
distant outputs for out-of-distribution samples.

As a pretext task for the teacher, we optimize to transform the distri-
bution of image features and/or depth maps to a normal distribution
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via maximum likelihood training which is equivalent to a density es-
timation [89] as in chapters 4 and 5 where the likelihoods are directly
used as anomaly score. We show that our student-teacher distance is a
better measure for anomaly detection compared to the obtained likeli-
hoods by the teacher. The advantage to using a Normalizing Flow itself
for anomaly detection is that a possible misestimation in likelihood can
be compensated for: If a low likelihood of being normal is incorrectly
assigned to normal data, this output can be predicted by the student,
thus still resulting in a small anomaly score. If a high likelihood of being
normal is incorrectly assigned to anomalous data, this output cannot be
predicted by the student, again resulting in a high anomaly score. In this
way, we combine the benefits of student-teacher networks and density
estimation with Normalizing Flows.

The method is not limited to RGB images and can also handle 3D
scans or their combination by evaluating on the MVTec 3D-AD dataset
presented in Section 3.2. We further use the depth maps to model fore-
ground and background which helps us to focus the optimization and
detection on the foreground. Furthermore, a positional encoding is used
to consider the position as context to the features to detect misplace-
ments. In the upcoming section, we present a thorough and formal
description of the method. The implementation is publicly available at
GitHub1github.com/marco-rudolph/ast.

6.1 method

Our goal is to train two models, a student model fs and a teacher model ft,
such that the student learns to regress the teacher outputs on defect-free
image data only. The training process is divided into two phases: First, the
teacher model is optimized to transform the training distribution pX to a
normal distribution N (0, I) bijectively with a Normalizing Flow. Second,
the student is optimized to match the teacher outputs by minimizing the
distance between fs(x) and ft(x) of training samples x ∈ X. We apply
the distance for anomaly scoring at test time, which is further described
in Subsection 6.1.2.

We follow [13], [43], [106] and use extracted features obtained by a
pre-trained network on ImageNet [101] instead of RGB images as direct
input for our models. Such networks have been shown in Chapters 4

and 5 to be universal feature extractors whose outputs carry relevant
semantics for industrial anomaly detection.

1 github.com/marco-rudolph/ast
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Figure 6.3: Visualization of pixel unshuffling with d = 2. The pixels within a d × d
block are each divided into d2 channels.

In addition to RGB data, our approach is easily extendable to multi-
modal inputs including 3D data. If 3D data is available, we concatenate
depth maps to these features along the channels. Since the feature maps
are reduced in height and width compared to the depth map resolution
by a factor d, we apply pixel-unshuffling [107] by grouping a depth image
patch of d × d pixels as one pixel with d2 channels to match the dimen-
sions of the feature maps. This procedure is visualized in Figure 6.3 for
d = 2.

Any 3D data that may be present is used to extract the foreground.
This is straightforward and reasonable whenever the background is static
or planar, which is the case for almost all real applications. Pixels that
are in the background are ignored when optimizing the teacher and
student by masking the distance and negative log-likelihood loss, which
are introduced in Subsections 6.1.1 and 6.1.2. If no 3D data is available,
the whole image is considered as foreground. Details of the foreground
extraction are given in Subsection 6.1.3.

Similar to [106], we use a sinusoidal positional encoding [108] for the
spatial dimensions of the input maps as a condition for the Normalizing
Flow ft. In this way, the occurrence of a feature is related to its position to
detect anomalies such as misplaced objects. An overview of our pipeline
is given in Figure 6.4.

6.1.1 Teacher

Similar to DifferNet and CS-Flow in chapters 4 and 5, we train a Normal-
izing Flow based on Real-NVP [89] to transform the training distribution
to a normal distribution N (0, I). In contrast to our previous work, we do
not use the outputs to compute likelihoods and thereby obtain anomaly
scores directly. Instead, we interpret this training as a pretext task to
create targets for our student network. Furthermore, the NF is extended
with a condition as in [93]. In the following, we recap the Real-NVP
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architecture described in detail in subsection 4.1.3, along with our use of
it.

Our Normalizing Flow consists of multiple subsequent affine coupling
blocks. Let the input x ∈ Rw×h×nfeat be feature maps with nfeat features of
size w× h. Within these blocks, the channels of the input x are split evenly
along the channels into the parts x1 and x2 after randomly choosing
a permutation that remains fixed. These parts are each concatenated
with a positional encoding c as a static condition. Both are used to
compute scaling and shift parameters for an affine transformation of the
counterpart by having subnetworks si and ti for each part:

y2 = x2 ⊙ es1([x1,c]) + t1([x1, c])

y1 = x1 ⊙ es2([y2,c]) + t2([y2, c]),
(6.1)

where ⊙ is the element-wise product and [·, ·] denotes concatenation.
The output of one coupling block is the concatenation of y1 and y2 along
the channels. Thus, we use the same affine transformation as in CS-Flow
from Chapter 5, extended with position as a condition and with just a
single scale of feature maps.

To stabilize training, we adopt the alpha-clamping of scalar coefficients
as in [93] and the gamma-trick as in Chapter 5 (CS-Flow). Using the
change-of-variable formula with z as our final output

pX(x) = pZ(z)
∣∣∣∣det

∂z
∂x

∣∣∣∣ , (6.2)

we minimize the negative log-likelihood with pZ as the normal distribu-
tion N (0, I) by optimizing the mean of

Lt
ij = − log pX(xij) =

∥∥∥zij

∥∥∥2

2
2

− log

∣∣∣∣∣det
∂zij

∂xij

∣∣∣∣∣ (6.3)

over all (foreground) pixels at pixel position (i, j).

6.1.2 Student

As opposed to the teacher, the student is a conventional feed-forward
network that does not map injectively or surjectively. We propose a sim-
ple fully convolutional network with residual blocks which is shown in
Figure 6.5. Each residual block consists of two sequences of 3 × 3 convo-
lutional layers, batch normalization [109] and leaky ReLU activations. We
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Figure 6.4: Overview of the pipeline of AST: Teacher and student receive image
features and/or depth maps as input which is conditioned by a posi-
tional encoding. First, the teacher represented by a Normalizing Flow
is optimized to reduce the negative log-likelihood loss that may be
masked by a foreground map from 3D. Second, the student is trained
to match the teacher’s outputs by minimizing the (masked) distance
between them.

add convolutions as the first and last layer to increase and decrease the
feature dimensions.

Similarly to the teacher, the student takes image features as input which
are concatenated with 3D data if available. In addition, the positional
encoding c is concatenated. The output dimensions match the teacher
to enable pixel-wise distance computation. We minimize the squared
ℓ2-distance between student outputs fs(x) and the teacher outputs ft(x)
on training samples x at a pixel position (i, j) of the output:

Ls
ij =

∥∥∥ fs(x)ij − ft(x)ij

∥∥∥2

2
. (6.4)

Averaging Ls
ij over all (foreground) pixels gives us the final loss. The

distance Ls is also used in testing to obtain an anomaly score on image
level: Ignoring the anomaly scores of background pixels, we aggregate
the pixel distances of one sample by computing either the maximum or
the mean over the pixels.

6.1.3 3D Preprocessing

The rasterized 3D point clouds are processed as follows: We discard the
x and y coordinates due to the low informative content and use only the
depth component z. As some pixels are missed by the sensor, their depth
values are repeatedly filled by using the average value of valid pixels from
an 8-connected neighborhood for 3 iterations. We model the background
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Figure 6.5: Model architecture of teacher (left side) and student (right side). While
the teacher is a Real-NVP-based [89] conditional Normalizing Flow [93],
the student is a conventional convolutional neural network.
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as a 2D plane by interpolating the depth of the 4 corner pixels. A pixel
is assumed as foreground if it is valid and its depth is further than 7mm
distant from the background plane. As an input to our models, we first
resize the masks to 192 × 192 pixels via bilinear downsampling and then
perform pixel-unshuffling [107] with d = 8 as described in Section 6.1
to match the feature map resolution. In order to detect anomalies at the
edge of the object and fill holes of missing values, the foreground mask
is dilated using a square structural element of size 8. We subtract the
mean foreground depth from each depth map and set its background
pixels to 0. The binary foreground mask M with ones as foreground and
zeros as background is downsampled to feature map resolution to mask
the loss for student and teacher. This is done by a bilinear interpolation
f↓ followed by a binarization where all entries greater than zero are
assumed as foreground to mask the loss at position (i, j):

Lmasked
ij =

Lij if f↓(M)ij > 0

0 else
. (6.5)

6.2 experiments

Within this section, we detail the experimental methodology and out-
comes of the proposed approach. This includes implementation details,
an analysis of detection performance including localization, and ablation
studies to validate the effectiveness of AST.

6.2.1 Implementation Details

6.2.1.1 Image Preprocessing

Following [13], [48], we use the layer 36 output of EfficientNet-B5 [86]
pre-trained on ImageNet [101] as a feature extractor. This feature extractor
is not trained during the training of the student and teacher networks.
The images are resized to a resolution of 768 × 768 pixels resulting in
feature maps of size 24 × 24 with 304 channels.

6.2.1.2 Teacher

For the Normalizing Flow architecture of the teacher, we use 4 coupling
blocks which are conditioned on a positional encoding with 32 channels.
Each pair of internal subnetworks si and ti is designed as one shallow
convolutional network ri with one hidden layer whose output is split
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Figure 6.6: Preprocessing pipeline for 3D data. After imputing missing depth
values, the foreground is extracted by assuming a background plane
using the corner points. The foreground of the depth image is then
normalized by subtracting the mean foreground depth while the back-
ground depth is set to 0. The foreground plane is further dilated to
take the boundary regions into account. Note that resizing and pixel
unshuffling is not part of this figure for visibility reasons.

into the scale and shift components. Inside ri we use ReLU-Activations
and a hidden channel size of 1024 for MVT2D and 64 for MVT3D. We
choose the alpha-clamping parameter α = 3 for MVT2D and α = 1.9 for
MVT3D. The teacher networks are trained for 240 epochs for MVT2D
and 72 epochs for MVT3D, respectively, with the Adam optimizer [102],
using author-given momentum parameters β1 = 0.9 and β2 = 0.999, a
learning rate of 2 · 10−4 and a weight decay of 10−5.

6.2.1.3 Student

For the student networks, we use nst_blocks = 4 residual convolutional
blocks as described in Subsection 6.1.2. The Leaky-ReLU-activations have
a slope of 0.2 for negative values. We choose a hidden channel size of
nhidden = 1024 for the residual block. Likewise, we take over the number
of epochs and optimizer parameters from the teacher. The scores at
feature map resolution are aggregated for evaluation at image level by
the maximum distance if a foreground mask is available, and the average
distance otherwise (RGB only).

6.2.2 Results

Table 6.1 shows the AUROC of our method and previous work for de-
tecting anomalies on the 15 classes of MVT2D as well as the averages for
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2021

Category Uninf. DifferNet Rippel PaDiM CS-Flow CFlow STFPM* DRÆM PatchCore AST

Stud. [43] [12] [47] [48] [13] [106] [46] [50] [36] (ours)

Grid 98.1 84.0 93.7 - 99.0 99.6 100 99.9 98.2 99.1

Leather 94.7 97.1 100 - 99.9 100 100 100 100 100

Tile 94.7 99.4 100 - 100 99.9 95.5 99.6 98.7 100
Te

xt
ur

es

Carpet 99.9 92.9 99.6 - 100 98.7 98.9 97.8 98.7 97.5

Wood 99.1 99.8 99.2 - 100 99.1 99.2 99.1 98.8 100

Avg. Text. 97.3 94.6 98.5 99.0 99.8 99.5 98.7 99.3 98.3 99.3

Bottle 99.0 99.0 99.0 - 99.8 100 100 99.2 100 100

Capsule 92.5 86.9 96.3 - 97.1 97.7 88.0 98.5 98.1 99.7

Pill 92.2 88.8 91.4 - 98.6 96.8 93.8 98.9 96.6 99.1

Transistor 79.4 91.1 98.2 - 99.3 95.2 93.7 93.1 100 99.3

Zipper 94.4 95.1 98.8 - 99.7 98.5 93.6 100 99.4 99.1

Cable 78.7 95.9 99.1 - 99.1 97.6 92.3 91.8 99.5 98.5

O
bj

ec
ts

Hazelnut 99.1 99.3 100 - 99.6 100 100 100 100 100

Metal Nut 89.1 96.1 97.4 - 99.1 99.3 100 98.7 100 98.5

Screw 86.0 96.3 94.5 - 97.6 91.9 88.2 93.9 98.1 99.7

Toothbrush 100 98.6 94.1 - 91.9 99.7 87.8 100 100 96.6

Avg. Obj. 91.0 94.7 96.9 97.2 98.2 97.7 93.7 97.4 99.2 99.1

Average 93.2 94.7 97.5 97.9 98.7 98.3 95.4 98.0 99.1 99.2

Table 6.1: AUROC in % for detecting defects of all categories of MVT2D [7] on
image-level grouped into textures and objects. Best results are in bold.
Besides the average value, detailed results of PaDiM [48] were not
provided by the authors. The numbers of STFPM* [46] were obtained by
a reimplementation. Methods listed to the right of the double vertical
line have been published after the submission of CS-Flow.

textures, objects and all classes. We set a new state-of-the-art performance
on the mean detection AUROC over all classes, improving it slightly to
99.2%. This is mainly due to the good performance on the more challeng-
ing objects, where we outperform previous work by a comparatively large
margin of 0.9%, except for PatchCore [36]. The detection of anomalies on
textures, which CS-Flow [13] has already almost solved with a mean AU-
ROC of 99.8%, still works very reliably at 99.3%. Especially compared to
the two student-teacher approaches [43], [46], a significant improvement
of 6% and 3.6% respectively is achieved. Moreover, our student-teacher
distances show to be a better indicator of anomalies compared to the
likelihoods of current state-of-the-art density estimators [13], [106] which,
like our teacher, are based on Normalizing Flows.

Even though MVT2D has established itself as a standard benchmark in
the past, this dataset (especially the textures) is easily solvable for recent
methods, and differences are mainly in the sub-percent range, which
is only a minor difference in terms of the comparatively small size of
the dataset. In the following, we focus on the newer, more challenging
MVT3D dataset, introduced in Section 3.2, where the normal data shows
more variance and anomalies only partly occur in one of the two data
modalities, RGB and 3D.
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Method Bagel Cable

Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3
D

Voxel GAN [9] 38.3 62.3 47.4 63.9 56.4 40.9 61.7 42.7 66.3 57.7 53.7

Voxel AE [9] 69.3 42.5 51.5 79.0 49.4 55.8 53.7 48.4 63.9 58.3 57.1

Voxel VM [9] 75.0 74.7 61.3 73.8 82.3 69.3 67.9 65.2 60.9 69.0 69.9

Depth GAN [9] 53.0 37.6 60.7 60.3 49.7 48.4 59.5 48.9 53.6 52.1 52.3

Depth AE [9] 46.8 73.1 49.7 67.3 53.4 41.7 48.5 54.9 56.4 54.6 54.6

Depth VM [9] 51.0 54.2 46.9 57.6 60.9 69.9 45.0 41.9 66.8 52.0 54.6

1-NN (FPFH) [110] 82.5 55.1 95.2 79.7 88.3 58.2 75.8 88.9 92.9 65.3 78.2

3D-ST128 [44] 86.2 48.4 83.2 89.4 84.8 66.3 76.3 68.7 95.8 48.6 74.8

AST (ours) 88.1 57.6 96.5 95.7 67.9 79.7 99.0 91.5 95.6 61.1 83.3

R
G

B

PatchCore [36] 87.6 88.0 79.1 68.2 91.2 70.1 69.5 61.8 84.1 70.2 77.0

DifferNet [12] 85.9 70.3 64.3 43.5 79.7 79.0 78.7 64.3 71.5 59.0 69.6

PADiM [48]* 97.5 77.5 69.8 58.2 95.9 66.3 85.8 53.5 83.2 76.0 76.4

CS-Flow [13] 94.1 93.0 82.7 79.5 99.0 88.6 73.1 47.1 98.6 74.5 83.0

STFPM [46]* 93.0 84.7 89.0 57.5 94.7 76.6 71.0 59.8 96.5 70.1 79.3

AST (ours) 94.7 92.8 85.1 82.5 98.1 95.1 89.5 61.3 99.2 82.1 88.0

3
D

+
R

G
B

Voxel GAN [9] 68.0 32.4 56.5 39.9 49.7 48.2 56.6 57.9 60.1 48.2 51.7

Voxel AE [9] 51.0 54.0 38.4 69.3 44.6 63.2 55.0 49.4 72.1 41.3 53.8

Voxel VM [9] 55.3 77.2 48.4 70.1 75.1 57.8 48.0 46.6 68.9 61.1 60.9

Depth GAN [9] 53.8 37.2 58.0 60.3 43.0 53.4 64.2 60.1 44.3 57.7 53.2

Depth AE [9] 64.8 50.2 65.0 48.8 80.5 52.2 71.2 52.9 54.0 55.2 59.5

Depth VM [9] 51.3 55.1 47.7 58.1 61.7 71.6 45.0 42.1 59.8 62.3 55.5

PatchCore+FPFH [110] 91.8 74.8 96.7 88.3 93.2 58.2 89.6 91.2 92.1 88.6 86.5

AST (ours) 98.3 87.3 97.6 97.1 93.2 88.5 97.4 98.1 100 79.7 93.7

Table 6.2: AUROC in % for detecting defects of all categories of MVT3D [9] on
image-level for 3D data, RGB data and the combination of both. Best
results per data domain are in bold. A * indicates that we used a reim-
plementation. The numbers from PatchCore are taken from [110].

The results for individual classes of MVT3D grouped by data modality
are given in Table 6.2. We are able to outperform all previous methods
for all data modalities regarding the average of all classes by a large
margin of 5.1% for 3D, 5% for RGB and 7.2% for the combination. Facing
the individual classes and data domains, we set a new state-of-the-art in
21 of 30 cases. Note that this data set is much more challenging when
comparing the best results from previous work (99.1% for MVT2D vs.
86.5% AUROC for MVT3D). Nevertheless, we detect defects in 7 out
of 10 cases for RGB+3D at an AUROC of at least 93%, which demon-
strates the robustness of our method. In contrast, the nearest-neighbor
approach PatchCore [36], which provides a comparable performance
on MVT2D, struggles with the increased difficulty of the dataset and is
outperformed by 11% on RGB. The same applies to the 3D extension [110]
using FPFH [111] despite using a foreground mask as well. Figure 6.7
shows qualitative results for the RGB+3D case given both inputs and
ground truth annotations. Despite the low resolution, the regions of the
anomaly can still be localized well for practical purposes.

For the class Cable Gland in the RGB+3D setting, the top of Figure 6.8
compares the distribution of student-teacher distances for anomalous and
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Figure 6.7: Qualitative results on MVTec 3D-AD [9]. The two left columns show the
input, the third the ground truth and the fourth our anomaly detection.
Images are masked by foreground extraction. Our method is able to
successfully combine RGB and 3D data to detect defects even if only
present in one data domain.
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Method 3D RGB 3D+RGB

Teacher only 82.2 69.8 90.9

NF student (symm.) 81.8 76.0 88.9

NF student (deeper) 81.8 76.7 92.7

AST (ours) 83.3 88.0 93.7

Table 6.3: Comparison of average detection performance in AUROC percentage on
MVT3D of teacher and student-teacher in a symmetric and asymmetric
setting. Our proposed asymmetric student-teacher pair outperforms all
baselines in all cases.

normal regions. The distribution of anomalous samples shows a clear
shift towards larger distances. At the bottom of Figure 6.8, the outputs
of student and teacher as well as the distance of corresponding pairs
representing our anomaly score are visualized by a random orthographic
2D projection. Note that visualizations made by techniques such as t-
SNE [112] or PCA [58] are not meaningful here, since the teacher outputs
(and therefore most of the student outputs) follow an isotropic standard
normal distribution. Therefore, different random projections barely differ
qualitatively.

6.2.3 Ablation Studies

We demonstrate the effectiveness of our contributions and design deci-
sions with several ablation studies. Table 6.3 compares the performance
of variants of students with the teacher, which can be used as a density
estimator itself for anomaly detection by using its likelihoods, given by
Eq. 6.2, as anomaly score. In comparison, a symmetric student-teacher
pair worsens the results by 1 to 2%, except in the RGB case. However,
the performance is already improved for RGB and 3D+RGB by creating
the asymmetry with a deeper version of the student than the teacher by
doubling the number of coupling blocks to 8. This effect is further en-
hanced if the architecture of the NF-teacher is replaced by a conventional
feedforward network as proposed for AST. We also vary the depth of
our student network and analyzed its relation to performance, model
size and inference time in Table 6.4. With an increasing number of resid-
ual blocks nst_blocks, an increasing performance is observed which is
almost saturated after 4 blocks. Since the remaining potential in detec-
tion performance is not in relation to the linearly increasing additional
computational effort per block, we suggest choosing 4 blocks to have a
good trade-off.
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Figure 6.8: Top: Histogram of our AST distances for normal and anomalous regions
of the class rope in MVT3D. Bottom: Random orthographic projections
of student and teacher outputs grouped in non-defective (left plot)
anomalous regions (right plot) for the class peach. The plotted student-
teacher distance representing the anomaly score is clearly higher for
anomalous regions since the student is not able to match the teacher
outputs, as it was only trained on non-defective regions.
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nst_blocks AUROC [%] ↑ #Params. [M] ↓ inf. time [ms] ↓
1 92.8 26.0 0.184

2 93.3 44.8 0.229

4 93.7 82.6 0.352

8 93.7 151.1 0.609

12 93.8 233.6 0.821

teacher 90.9 3.8 1.46

Table 6.4: Tradeoff between performance and computational effort on 3D+RGB
data of MVT3D. The inference time was measured with a NVIDIA
GeForce RTX 4090.

input pos. enc. mask teacher AST

✗ ✓ 78.4 81.9

3D ✓ ✗ 59.4 67.2

✓ ✓ 82.2 83.3

✗ ✗ 69.3 87.8

RGB ✓ ✗ 69.8 88.0

✓ ✓ n. a. n. a.

✗ ✓ 90.9 93.8

3D+RGB ✓ ✗ 66.2 84.0

✓ ✓ 90.9 93.7

Table 6.5: Impact of the positional encoding and the foreground mask on the
detection performance of student and teacher on MVT3D. Numbers are
given in AUROC percentage. Since masks are obtained from 3D data,
there is no mask for RGB.

In Table 6.5 we investigate the impact of the positional encoding and
the foreground mask. For MVT3D, positional encoding improves the
detection by 1.4% of our AST-pair when trained with 3D data as the
only input. Even though the effect is not present when combining both
data modalities, we consider it generally reasonable to use the positional
encoding, considering that the integration with just 32 additional channels
does not significantly increase the computational effort.

Foreground extraction in order to mask the loss for training and
anomaly score for testing is also highly effective. Since the majority
of the image area often consists of background, the teacher has to spend
a large part of the distribution on the background. Masking allows the
teacher and student to focus on the essential structures. Moreover, noisy
background scores are eliminated.
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Figure 6.9: Failure cases of the localization.
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6.3 open problems

As described in the previous section or Figure 6.7, AST locates anomalies
by calculating the distance between student and teacher for each position
in the outputs. This visualization may be sufficient for most use cases,
but shows some flaws: First, the resolution is limited by the feature
map (24 × 24 in this case), so very fine structures cannot be accurately
represented. In addition, the maps are somewhat dilated by the receptive
field of the convolutions in the feature extractor and the flow model.
Figure 6.9 shows some failure cases of the localization showing the
limitation of the method and the dataset. The detection errors can be
roughly divided into 5 types, each attributed as false positives (FP)
or false negatives (FN), which are visualized by one example each in
Figure 6.9 a) - e):

• a) FN: The method does not capture the entire anomalous area but
focuses on parts of it.

• b) FN: An anomalous area is completely overseen.

• c) FP: The method highlights normal areas beside the anomaly.

• d) FP: The method highlights rare but still normal structures.

• e) (FP:) The method interprets sensor noise as an anomaly.

Examples from categories c) and d) should be reduced by a sufficient
amount of training data. The error type e) could be eliminated by a
separate detection of sensor noise. The FN-related errors a) and b) would
be minimized by a more suitable feature extractor on which the detection
is based.

It can be shown that some recent approaches provide a more accu-
rate localization. Table 6.6 compares the AUROC on pixel-level of our
method, PatchCore [36] and the SSIM-based AE by Bergmann et al. [39].
While our approach still localizes noticeably better than AE-SSIM, the
nearest-neighbor-based method PatchCore is significantly more accurate
at segmentation. Future work could extend the method to increase both
resolution and sharpness of localization.

6.4 comparison with differnet and cs-flow

In this subsection, we compare the 3 image-based anomaly detection
approaches DifferNet, CS-Flow and AST which are presented in this
thesis. In the following, we will examine the similarities and differences
between the methods, as well as the impact of the latter.
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Method MVT2D MVT3D (RGB+3D)

AE-SSIM [63] 87.0 -
PatchCore [36] 98.4 -
PatchCore+FPFH [110] - 99.2
AST (ours) 95.0 97.6

Table 6.6: Anomaly segmentation results measured by the mean pixel-AUROC
over all classes. Despite image-level detection being the focus of this
work, our method is able to localize defects for practical purposes with
an AUROC of 95% or 97.6%.

All 3 methods are based on a feature representation of a pretrained neu-
ral network. In addition, these approaches each use a Normalizing Flow
that is trained to perform a density estimation on these features. Further-
more, each method is able to provide a map with anomaly localizations
besides an instance-level anomaly score.

Table 6.7 compares the differences in characteristics of the methods in
terms of anomaly score evaluation, underlying feature representation,
localization procedure, detection performance and computation time
measured with a NVIDIA GeForce RTX 4090 GPU. A steady improvement
in terms of runtime and detection performance can be observed through-
out the approaches of these chapters. While the performance in the case
of CS-Flow increases mainly due to the use of full-sized feature maps
carrying more information compared to aggregated vectors, the runtime
is reduced since these maps could be processed more efficiently and thus
with fewer blocks within the network. Due to the direct computation of
the localization map from the regular network output of CS-Flow, the
localization of CS-Flow is nearly costless compared to the memory and
time-consuming backpropagation in DifferNet.

This is why the localization procedure from CS-Flow for AST was kept
in principle. The benefits of AST lie in the Student-Teacher procedure,
which is performed after the NF-based density estimation and brings a
decent benefit in improving the mean detection AUROC on MVT3D by
5% to 88%. Since MVT2D already shows near-perfect results for CS-Flow,
this is observed at a weakened level (+0.5%) for this dataset. In addition,
the computation time could be heavily reduced from 8.53 to 1.79ms, since
the new methodology is very effective without the use of multi-scale
feature maps which no longer provide a benefit for this approach.
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Method DifferNet CS-Flow AST

Anomaly Score Likelihood Likelihood Stud.-Teacher dist.

Feature representation Vectors Maps Maps

Localization procedure Backprop. Output aggreg. Output aggreg.

Detection [AUROC %] ↑ MVT2D

MVT3D

94.7

69.9

98.7

83.0

99.2

88.0

Inference time [ms] ↓ 11.6 8.53 1.79

Table 6.7: Comparison of the image-based approaches proposed in chapters 4-6
of this thesis. The methods presented throughout these chapters each
improved upon their predecessors in terms of detection performance
and computational complexity. This is mainly due to the use of full-sized
feature maps in the case of CS-Flow and the specialized student-teacher
approach in the case of AST.

6.5 conclusion

We discovered the generalization problem of previous student-teacher
pairs for AD and introduced an alternative student-teacher method that
prevents this issue by using a highly different architecture for student
and teacher. We were able to compensate for skewed likelihoods of a
Normalizing Flow-based teacher, which was used directly for detection in
previous work, by the additional use of a student. This approach could be
extended to more data domains and improved with a higher localization
resolution.

Since we have now discussed in detail the methodology and application
for detection on optical data, we would like to shift the focus to robotic
applications. Robots play an important part in several manufacturing
pipelines in the context of Industry 4.0 as they perform precise assembly
and transportation tasks. In the course of the next two chapters, we
address anomaly detection on time series of robot machine data, first
introducing our own dataset voraus-AD.



7
V O R AU S - A D D ATA S E T

The voraus-AD dataset, created as part of this thesis, contains machine
data of a robot in a pick-and-place task, from which various anoma-
lies are to be detected. This and the following chapter are based on
the article "The voraus-AD Dataset for Anomaly Detection in Robot
Applications" [15]. The dataset is publicly available at GitHub1tnt.uni-
hannover.de/vorausAD.

As a subfield of automation, the use of robotic arms is essential for
industrial applications and processes [113]. Industrial robots can relieve
humans of monotonous and dangerous tasks and perform them with con-
sistent quality without interruption. With automated monitoring, robotic
arms can operate continuously without the presence of humans. Detect-
ing unusual behavior during automated execution of robotic applications
is critical for ensuring process and product quality as well as for human
safety [114]. With the increasing importance of collaboration (e.g., human-
machine interactions as shown in Figure 7.1) and the growing use of
artificial intelligence, the complexity of robotic applications is increasing

1 https://tnt.uni-hannover.de/vorausAD

Figure 7.1: Example for human-robot interaction with a collaborative robot. Image
source: voraus robotik

82
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Robot Arm

Figure 7.2: Setup of the pick-and-place application in voraus-AD: A robot arm
grips a randomly positioned can and moves it to a fixed position.

as well compared to the more monotonous applications with traditional
industrial robots [115]. For example, objects to be gripped no longer have
to be in a fixed position, but are localized by visual object recognition.
Since naive approaches are no longer feasible for the detection of unusual
events, the design of more sophisticated machine learning methods is
coming more and more into the interest of research [71], [72], [77]–[80]. As
with industrial anomaly detection on images, the availability of anomaly
samples is critical for robot data, motivating the use of semi-supervised
anomaly detection. Again, it can never be ensured that all scenarios are
represented in the collected data, as machine wear, unpredictable changes
in the environment, or chain reactions over multiple process steps may
occur in the future.

In order to ensure comparability of different methods w.r.t. different
applications and to establish transparency, it is established to evaluate
on public datasets. Unfortunately, this is hardly the case for AD in robot
applications at the moment. The only public dataset AURSAD [116]
is not widely used since it is very specific to a screwdriver application.
Publications have so far been evaluated on private datasets [71], [72], [77]–
[80] which makes the experiments irreproducible. This issue motivates us
to present a publicly available benchmark based on machine data which
enables an appropriate evaluation due to the included number, types,
and diversity of anomalies. As an application, we choose a standard pick-
and-place operation, whose setup is shown in Figure 7.2, that includes
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typical elements such as the movement of a robotic arm, actions of the
end effector, and interaction with the environment. The dataset contains
1367 time series of anomaly-free data, in which a collaborative robot picks
a randomly placed can with a vacuum gripper and places it at a pre-
determined position. For the test set, 755 additional samples, divided in 12

anomaly types, were intentionally induced, which include robot axis wear,
gripping errors and process errors such as collisions, manipulation of the
can or an unstable setup. In contrast to AURSAD, where the anomalies
are specific to its screwdriver application, many of the anomalies in our
dataset, such as axis wear or collisions, also occur in other applications.
Thus, the evaluation on our dataset provides a more general validity of
the respective method. We define an evaluation protocol that individually
evaluates each anomaly type.

Since the usually integrated safety systems of collaborative robots
interrupt the operation in case of large deviations from the norm, which
can be detected easily, we especially chose subtle anomalies, which would
not be recognized by the safety systems. For example, our dataset includes
collisions with a free-hanging cable, which impacts the signals only
marginally, although tangling of this cable may be a major safety hazard.
In addition, different intensities of anomalies were simulated in each case,
for example by varying the weight of the can in several steps.

As the machine data of the robot is usually recorded anyway, we model
a practicable use case in that no additional sensing is required. The signals
include a total of 78 mechanical signals as well as 52 electrical signals
from a total of 6 axes at a sampling frequency of 500 Hz. Furthermore, we
provide metadata which, for example, gives detailed information about
the anomaly and the status of the robot.

7.1 overview

Our dataset voraus-AD contains machine data of a collaborative robot,
which moves a can by performing an industrial pick-and-place task.
The samples X = {x1, x2, ..., xnrec} consist of time series of machine data
xi ∈ RT×S with T as the number of time steps and S as the number
of signals, each recorded over one pick-and-place operation. The data
is split into a training set Xtr and a test set Xte. As usual in AD, the
training set contains only normal data, which includes regular samples
without anomalies. The test set contains both, normal data and anomalies,
including 12 diverse anomaly types as explained in Section 7.5. In order to
create a realistic scenario, we have divided the normal data into training
and test data as follows: Up to a certain period of time, only training
data including 948 samples was recorded. Subsequently, recordings of
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(a) (b) (c)

Figure 7.3: Scanning (a) the conveyor with the robot’s built-in camera drawn in
green, detecting (b) and gripping (c) the can from different positions.

anomalies (755 samples) and normal data (419 samples) for the test set
were taken alternately. This simulates a real application where training
data would be recorded first in the same way to train the model before
the test case occurs.

7.2 setup

The setup consists of a conveyor equipped with a light barrier, a robot arm
with a vacuum gripper and the can to be moved as shown in Figure 7.2.
We use the collaborative robot arm Yu-Cobot with 6 axes and an integrated
camera, which is mounted on a platform made of aluminum profiles.
Our robot arm is equipped with a vacuum gripper2 for gripping the can.
The conveyor is also mounted on the platform in the working space of
the robot arm. The conveyor control is connected to the digital outputs of
the robot arm so that the conveyor can be triggered by our robot control
software. To detect the presence of a can at the end of the conveyor belt,
the light barrier connected to the digital inputs of the robot arm can be
used. A light source permanently ensures that the internal camera of the
robot arm can also be used for visual object detection at night.

The machine data, which is further described in Section 7.3, is trans-
mitted between the robot controller and the individual axes via a field
bus as a network interface (EtherCAT). The software tshark53 is used to
record all the data of this network interface.

2 Schmalz vacuum generator ECBPi
3 https://www.wireshark.org/docs/man-pages/tshark.html
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No. Action Step Record

1
Can detection
(camera-aided)

1.1 Move to scan position
1.2 Detect can position

✓

2 Grip can
2.1 Move down
2.2 Close gripper
2.3 Move up

✓

3 Place can

3.1 Move to target position
3.2 Move down
3.3 Open gripper
3.4 Move up to init. position

✓

4

Create
variance
by random
placement

4.1 Move down
4.2 Close gripper
4.3 Move up
4.4 Move to random position
4.5 Move down
4.6 Open gripper
4.7 Move up to init. position

✗

Table 7.1: Actions of the pick-and-place application: All actions included in the
recording are highlighted in gray.

7.3 robot and signals

We recorded the machine data of the robot arm including all the 6

axes at a frequency of 500 Hz. The machine data includes 130 signals
in total which are listed in Table 7.2 and can be divided into target,
measured, estimated and auxiliary signals. The target signals are the
states commanded by the robot controller, the measured signals comprise
directly measured sensor signals from which further signals are estimated.
The auxiliary values are metadata that have been added subsequently
for investigations of the dataset with the pick-and-place application
and may not be entirely available in real operations. They must not be
used for machine learning approaches. Measured signals related to each
axis include joint positions, velocities, torques (2 sensors per axis) and
torque-forming current Iq. Equivalent to the measured values, the target
signals for each axis contain the target position, the target velocity and
the expected torque. In addition to the 21 signals that are given for all 6

axes, 9 general electrical signals such as the supply voltage and the total
current of the robot arm, for example, are also part of our dataset.
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Feature ∀Axes Signal type unit type

m
et

ad
at

a

time ✗ auxiliary s float
sample ✗ auxiliary - int
anomaly ✗ auxiliary - bool
category ✗ auxiliary - int
setting ✗ auxiliary - int
active ✗ auxiliary - bool
variant ✗ auxiliary - int

m
ec

ha
ni

ca
l

target_position ✓ target rad float
target_velocity ✓ target rad/s float
target_accel. ✓ target rad/s float
target_torque ✓ target Nm float
computed_inertia ✓ estimation kg · m2 float
computed_torque ✓ estimation Nm float
motor_position ✓ measurement rad float
motor_velocity ✓ measurement rad/s float
joint_position ✓ measurement rad float
joint_velocity ✓ measurement rad/s float
motor_torque ✓ estimation Nm float
torque_sensor_a ✓ measurement Nm float
torque_sensor_b ✓ measurement Nm float
power_motor_mech ✓ estimation W float
power_load_mech ✓ estimation W float

el
ec

tr
ic

al

motor_iq ✓ estimation A float
motor_id ✓ estimation A float
power_motor_el ✓ estimation W float
motor_voltage ✓ measurement V float
supply_voltage ✓ measurement V float
brake_voltage ✓ measurement V float
robot_voltage ✗ measurement V float
robot_current ✗ measurement A float
io_current ✗ measurement A float
system_current ✗ measurement A float

Table 7.2: List of signals from our dataset, grouped according to metadata, mechan-
ical and electrical signals. ∀Axis denotes an axis-specific signal which is
given for all 6 axes. The metadata is further described in Section 7.3.

The metadata includes the following information:

• time: elapsed time (in seconds) within the sample

• sample: ID of the sample the data point is related to
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• anomaly: denotes if related sample contains an anomaly

• category: denotes the anomaly type (see Table 7.3)

• variant: variant within the anomaly type (see Table 7.3)

• active: denotes if robot is currently moving

• action: action ID within the sample (see Table 7.1)

7.4 pick-and-place operation

A recording cycle of the dataset proceeds as follows: The robot is moved
to a fixed scanning position and first detects the position of a randomly
placed can on the conveyor belt through its integrated camera and grips
it (see Figure 7.3). The robot arm then moves the can to a fixed target
position on the opposite side of the conveyor belt ending the recording
cycle. Finally, the can is placed at a random position and then conveyed
back to the starting area for the next recording cycle which is triggered
by the light barrier.

The random placement of the can introduces variance into the set of
normal data, which is to be expected in this form in real applications.
Note that the random placement itself is not part of the recording since
it only serves as an auxiliary task for the dataset design. The steps of
the entire recording process are described in more detail in Table 7.1. As
usual, most of the motions in path planning were joint angle optimized
for time efficiency. Only the move up and move down commands were
performed with linear motion to ensure smooth picking and placing of
the can.

7.5 anomalies

For the test set, we intentionally induced anomalies of different types,
which cover most cases of anomalies occurring in reality. We divide the
anomalies into process errors, gripping errors, and robot axis wear. An
overview of all induced anomalies is given in Table 7.3.

7.5.1 Process Errors

Process errors concern errors in the environment around the robot, which
arise from a faulty setup. Our dataset includes the following scenarios:

• Additional axis weight: This might be caused by components that
have not been disassembled from the robot. A weight of 115g, 231g
or 500g was attached to each of the 6 axes as shown in Figure 7.4 (a).
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Examples of induced anomalies: Increased moment of inertia caused
by additional axis weight (a), collisions with boxes (b) and a hanging
cable (c), cable routed at robot (d), losing the can during movement (e)
and increased friction of a single axis (f).

Anomaly type Cause Num. Variants

Additional friction axis wear 144 2 levels × 6 axes

Miscommutation axis wear 89 6 axes

Misgrip of can gripping err. 11 1

Losing the can gripping err. 74 random position

Add. axis weight process err. 156 3 weights × 6 axes

Collision w/ foam process err. 72 2 sizes × rand. pos.

Collision w/ cables process err. 48 2 types × rand. pos.

Collision w/ cardboard process err. 22 random position

Varying can weight process err. 80 6 weights

Cable routed at robot process err. 10 1

Invalid gripping pos. process err. 12 random position

Unstable platform process err. 37 3 levels

Table 7.3: List of anomaly types grouped in their cause. The listed variants are
labeled in the dataset.
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This was done for each axis. The additional weight will affect all
joint torques due to increased inertia and gravity.

• Collisions: Collisions of the robot with objects can occur due to
process flow errors or human errors. Our dataset includes colli-
sions with lightweight objects such as foam, hanging cables, or
empty cartons induced, as these are difficult to detect. The cartons
and various foam cubes are placed at different positions so that
recordings of collisions exist at different times. In some cases the
objects are hit head-on, in others they are merely touched. Note
that collisions sometimes occur even when the robot is not moving,
since the previously hit object may swing back. Figure 7.4 shows
exemplary collisions with a carton (c) and a hanging cable (d).

• Varying can weight: As an example of disturbances in the process,
runs with different weights of the can are included as anomalies.
This may be the result of a damaged can or filling errors in a
previous processing step. The can used in the normal data weighs
241g while recorded anomalies include 6 different weights between
41g (empty can) and 448g.

• Cable routed at robot: Cables or hoses are often routed along the
robot arm for various tools such as screwdrivers or painting equip-
ment. If this cable is not dismantled again for another application,
this can affect the current application. Included in this dataset are
recordings in which a cable is attached to the robot with cable ties
as shown in Figure 7.4 (d).

• Invalid gripping position: An error in the process sequence, such
as a worn conveyor belt with extended stopping distance, may
result in unusual gripping positions of the can. Camera-based
object detection can compensate for these errors as long as the
can remains in the camera’s field of view. This unusual gripping
position nevertheless indicates an unusual process sequence. A
time delay is integrated in the software of the robot application for
recording unusual gripping positions.

• Unstable platform: In collaborative applications, robot arms are
often mounted on mobile platforms. An incorrectly adjusted mobile
platform as well as uneven ground can lead to unwanted vibrations
and thus affect the robot arm. The dataset contains recordings with
three differently unstable mountings of the mobile platform.



7.6 analysis 91

7.5.2 Gripping Errors

Defects or contamination of the vacuum gripper may cause the can to
become detached due to acceleration or centrifugal force. The loss of the
can also happen during braking before the target position, which is why
there are also samples in which the robot loses the can shortly before
placement. To simulate the anomalies Losing the can and Misgrip of can,
the gripper is timed to open during different movements of the robot
arm as shown in Figure 7.4 (e) or the can is not gripped at all because the
gripper is intentionally switched off.

7.5.3 Robot axis wear

The following two anomaly types simulate wear of the robot axes:

• Miscommutation: The wear of mechanical and electrical compo-
nents decreases the efficiency of the respective robot axis. This
decreasing efficiency is simulated via an incorrect commutation
of the motor, which we adjust with software parameters. For each
case, the recordings contain a single incorrectly commuted axis.

• Increased friction: Dirt or age-related wear can lead to increased
friction of individual robot axes. The additional friction is generated
by attaching foam at the transition point of two robot axes. The
foam is fastened with a tension belt as shown in Figure 7.4 (f). In
each sample of this anomaly type, there is one axis with increased
friction in one of two strength levels.

7.6 analysis

In this section, we explain and visualize the characteristics of the data set
at the signal level in more detail. To this end, we will first analyze the
normal data and then describe how the anomalies deviate from them in
the following subsections.

7.6.1 Normal Data

Figure 7.5 shows selected signals of the second robot axis from an exem-
plary recording from the normal data of the voraus-AD dataset. Between
the second 0 and 1, the robot moves to the fixed scan position and re-
mains there to detect the can. The minimum and maximum values are
close to each other for the first 4.5 seconds since all movements up to
this point are identical and the recording always starts at the same time.
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Figure 7.5: Selected signals from the second axis of the normal data within our
voraus-AD dataset. The light blue areas represent the different quartiles,
while the blue line shows the mean signal and the black line a random
sample. At the top, the individual actions from Table 7.1 are shown.

Starting from the visual object detection of the can, the variance is in-
creased due to the temporal and spatial offset caused by the movement
to different positions of the can. In the following actions 2-4 of Table 7.1
are performed as marked at the top of Figure 7.5.

7.6.2 Anomalies

Figure 7.6 (a) shows selected signals from an anomaly where the robot
arm collides with a foam cuboid. The collision occurs at about t = 8.45 s
as visible on all signals by a deflection in the signal. After the robot arm
has deviated from its joint angle target due to the collision the closed-loop
control counteracts to correct the path which influences the joint angle
φ5 and its velocity φ̇5. The deviation of the torque Ms1,5 is explained by
its physical relationship with external forces acting on the robot.
The signals of the fourth axis from the anomaly losing the can are shown in
Figure 7.6 (b). An effect on the joint angle φ4, the joint angular velocity φ̇4
and the motor current iq,4 is not visually apparent. However, the torque
Ms1,4 of the fourth axis shows a short oscillation at t = 8.6 s, when the
robot arm loses the can. After the loss of the can, for 8.8 s < t < 9.6 s,
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Figure 7.6: Selected signals of the anomalies collision with foam and losing the can.
The left plot shows the entire sample, while the right side zooms into
the time period of the anomalous event. For the normal sample, we
visualize the most similar example in the dataset.
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Dataset AURSAD [116] voraus-AD (ours)

Application screwdriver pick-and-place

Variance (normal data) discrete (screw holes) continuous (rand. position)

Robot UR3e Yu-Cobot

#Axes 6 6

Anomaly types 4 12

#Normal samples 1420 1367

#Anom. samples 625 755

∅sample duration 15.3s 11s

Signal frequency 100 Hz 500 Hz

#Signals 125 130

Raw dataset size 5.81 GB 11.17 GB

Table 7.4: Comparison between AURSAD and voraus-AD. The main differences
are highlighted in bold.

a lower absolute torque is measured which can be explained by the
decrease in weight as a result of the loss of the can. In the time around
t = 10 s, an increased absolute torque is measured compared to the
error-free recording, since there is no contact between the conveyor belt
and the (lost) can which would dampen the weight force.

7.6.3 Comparison to AURSAD

Table 7.4 compares the key characteristics from our dataset with AUR-
SAD [116], which is currently the only comparable dataset in this domain.
The different task of the robot (screwdriver vs. pick-and-place in our
case) results in different challenges for the detection: The variance of the
normal data in AURSAD is nearly discrete, as the screws are driven into
pre-defined holes, whereas the samples of our dataset are continuously
distributed, since the can is at a random, not pre-defined location on
the conveyor belt before gripping it. While AURSAD contains only 4

anomaly types, which are exclusively related to the screw and plate,
voraus-AD contains 12 diverse anomaly types, which cover most possible
scenarios in reality. Most of our anomaly types (7), such as collisions or
axis-wear-related anomalies, do not only occur exclusively in pick-and-
place tasks, but are general potential faults in robotics applications. Thus,
evaluations on our dataset provide insights for other robotics applications
as well. The machine data of voraus-AD was provided with a significantly
higher sampling rate (500 Hz vs. 100 Hz), which allows the detection of
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high-frequency deviations. In contrast to AURSAD, our dataset includes
measurements of torque sensors instead of the force on the end effector.

7.6.4 Evaluation Protocol

As shown in the previous chapters and introduced in Section 3.4, anomaly
detection methods are evaluated using the area under the receiving operator
characteristic (AUROC). It measures the integral of the true positive rate
(TPR) over every false positive rate (FPR) by varying a threshold θ ∈
(−∞, ∞) of a binary decision.

The AUROC should be measured for each anomaly type individually
to identify the strengths and weaknesses of a method. For an overall com-
parison, it should be averaged over all 12 types. We do not recommend
calculating the area under one single ROC over all samples and anomaly
types, as the number of samples per anomaly type strongly biases the
metric in this case.

7.7 conclusion

We introduce a publicly available AD dataset for robot applications which
offers a novel level of variety in anomaly types generalizing to many
real scenarios without external sensors. In addition to the 130 signals
of machine data, we provide highly detailed metadata for the pick-and-
place cycles. This benchmark makes the evaluation of AD methods for
robot applications more transparent and comparable such that upcoming
methods may demonstrate their effectiveness on this dataset. In addition
to the standard evaluation, we encourage the research community to
work on efficiently dealing with the number of signals or samples during
training.

In the following chapter, we introduce a methodology that takes con-
cepts from chapters 4 (DifferNet) and 5 (CS-Flow) and transfer them to
multivariate time series, as in voraus-AD. We also evaluate how existing
methods for time series, which have been applied mainly to rather few
signals so far, perform on our large dataset.
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In the following, we present a new baseline for anomaly detection on
multivariate time series and provide extensive experiments on our newly
proposed dataset voraus-AD from Chapter 7. Thereby we aim to detect
whether an entire time series contains any anomaly. Similar to Differ-
Net and CS-Flow (Chapters 4 and 5), our proposed Multivariate Time
Series Flow (MTS-Flow) is based on density estimation of normal data
via Normalizing Flows whose architecture we tailored to multivariate
time series. As previously introduced, the estimated likelihoods of the
NF are used as an indicator for anomalies: We assume that anomalies
have a low likelihood whereas the likelihood of normal data should
be high. Instead of using a feature extractor as for the previously pro-
posed vision approaches, density estimation is performed directly on
the machine data. To apply Real-NVP-based NFs to time series, we
adapt the internal networks by exploiting the temporal structure via
convolutions while preserving the concept of signals which we shuffle,
permute, transform and recombine inside the coupling blocks. Further-
more, we also enable a temporal analysis of the signals by transferring
the principle of localization from Section 4.2.4 which utilizes the input
gradient of the anomaly score. Our implementation can be accessed via
GitHub1https://tnt.uni-hannover.de/vorausAD. This chapter is largely
based on our publication "The voraus-AD Dataset for Anomaly Detection
in Robot Applications" [15].

8.1 method

Similar to the previously presented methods in Chapters 4 to 6, our
MTS-Flow f : X → Z transforms the unknown data distribution pX of
normal samples x ∈ Xtr to a target space Z with known base distribution
pZ. Since f is bijective, this enables us to measure the likelihoods of
data points after mapping them to the target space using z = f (x).
Using a standard multivariate Gaussian distribution N (0, Id) as target

1 https://tnt.uni-hannover.de/vorausAD

96
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distribution with d as the number of dimensions of z, the density of the
target space is defined by

pZ(z) =
1

(2π)d/2 e−
1
2 ∥z∥2

2 . (8.1)

Following the change of variables formula, the Jacobian of f , the likeli-
hood of data points is given by

pX(x) = pZ(z)
∣∣∣∣det

∂z
∂x

∣∣∣∣. (8.2)

The final decision on whether the sample is classified as an anomaly is
given by thresholding the likelihood

A(x) =

1 for pX(x) < θ

0 else
(8.3)

with θ as an adjustable parameter. In practice, the parameter can be set
according to a previously defined acceptable false positive rate using the
statistics of normal data. In the following, we describe the pipeline of
our proposed MTS-Flow in Section 8.1.1 and its training procedure in
Section 8.1.2.

8.1.1 Architecture

We adapt the design of the Normalizing Flow to exploit the structure of
multivariate time series to appropriately model the data distribution by
defining the permutation strategy as well as the design of the internal
networks. Thereby, we build on the Real-NVP architecture which we
describe in detail in Subsection 4.1.3.

Our MTS-Flow processes entire time series with dimensions T × S
with T as the number of time steps and S as the number of signals. We
exploit and maintain the temporal structure by using convolutions for the
internal functions instead of fully connected blocks as in [95]. Thereby,
we follow [13], [14], in which state-of-the-art performance for anomaly
detection on image data with convolutions in the internal networks of
NFs was shown. The partitioning into signals is maintained as well.
However, the signals no longer have their original meaning during the
transformation steps and should be interpreted as latent signals at the
output, which are independent of each other.

A coupling block of our MTS-Flow is designed as follows: First, the sig-
nals of the input are reordered using a permutation matrix P ∈ {0, 1}S×S
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First, the signals are permuted in a fixed, randomly defined, manner.
After that, the sample is divided into two components, each comprising
half of the signals. Best viewed in color.

which is randomly determined initially for each block. We split the sam-
ple along the signal axis evenly into the parts x1 and x2 with dimensions
T × S

2 . This enables the usage of correlations between different signals
for density estimation. Figure 8.1 visualizes the permutation and split
procedure.

The parts are then fed into the internal networks to transform the
counterpart subsequently. The internal networks consist of a sequence of
3 one-dimensional convolutions, whose kernel is moved along the time
as a sliding window, and ReLUs as nonlinearities as shown in Figure 8.2.
We reduce the number of signals in the hidden layers with a factor r
which we refer to as signal scaling. After the last convolutional layer, the
output is split evenly along the signal axis to obtain the scaling and
translation coefficients s and t, matching the dimensions T × S

2 of x1
and x2. Since the exponentiation of the scaling coefficients can cause an
unstable optimization due to exploding gradients, we apply soft-clamping
as in Chapters 4 to 6 for better convergence:

σα(s) =
2α

π
arctan

s
α

(8.4)

with α as a hyperparameter that controls the clamping magnitude by
restricting the values to the interval (−α, α).

8.1.2 Training

During training, we optimize the parameters for the internal networks
such that the training data in the latent space is normally distributed.
As already described in Subsection 4.2.2, the overall model is trained
via maximum-likelihood training: The probability of the training data
according to the model should be maximized. Instead of maximizing
the likelihood, we minimize the negative log-likelihood − log pX(x) for
convenience as it is equivalent and numerically more practicable. As
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Figure 8.2: Architecture of the internal networks in MTS-Flow.

previously shown in Equations 4.9 to 4.11, this comes down to minimize
the following loss function:

L(x) = − log pX(x) = − log pZ(z)− log
∣∣∣∣det

∂z
∂x

∣∣∣∣
L(x) =

∥z∥2
2

2
− log

∣∣∣∣det
∂z
∂x

∣∣∣∣.
(8.5)

8.1.3 Temporal Analysis

In addition to the sequence-level detection which provides if any unusual
event has occurred, in practice it is often relevant to analyze when this
event happened. This helps to find the cause of the error and to possibly
eliminate it. We provide a measure that indicates the impact of each
time step on the anomaly score. Similar to DifferNet in Chapter 4, we
use the gradient of the anomaly score with respect to the inputs by
backpropagating the loss from Eq. 8.5. The input gradient ∇x ∈ RT×S is
aggregated to a gradient for every time step t by taking the ℓ1-norm over
all signals:

∇t
x =

S

∑
s=1

|∇x(t, s)|. (8.6)

8.2 experiments

In this Section, we first present the experimental setup in Subsection 8.2.1)
and then compare our baseline MTS-Flow with previous work in Subsec-
tion 8.2.1. Finally, in Subsection 8.2.3 the characteristics of the voraus-AD
dataset are varied to explore its impact on the detection performance.
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General Parameters Value

Signal frequency 100 Hz

Batch size 32

Optimizer Adam [102]

Learning rate 8 · 10−4

Learning rate decay 0.1

Decay epochs 11, 61

Total epochs 70

NF Parameters

Coupling blocks nblocks 4

Signal scaling r 2

Kernel sizes k1, k2, k3 13, 1, 1

Dilation d1, d2, d3 2, 1, 1

Table 8.1: Hyperparameter setting for MTS-Flow

8.2.1 Implementation Details

In the following, we describe the implementation details of MTS-Flow
and the other baselines we compare. As further baselines we use a
PCA-based approach [77], 1-nearest-neighbor distance (1-NN [57]), a con-
volutional autoencoder (CAE), a LSTM-based VAE [75], a Hidden Markov
Model [84] and a graph-augmented Normalizing Flow (GANF [117]). We
have used a sampling frequency of 100 Hz for all methods and provide a
uniform dimensionality by padding samples to the maximum length for
all experiments and all methods, unless otherwise stated.

mts-flow Table 8.1 summarizes the hyperparameters of our method
for the following experiments We apply a learning rate decay during
training to achieve a fast but stable convergence. The initial learning rate
of 8 · 10−4 is multiplied by a factor of 0.1 in epochs 11 and 61. The training
ends after a fixed number of 70 epochs. For the NF, individual kernel
sizes and dilation parameters for the 3 convolutional layers inside the
internal networks are used. While the first convolution takes 13 sample
points with a dilation of 2, the other 2 layers process the signal locally
having a kernel size of 1. The number of signals is scaled in the hidden
layers with a factor of r = 2. In total, the NF is a chain of 4 blocks, each
using the same hyperparameters.

1-nn Since the comparison of a sample to its nearest neighbor among
normal samples seems to be helpful for humans to identify anomalies
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(see Fig. 7.6), we utilize the nearest neighbor distance as anomaly score
as proposed by [57]. More specifically, we use the ℓ1-norm to the near-
est neighbor in the training set as a better performance was observed
compared to the ℓ2-norm.

pca For the PCA-based approach from [77], we performed a parameter
tuning on the number of components in which 90 principal components
explaining 81.1% of the variance have shown to provide the best perfor-
mance.

cae As another baseline, we implemented a convolutional autoencoder
(CAE) with the ℓ2 reconstruction error as anomaly score, similar to the
SWVAE [71] and work from other domains [40], [42], [63], [118]. Note
that [71] was originally applied for 12 signals (instead of 130 here) having
a space complexity of O(S2) with S as the number of signals which is
why we could not apply it to voraus-AD for memory reasons. The CAE
includes 1D convolutional layers for the encoder that run over time. For
the decoder, we use transposed convolutions. A hyperparameter search
gives us the following configuration: The encoder and decoder comprise
3 layers each with a kernel size of 7, strides of 2 and 220 hidden channels.
The latent space has 200 dimensions. We optimize this network for 60

epochs with Adam [102] and an initial learning rate of 5.2 · 10−4 which is
multiplied by 0.1 after 55 epochs.

ganf We used the official repository of Dai and Chen to perform
experiments with GANF [117]. Hyperparameters were taken from their
experiments with SWaT [119] since the task and dataset are similar to our
scenario.

hmm For the HMM method by Azzalini et al. [84] we decided for the
online approach as it outperformed the offline approach with less time
and space complexity. As described by the authors, we determined the
number of states by the BIC score, running k from 1 to 12, restricting
covariance types for the multivariate Gaussian distributed emission prob-
abilities to spherical and diagonal for runtime reasons. This parameter
search yielded the optimal BIC score at k=7 and a covariance matrix with
only diagonal entries being nonzero.

lstm-vae We used our own reimplementation for the LSTM-VAE
from Park et al. [75]. Since we observed over-optimization for constant
signal sections by having tiny standard deviations in the output, which
resulted in poor reconstruction of the remaining signals, we constrained a
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lower bound of 0.05 for the standard deviation outputs by adding it to the
softplus activation. It has shown that the LSTM-Memory has problems
processing the 130 signals for high sampling rates, which is why we
evaluated with 10 Hz here. A hyperparameter optimization gave us a
configuration with 90 epochs, 128 hidden neurons for the LSTMs, a latent
space dimension of 32 and a learning rate of 10−3.

Method 1-NN

[57]

PCA

[77]

CAE

adapts [71]

LSTM-VAE

[75]

GANF

[117]

HMM

[84]

MTS-Flow

(ours)

Add. Friction 74.8 76.4 89.4 ± 0.2 88.7 ± 1.5 88.5 ± 4.5 88.0 ± 0.7 96.6 ± 0.6

Miscommutation 80.8 87.0 99.1 ± 0.0 98.1 ± 0.5 98.8 ± 1.1 93.7 ± 1.3 99.8 ± 0.3

Misgrip can 100.0 100.0 100.0 ± 0.0 100.0 ± 0.0 47.6 ± 13.1 71.0 ± 3.3 95.3 ± 3.3

Losing can 68.7 70.1 72.6 ± 0.3 70.4 ± 2.9 72.1 ± 5.8 88.8 ± 1.0 96.2 ± 0.4

Add. axis weight 75.0 79.2 93.5 ± 0.1 82.7 ± 1.1 93.2 ± 2.4 89.6 ± 1.2 94.1 ± 0.7

Coll. foam 69.6 73.9 81.5 ± 0.2 81.5 ± 2.1 81.2 ± 6.2 89.8 ± 1.5 87.5 ± 1.2

Coll. cables 74.5 75.7 79.6 ± 0.3 77.3 ± 3.6 82.7 ± 6.4 91.8 ± 1.4 84.7 ± 1.2

Coll. cardboard 82.8 83.6 78.6 ± 0.3 82.8 ± 4.8 77.5 ± 5.8 86.3 ± 1.2 88.3 ± 1.2

Var. can weight 63.7 64.2 72.3 ± 0.3 71.4 ± 2.1 68.9 ± 8.7 90.9 ± 2.0 85.1 ± 1.1

Cable at robot 63.0 71.6 83.1 ± 0.3 96.0 ± 1.4 76.6 ± 8.1 84.4 ± 1.1 100.0 ± 0.0

Invalid grip. pos. 93.4 92.1 88.8 ± 0.3 97.7 ± 1.3 86.6 ± 10.8 91.8 ± 1.4 100.0 ± 0.0

Unstable platform 83.6 85.9 83.9 ± 0.2 93.6 ± 1.9 84.6 ± 3.8 82.5 ± 1.2 96.1 ± 0.7

Mean 77.5 80.0 85.2 ± 9.2 86.7 ± 10.1 79.9 ± 12.7 87.4 ± 5.8 93.6 ± 5.7

Table 8.2: Anomaly detection results on voraus-AD for MTS-Flow and other base-
lines measured in AUROC percentage. MTS-Flow shows the best perfor-
mance for most categories and on average.

8.2.2 Results

In this section, we evaluate current state-of-the-art methods along with
MTS-Flow on voraus-AD. As introduced in Subsection 7.6.4, the evalu-
ation protocol involves measuring the AUROC for each anomaly type
and the mean AUROC across all types. The baselines include all the
described methods from Section 8.2.1. Table 8.2 summarizes the results
including the AUROC for every anomaly category and the mean AUROC
over all of them. We report the mean and standard deviation over 9

runs for the non-deterministic training of MTS-Flow, LSTM-VAE, GANF,
HMM and CAE with different random initializations. Figure 8.3 shows
the underlying ROC curves for the median performance over all runs.

MTS-Flow outperforms all other baselines for 8 out of 12 categories
and on average by a large margin of 6.2%. It is notable that the relative
differences in performance between the methods vary strongly depending
on the anomaly category. For example, in contrast to MTS-Flow or HMM,
the comparatively simple approaches 1-NN and PCA can perfectly detect
a misgrip of the can, but underperform on average. Hidden Markov
Models, on the other hand, detect the misgrip with only 71% AUROC,
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but are most sensitive to collisions with about 86 to 92%. Figure 8.4 relates
the performance to the inference time of the given methods for samples
from voraus-AD at 100 Hz. Although PCA (4.7 ms) and CAE (0.43 ms)
and LSTM-VAE (12.2 ms) perform faster than MTS-Flow (13.1 ms), all of
these methods are fast enough for most real-time requirements in practice.
The nearest neighbor method scales with the training dataset size and
might not meet these requirements beyond a certain size (here 102.1 ms).
Similarly, the computation time of the HMM approach (here 75.9 ms)
is very sensitive to the number of signals as it involves the calculation
of determinants with O(S3). In contrast, the computation time of our
method is not related to the dataset size and scales with O(S2) assuming
a constant signal scaling in the internal networks.

The distribution of anomaly scores for normal data and anomalies
are visualized in Figure 8.5 on a log scale for anomaly scores. While
the normal samples show almost a normal distribution of rather small
scores, we observe a shifted long-tailed distribution towards large scores
for anomalies. Despite there is room for some improvement for many
samples in the mid-range where the histograms overlap, however, there is
a notable ratio of data points that are clearly separated from the opposite
class.

8.2.3 Ablation Studies

To get a deeper understanding of MTS-Flow, we experiment with varia-
tions regarding all dimensions including signals, time and sample size.
For all experiments, 9 runs were used with the same random initializa-
tions as before.

Figure 8.6 (a) shows the mean AUROC when using different subsets
of signals. We use the categorization from Table 7.2 and refer to the
joint group of targets and estimations as computed signals. Mechanical
signals provide clearly more importance for AD compared to electrical
signals improving the performance by 25%. Both measured and computed
signals lead to a moderate performance around 86% although this varies
more for measured signals. Overall, we observe that each group provides
useful information, as the AUROC is above the random baseline of 50%
in each case, and that using all signals gives the best performance.

We also investigated the influence of the sampling frequency within
the range of 10 to 500 Hz as shown in Figure 8.6 (b). Note that we adapted
the dilation parameter for the first convolution of every block to 10 for
the 500 Hz experiment as otherwise a small temporal context would be
considered. The detection improves with raising frequency from 10 Hz to
50 Hz as anomalies may be characterized by high-frequent components
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Figure 8.6: Ablation Studies regarding signal types (a), sampling rate (b) and
training set size (c) when applying MTS-Flow on voraus-AD.
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in this range. This effect is mostly saturated from 50 Hz and slightly
reverses for sampling frequencies up to 500 Hz. Since upcoming methods
could still benefit from higher frequencies, we provide signals with the
original sampling at 500 Hz.

Figure 8.6 (c) outlines the relation between training set size and AD
performance. We used random subsets for individual runs and kept the
number of training iterations constant over different subset sizes. It turns
out that high detection quality is merely achieved with many examples,
indicating that detecting anomalies in voraus-AD is not straightforward.
Future work may optimize the detection with less data.

8.2.4 Temporal Analysis

We use the input gradient as an indicator for the temporal occurrence
of anomalies as described in Section 8.1.3. We evaluate the temporal
analysis qualitatively by showing the gradient characteristics for selected
examples. Note that a quantitative evaluation is hardly feasible for many
cases since the exact timeframe is indeterminable for gradually increasing
or decreasing impacts.

Figure 8.7 visualizes the torque signal of anomalous sequences and
the corresponding input gradient ∇t

x from Eq. 8.6. A collision with a
foam as shown in Fig. 8.7 (a), which occurs in the original sample at 8.4 s
(upper plot) is clearly visible in the gradient (lower plot) at this time.
Note that the receptive field causes some dilatation of this peak around
the event. Interestingly, this peak has a delay for the event losing the can,
shown in Fig. 8.7 (b), since the missing can weight affects the forces in
the following movement. For the anomaly-free sample, the gradient is
relatively constant at a low level between 0.05 and 0.1 with some noise.
In practice, a simple peak detection after smoothing the signal would
provide the unusual parts of the signal.

8.3 conclusion

We present MTS-Flow which transfers the success of density estimation
with NFs for AD to the data domain of high-dimensional time series
via a tailored architecture design. MTS-Flow outperforms previous work
regarding sample-wise detection by a large margin of 6.2% and provides
a temporal analysis to inspect unusual events further. Future work could
work on efficiently dealing with the number of signals or samples during
training. The method may also be further enhanced by combining it with
an asymmetric student-teacher approach, for example, as in Chapter 6.
Moreover, the density estimation could be applied to some other rep-
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resentation of the input data, e. g. by transforming it to the frequency
domain or by leveraging some feature extractor as for the previously
proposed approaches on image data.



9
C O N C L U S I O N

In this thesis, we address the problem of automatic anomaly detection
using machine learning, focusing on the industrial context. An anomaly is
defined as an observation deviating from the majority such as a defective
product. Detecting such anomalies is crucial for ensuring product quality
and preventing equipment failures, process deviations or safety hazards
in industrial settings. The problem is formulated as a semi-supervised
anomaly detection task, where only normal data is available during train-
ing with the goal of identifying abnormal observations during inference.
Throughout this thesis, we have presented selected methods to deal with
this problem on images as well as on time series of robot machine data.

image-based methods

As the main contributions, we proposed three image-based anomaly
detection methods, namely DifferNet, Cross-Scale-Flow (CS-Flow), and
Asymmetric Student-Teacher Network (AST). All three methods leverage
a pretrained neural network to extract image features on which a density
estimation is learned using Normalizing Flows. Additionally, they pro-
vide anomaly localization maps, allowing us to pinpoint the regions of
anomalies within the images.

We first introduced DifferNet (Chapter 4), demonstrating that the
likelihoods provided by a Normalizing Flow can be effectively used
for image-based anomaly detection by utilizing the bijective property
of this neural network. This involves a learnable maximum likelihood
estimation using a Real-NVP-based flow to obtain the density of the
composite of compact feature vectors that were extracted from different
scales of the image. The flow transforms the data into a latent space with
known density where likelihoods are directly measurable. To identify the
anomalous regions in the image, the gradients of a backpropagation of
the likelihood up to the input image are visualized.

With CS-Flow (Chapter 5) we have proposed an extension to DifferNet
that provides a significant gain in detection performance by learning the
density of entire feature maps of different scales by our specially designed
flow. Full-resolution feature maps allow anomalies of fine structures to
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be better represented and the local context to be considered. A custom
architecture was introduced that enables the processing of the composite
of multi-scale feature maps, where within the internal networks these
scales can interact with each other to exploit correlations between them.
Since the outputs of CS-Flow are also maps indicating the likelihood of
image regions, these outputs provide a direct indication of localization.

AST (Chapter 6) combines the concepts of NF-based density estimation
with student-teacher networks. In the latter, a student network is opti-
mized to imitate a teacher network on normal data. Since this imitation
usually fails on anomalies, the distance between the network outputs can
be used as an anomaly indicator. However, as we discovered that this imi-
tation unintentionally works for some anomalies in existing methods due
to an undesired generalization caused by the similar design of student
and teacher, we propose a particular form of asymmetry of the networks:
While the teacher is realized by a Normalizing Flow, trained for density
estimation similar to CS-Flow, the student is a conventional network,
similar to ResNet [99]. Since both networks have a substantially different
internal structure and the output of the bijective NF-based teacher is
more responsive to anomalies, the student is further hindered from imi-
tating the teacher on anomalous data, resulting in higher student-teacher
distances and thus a more reliable detection. Besides the application on
RGB images, AST also achieves state-of-the-art results on 3D data or their
combination.

ad for robot machine data

To facilitate the evaluation and advancement of anomaly detection meth-
ods in robotics, we introduced the voraus-AD dataset (Chapter 7), con-
taining time series of machine data from a robot performing a non-
deterministic pick-and-place task. This dataset will represent the first
publicly available anomaly detection dataset in robotics with a diverse
range of anomalies and signals, providing a valuable resource for future
research in this field. We provide a total of 1367 anomaly-free and 755

anomalous time series, divided into 12 anomaly types which include
axis wear simulations, gripping errors and several process errors as colli-
sions or faulty setups. The 130 signals comprise mechanical and electrical
measures from 6 axes at a sampling rate of 500 Hz.

Furthermore, we adjusted the concepts from the previously introduced
image-based AD methods DifferNet and CS-Flow to multivariate time
series and conducted extensive experiments on our newly proposed
dataset voraus-AD. As before, our method MTS-Flow (Chapter 8) relies
on a learned density estimation of normal data using Normalizing Flows,
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allowing for identifying anomalies by their small likelihood. We leveraged
the data structure of the multivariate time series to adapt the flow for this
domain. The internal networks of the coupling blocks comprise temporal
convolutions that operate on subsets of signals to transform the data
distribution to a well-known target distribution. Moreover, we enabled a
temporal analysis of the signals by transferring the localization approach
from DifferNet, utilizing the input gradient of the anomaly score.

future work

This work has focused on anomaly detection using pre-extracted features
from RGB images or direct processing of 3D scans. Future work may
investigate how the feature extraction could fine-tuned to other possible
domains as X-ray or hyperspectral imaging. These give a different dy-
namic range with possibly different structures to interpret which may
be not optimally processed by RGB-pretrained networks. For example,
various self-supervised techniques [120]–[122] could be evaluated as it
is unlikely to have access to networks pretrained on labeled large-scale
datasets as ImageNet.

In addition, a major challenge in industry is to make the typically
resource-intensive deep-learning algorithms executable on small and
ideally low-cost embedded devices while fulfilling real-time requirements.
Although the algorithms developed here would meet such requirements
for many cases, a more efficient implementation or adaptation would
make them more widely applicable. In addition to manual adaptation to
specific hardware, it would also be beneficial to compress or accelerate the
network itself. Possible options are knowledge distillation [67], network
pruning [123] and quantization [124].

In this work, it has been assumed that there is a training set that
contains only defect-free examples, which is often not a major constraint
since anomalies are rare in most scenarios. However, it costs labeling
effort to ensure an anomaly-free training set. Active learning could help
to determine which examples should be labeled next so that the model
learns more efficiently. Since it is expected to find anomalies in this
labeling process, the methods could be extended to utilize anomalies
directly in training. Except for a few papers [125], [126], active learning
for AD is mostly underexplored.

Even though localization is already a first step towards the explainabil-
ity of the model by identifying the image regions underlying the decision,
this technique does not provide a fully comprehensive statement about
the error type. The localization gives no information about the attribute
that is anomalous in an image region. For example, the defect could
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represent a deformation, a discoloration, the absence of a component,
or the presence of a previously unknown structure. Future work may
explore how the decision could be justified in such a way. One key could
be interpretable models whose features can be verbalized by associating
image content with natural language [127] where a common embedding
space such as in CLIP [128] is utilized.
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