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A B S T R A C T   

The non-stationary load models based on the evolutionary power spectral density (EPSD) may lead to ambiguous 
structural responses. Quasi-stationary harmonizable processes with non-negative Wigner-Ville spectra are suit-
able for modeling non-stationary loads and analyzing their induced structural responses. In this study, random 
environmental loads are modeled as quasi-stationary harmonizable processes. The Loève spectrum of a har-
monizable load process contains several random physical parameters. An explicit approach to calculate the 
probability distributions for the dynamic and extreme responses of a linear elastic structure subjected to a quasi- 
stationary harmonizable load is proposed. Conditioned on the specific values of the load spectral parameters, the 
harmonizable load process is assumed to be Gaussian. The conditional joint probability density function (PDF) of 
structural dynamic responses at any finite time instants and the conditional cumulative distribution function 
(CDF) of the structural extreme response are provided. By multiplying these two conditional probability dis-
tributions with the joint PDF of the load spectral parameters, and then integrating these two products over the 
parameter sample space, the joint PDF of structural dynamic responses at any finite time instants and the CDF of 
the structural extreme response can be calculated. The efficacy of the proposed approach is numerically validated 
using two linear elastic systems, which are subjected to non-stationary and non-Gaussian wind and seismic loads, 
respectively. The merit of the harmonizable load process model is highlighted through a comparative analysis 
with the EPSD load model.   

1. Introduction 

Random environmental loads, including extreme wind events and 
earthquake ground motion, exhibit obvious time-varying properties and 
thus are usually modeled as non-stationary processes. Due to its ability 
to physically interpret the local power-frequency distribution at each 
time instant, the evolutionary power spectral density (EPSD) [1,2] has 
wide application in the characterization and simulation of 
non-stationary earthquake ground motions [3–5] and non-stationary 
wind speeds [6–9], and the prediction of structural responses [7, 
10–14]. Though popular, EPSD has one essential deficiency. For a 
multi-variate non-stationary load process with time-varying coherences, 
calculating its correlation functions and the correlation functions of its 
induced structural responses involves a step of decomposing the load 
EPSD matrix. When different decomposition methods, e.g., Cholesky 

decomposition [3], proper orthogonal decomposition [15], or square 
root decomposition (SRD) [16], are employed, it has been theoretically 
proven that the obtained load and response correlation functions may be 
not unique [16]. 

The harmonizable process [17,18] considering the spectral correla-
tion represents a natural expansion of the wide-sense stationary process. 
Its Wigner-Ville spectrum (WVS) characterizes the time-frequency 
properties and the dual-frequency Loève spectrum describes the spec-
tral correlation. For a harmonizable process, its WVS, Loève spectrum, 
and correlation function can be uniquely converted to each other by 
one-dimensional (1D) or two-dimensional (2D) Fourier transform [19, 
20]. Thus, the harmonizable process does not suffer from the problem of 
ambiguous correlation functions, which is encountered by the EPSD 
model. Similar to the semi-stationary processes characterized by 
slowly-varying ESPDs [1], the non-negative slowly-varying WVSes of 
the quasi-stationary harmonizable processes [21] are suitable for 
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characterizing the time-frequency properties of non-stationary loads. A 
multi-taper S-transform method for the WVS and Loève spectrum esti-
mation has been proposed to estimate the WVSes and Loève spectra of 
environmental loads based on field-measured records [22]. Applying a 
quasi-stationary harmonizable load process to a linear elastic structure, 
it is convenient to calculate the Loève spectrum of the structural 
response directly by multiplying the load Loève spectrum with the 
structural frequency response function [23]. Thus, the quasi-stationary 
harmonizable processes are suitable for characterizing non-stationary 
loads and analyzing their induced structural responses. Nonetheless, 
current research regarding the modeling of random loads and structural 
response analysis based on the quasi-stationary harmonizable process 
remains relatively limited. In Refs. [24,25], the earthquake ground 
motion acceleration is modeled as a sigma oscillatory process charac-
terized by its EPSD. The correlation function of the earthquake ground 
motion, which is calculated from its EPSD, is converted to a Loève 
spectrum to calculate the structural response Loève spectrum and the 
response correlation function. Although the Loève spectrum is 
employed, the structural response analysis under the stochastic seismic 
load in Refs. [24,25] still remains within the framework of EPSD and 
thus may suffer from the ambiguity of correlation functions. In Ref. [23], 
two approximate representations of harmonizable processes based on 
the discrete Fourier transform were proposed to model various 
non-Gaussian and non-stationary load processes. The joint probability 
density function (PDF) of the load Fourier coefficients, which can be 
directly estimated from field-measured load records, is suitable for 
characterizing the complete probabilistic information of the load pro-
cesses. The two load representations can be employed to compute the 
joint PDF of responses at any finite time instants for linear elastic 
structures. In Ref. [26], one of the two load representations based on the 
discrete Fourier transform has been utilized to model the complete 
probabilistic information of a fluctuating wind speed process with 
field-measured wind speed time records. Notably, the joint PDF of a total 
of 1198 wind speed frequency components was successfully modeled by 
the D-vine copula distribution. Though versatile for modeling the com-
plete probabilistic information of various random loads, the high 
dimension of the frequency components may render the evaluation of 
their joint PDF computationally expensive. The load modeling and 
response analysis within the framework of the harmonizable process is 
still an open challenge. 

Utilizing the load spectrum containing several random physical pa-
rameters proves to be a convenient and practical approach for describing 
the probabilistic information of environmental loads [27–29]. In this 
study, random environmental loads are modeled as quasi-stationary 
harmonizable processes and the Loève spectrum of a harmonizable 
load process contains several random physical parameters. An explicit 
approach to calculate dynamic and extreme response probability dis-
tributions for a linear elastic structure subjected to a quasi-stationary 
harmonizable load process is proposed. First, conditioned on the spe-
cific values of the load spectral parameters, the harmonizable load 
process is assumed to be Gaussian. Under this condition, the load Loève 

spectrum is a deterministic spectrum function and structural response 
correlation functions can be readily calculated from the deterministic 
load Loève spectrum. Subsequently, the conditional joint PDF of struc-
tural dynamic responses at any finite time instants, and the conditional 
cumulative distribution function (CDF) of the structural extreme 
response, conditioned on the values of the load spectral parameters, can 
be expressed in terms of the response correlation functions. Finally, by 
multiplying the conditional joint PDF of dynamic responses and the 
conditional CDF of the extreme response with the joint PDF of the load 
spectral parameters, and then integrating these two products over the 
parameter sample space, the joint PDF of structural dynamic responses 
at any finite time instants and the CDF of the structural extreme response 
can be calculated. 

The remainder of this paper is organized as follows. First, the 
mathematical definition and properties of the quasi-stationary harmo-
nizable process, along with the physical interpretation of WVS, are 
briefly introduced. Subsequently, the proposed approach to calculate 
dynamic and extreme response probability distributions for linear 
elastic structures subjected to quasi-stationary harmonizable load pro-
cesses is provided. Finally, the efficacy of the proposed approach is 
numerically validated using two multi-degree-of-freedom (MDOF) sys-
tems, which are subjected to non-stationary and non-Gaussian wind and 
seismic loads, respectively. Using the system subjected to a bivariate 
non-stationary wind speed process with a time-varying coherence, the 
merit of the harmonizable load process model is highlighted through a 
comparative analysis with the EPSD load model. 

2. Quasi-stationary harmonizable load process 

In this section, the mathematical definition of the harmonizable 
process, along with its correlation function, WVS, and Loève spectrum, is 
briefly introduced. Subsequently, the quasi-stationarity of the harmo-
nizable process and the physical interpretation of the WVS of the quasi- 
stationary harmonizable process are provided. A comprehensive intro-
duction to the harmonizable process, along with a theoretical compar-
ative analysis against the semi-stationary process characterized by 
EPSD, can be found in Ref. [20]. 

A zero-mean, second-order, and real-valued multi-variate harmo-
nizable process F(t) = [F1(t), F2(t), …, FNF (t)]T is defined as [18,23] 

F(t)=
∫ +∞

− ∞
ei2πftdZ(f ), (1)  

where T is the transposition operator; Z(f) = [Z1(f), Z2(f), …, ZNF (f)]T is a 
complex-valued zero-mean process satisfying 

dZ*(f )= dZ(− f ); (2)  

and * is the conjugate operator. 
The Loève spectrum of F(t) is defined as [17]. 

SF(f1, f2)=E
[
dZ*(f1)dZT(f2)

] /
df1df2, (3)  

where E[•] is the expectation operator. SF(f1, f2) can be continuous 
functions or the generalized functions consisting of the Dirac delta 
function δ(•) [30]. It satisfies 

S*
F(f1, f2)=SΤ

F(f2, f1). (4)  

SF(f1, f2) and the correlation RF(t1, t2) = E[F*(t1)FT(t2)] of F(t) consti-
tutes a 2D Fourier transform pair, as illustrated by 

RF(t1, t2)=

∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 t2 − f1 t1)SF(f1, f2)df1df2 (5)  

and 

Abbreviations 

1D one-dimensional 
2D two-dimensional 
2-DOF 2-degree-of-freedom 
CDF cumulative distribution function 
EPSD evolutionary power spectral density 
MDOF multi-degree-of-freedom 
PDF probability density function 
WVS Wigner-Ville spectrum 
SRD square root decomposition  
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SF(f1, f2)=

∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f1 t1 − f2 t2)RF(t1, t2)dt1dt2. (6) 

Rotating the time coordinate in RF(t1, t2) and the frequency coordi-
nate in SF(f1, f2) by 45◦, respectively, that is t = 0.5(t1 + t2) and τ = (t2 – 
t1), f = 0.5(f1 + f2) and ξ = (f2 – f1), R̃F(t, τ) = RF(t – 0.5τ, t + 0.5τ) and 
S̃F(f, ξ) = SF(f – 0.5ξ, f + 0.5ξ) are obtained. R̃F(t, τ) and S̃F(f, ξ) are 
equivalent to RF(t1, t2) and SF(f1, f2), respectively, and they can be 
interchangeably used. The WVS WF(t, f) of F(t) is defined as [31] 

WF(t, f )=
∫ +∞

− ∞
e− i2πf τR̃F(t, τ)dτ, (7)  

and can also be calculated from S̃F(f, ξ) 

WF(t, f )=
∫ +∞

− ∞
ei2πξtS̃F(f , ξ)dξ. (8)  

WF(t, f) represents the time-frequency property of F(t). Eqs. (5)–(8) 
indicate that RF(t1, t2), WF(t, f), and SF(f1, f2) are in one-to-one corre-
spondence and can be converted to each other by a 1D or 2D Fourier 
transform [19,20]. 

As illustrated in Eq. (1), the definition of the harmonizable process is 
in the form of the Fourier transform. Any process, that can be expressed 
in this form, belongs to the class of harmonizable processes. The 
commonly-used semi-stationary processes characterized by the EPSD 
[1] and the wavelet processes characterized by the wavelet spectrum 
[32,33] can be expressed in the form of Eq. (1), and they both belong to 
the class of harmonizable processes. 

In this study, two assumptions are enforced to F(t). One is that F(t) is 
assumed to be quasi-stationary, that is R̃F(t, τ) is slowly-varying with 
respect to t [21,22]. The specific mathematical definition of the 
quasi-stationarity of the harmonizable process was provided in 
Ref. [21]. The other one is that the auto-WVSes of F(t) are non-negative. 
The conditions for the positive WVSes of harmonizable processes has 
been investigated in Ref. [34]. 

The physical interpretation of the WVS of the quasi-stationary har-
monizable process is provided here. Noting that R̃F(t, τ) = RF(t – 0.5τ, t 
+ 0.5τ) = E[F*(t – 0.5τ)FT(t + 0.5τ)], from Eq. (7), the WVS WF(t, f) of F 
(t) can be expressed as 

WF(t, f ) =
∫+∞
− ∞ e− i2πf τRF(t − 0.5τ, t + 0.5τ)dτ

=

∫ +∞

− ∞
e− i2πf τE[F*(t − 0.5τ)FΤ(t + 0.5τ) ]dτ.

(9) 

Eq. (9) indicates that at each time instant t, WF(t, f) is the Fourier 
transform of the correlation function RF(t – 0.5τ, t + 0.5τ) of F(t) around 
t. Since the correlation function RF(t – 0.5τ, t + 0.5τ) of the quasi- 
stationary F(t) is slowly-varying with respect to t, in the neighborhood 
of each time instant t, RF(t – 0.5τ, t + 0.5τ) can be regarded as a sta-
tionary correlation function, and WF(t, f) is just the power spectral 
density of the stationary correlation function at each time instant t. 
When F(t) is a wide-sense stationary process, WF(t, f) degenerates to the 
stationary power spectral density of F(t). Besides, WF(t, f) satisfies the 
condition that 

Var[F(t)]=RF(t, t) =
∫ +∞

− ∞
WF(t, f )df , (10)  

where Var[•] is the variance operator. Thus, for a quasi-stationary F(t), 
WF(t, f) is a time-varying spectrum representing the energy distribution 
of F(t) over the time-frequency domain. The WVS of the quasi-stationary 
harmonizable process shares a similar physical interpretation with that 
of EPSD. 

3. Probability distributions of responses for linear elastic 
structures 

In this section, the calculation of the response correlation function, 
WVS, and Loѐve spectrum of an MDOF linear elastic structure subjected 
to a harmonizable load process is first introduced. Subsequently, the 
proposed methods to calculate the joint PDF of structural dynamic re-
sponses at multiple time instants and the CDF of the structural extreme 
response are presented in Sections 3.1 and 3.2, respectively. 

The differential equation for a MDOF linear elastic structure on a 
time interval [0, +∞) is 

MÜ(t)+CU̇(t) + KU(t) = F(t,Θ), (11)  

where M, C, and K are the mass, damping and stiffness matrixes, 
respectively; U(t) is an NU-dimensional process representing the struc-
tural displacement response; dot and double dots are the first- and 
second-order derivative operators with respect to t, respectively; F(t, Θ) 
is an NU-dimensional quasi-stationary harmonizable load process 
defined by Eq. (1); and Θ = [Θ1, Θ2, …, ΘNΘ ] is a stochastic vector 
representing a set of random physical parameters characterizing the 
randomness of the load Loève spectrum SF(f1, f2, Θ). In this study, it is 
assumed that U(t) satisfies the initial conditions U(0) = U̇(0) = 0. 

Given a realization θ = [θ1, θ2, …, θNΘ ] of Θ, the load Loève spectrum 
SF(f1, f2, θ) on this condition becomes a deterministic spectrum function. 
The conditional probability distribution of the load F(t, θ) on the con-
dition of the deterministic SF(f1, f2, θ) is assumed to be Gaussian. The 
rationale for the assumption that F(t, θ) is Gaussian on the condition of a 
realization θ of Θ is explained here. Simulated records from the 
commonly-used stochastic process simulation methods based on either 
the decomposition of the spectrum matrix [3,35,36] or the correlation 
function matrix [15] are Gaussian. In addition, following the central 
limit theorem, a linear combination of a set of basis functions with in-
dependent stochastic coefficients is approximately a Gaussian process 
without requiring the same marginal probability distributions of the 
coefficients [37]. The conditional probability distribution of F(t, θ) 
under this assumption is consistent with that of its realizations simulated 
using the commonly-used simulation methods. Under this assumption, 
the response U(t) caused by F(t, θ) is also Gaussian. 

The Loѐve spectrum SU(f1, f2, θ) of U(t) caused by F(t, θ) can be 
directly calculated from SF(f1, f2, θ) 

SU(f1, f2, θ)=H*(f1)SF(f1, f2, θ)HΤ(f2), (12)  

where H(f) is the frequency response function matrix of the linear elastic 
system in Eq. (11) 

H(f )=
[
− 4π2f 2M + i2πf C + K

]− 1
. (13) 

The correlation function R(p)(q)
U (t1, t2, θ) can be calculated from SU(f1, 

f2, θ) 

R(p)(q)
U (t1, t2, θ)=E

[
dpU*(t1)

dtp
1

dqUT(t2)

dtq
2

]

= (− i2π)p
(i2π)q

∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 t2 − f1 t1)f p

1 f q
2 SU(f1, f2, θ)df1df2,

(14)  

where p and q are non-negative integers. The WVS WU(t, f, θ) of U(t) can 
be calculated as 

WU(t, f , θ)=
∫ +∞

− ∞
ei2πξtS̃U(f , ξ, θ)dξ, (15)  

where S̃U(f, ξ, θ) = SU(f – 0.5ξ, f + 0.5ξ, θ). 

3.1. Joint PDF of structural dynamic responses at multiple time instants 

Given finite time instants, t = [t1, t2, …, tNt ], at each time instant ti, i 
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= 1, 2, …, Nt, a subset of the structural responses caused by F(t, Θ), Yi =

[Y1,i(ti), Y2,i(ti), …, YMi ,i(ti)]
T, is considered. The elements of Yi can be 

the structural displacement, velocity, or acceleration responses. The 
response Y = [YT

1, YT
2, …, YT

Nt
]T under a deterministic θ is jointly 

Gaussian. The conditional joint PDF of Y on the condition of θ is 

pY|Θ(y|θ)=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)MDY(θ)
√ exp

[
− 0.5yΤR− 1

Y (θ)y
]
, (16)  

where y = [yT
1, yT

2, …, yT
Nt

]T; yi = [y1,i, y2,i, …, yMi ,i]
T; RY(θ) is the 

covariance matrix of Y, whose elements can be calculated using Eq. (14) 
with SF(f1, f2, θ); DY(θ) is the determinant of RY(θ); and M =

∑Nt
i=1Mi. 

The joint PDF of Y can be calculated by 

pY(y) =
∫

ΩΘ

pY|Θ(y|θ)pΘ(θ)dθ =

∫

ΩΘ

exp
[
− 0.5yΤR− 1

Y (θ)y
]
pΘ(θ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)MDY(θ)
√ dθ, (17)  

where ΩΘ is sample space of Θ and pΘ(θ) is the joint PDF of Θ. 
According to Sklar’s theorem [38], the joint CDF PΘ(θ) of Θ can be 

expressed as 

PΘ(θ)=CΘ[P1(θ1),P2(θ2),…,PNΘ (θNΘ )], (18)  

where CΘ(ϑ), ϑ = [ϑ1, ϑ2, …, ϑNΘ ], from [0, 1]NΘ to [0, 1], is a copula 
function [38] and Pi(θi) is the marginal CDF of Θi, i = 1, 2, …, NΘ. Then, 
the joint PDF pΘ(θ) is expressed as 

pΘ(θ)= cΘ[P1(θ1),P2(θ2),…,PNΘ (θNΘ )]
∏NΘ

i=1
pi(θi), (19)  

where pi(θi) = dPi(θi)/dθi is the marginal PDF of Θi and cΘ(ϑ) = ∂CΘ(ϑ)/
∂ϑ. It is assumed that every CDF Pi(θi) has its inverse function 

θi =P− 1
i (ϑi), (20)  

where ϑi ∈ [0, 1]. Then pY(y) in Eq. (17) can be calculated as 

pY(y) =
∫

[0,1]NΘ pY|Θ[y|θ(ϑ) ]cΘ(ϑ1,ϑ2,…, ϑNΘ )dϑ

=

∫

[0,1]NΘ

exp
[
− 0.5yΤR− 1

Y [θ(ϑ) ]y
]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)MDY[θ(ϑ) ]
√ cΘ(ϑ1,ϑ2,…, ϑNΘ )dϑ,

(21)  

where θ(ϑ) represents the one-to-one mapping relationships formed by 
Eq. (20). The integrals in Eqs. (17) and (21) can be numerically 
computed using the Monte Carlo and quasi-Monte Carlo integrations 
[39], respectively. 

3.2. CDF of the structural extreme response 

The Loève spectrum SF(f1, f2, θ) of the quasi-stationary harmonizable 
load process F(t, θ) defined by Eq. (1) is concentrated around the main 
diagonal line of f1 = f2 on the dual-frequency plane [22]. Thus, as 
illustrated in Eq. (12), the Loève spectrum SU(f1, f2, θ) of U(t) caused by 
F(t, θ) is also concentrated around the main diagonal line on the 
dual-frequency plane. The Loève spectra of wide-sense stationary pro-
cesses are exactly lines along the main diagonal line. The similarity 
between the Loève spectra of the quasi-stationary U(t) and stationary 
processes indicates that the out-crossing rate approach [40] can be 
employed to calculate the extreme distribution of U(t), which involves 
replacing the time-invariant second-order statistical moments of sta-
tionary processes with the time-varying ones of U(t). The time-varying 
moments of U(t) are also called nongeometric spectral characteristics 
[14,41]. 

The extreme value Ye of Y(t), which can be a structural displacement, 
velocity, or acceleration response, over a time duration [0, T] is defined 
by 

Ye = max
t∈[0,T ]

[|Y(t)|], (22)  

where |•| is the absolute value operator. The conditional CDF of Ye given 
θ can be approximated as [42] 

PYe |Θ(ye|θ) ≈ e− NYe (ye ,T,θ), (23)  

where 

NYe (ye, T, θ)=
∫ T

0
ηYe

(ye, t, θ)dt (24)  

and ηYe
(ye, t, θ) is expressed by the Vanmarcke approximation [40,42] 

ηYe
(ye, t,θ)=

1
π

σẎ(t,θ)
σY(t,θ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
YẎ(t,θ)

√ 1 − exp
[
−

̅̅̅̅̅̅̅̅̅
0.5π

√
qα

Y(t,θ)ye/σY(t,θ)
]

exp
[
0.5y2

e

/
σ2

Y(t,θ)
]
− 1

.

(25)  

In Eq. (25), the exponent α of qY(t, θ) is taken as α = 1 or 1.2 [40]. σY(t, θ)
is the time-varying standard deviation of Y(t) calculated from its Loève 
spectrum SY(f1, f2, θ) 

σY(t, θ)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 − f1)tSY(f1, f2, θ)df1df2

√

. (26)  

σẎ(t, θ) is the time-varying standard deviation of the derivative Ẏ(t) of Y 
(t) and can be calculated by 

σẎ(t, θ)= 2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 − f1)t f1f2SY(f1, f2, θ)df1df2

√

. (27)  

ρYẎ(t,θ), the correlation coefficient of Y(t) and Ẏ (t), is defined by 

ρYẎ(t, θ)=
rYẎ(t, θ)

σY(t, θ)σẎ(t, θ)
, (28)  

where rYẎ(t, θ) = E[Y*(t)Ẏ(t)] is the correlation function between Y(t) 
and Ẏ(t) and can be calculated as 

rYẎ(t, θ)= i2π
∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 − f1)t f2SY(f1, f2, θ)df1df2. (29)  

qY(t, θ) is the bandwidth factor of Y(t) and is calculated by 

qY(t, θ)=
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − γY(t, θ)
√

, γY(t, θ) < 1
1 − 10− 5, γY(t, θ) ≥ 1

, (30)  

where 

γY(t, θ)=
r2

YẎ(t, θ) + r
Y
˙̃
Y

2
(t, θ)

σ2
Y(t, θ)σ2

Ẏ(t, θ)
, (31)  

and r
Y ˙̃Y

(t,θ) = E[Y*(t) ˙̃Y(t)]. ˙̃Y(t) is the derivative of the auxiliary process 

Ỹ(t) of Y(t). r
Y ˙̃Y

(t, θ) is calculated by 

r
Y
˙̃
Y
(t, θ)= 2π

∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 − f1)t|f2|SY(f1, f2, θ)df1df2. (32)  

The derivation of Eqs. (30)–(32), as well as that of Ỹ(t) and ˙̃Y(t), is 
provided in Appendix A. 

In [25], a calculation formula of r
Y ˙̃Y

(t,θ), which is the same as that in 
Eq. (32), was given. However, the calculation formula of r

Y ˙̃Y
(t, θ) in 

Ref. [25] was still based on the condition that the target process is 
characterized by the EPSD. In this study, Eq. (32) is derived from a 
harmonizable process Y(t). Since the processes characterized by the 
EPSD belong to the class of harmonizable processes. It is reasonable that 
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the calculation formula of r
Y ˙̃Y

(t, θ) in Eq. (32) is the same as that in 
Ref. [25]. 

The CDF of Ye is approximately calculated as 

PYe (ye) ≈

∫

ΩΘ

PYe |Θ(ye|θ)pΘ(θ)dθ. (33)  

Analogy to Eq. (21), PYe (ye) can be also calculated as 

PYe (ye) ≈

∫

[0,1]NΘ
PYe |Θ[ye|θ(ϑ)]cΘ(ϑ1,ϑ2,…, ϑNΘ )dϑ. (34) 

The integrals in Eqs. (33) and (34) can be numerically computed 
using the Monte Carlo and quasi-Monte Carlo integrations [39], 
respectively. 

As shown in Eqs. (17), (25), (28) and (31), RY(θ), σY(t, θ), σẎ(t, θ), 
rYẎ(t,θ), and r

Y ˙̃Y
(t, θ) in the time domain are essential for calculating the 

probability distributions of the structural dynamic and extreme re-
sponses. Under the EPSD load model, it has been theoretically proven 
that these second-order statistical moments may be ambiguous when the 
loads have time-varying coherences [16]. The ambiguity of the response 
correlation function under the EPSD load model is numerically verified 
in Section 4.1. Eqs. (12), (14), (26), (27), (29) and (32) indicate that 
when the load is modeled as the quasi-stationary harmonizable process, 
these second-order statistical moments of the structural responses in the 
time domain can be unambiguously and conveniently calculated using 
the load Loève spectrum. This is an important advantage of the har-
monizable load process model over the EPSD load model. The Gaussian 
distribution in Eq. (16) and its associated extreme distribution from Eqs. 
(23)–(25) can be also replaced by other appropriate ones according to 
various practical applications, which is beyond the scope of this study. 

4. Numerical validation 

In this section, the efficacy of the proposed approach is validated 

using two numerical cases. In the first one, a 2-DOF linear elastic 
structure subjected to a bivariate harmonizable wind speed process with 
a time-varying coherence is considered. In the second case, a 10-story 
shear-type linear elastic structure subjected to a harmonizable earth-
quake ground motion acceleration process is employed. Using the first 
case, the merit of the harmonizable load process model is highlighted 
through a comparative analysis with the EPSD load model. The records 
of all harmonizable load processes considered in this section can be 
simulated using the simulation method based on the correlation function 
matrix decomposition [15]. 

4.1. Case 1 

In this subsection, a bivariate zero-mean harmonizable fluctuating 
wind speed process u(t) = [u1(t), u2(t)]T with a time period of 600 s is 
applied to a 2- DOF linear elastic structure, as shown in Fig. 1. U1(t) and 
U2(t) represent the displacement responses of the first and second co-
ordinates, respectively, relative to the ground. In this structure, m = 3 ×
106 kg, k = 5 × 106 N/m, and c = 4 × 105 N ⋅ s/m. 

The WVS matrix Wu(t, f, Θ), Θ = [U, Lu], of the harmonizable wind 
speed process u(t) is expressed as  

In Eq. (35), U is the mean wind speed (m/s), Lu is the longitudinal tur-
bulence integral scale (m), Wu1 (t, f, Θ) = Wu(t, f, U, Lu) is the auto-WVS 
of u1(t), Wu2 (t, f) = Wu(t, f, 

̅̅̅
2

√
U, 

̅̅̅
2

√
Lu) is the auto-WVS of u2(t), and 

Wu(t, f, U, Lu) is a two-side modulated von Kármán spectrum 

Wu(t, f ,U,Lu)=A(t)
0.04ULu

[
1 + 70.8(fLu/U)

2
]5/6 , (36)  

where 

A(t, f )= exp
[
− 2× 10− 5(t − 300)2]

. (37)  

The time-varying coherence ru(t, f) in Eq. (35) is expressed as 

ru(t, f )= [1 − 5υ(f )]eifd(t)− 10υ(f ), (38)  

where 

d(t)= 10 sin
( πt

300

)
(39)  

and 

υ(f )=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.1f 2 + 10− 4

√
. (40)  

The Loѐve spectrum Su(f1, f2, U, Lu) of Wu(t, f, U, Lu) is 

Su(f1, f2,U, Lu)= exp
(
− i600πξ − 5× 104π2ξ2) 4

̅̅̅̅̅
5π

√
ULu

[
1 + 70.8(fLu/U)

2
]5/6 ,

(41)  

where f = 0.5(f1 + f2) and ξ = (f2 – f1). The correlation function Ru(t1, t2, 
U, Lu) of Wu(t, f, U, Lu) is 

Fig. 1. A 2-DOF linear elastic structure.  

Wu(t, f ,Θ)=

⎡

⎢
⎣

Wu1 (t, f ,Θ) ru(t, f )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Wu1 (t, f ,Θ)Wu2 (t, f ,Θ)

√

r*
u(t, f )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Wu1 (t, f ,Θ)Wu2 (t, f ,Θ)

√

Wu2 (t, f ,Θ)

⎤

⎥
⎦. (35)   

Z. Huang and M. Beer                                                                                                                                                                                                                         



Probabilistic Engineering Mechanics 75 (2024) 103590

6

Ru(t1, t2,U, Lu)=A(t)
0.08

̅̅̅
π

√
ULuK1/3

[
2π|τ|

/( ̅̅̅̅̅̅̅̅̅
70.8

√
Lu
/

U
)]
(π|τ|)1/3

70.82/3Γ(5/6)(Lu/U)
4/3 ,

(42)  

where t = 0.5(t1 + t2); τ = (t2 – t1); Γ(•) is the Gamma function; and 
K1/3(•) is the modified Bessel function of the second kind [43]. 

In Wu(t, f, Θ), the mean wind speed U and the longitudinal turbu-
lence integral scale Lu are two correlated random variables. The mar-
ginal distribution of U is assumed to be a Weibull distribution 

pU(u)=
b
a

(u
a

)b− 1
exp

[

−
(u

a

)b
]

, (43)  

where a = 15 and b = 2.5. The marginal distribution of Lu is assumed to 
be a lognormal distribution 

pLu (lu)=
1

luσL
̅̅̅̅̅
2π

√ exp

{

−
[log(lu) − μL]

2

2σ2
L

}

, (44)  

where μL = 4 and σL = 0.2. The probabilistic dependence between U and 
Lu is modeled using a Gaussian copula with a correlation coefficient of 
0.7 [44]. 

The along-wind dynamical force induced by u(t) is Fu(t) = [Fu1 (t), 

Fu2 (t)]T 

Fu1 (t)= ρCDAT U
∫ +∞

− ∞
ei2πftχu1

(f ,U)dZu1 (f ) (45)  

and 

Fu2 (t)= ρCDAT
̅̅̅
2

√
U
∫ +∞

− ∞
ei2πftχu2

(f ,U)dZu2 (f ), (46)  

where Zui (f) is the frequency component of ui(t), i = 1 and 2; ρ = 1.225 
kg/m3 is the air density; CD = 1.2 is the drag coefficient; AT = 400 m2 is 
the tributary area; χu1

(f, U) and χu2
(f, U) are two aerodynamic admit-

tances [45] 

χu1
(f ,U)=

1

1 +
(
2fA0.5

T
/

U
)4

3
(47)  

and 

χu2
(f ,U)=

1

1 +
[
2fA0.5

T
/( ̅̅̅

2
√

U
)]4

3
. (48) 

The wind induced dynamic force Fu(t) expressed by Eqs. (45) and 

Fig. 2. RF1 (t1, t2), WF1 (t, f), and SF1 (f1, f2) under U = 20 m/s and Lu = 400 m. (a) RF1 (t1, t2), (b) WF1 (t, f), (c) real part of SF1 (f1, f2), and (d) imaginary part of 
SF1 (f1, f2). 
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(46) is also a bivariate harmonizable process and its form is a direct 
expansion of the stationary wind induced dynamic force [45]. The Loève 
spectrum SFu (f1, f2, Θ) of Fu(t) can be calculated by 

SFu (f1, f2,Θ)=χ(f1,U)Su(f1, f2,Θ)χ(f2,U), (49)  

where Su(f1, f2, Θ) is the Loève spectrum matrix of u(t), which can be 
calculated from Wu(t, f, Θ); and χ(f, U) is 

Fig. 3. Evolutionary probability distribution of U2(t). (a) evolutionary PDF calculated using Eq. (17), (b) evolutionary PDF estimated using the response samples, (c) 
CDF of U2(t) at t = 200 s, and (d) CDF of U2(t) at t = 300 s. 

Fig. 4. Joint PDF of U1(400) and U2(402). (a) the result from Eq. (17) and (b) the result from the response samples.  
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χ(f ,U)=

[ ρCDAT Uχu1
(f ,U) 0

0 ρCDAT
̅̅̅
2

√
Uχu2

(f ,U)

]

. (50) 

The correlation function matrix RFu (f1, f2, Θ) of Fu(t), which can be 

computed from SFu (f1, f2, Θ) based on Eq. (5), will be utilized to simulate 
samples of Fu(t). In the case of U = 20 m/s and Lu = 400 m, RF1 (t1, t2), 
WF1 (t, f), and SF1 (f1, f2) of F1(t) are illustrated in Fig. 2. 

In this subsection, following Eqs. (17) and (33), the probability dis-
tributions of the dynamic and extreme responses of the 2-DOF linear 
elastic structure are computed using the Monte Carlo integration [39] 
with 900 samples of the random physical parameter vector Θ = [U, Lu]. 
The computed results are then compared with those from 106 structural 
response samples. The response samples are computed using the New-
mark method [46] with 106 simulated wind force samples. 

The evolutionary PDF of the displacement response U2(t) in Fig. 1, 
which is computed using Eq. (17), is compared with the result from the 
response samples, as shown in Fig. 3. It is illustrated that the result from 
the theoretical formula is consistent with that from the response sam-
ples. The CDFs of U2(t) at t = 200 and 300 s, which are computed by 
integrating the PDFs computed using Eq. (17), well match the results 
from the response samples and obviously diverge from their corre-
sponding Gaussian distributions. In Fig. 4, the joint PDF of U1(t) at t =
400 s and U2(t) at t = 402 s, which is computed using Eq. (17), is 
consistent with that from the response samples. 

The CDF of max(|U2(t)|), the extreme value of U2(t), is computed 
using Eq. (33) and compared with the result from the response samples, 
as shown in Fig. 5. It is illustrated that the extreme distribution of U2(t)
from the theoretical formula well matches the result from the response 

Fig. 5. CDF of max(|U2(t)|).  

Fig. 6. Evolutionary PDFs and time-varying variances of U2(t) caused by the bivariate semi-stationary wind speed process v(t). (a) evolutionary PDF computed with 
the Cholesky decomposition, (b) evolutionary PDF computed with the SRD, (c) time-varying variance of U2(t), and (d) time-varying variance of U2(t) on the condition 
of U = 5.87 m/s and Lu = 65 m. 
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samples. 
For the purpose of comparing the EPSD load model and the harmo-

nizable load process model, the bivariate fluctuating wind speed process 
u(t) is assumed to be a zero-mean bivariate semi-stationary process [1,2] 
and is denoted as v(t) = [v1(t), v2(t)]T. The EPSD matrix Pv(t, f, Θ) of v(t) 
is the same as Wu(t, f, Θ) in Eq. (35), that is Pv(t, f, Θ) = Wu(t, f, Θ). 
Then, the evolutionary PDF and time-varying variances of the response 
displacement response U2(t) in Fig. 1 caused by v(t) are computed. The 
theoretical background for calculating the evolutionary PDF and 
time-varying variance of U2(t) under the semi-stationary wind speed 
process v(t) is briefly introduced in Appendix B. As illustrated in Eq. (64) 
in Appendix B, under the semi-stationary wind speed process model 
involving the time-varying coherence in Eq. (38), the EPSD matrix Pv(t, 
f, Θ) has to be decomposed to obtain Gv(t, f, Θ). In this subsection, the 
Cholesky decomposition [3] and SRD [16] are employed. Under the 
semi-stationary wind speed process v(t), the evolutionary PDFs and 
time-varying variances of the response displacement response U2(t)
computed using the two matrix decomposition methods are shown in 
Fig. 6. The same 900 samples of Θ = [U, Lu], which are employed to 
compute the evolutionary PDF of U2(t) in Fig. 3, are utilized to compute 
the evolutionary PDFs and time-varying variances of U2(t) in Fig. 6. 

Under the same computational condition, the computation times 
consumed to compute the evolutionary PDF of U2(t) employing the 
harmonizable load process, the EPSD load model with the Cholesky 
decomposition, and the EPSD load model with SRD are 1.86 h, 3.29 h, 

and 8.98 h, respectively. The numerical results indicate that the har-
monizable load process has a higher computational efficiency than the 
EPSD load model for this case. Under the EPSD load model, the step of 
decomposing the EPSD matrix Pv(t, f, Θ) is time-consuming. Moreover, it 
has been theoretically proven that different matrix decomposition 
methods can lead to different response correlation functions under the 
same load EPSD matrix [16]. In Fig. 6(c), it is illustrated that the 
time-varying variance computed using the Cholesky decomposition is 
smaller than that using SRD under the same EPSD load model. The 
difference between the results computed using the Cholesky decompo-
sition and SRD in Fig. 6(c) is apparent, although not large. The 
time-varying variance of U2(t) by the harmonizable load process is 
consistent with that by the EPSD load model with SRD, as illustrated in 
Fig. 6(c). On the condition of U = 5.87 m/s and Lu = 65 m, the 
time-varying variances of U2(t) computed using the three methods are 
displayed in Fig. 6(d). It is shown that the time-varying variance 
computed using the Cholesky decomposition is obviously smaller than 
that using SRD. Since the U and Lu control the shape of the wind force 
EPSD matrix, it can be inferred that the ambiguity in the response cor-
relation function caused by different matrix decomposition methods is 
dependent on the shape of the load EPSD matrix. 

4.2. Case 2 

In this subsection, an earthquake ground motion acceleration Ue(t) is 

Fig. 7. Re(t1, t2, θ), We(t, f, θ), and Se(f1, f2, θ) under θ = [1, 0.1]. (a) Re(t1, t2, θ), (b) We(t, f, θ), (c) real part of Se(f1, f2, θ), and (d) imaginary part of Se(f1, f2, θ).  
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modeled as a zero-mean quasi-stationary harmonizable process. Its WVS 
We(t, f, Θ), Θ = [Θ1, Θ2], is [23,47] 

We(t, f ,Θ)=

{
Θ1f 2t2 exp

[
− Θ2

(
1 + f 2)t

]
, t ≥ 0

0, otherwise
, (51)  

where Θ1 and Θ2 are independent random variables. Θ2 controls the 
shape of We(t, f, Θ) and it is uniformly distributed in the interval of 
[0.05,0.15]. Θ1 controls the magnitude of We(t, f, Θ) and it is assumed to 
obey a Gamma distribution 

pΘ1 (θ1)= θα− 1
1 e− βθ1 βα /Γ(α), (52)  

where α = β = 2. The Loѐve spectrum Se(f1, f2, Θ) of Ue(t) is [23] 

Se(f1, f2,Θ)=
2Θ1f 2

(
f 2 + 1

)3Θ3
2 + 6i

(
f 2 + 1

)2πξΘ2
2 − 12π2ξ2( f 2 + 1

)
Θ2 − 8iπ3ξ3

,

(53)  

where f = 0.5(f1 + f2) and ξ = (f2 – f1). The correlation function Re(t1, t2, 
Θ) of Ue(t) is 

Re(t1, t2,Θ)=
1

2Θ2.5
2

̅̅
t

√ exp
(

−
Θ2

2t2 + π2τ2

Θ2t

)

Θ1
̅̅̅
π

√ (
− 2π2τ2 +Θ2t

)
, (54)  

where t = 0.5(t1 + t2); τ = (t2 – t1); and t1, t2 ≥ 0. Fig. 7 illustrates the 
Re(t1, t2, θ), We(t, f, θ), and Se(f1, f2, θ) with θ = [1, 0.1]. 

A 10-story shear-type linear elastic structure subjected to the 
earthquake ground motion acceleration Ue(t), as illustrated in Fig. 8, is 
considered in this study. In the 10-story linear elastic structure, m =
3.456 × 105 kg, k = 1.7 × 108 N/m, and the damping ratio of its every 
vibration mode is 0.05. In Fig. 8, Ui(t) represents the displacement 
response of the ith floor relative to the ground, i = 1, 2, …, 10. 

In this subsection, following Eqs. (21) and (34), the probability dis-
tributions of the dynamic and extreme responses of the 10-story shear- 
type linear elastic structure are computed using the quasi-Monte Carlo 

integration [39] with 200 Sobol points in sample space of Θ = [Θ1, Θ2]. 
The computed results are then compared with those from 4 × 104 

structural response samples. The response samples are computed using 
the Newmark method [46] with 4 × 104 simulated earthquake ground 
motion acceleration samples. 

The evolutionary PDF of U10(t), which is computed using Eq. (21), is 
compared with the result from the response samples, as shown in Fig. 9. 
It is illustrated that the result from the theoretical formula is consistent 
with that from the response samples. The CDFs of U10(t) at t = 15 and 60 
s, which are computed by integrating the PDFs computed using Eq. (21), 
are also shown in Fig. 9. The two CDFs from the theoretical formula well 
match the results from the response samples and obviously diverge from 
their corresponding Gaussian distributions. The joint PDF of the velocity 
responses U̇5(t) at t = 15 s and U̇10(t) at t = 30 s, which is computed using 
Eq. (21), is compared with the result from the response samples, as 
illustrated in Fig. 10. The joint PDF computed from the theoretical for-
mula is consistent with that from the response samples. 

The CDF of the maximum value of the acceleration response |Ü10(t)|, 
which is computed using Eq. (34), is compared with the result from the 
response samples, as shown in Fig. 11. It is illustrated that the extreme 
distribution of Ü10(t) computed using the theoretical formula well 
matches the result from the response samples. 

5. Conclusions and prospects 

In this study, random environmental loads are modeled as quasi- 
stationary harmonizable processes, with each process characterized by 
a Loève spectrum containing several random physical parameters. An 
explicit calculation approach for the dynamics and extreme response 
probability distributions of a linear elastic structure driven by a quasi- 
stationary harmonizable load is proposed. Given the values of the load 
spectral physical parameters, the harmonizable load process is assumed 
to be Gaussian. The conditional joint PDF of structural dynamic re-
sponses at any finite time instants and the conditional CDF of the 
structural extreme response are expressed in terms of the structural 
response correlation functions. By multiplying these two conditional 
probability distributions with the joint PDF of the load spectral pa-
rameters, and then integrating these two products over the parameter 
sample space, the joint PDF of structural dynamic responses at any finite 
time instants and the CDF of the structural extreme response can be 
calculated. The efficacy of the proposed approach is numerically verified 
using two MDOF systems. One is subjected to a bivariate harmonizable 
wind speed process with a time-varying coherence. The other one is 
driven by a harmonizable ground motion acceleration process. The 
numerical results indicate that the probability distributions of structural 
dynamic and extreme responses computed using the proposed approach 
are consistent with the results estimated using simulated structural 
response samples. This validates the feasibility of the proposed approach 
in analyzing the dynamic and extreme response probability distributions 
of linear elastic structures subjected to quasi-stationary harmonizable 
loads. Using the first numerical case, the merit of the harmonizable load 
process model is highlighted through a comparative analysis with the 
EPSD load model. The numerical results indicate that the harmonizable 
load process model has a higher computational efficiency than the EPSD 
load model for this case. The ambiguity in the response correlation 
function under the EPSD load model is also verified using this numerical 
case. 

The quasi-stationary harmonizable process has two shortcomings in 
modeling random loads and analyzing structural responses. First, 
although the WVS of a harmonizable load process can be assumed to be 
non-negative, its induced response WVS, which is directly calculated 
from Eq. (15), may be not non-negative over the entire time-frequency 
domain. The smoothed WVS with a kernel satisfying certain condi-
tions can be ensured to be non-negative over the entire time-frequency 
domain, see Sections 5.4 and 5.5 in Ref. [48]. This type of smoothed 

Fig. 8. A 10-story shear-type linear elastic structure.  
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Fig. 9. Evolutionary probability distribution of U10(t). (a) evolutionary PDF computed using Eq. (21), (b) evolutionary PDF estimated using the response samples, (c) 
CDF of U10(t) at t = 15 s, and (d) CDF of U10(t) at t = 60 s. 

Fig. 10. Joint PDF of U̇5(15) and U̇10(30). (a) the result from Eq. (21) and (b) the result from the response samples.  
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WVSes can be employed to depict the time-frequency distribution of the 
structural response in cases where the original response WVS (as 
calculated by Eq. (15)) exhibits negative values. Second, not every 
non-negative time-frequency function is suitable for representing the 
load WVS. Considering a non-negative time-frequency function W(t, f) 
and assuming it to be the WVS of a harmonizable process X(t), its cor-
responding correlation function R(t1, t2) = E[X*(t1)X(t2)] can be calcu-
lated from W(t, f) using a 1D Fourier transform based on Eq. (7). To be a 
valid correlation function, R(t1, t2) must satisfy the condition that 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R(t1, t1)R(t2, t2)

√
≥ R(t1, t2) for arbitrary values of t1 and t2. Not every 

non-negative time-frequency function W(t, f) can provide a valid cor-
relation function R(t1, t2) satisfying this condition. The conditions under 
which a non-negative time-frequency function can provide a valid cor-
relation function need to be studied in the future. 
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Appendix A. Derivation of Eqs. (30)–(32) 

The response Y(t) caused by the quasi-stationary harmonizable load process F(t, θ) is also a quasi-stationary harmonizable process and can be 
expressed as 

Y(t)=
∫ +∞

− ∞
ei2πftdZY(f ). (55)  

The Loève spectrum SY(f1, f2) of Y(t) is defined as 

SY(f1, f2)=E
[
dZ*

Y(f1)dZY(f2)
] /

df1df2. (56)  

The auxiliary process Ỹ(t) of Y(t) is calculated as 

Ỹ(t)= − i
∫ +∞

− ∞
ei2πftsgn(f )dZY(f ), (57)  

where sgn(•) is the signum function 

sgn(f )=

⎧
⎨

⎩

1, f > 0
0, f = 0
− 1, f < 0

. (58)  

The derivative ˙̃Y(t) of Ỹ(t) is calculated as 

˙̃Y(t)= 2π
∫ +∞

− ∞
ei2πft|f |dZY(f ). (59) 

Similar to the stationary process [49], the pre-envelope process Ψ(t) of Y(t) is defined as 

Ψ(t) =Y(t) + iỸ(t), (60)  

and the envelope process V(t) of Y(t) is defined as 

Fig. 11. CDF of max(|Ü10(t)|).  
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V(t)= |Ψ(t)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2(t) + Ỹ2
(t)

√

. (61) 

Being quasi-stationary, SY(f1, f2) of Y(t) is concentrated around the main diagonal line on the dual-frequency plane. In this situation, rYỸ(t,θ) = E[Y*(t) 
Ỹ(t)] is small and can be approximately assumed to be zero. Under this assumption, the analytical joint PDF of the envelope process and its derivative 
for a Gaussian non-stationary process, which is given in the Appendix of [41], is also suitable for V(t) in Eq. (61) and its derivative V̇(t). In this sit-
uation, the bandwidth qY(t, θ) of the harmonizable process Y(t) can be derived from the joint PDF of V(t) and V̇(t) [41] and its calculation formula is 
given in Eq. (30). r

Y ˙̃Y
(t, θ) is calculated as 

r
Y
˙̃
Y (t, θ) = E[Y*(t) ˙̃Y(t)] = E

[ ∫ +∞

− ∞
e− i2πf1 tdZ*

Y(f1)2π
∫ +∞

− ∞
ei2πf2 t|f2|dZY(f2)

]

= 2π
∫ +∞

− ∞

∫ +∞

− ∞
ei2πf2 te− i2πf1 t|f2|E

[
dZ*

Y(f1)dZY(f2)
]

= 2π
∫ +∞

− ∞

∫ +∞

− ∞
ei2π(f2 − f1)t|f2|SY(f1, f2)df1df2. (62)  

Appendix B. Theoretical background for analyzing U2(t) under the semi-stationary v(t) 

The bivariate semi-stationary wind speed process v(t) = [v1(t), v2(t)]T with a time-varying coherence in Eq. (38) is defined by the Wold-Cramer 
decomposition [9,50] 

v(t)=
∫ +∞

− ∞
ei2πftGv(t, f ,Θ)dZv(f ). (63)  

In Eq. (63), Zv(f) = [Z1,v(f), Z2,v(f)]T is a complex-valued bivariate zero-mean orthogonal incremental process satisfying dZ*
v(–f) = dZv(f) and E[dZ*

v(f) 
dZT

v (f)]/df = I, where I is an identity matrix. Gv(t, f, Θ) is a complex-valued slowly-varying time- and frequency-dependent modulating function 
matrix. The EPSD matrix Pv(t, f, Θ) of v(t) is defined as 

Pv(t, f ,Θ)=E{[Gv(t, f ,Θ)dZv(f )]*[Gv(t, f ,Θ)dZv(f )]Τ}=G*
v(t, f ,Θ)GΤ

v (t, f ,Θ). (64)  

The along-wind dynamical force Fv(t) = [Fv1 (t), Fv2 (t)]T induced by v(t) is calculated as [51] 

Fv(t) =
∫ +∞

− ∞
χ(f ,U)Gv(t, f ,Θ)ei2πftdZv(f ), (65)  

where χ(f, U) is in Eq. (50). 
Given a realization θ = [θ1, θ2] of Θ = [U, Lu], the wind force Fv(t, θ) on the condition of Θ being θ is assumed to be a Gaussian process. Under this 

condition, the displacement response U(t, θ) of the structure in Fig. 1 caused by Fv(t, θ) is Gaussian and can be calculated as [51] 

U(t, θ) =
∫ +∞

− ∞
h(t − τ)Fv(τ, θ)dτ =

∫ +∞

− ∞

∫ +∞

− ∞
h(t − τ)χ(f , θ1)Gv(τ, f , θ)ei2πf τdτdZv(f ), (66)  

where θ1 is the value of U and h(t) is the unit-impulse response function matrix calculated by 

h(t)=
∫ +∞

− ∞
e− i2πftH(t)dt (67)  

and H(f) is the frequency response function matrix in Eq. (13). The correlation function matrix RU(t1, t2, θ) = E[U*(t1)UT(t2)] of U(t, θ) on the condition 
of Θ = θ is calculated as 

RU(t1, t2, θ)

=

∫ +∞

− ∞

∫ +∞

− ∞

∫ +∞

− ∞
ei2πf (τ2 − τ1)h*(t1 − τ1)χ*(f , θ1)G*

v(τ1, f , θ)GΤ
v (τ2, f , θ)χΤ(f , θ1)hΤ(t2 − τ2)df dτ1dτ2.

(68)  

Substituting RU(t1, t2, θ) into Eq. (17), the probability distribution of U(t) at multiple time instants can be calculated. 
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