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1 | INTRODUCTION

The Mullins-Sekerka problem in a bounded geometry is a moving boundary problem which appears as the gradient flow
of the area functional with respect to a suitable metric on the tangent space of all oriented hypersurfaces which enclose a
fixed volume [23, 38]. It describes the evolution of two domains Q*(¢) and Q(¢) together with the sharp interfaces I'(¢)
that separates them in such a way that the volumes of Q*(t) are preserved and the area of I'(t) is decreased [15, 23, 25].
The Mullins-Sekerka problem may also be derived as a singular limit of the Cahn-Hilliard problem when the thickness
of the transition layer between the phases vanishes [3, 43]. This model has been introduced by Mullins and Sekerka in
[37] to study the solidification and liquidation of materials of negligible specific heat.

Most of the mathematical studies regarding this two-phase problem consider a bounded geometry with Q*(t) being
open subsets of a larger domain Q and either I'(t) is a compact manifold without boundary [8, 19, 21, 36] or I'(¢t) intersects
the boundary 6Q of Q orthogonally [2, 4, 24]. Existence results in the setting of classical solutions have been established
almost simultaneously in [12, 19, 21] under the assumption that I'(0) is a compact CK+#-hypersurface without boundary in
R", B € (0,1)and n > 2, with k = 3in [12] and k = 21in [19, 21]. Subsequently, the well-posedness of the Mullins-Sekerka
problem for W;H" P jnitial geometries, where 1/3 + (n + 3)/3p<u < 1, was proven in the recent monograph [41], see
also [28]. The existence theory in the situation with a contact angle condition of 77 /2 was established only recently in [2,
24]. We also refer to [21, 24, 41] where stability issues are investigated and to [8, 22, 39, 45] for numerical studies pertaining
to this problem. Finally, we mention the papers [10, 11, 26, 27, 42] where weak solutions to the Mullins-Sekerka problem
are studied.

In this paper, we consider the situation when the two phases are both unbounded and we restrict to the two-dimensional
case. To be more precise, we assume that at each time instant ¢t > 0 we have

Q1) ={(x,y) eR? : y = f(t,x)} and () :={(x, f(t,x)) : x R},

where f(t) : R - R, t > 0, is an unknown function. The same setting has been also considered in [13], where the authors
establish convergence rates to a planar interface for global solutions (assuming they exist). Our goal is to establish the
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well-posedness of the Mullins-Sekerka problem in this unbounded regime for initial data whose regularity is close of
being optimal. To be more precise, the equations of motion are described by the following system of equations

Aur(t) = 0 in Q*(t),

u*r(t) = Kr(r) on I'(t), (L1a)
Vux(t) - 0 for ||(x,y)| = o,

V(t) = ~[8,,,u(®] on ()

for t > 0. Above, v, V(t), and xp(; are the unit normal which points into Q*(¢), the normal velocity, and the curvature
of I'(t). Moreover,

(G w(D] 2= By ™ (6) = Oy u (@), £>0,
represents the jump of Vu(t) across I'(t) in the normal direction. The system (1.1a) is supplemented by the initial condition

f0) = fo. (1.1b)

Before presenting our main result, we emphasize that, under suitable conditions, the interface f(¢) identifies at each time
instant t > 0 the functions u*(t) uniquely, see Proposition 2.4. Therefore, from now on, we shall only refer to f as being
a solution to Equation (1.1). A further observation is that if f is a solution to Equation (1.1) then, given 1 > 0, also the
function f; with

fat,x) := 271 f (A3, Ax),

is a solution to Equation (1.1). Since

where || - || 53/2 is the homogeneous Sobolev norm, we identify BUCl([RZ.) and H3/2(R) as critical spaces for Equation (1.1).
In Theorem 1.1, we establish the well-posedness of Equation (1.1) together with a parabolic smoothing property in all
subcritical Sobolev spaces H'(R) with r € (3/2,2). With respect to this point, we mention that all previous existence
results in the setting of classical solutions [2, 12, 19, 21, 24, 41] consider initial data with at least Cz-regularity.

The main result of this paper is the following theorem.

Sh0| =|FI@ol, 1Ol = 1@

Theorem 1.1. Let r € (3/2,2) and choose r € (3/2,r). Then, given f, € H'(R), there exists a unique maximal solution
f = f(; fo) to (1.1) such that

f € c(o,T+),H (R)) n C((0,T*), H'(R)) n C'((0,T*), H 2(R)),
f)e H4(IR) for t € (0,TT),
ut(t) € C2(QE(1)) N CL(Q=(1)) for t € (0,TY),

By WE (0B = (L+ (FO)YD) T (@20) for ¢ € (0,T+) and some $*(1) € HA(R),

where T+ = T*(f,) € (0, 0] is the maximal existence time and Ery) : R — T(t) is defined by ZErq)(x) = (x, f(t,x)).
Moreover, [(¢, fo) — f(t; fo)] defines a semiflow on H"(R) which is smooth in the open set

{(t.fo) © fo € H'(R), 0 <t <T*(fp)} CRXH"(R)
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feC®(0,TT) x R,R) N C®((0, T+, HY(R)) forall ke N. (1.2)

In Theorem 1.1, we let (-)’ denote the spatial derivative d/dx.

The strategy to prove Theorem 1.1 consists in several steps. To begin with, we first prove that if f(¢) is known and
belongs to H*(R), then the first three equations of Equation (1.1a) identify the functions u*(¢) uniquely, see Proposition 2.4.
Furthermore, we can also represent the right side of Equation (1.1a), in terms of certain singular integral operators which
involve only the function f(¢, -). In this way, we reformulate the problem as an evolution problem with only f as unknown,
see Equation (3.1). In the proof of Proposition 2.4, we rely on potential theory and some formulas, see Lemma 2.2 (iv), that
relate the derivatives of certain singular integral operator evaluated at some density 8 to the L,-adjoints of these operators
evaluated at 8/, which have been used already in the context of the Muskat problem in [14, 30]. Thanks to these formulas,
we may formulate Equatin (1.1), see Equation (3.1) in Section 3.1, as an evolution problem in H ~2(R), r € (3/2,2), with
nonlinearities which are expresses as a derivative. Then, using a direct localization argument, we show in Section 3.2 that
the problem is of the parabolic type by identifying the right side of Equation (3.1) as the generator of an analytic semigroup.
The proof of the main result is established in Section 3.3 and relies on the quasilinear parabolic theory presented in [5, 35].

1.1 | Notation

Given Banach spaces E; and E;,, we define L£(E;,E;) as the space of bounded linear operators from E; to E,
and L(E,) := L(E,, Ey). Moreover, Isom(E;, E,) is the open subset of L(E;,E,) which consists of isomorphisms
and Isom(E,) : = Isom(E,, E,). Furthermore, E’S‘ym(El,Eo), k > 1, is the space of k-linear, bounded, and symmetric oper-
ators T : E{‘ — E,. The set of all locally Lipschitz continuous mappings from E; to E, is denoted by C'~(E;, E,) and
C*(0, E,) is the set which consists only of smooth mappings from an open set © C E; to E,,.

If E; is additionally densely embedded in E, we set (following [6])

H(E1,Ey) :={A € L(E,,Ey) : —A generates an analytic semigroup in L(E)}.

Given a Banach space E, an interval I C R, n € N, and y € (0, 1), we define C"*(I, E) as the set of all n-times continu-
ously differentiable functions and C"*7(I, E) is its subset consisting of those functions which possess a locally y-Holder
continuous nth derivative. Moreover, BUC"(I, E) is the Banach space of functions with bounded and uniformly contin-
uous derivatives up to order n and BUC"*"(I, E) denotes its subspace which consists of those functions which have a
uniformly y-Hélder continuous nth derivative. We also set BUC®(I, E) = N,cnyBUC" (I, E). Finally, if Q ¢ R? is open and
n € N, then C"(Q, E) is the set of functions defined on Q which possess uniformly continuous derivatives up to order n.

2 | SOLVABILITY OF SOME BOUNDARY VALUE PROBLEMS

Our strategy to solve Equation (1.1) is to reformulate this model as an evolution problem for the function f only. To this end,
we first solve via the method of potentials, for each given function f € H*(R), the (decoupled) boundary value problems
for u™ and u~ given by the systems

AuT =0 in QF,
u* = xr on T, 2.1

Vu* - 0 for||(x,y)] = oo,
where

QF ={(x,y) €R? : y= f(x)} and =30 ={(x, f(x) : xeR)}L
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Below vr is the outward unit normal at I’ which points into Q*. The corresponding existence and uniqueness result is
provided in Proposition 2.4 below. Before stating this result we first introduce some notation. Observe thatI' is the image of
the diffeomorphism Er : R — I" defined by E(x) := (x, f(x)) for x € R. Then, the pulled-back curvature x(f) := xroEp
is given by the relation

K(f) = ‘KrOEr = <f—1/2> on R. (22)
@ +f7)

Moreover, given functions w* € C(E), we set

[w](x, f(x)) 1= w*(x, f(xX)) = w™(x, f(x)). (23)

2.1 | Some singular integral operators

We now introduce some singular integral operators which are used when solving Equation (2.1). Given f € W (R), we
set

A(P[al(x) := L PV

/f(x) (5xsf)/Soc(x—s)
R

" L+ [Ga s °
(2.4)
B(N[al(x) 1= = PV / 1+ [ )51 /)/8 a(xs— 9
R R

for a € L,(R), where PV is the principal value and

Sxsif 1= fX)—flx—s), x,s€R.

Lemma 2.1 (i) below ensures that these singular integral operators belong to £(L,(R)). Their L,-adjoints are given by the
relations

A(f) lal(x) =

v / (Srxsif) /s = f'(x “Date=s)
R 1+ (85 f) /5] ’

1 +f,(x_s)(5[xs f)/S O((X—S)
1+ [(8sif) /] ’

(2.5)

BTl =~ BV [
R

An important observation is that the operators defined in Equations (2.4) and (2.5) can be represented in terms of a family
of singular integral operators {Bj, ,,(f) : n, m € N} which we now introduce. Given n, m € N and Lipschitz continuous
mappings ay, ..., @y, by,..., b, : R = R, we set

I, (Opesbi _
By m(ay, ..., ap)lby, ..., by, a](x) := —PV/ [l=1< . | )/j] ]Ot(xs $) ds (2.6)
1 + [xs N

for a € L,(R). In particular, if f : R — R is Lipschitz continuous we use the short notation

Bpm(f) := Buyn(f s U s fo]. 2.7)
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These operators have been defined in the context of the Muskat problem in [31]. It is now a straightforward consequence
of Equations (2.4)-(2.7) to observe that

ANl = /BY, (Nlal =B (Dlal. A el = BY, (Hlal - B, (NIfal.
B(Nlal = BY,(Dlal + /B, (Nlal,  BUY[al = —BY, (Nlal - B, (NIl

(2.8)

In view of the representation (2.8), several mapping properties for the operators introduced in Equations (2.4) and (2.5)
can be derived from the following result.

Lemma 2.1. Letn, m € N.

(i) Let ay,..,a, : R —> R be Lipschitz continuous mappings. Then, there exists a positive constant C =

.....

n

1B (@1, e @)1 b Wy < € [ 16 lo-
i=1

Moreover, B, ,, € C1= (WL (R)™, L2 (WL(R), LLyR)))).

(i) Givenk > 2, it holds that B, ,, € C'~(H*(R)™, Egym(Hk(R), LHY(R)))).

(iii) Givenr € (3/2,2), it holds that [f ~ B ()] € C*(H"(R), LH1(R))).

(iv) Letr € (3/2,2)and ay, ..., a,, € H"(R) be given. Then, there exists a positive constant C = C(n, m, max;—_y__, lla;|lgr)
such that for all by, ..., b,, € H"(R) we have

n
1B (@1, s @)l e b W2y < € [ Billier-
i=1

Proof. The property (i) is established in [31, Lemma 3.1]. The claim (ii) is proven for k = 2 in [34, Lemma 4.3] and the
case k > 3 follows from this result via induction. Moreover, (iii) is established in [33, Appendix C] and (iv) in [29, Lemma

2.5]. O
The next lemma collects some important properties of the operators defined in Equations (2.4) and (2.5).
Lemma2.2. Letl € R\ (—1,1).
() If f € BUC'(R), then A — A(f), 1 — A(f)* € Isom(L,(R)).
(i) If f € H'(R), r € (3/2,2), then 1 — A(f), A — A(f)* € Isom(H~1(R)).
(iit) If f € H*(R), then 1 — A(f), A — A(f)* € Isom(H'(R)).
(iv) If f € H*(R) and 8 € H'(R), then A(f)*[B] and B(f)*[B] belong to H*(R) with

ABY =-ANIET  and B BD = -BIAL.

W) If f € H3(R), then A — A(f)* € Isom(H?*(R)).

Proof. The property (i) follows from [31, Theorem 3.5] and (ii) is established in [1, Theorem 5] and [30, Propositin 3.4].
Moreover, the claim (iii) is proven in [31, Proposition 3.6 and Lemma 3.8] and (iv) in [30, Proposition 2.3]. The assertion
(v) is a consequence of (iii) and (iv). Indeed, given f € H*(R), A € R \ (-1,1),and « € H%(R), the properties (iii) and (iv)
imply that (1 — A(f)")[«] € H'(R) with

(A=AHa]) = A +A())a] € HA(R).
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Hence, (1 — A(f)*)[a] € H*(R) and

2012 = AGNIZ, 2 1 = AN, + 1A = A I,
= 1= AGYOLalll, + 1@+ A I,
> (Nl + 112, )

2
> Cllall?,,.

the inequalities in the second last line of the formula (with a sufficiently small constant C independent of 1 and «) being
a straightforward consequence of (iii). The assertion (v) follows now from this estimate via the method of continuity [6,
Proposition 1.1.1.1]. O

2.2 | The solvability of the boundary value problems (2.1)

Asa preliminary result, we provide in Proposition 2.3 the unique solvability of a transmission-type boundary value problem
which is used to establish the uniqueness claim in Proposition 2.4.

Proposition 2.3. Given f € H*(R) and ¢ € H*(R), the boundary value problem

AU* =0 in QF,
[Ul =0 on T,
12y=1/2 41\ m—1 (2.9)
[6,.U] = (A + f»)7/2¢")oB " on T,
VU* = 0 Jor [I(x, )| = oo,

has a solution (U, U~) such that U* € C2(Q*) n Cl(ﬁ). Moreover, the solution is, up to an additive constant, unique.

Proof. We first prove uniqueness of solutions in the class described above. Let therefore U be a solution to the homoge-
neous problem associated with (2.9) (that is with ¢ = 0). Setting U := U,1g+ + U_1,-, Stokes’ theorem leads us to the
equation

AU =0 in D/(R?).
Hence, U is the real part of a holomorphic function h : C — C. Since h’ is also holomorphic and A’ = VU is bounded
and vanishes for |(x, y)| = oo, it follows that h’ = 0, meaning that U is constant in R2.
In order to establish the existence of solutions, we set

r=(r,r)=(x-sy—f(s) for se€Rand (x,y) € R®\T. (2.10)

Defining U : R?\ T - R by the formula

¢(s)ds (211)

1 ri+ f(s)ry
271'/R

U(an’) == |r|2

and setting U* := Ul g+, we next show that (U, U™) is a solution to (2.9) with the required properties. To start, we note
that

UCx.y) = / K(e.y.)¢(s)ds, () € R2\T,
R
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and, for every a € N?, we have 6"‘ K(x y,s) = O(s™!) for [s| = co and locally uniformly in (x, y) € R? \ T. This shows
that U is well-defined and that 1ntegratlon and differentiation with respect to x and y may be commuted.

Furthermore, Equation (2.11) and [9, Lemma A.1, Lemma A.4], imply that U* € C*®(Q*)n C(Q+) with [U] = 0, the
gradient VU = (3,U, 9, U) being given by the formula

1 2rqr r
VU(x,y) = 4( f'(s) )< v >¢(S) ds,  (x,y) €R*\T. (212)
r 7l -1 2r r
Using the matrix identity
2mr, 12 —r? (ry,75)
l 172 2 1) — _ 1,72
A 1)( - ) =
together with integration by parts we obtain that
Vo == [ DDygas ey er\T. @13)
27r R ITI?

Combining Equation (2.13) and [9, Lemma A.1, Lemma A 4], we obtain that U* € Cl(ﬁ) satisfies also Equation (2.9),
and

[0, U1 = ((1+£72) "' )ox;.

It is now easy to infer from Equation (2.13) that also Equation (2.9); holds true, and therewith we established the existence
of a solution. O

We are now in a position to solve the boundary value problems (2.1) for u™ and u~. To this end, we first motivate
heuristically the explicit formula (2.15) for the gradient v~ := Vu~ of the solution, which is the building block in the
proof of Proposition 2.4 (the formula for v™* is motivated similarly). The starting point is the observation that divv™ =0
in Q~, which implies there is a stream function = : Q_ — R such that Vi)~ = (6,u™, —0;u™). Set ¢ :=p_1,-. Taking
into account that A~ = 0 in Q~ and using Stokes’s formula, we deduce that the distribution Ay € D’(R?) is supported
on the interface I', and we presume that

AP = (A + f2)V2a7)oB 6y in D/(R?), (2.14)

with some unknown density function a~, that is
(AY, @) = / a~poErds  for ¢ € D(R?).
R

We now formally obtain 3 by taking the convolution of the right side of Equation (2.14) with the fundamental solution G
of the Laplacian given by

GOy = 5= (G, 0%y € R,

hence
_ 1 _ _
V=5 [l -sy - fODe@ds e
R

Formally computing Vi~ we arrive, in view of the relation v~ = (—0d,%~, 0,9 ™), at the integral formula (2.15). In the
proof of Proposition 2.4, we show, under suitable assumptions, there exists a unique density a such that the formula for
~ identifies, via the relation v~ = Vu~, the unique solution u~ to Equation (2.1).
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Proposition 2.4. Given f € H*(R), there exist unique solutions u* € C*(Q*)n cl(Q*) to Equation (2.1) such that
8, utoBr = (1 + f2)V/2(¢*) for some functions ¢* € H*(R). Furthermore, Vu* = v* in Q*, where

a1 [ (®-yx=s) .
vE(x,y) 1= o /R =10 —f(s))Z“ (s)ds, (x,y) € QF, (2.15)
and with density functions a* € H'(R) given by the relation
a* = 2(F1+ A()) ()] € H(R). (2.16)

Proof.

(i) Existence. According to Lemma 2.2 (iii), we have ¥1 + A(f) € Isom(H'(R)) and, since (x(f))’ € H'(R), the density
functions a* defined in Equation (2.16) are well-defined and belong to H l(IR)iNe next infer from [9, Lemmas A.1,
A.4] that the vector fields v* defined in Equation (2.15) belong to C*®(Q*) N C(Q<*) and

GO =fx=9) .o 1e0,f)

oz L 12, /)
VFoEr(x) = - PV/R =521 00— T2 2117 x), xeR. (2.17)

Moreover, v* satisfies the asymptotic boundary condition v*(x, y) — 0 for |(x,y)| = oo and
divo* =rotv¥ =0 in QF,

see [9, Lemma A.4]. Setting v* = (vli, vg—'), the relation rot v¥ = 0 in Q* ensures that the functions

y

X
ut(x,y) i=c* + / v (s, +d)ds + / vy (x,5)ds, (x,y) € O,
0 +d

where ¢* € R and d > ||f]|, satisfy Vu® = v* in Q*. Moreover, u* € C2(Q*) N Cl(Q*) and, since v* are diver-
gence free, Equation (2.1), is satisfied. It is clear that also the asymptotic boundary conditions (2.1), hold. Combining
Equations (2.4), (2.17), and the relation Vu* = v* on T, we further have

(1 + f2)1/2
2

+

3, u*oEy B(f)[a*]. (2.18)

In order to show that B(f)[a*] are derivatives of functions in H>(R) we define f* € H?(R) by the relations
BE =2(F1 = A(H") ' x(N)], (2.19)

see Lemma 2.2 (v). We next differentiate Equation (2.19) with respect to x and infer then from Lemma 2.2 (iii)-(iv)
that (8*)’ = a* and

B(f)la*] = B(NHIBH)'] = —=(B)*[B~]).
Setting ¢+ := —B(f)*[B*/2], it follows from Equation (2.8) and Lemma 2.1 (ii) that ¢+ € H?(R). Moreover, Equa-

tion (2.18) lead to 3, u*oEr = (1 + f’2)71/2(¢*)'. Asafinal step, we show that the additive constants c* can be chosen
such that also Equation (2.1), are satisfied. Indeed, in view of Equations (2.16) and (2.17), we have

= (IroBp) = (1, 1) vlroy = 371+ AU = (Y,

so that u*|oEr — x(f) is a constant function. Therewith, we established the existence of a solution to Equation (2.1).
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(ii) Uniqueness. It suffices to show that the homogeneous problems

Au* =0 in QO
ut* =0 onT, (2.20)
Vu* - 0 for ||(x,y)| — oo,

have unique solutions u* with the required properties. We establish only the uniqueness of u* (that of u~ follows by
similar arguments). Let thus ¢* € H2(R) be the function which satisfies the relation d, u*o&r = (1 + f'2)71/2(¢*)'.
Setting U~ :=0and U" := u', we note that (U", U™) solves the boundary value problem (2.9) (with ¢ = ¢*) and it
is thus given by formula (2.11). In particular, it follows from Equation (2.11) and [9, Lemma A.1] that

o= - 1 .
0=U"|poEr = U*|poEr = —5B() [¢'],
and together with Lemma 2.2 (iv) we get

0=—B()*[¢']) =B(l"].

However, as shown in [31, Equations (3.22) and (3.25)], there exits a positive constant C such that ||B(f)[a]|l, = Cll«]l»
for all € L,(R). Therefore ¢'' = 0, hence also ¢ = 0. We now infer from Equation (2.11) that Ut = u* = 0, and the
uniqueness claim is proven. O

3 | THE EVOLUTION PROBLEM AND THE PROOF OF THE MAIN RESULT

In this section, we first formulate the original problem (1.1) as an evolution problem for f, see Equation (3.1). Subsequently,
we prove that the linearization of the right side of Equation (3.1) is the generator of an analytic semigroup, see Theorem 3.1,
and we conclude the section with the proof of the main result stated in Theorem 1.1.

3.1 | The evolution problem

In order to formulate the system (1.1) as an evolution problem for f we first infer from Proposition 2.4 that if (f, u*) is a
solution to Equation (1.1) as stated in Theorem 1.1, then, for each ¢ > 0, we have

By UE(DOEr(y = =(1 + f2(O) 2B (D) [(F1 = AFO)) [k(FENID-
Together with Equation (1.1), we arrive at the following evolution equation:

df

27 O = @FO)I(=1~ AGFE)™ =@ = AFE)) DI fort>o0.

As we want to solve the latter equation in the phase space H"(R) with r € (3/2,2), we encounter the problem that the
curvature x(f) is in general not a function, but a distribution. However, taking full advantage of the quasilinear character
of the curvature operator we can formulate the system (1.1) as the following quasilinear evolution problem:

%(t) =(fOf®L >0,  f(0)= fo, (3.1)

where @ : H'(R) — L(H""'(R), H ~%(R)) is defined by the following formula:

(NIA] 1= BE)T(=1 = A = A = A DIROIAIND, (3.2)
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with x : H'(R) — L(H™'(R), H''(R)) given by

h/l

x(lh] = W

(3.3)

We point out that, if f € H?>(R), then x(f)[f] is exactly the pulled-back curvature x(f). Moreover, arguing as in [33,
Appendix C], it is not difficult to prove that

x € C®(H"(R), L(H™(R), H"1(R))). (3.4)

Recalling Equation (2.8), it follows from Lemmas 2.1 (iii) and 2.2 (ii), by also using the smoothness of the map which
associate to an isomorphism its inverse, that

B(f)*, (x1 — A(f)*)™' € C*H'(R), LHH(R))). (3.5)
Gathering Equations (3.2)-(3.5), we obtain in view of d/dx € L(H"~}(R), H'~2(R)) that

® € C*(H"(R), LH(R), H 2(R))). (3.6)

3.2 | The parabolicity property

Our next goal is to prove that the problem (3.1) is of parabolic type in the sense that, for each f € H"(R), r € (3/2,2), the
operator ®(f) is the generator of an analytic semigroup in £(H"~2(R)). This is the content of the next result.

Theorem 3.1. Given f € H'(R), r € (3/2,2), it holds that —®(f) € H(H"*'(R), H 2(R)).

In the proof of Theorem 3.1, we exploit the fact that, given h € H'*1(R), the action ®(f)[h] is the derivative of a function
which liesin H"~!(R). The proof of Theorem 3.1 is postponed to the end of this subsection and it relies on a strategy inspired
by [16, 17, 20].

As a first step, we associate with ®(f) the continuous path

[t = @@f)] : [0,1] = LEHT(R), H*(R)),

and we note that

_ d Ld a3
(0) = —ZEB(O) i ZHE,
where H is the Hilbert transform. In particular, ®(0) is the Fourier multiplier defined by the symbol [¢ — 2|¢|%]. As a
second step, we locally approximate in Proposition 3.2 the operator ®(z f) by Fourier multipliers which coincide, up to
some positive multiplicative constants, with ®(0). As a final third step, we establish for these Fourier multipliers suitable
(uniform) resolvent estimates, see Equations (3.14) and (3.15). The proof of Theorem 3.1 follows then by combining the
results established in these three steps.

Before presenting Proposition 3.2, we choose for each € € (0, 1), a finite e-localization family, that is a family
{(nj,x;) : =N +1<j<N}CC®R,[0,1]) X R,
with N = N(¢) € N sufficiently large, such that xj € supp 71';, —N+1<j<N,and
* supp 71'; C {|x| < €+ 1/¢}is an interval of length ¢ for ||j| < N — 1;

* supp 7y C{lx| > 1/e};
. ﬂi'ﬂlg:Oif[lj—ll > 2,max{|j|,|[|} <N —1]or[|l|] <N -2,j=N];
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N
* Zj:_N+1(7T;)2 = 1:
* )Pl < Ce* forallk €N,—N +1< j <N.
To each finite e-localization family, we associate a second family
{)(; : =N +1<j<N}CC®R,[0,1])

with the following properties:

. )(; =1on suppﬂj for =N +1 < j < N and supp x5, C{|x|>1/e—¢};
* supp )(; is an interval of length 3¢ and with the same midpoint as supp 71';, ljl<N-1

It is not difficult to prove that, given r € R and € € (0, 1), there exists ¢ = c(e,r) € (0,1) such that for all h € H'(R) we
have

N
cllhllgr < Z Ikl < ¢l (3.7)
j=—N+1

We are now in a position to establish the aforementioned localization result.

Proposition 3.2. Let3/2 <r' <r <2, f € H'(R), and v > 0 be given. Then, there exist ¢ € (0, 1), a e-localization family
{(n?,x;) : =N +1 < j < N}, and a constant K = K(¢) such that

||7T;‘D(Tf)[h] - Zar,j‘l)(())[ﬂ;h]llm—z < V””;]’I”HVH + KAl g1 (3.8)
forall-N +1< j <N, 7 €[0,1], and h € Ht1(R), where, letting a, := (1 + t2f'%)73/2, we set

a; N := lim a.(x)=1 and aj=a/(x%), [jI<N-1
> |x|—> 00 ” J

Proof. In the following, C and C,, are constants that do not depend on ¢, while constants denoted by K may depend on «.
Given —N +1 < j <N, 7 €[0,1],and h € H*(R) we have

I @(e )R] = ac ;0O h] -2

= |7s@( )R] - a. (HITER) ) -2

< IEEBE -1 = ACHY ™ = (1= ACHY DO = a jHIER) D Il

+ 1Y BE -1 = A )™ = (4= A DO -2,
where, in view of Equations (2.8), (3.3), Lemmas 2.1 (i), and 2.2 (i) we have

IS B [(—1 = A = (1 = A DN -2
< KB /) [(-1 = A = @ = AGY Y DI -2
< KIB@ /) [(-1 = AEf))™ = 1 = AQYY Dl nIENIL
< Kl )lAl,

< K|lhllgrr+1-
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Since d/dx € L(H"~'(R), H~2(R)) is a contraction, we have shown that
I7:@(z f)lh] - 2a; ;@O)[7hlll -2
< 7B (-1 - AT = A = A f)) D@ A - 2ar’jH[(7r;h)"]”HV—1 (3.9)

+ K| ll 1.

In remains to estimate the first term on the right side of Equation (3.9). To this end, several steps are needed.
Step 1. Given T € [0,1] and h € H*"(R) we define 9*(t)[h] € H~!(R) as the unique solutions to

(£1 = A@/HMIIE*(D[A]] = x(zf)[A], (3.10)

see Equation (3.4) and Lemma 2.1 (ii). In this step, we prove that there exists a constant C, > 0 such that for all £ € (0, 1),
7€[0,1],-N +1 < j <N, and h € H*'(R) we have

18=@Ihlllgr-1 < Collw5hllgre + Kl (3.1)

Indeed, after multiplying Equation (3.10) by n';, we arrive at

(1 = A7 8= (0)[h]] = 7 )] = (A ) [7385 (D[R] — AT, [$=(D)R]D,
and it can be easily shown that
7@ Ol < Cllzshllgre + KAl .
Moreover, since r — 1 < 1, the commutator estimate in Lemma A.1 together with Equation (2.8) yields
IAG@ ) 758 (©h]] = T AC)* [S@LRIIg-1 < KIS@LAINL < KllAllr .
The estimates (3.11) follow now from Lemma 2.2 (ii).

Step 2. Recalling Equation (2.8), we infer from Lemma A.2 if | j| < N — 1, respectively from Lemma A.3 if j = N, that,
if¢ € (0, 1) is sufficiently small, then for all 7 € [0,1], -=N + 1 < j < N, and h € H'"!(R) we have

178G/ (9= @IR]] + HIZS =@l < - 17595 @Rl + KIS OIAIN, -
0

The estimates (3.11) and the property (3.4) (with r = r’) enable us to conclude that for allT € [0,1], =N +1 < j < N, and
h € H™*1(R) it holds that

1758 ) 18 @IA]] + HIZ =@l < 7 17 kil + Kl

r+1°
provided that ¢ is sufficiently small, and therefore

7B f) 18~ @h] = $*@[h]] + H[x(8~(@[h] = $* @Dl
(3.12)
< 2wkl + Kl

Step 3. We show that, if¢ € (0, 1) is sufficiently small, then forallt € [0,1], =N + 1 < j < N,and h € H*!(R) we have

I+ HIz58* @] = a HIGE R Nigrs < S 17l + KA (3.13)

r41°
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To start with, we note that since H € £L(H"~!(R)) is an isometry we have
Il + HzE 8% (@)[R]] = ag HITE R s < || = 7585 @)h] = ag @5k g,

and it remains to estimate the right side of the latter inequality. To this end, we first infer from Equation (3.10) that
595 (D[R] = aq (xR = ASAGS) [9=@[R]] + 75 A] - ac y(x5h).

Noticing that [|a|;s-32 < 3l f ’||BUCS_3/2 and a;(x) — 1 for |x| — oo uniformly with respect to 7 € [0, 1] and using the
estimate

Ig182llm—1 < CUlIgillco g2l + lIgallo lgallzr—1)  for g1, g € HH(R),

we have in view of )(;7'[; = 71'; that
Ik PR = ag @SR -t < lar = @ GENEERY s + KAl
< CllxEa: = a: GV aallmhllsrs + KRl

<

o=

75l + KAl g
forallr € [0,1], |j| < N —1,and h € H*}(R), provided that ¢ is sufficiently small. Similarly, for j = N we have
75 k@ O] = ar (T h) g1 < @ = D h) g1 + KAl g
< Cllxy(ar = Dl l7myhllzr+r + KAl g

< sliaghllpra + KRl g

x| =

Furthermore, appealing to Lemma A.2 if |j| < N — 1, respectively to Lemma A.3 if j = N, we find together with the
representation (2.8) of A(tf)* that, if € is sufficiently small, then

IS AG ) =@ RN < g 7= @lA]llr + KIS*@)[R]
0

”Hrl_l >
and, together with Equation (3.11) and the property (3.4) (with r = '), we get

v
I AGC ) [$=@1RIHE— < glimihllar + KRN

' +1

forallz €[0,1], -N 4+ 1 < j < N, and h € H'*!(R). This proves Equation (3.13).
Combining the estimates (3.9), (3.12), and (3.13), we conclude that Equation (3.8) holds true and this completes the
proof. O

In Proposition 3.2, we have locally approximated ®(z f) by Fourier multipliers 2a, ;®(0), and, since f’ is a bounded
function, there exists a constant 7 = (|| f'||,) € (0,1) such that 2a. ; € [1,57']. Elementary Fourier analysis arguments
enable us to conclude there exists a constant x, = x,(n) > 1 such that for all § € [,7~!] and all Re A > 1 we have

¢ 1= 89(0) € Isom(H"*1(R), H ~2(R)), (3.14)

e %ol = SDON[A]llzrr—2 = 4] - |hllgr— + A+ forall h € H+(R). (3.15)
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We are now in a position to establish Theorem 3.1.

Proof of Theorem 3.1. Letx, > 1 be as identified in Equation (3.15). Setting v := (2x,)~!, Proposition 3.2 ensures that there
exist € € (0, 1), a e-localization family {(77.';, x;) : =N +1 < j <N}, and a constant K = K(¢) such that for all 7 € [0, 1],

—N+1<j<N,and h € H*!(R) we have
75 )IA] — 2a; ;@O hlllr-2 < VxS hllsrss + KRl
Recalling Equation (3.15), we also have
1ll(A = 2a; ;ROD[7h]llr-2 2 |A] - 175kl -2 + |75 All g
forallt €[0,1], =N +1 < j < N,Rel > 1,and h € H*!(R). Combining these estimates, we get
2015 = (e Al 22 IR — 20, DO l-2
— 2xgllw (e /)l = 2a ;OO hllr-2
22|41 - 75kl + 75 hllgrer = 20K Al rr4a -
Summing up over j, the estimates (3.7), Young’s inequality, and the interpolation property
[H%(R), H1(R)]y = HI-9%+051(R), 6 €(0,1), —00 < 5y < §; < 00, (3.16)

cf., for example, [44, Section 2.4.2/Remark 2], where [-,-]g is the complex interpolation functor, imply there exist
constants x > 1 and w > 1 such that forall 7 € [0,1], Re A > w, and h € H"*'(R) we have

k|2 = DDAl 2 4] - hllg-2 + Al (3.17)
The property (3.14) together with the method of continuity [6, Proposition 1.1.1.1] and Equation (3.17) now yield
w — ®(f) € Isom(H ' (R), H 2(R)). (3.18)
The desired generator property follows now directly from Equation (3.17) (with 7 = 1) and Equation (3.18), see [6, Chapter
I]. O
3.3 | The proof of the main result

We complete this section with the proof of the main result which exploits the abstract quasilinear parabolic theory
presented in [5] (see also [35, Theorem 1.1]).

Proof of Theorem 1.1. Let E; := H'*'(R), E, := H'~2(R), and E, := [Ey,E; o, 6 € (0,1). Defining  :=2/3 and a : =
(r—r+2)/3,itholdsthat0 < § <a < 1,Eg = H'(R),and E, = H"(R). Theorem 3.1 together with the regularity property
(3.6) (both with r = r) ensure that —® € C®(Eg, H(E;, E)). This enables us to apply [35, Theorem 1.1] in the context of the
quasilinear parabolic evolution problem (3.1). Consequently, given f, € H"(R), there exists a unique maximal classical
solution f = f(-; fo) to Equation (3.1) such that

f e c(o,TH),H"(R)) n C(0, T*), HtL(R)) n CL((0, T*), H "%(R)) (3.19)
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and
f €80, T%), H'(R), (3.20)

where Tt = T*(f,) € (0, o] is the maximal existence time and ¢ € (0, — ] can be chosen arbitrary small, cf. [35,
Remark 1.2 (ii)]. Moreover, the mapping [(¢, fo) — f(; fo)] defines a semiflow on H"(R) which is smooth in the open
set

{(t,fo) : fo€H'(R),0<t<THfp)} CRxH"'(R).

We next prove that the uniqueness claim holds in the class of classical solutions; that is, of solutions which satisfy
merely Equation (3.19). To this end, prove that each such solution with the property (3.19) satisfies Equation (3.20) for
some small ¢. Let therefore T € (0, T") be arbitrary but fixed. Then, there exists a positive constant C such that for all
t € [0,T] we have

GOy

(f®) >’| <|
w2 = 1+ (Fo)y2)H2

— 3.21
A+ N2 (20

I CF O = H(

Hr-1 =
Moreover, in virtue of Lemma 2.2 (i) and (ii) +£1 — A(f(t)) € Isom(L,(R)) n Isom(H"~'(R)) for all t € [0, T], and together
with Equation (3.16) and the observation that 0 < 2 —r <r — 1 we get that +1 — A(f(¢)) € Isom(H>"(R)). Since by
Lemma 2.1 (i) and (ii) and Equation (2.8) the mapping

[t = Af()] : [0,T] = LL,(R)) N LH(R))
is in particular continuous, we may chose C > 0 sufficiently large to guarantee that for all ¢ € [0, T] it holds that

(£l = AGFO) I ge-rwy < C. (3.22)

Therefore, setting 9+(t) := (1 — A(f(O)*) [x(f(1))] € H™Y(R), t € (0,T], we infer from Equations (3.21) and (3.22)
that there exists a constant C > 0 such that for all t € (0, T] we have

19=Ollgr—2 = sup  [(§=OIP)l = sup {1 = AFO) k(S O])2]

191l 2—r=1 1Pl p2—r=1

= sup  Kx(fDI(EL = A [$]).]

1Pl y2—r=1

< sup ()2 11(£1 = AGE) T [Pl

T lga—r=1
<cC.

Above (-|-), is the L,-scalar product. Since ®(f(t)[f(t)] = (B @))*[8~(t) — 9 (1)]) for t € (0,T], see Equation (3.2), it
follows now from Lemma 2.1 (iv) and Equation (2.8) there exists a constant C > 0 such that for all t € (0, T]

Ie(fOf Ol < IBU@)[97(1) = ¥ O]llgr— < CA + I(f(©)) 8Ol < C.
To derive the last inequality, we have use the continuity of the multiplication operator

[(g1,82) ~ &1&] : HY(R) X H*"(R) - H*"(R),
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see [29, Equation (1.8)]. To summarize, we have shown that
sup S| <c.
reo.r) 1 dt = NEr3

Since f € C([0,T], H"(R)), the latter estimate tqgether with the mean value theorem and the observation that for { :=
(r —7)/3 it holds that [H"3(R), H"(R)],—¢ = H"(R), see Equation (3.16), yields

£t = FeDllr < CIF(E) = IS, SClty—tiff forall0<h <6, <T,
which proves Equation (3.20). Recalling Proposition 2.4, we have established the existence and uniqueness of maximal
classical solutions to Equation (1.1). Finally, the parabolic smoothing property (1.2) may be shown by using a parameter
trick employed also in other settings, see 7, 18, 32, 40]. Since the arguments are more or less identical to those used in [32,
Theorem 1.3], we refrain to present them here. |
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APPENDIX A: SOME PROPERTIES OF THE SINGULAR INTEGRAL OPERATORS Bg ()

We recall some recent results that are available for the singular integrals operators Bg,m (f) introduced in Equation (2.7)
and which are used in the analysis in Section 3. We begin with a commutator type estimate.

Lemma A.l. Letn,meN, r €(3/2,2), f e H(R), and ¢ € BUCl(IR) be given. Then, there exists a constant K that
depends only on n, m, ||¢’ ||, and || f || such that for all « € L,(R) we have

B (el = By (Hlpalllm < Kllell,
Proof. See [1, Lemma 12]. Ol

The next results describe how to localize the singular integrals operators By, ,,(f). They may be viewed as generalizations
of the method of freezing the coefficients of elliptic differential operators.

Lemma A.2. Let n,meN, r € (3/2,2), r' €(3/2,r), and v € (0,1) be given. Let further f € H'(R) and a € {1} U
H"~Y(R). For any sufficiently small ¢ € (0, 1), there exists a constant K that depends only on e, n, m, || f |-, and ||a|l g (if

asUBD| 7 sUoWWoD aAIEaID a|gedl|dde sy} Aq pautenof ale ssie YO ‘8sn Jo SajnJ Joj Ariq1TaulUO AS|IM UO (SUONIPUOI-PUE-SWLB)WIOD AS [IM° A feiq 1 ju1[UO//:Sd1Y) SUOIRIPUOD pue SWB | 83U} 88S *[7202/70/8T ] U0 Aleld1T auljuo A8|IM ‘0SE00E20Z BURW/Z00T OT/I0p/W0d" A3 | IMAfelq 1Bl |uo//Ssdny WOy pepeolumoq ‘0 ‘9T9222ST


https://doi.org/10.1002/mana.202300350

18 MATHEMATISCHE ESCHER ET AL.
NACHRICHTEN
a # 1) such that forall | j| < N — 1 and « € H ~}(R) we have
. A 2
fssncrtaet— oot D g, <t Kl
Proof. See [1, Lemma 13] if a = 1, respectively [33, Lemma D.5] if a € H"'(R). O

Lemma A.3 describes how to localize the operators Bg’m (f) “at infinity.”
Lemma A.3. Let n,meN, re(3/2,2), re@/2,r), and v € (0,1) be given. Let further f € H'(R)
and a € {1} U H ~'(R). For any sufficiently small ¢ € (0, 1), there exists a constant K that depends only on ¢, n, m, || f ||z,
and ||a||gr—1 (if a # 1) such that for all a« € H~'(R)
175, BY m(Placlll g < VISl + Kllallgr  ifn>1ora € H(R),
and

75 By (O] = Hlzgalll g < vlimg el + Kllel g

Proof. See [1, Lemma 15] if a = 1, respectively [33, Lemma D.6] if a € H'~!(R). O
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