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Abstract
The purpose of this paper is to investigate the utilization of artificial neural net-
works (ANNs) in learning models that address the nonlinear anisotropic flow
and hysteresis retention behavior of deformable porous materials. Herein, the
micro-geometries of various networks of porous Bentheimer Sandstones sub-
jected to several degrees of strain from the literature are considered. For the
generation of the database required for the training, validation, and testing of
the machine learning (ML) models, single-phase and biphasic lattice Boltzmann
(LB) simulations are performed. The anisotropic nature of the intrinsic per-
meability is investigated for the single-phase LB simulations. Thereafter, the
database contains the computed average fluid velocities versus the pressure gra-
dients. In this database, the range of applied fluid pressure gradients includes
Darcy as well as non-Darcy flows. The generated output from the single-phase
flow simulations is implemented in a feed-forward neural network, represent-
ing a path-independent informed graph-basedmodel. Concerning the two-phase
LB simulations, the Shan-Chen multiphase LB model is used to generate the
retention curves of the cyclic drying/wetting processes in the deformed porous
networks. Consequently, two different ML path-dependent approaches, that is,
1D convolutional neural network and the recurrent neural network, are used to
model the biphasic flow through the deformable porous materials. A compari-
son in terms of accuracy and speed of training between the two approaches is
presented. Conclusively, the outcomes of the papers show the capability of the
MLmodels in representing constitutive relations for permeability and hysteretic
retention curves accurately and efficiently.
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1 INTRODUCTION

Themultiscale nature of hydro-mechanical behaviors of multiphase porous materials often requires incorporating micro-
scopic information into the macroscopic constitutive modeling, which is overlooked in most common material models
that rely on phenomenological or experimental observations, see, for example [1, 2] for review. As such, predicting the
intrinsic permeability or retention behavior from the microstructure of the porous material has been an essential task
for numerous science and engineering disciplines, such as geology, materials science, biomedical engineering, and rock
mechanics. Lower-scale simulations based on the finite element, the finite volume, the lattice Boltzmannmethod (LBM),
or the fast Fourier transformation could be implemented to realmicro geometry (e.g.,micro-CT images) or synthetic equiv-
alent geometry to obtain effective macroscopic parameters or material models, see, for example [3–5]. These image-based
multiscale approaches and the related inverse problems are well-established non-destructive techniques to extrapolate
material properties, especially in Digital Rock Physics, see, for example [6].
While image-based multiscale 3D simulations are much cheaper than physical tests and achieve reliable constitu-

tive information, they remain computationally expensive, especially when it comes to online multiscale schemes with
microscale simulations at each integration point and time step of the macroscopic continuum model.3,7 This paves the
way for the involvement of more efficient approaches, such as artificial intelligence techniques using, for example, deep
neural networks (DNN), to bridge the gap between the different scales. Building DNN-based constitutive models based on
the lower-scale simulations can be found in different works, such as within crystal plasticity,8,9 elasto-plasticity for com-
posite materials,10 multiphase porous media,2,11,12 hyperelasticity with enforced constitutive conditions, as symmetry of
the stress tensor, objectivity, material symmetry, polyconvexity, and thermodynamic consistency,13 and other applications
in ref. [14]. One of the most interesting topics in this regard is the construction of machine learning (ML)-based material
models for interstitial fluid flow and path-dependent fluid retention behavior to capture cyclic wetting/drying processes,
as will be intensively discussed in the current work.
The hysteretic response can be realized by studying the microscopic fluid-fluid interaction through image-based simu-

lations. Alternatively, the LBM can be applied to representative volume elements (RVEs) of the respective materials. The
LBM presents an important tool for simulating fluid flow through complex geometries such as porous media.15 In order to
link the micro- andmacroscopic scales in an efficient but accurate way, this paper aims to utilize ML-basedmaterial mod-
els for the macroscopic scale, which are trained using lower-scale generated data. The sequential steps in this procedure
are summarized as follows: (1) single- and multiphase LBM fluid flow simulations are achieved to generate, respectively,
the datasets of the anisotropic intrinsic permeability and drying/wetting hysteretic retention curves. Afterward, (2) the
ML models are trained using the aforementioned datasets, before (3) testing the trained models with unseen data. Once
a reliable ML-based model is developed, this can be integrated as an alternative to the conventional material models in a
multiphase continuummechanical frameworkwithinmacroscopic poromechanics, see for example [16–20] for references
and applications related to porous media mechanics.
To give a brief review of the implementation of ANN within multiscale modeling of fluid flow in porous media, Wang

et al.21 combined deep learning (DL) with a local multiscale reduced-order model to simulate flow dynamics in porous
media. As a solution for the shortage of observed data, they employed computational data for training the ML model.
In multiscale modeling of subsurface fluid flow in heterogeneous porous media, Choubineh et al.22 developed distinct
convolutional neural networks (CNNs) to predict different multiscale basis functions for the mixed generalized multi-
scale finite element method. The solely required input for their models in the study was the permeability property. Wang
and Sun11 developed a hybrid data-driven model, which was generated from supervised ML and hybridized with classical
constitutive laws, and implemented it on porous media with heterogeneous pore sizes to simulate the multiscale hydro-
mechanical coupling effect. Bao et al.23 combined a multiscale approach with a DNN model to investigate the effect of
the pore-scale electrode structure on the device-scale electrochemical reaction uniformity within a redox flow battery.
They utilized the LB equation for the simulation of flow transport and electrochemical reactions in the electrode sam-
ple, in addition to the quasi-Monte Carlo method for sampling. In the underlying paper, the ML-based model is used to
capture the effect of deformation on the anisotropic intrinsic permeability as well as on the retention dynamics of the
heterogeneous porous media.
In addition, a number of studies have utilized CNNs to estimate model parameters of porous materials. Alqahtani

et al.24 used the aforementioned approach for the fast computation of the porosity, coordination number, and average
pore size of porous networks from two-dimensional grayscale 𝜇-CT images in a supervised learning frame. In another
study, Kamrava et al.25 presented a novel deep convolutional neural network (DCNN) in combination with random-walk
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CHAABAN et al. 891

particle-tracking simulations to determine the longitudinal dispersion coefficient in fluid flow through heterogeneous
porous materials. In the work of Lähivaara et al.,26 the implementation of CNNs for the computation of the material
parameters of saturated porousmedia from synthetic ultrasound tomography data was presented. They generated data for
training purposes of the ANNs by solving wave propagation in coupled poro-viscoelastic-acoustic media. Moreover, for
the simulation of biphasic fluid flow, CNNs have been also incorporated with physics-informed neural networks (PINNs),
that is, physics-informed deep convolutional neural network (PIDCNN). For example, Zhang et al.27 developed a PIDCNN
model to simulate transient biphasic Darcy flows in reservoir domains. They utilized the finite volumemethod (FVM) for
the approximation of the residual of the partial differential equations (PDEs) in the loss function. Recently, Cai et al.12
used a graph neural network (GNN) to predict SE(3)-equivariant formation factor and effective permeability of porous
materials from micro-CT images. As input in their model, the micro geometry of the porous material is represented by a
persistence-basedMorse graph. Amain added value in the current work is the generation of hysteretic retention curves of
deformable unsaturated porous media via the implementation of 1D CNN, which has several advantages over other ML
alternatives. Mainly, 1D CNNs achieve feature extraction and classification operations in one single process. In turn, this
leads to reduced computational complexities and costs.28
Several works in the literature addressed the determination of the retention curves of unsaturated porous media based

on MLmodels. Heider et al.2 presented a meta-modeling approach that uses deep reinforcement learning (DRL) to deter-
mine optimal neural network settings for the ML constitutive laws for unsaturated poromechanics. They applied their
approach to determine path-dependent retention curves and the anisotropic permeability tensor, which governs the flow
in micropores. Zhang and Song29 utilized molecular dynamics and ML to investigate nanoscale retention mechanisms
of unsaturated clay. With the help of the ML-based curve fitting technique, function relations between mass water con-
tent, adsorptive pressure, and apparent soil-water interface area have been established. Lamorski et al.30 determined the
main wetting branch of the retention curve based on the main drying curve using ML. In their study, they developed and
validated the direct and parametric models, by using the data points of the retention curve or the van-Genuchten (VG)31
parameters of the drying curve, respectively. In this contribution, the hysteretic behavior of the path-dependent retention
curve is captured using the ML-based model.
In the context of the above-mentionedworks, this paper presents a novelmultiscale approach that leverages the capabil-

ities of ANN to enhance the understanding and modeling of deformable porous media in terms of single- and multiphase
fluid flow. Regarding the former, the model is capable of computing the nonlinear, anisotropic, and deformation-
dependent permeability character. As for the latter, the approach captures the path-dependent retention behavior of
several deformed configurations of the porous domain. The aforementioned properties can be computed via material
models that require heavy computational costs due to the challenging micro-geometry of porous media. The efficiency in
the proposed approach is achieved via ML-based models that connect the microscopically determinedmaterial properties
with themacroscopic continuum. From a practical perspective, this approach can facilitate the efficient and accurate sim-
ulation of fluid dynamics across a diverse array of applications. These include flow in geological formations, predicting
contamination spread, flow in biological systems and bio-reactors, as well as energy-related systems such as fuel cells and
hydrogen production systems.
The paper is arranged according to the following structure: Section 2, which focuses on LBM, includes a brief

explanation of the theoretical framework for single- and biphasic fluid flow. Moreover, the computation of the
deformation-dependent intrinsic permeability and retention curves of several deformed porous networks is carried out in
this section. In addition, this section presents the investigation of the anisotropic permeability tensor and the consequent
generation of the training data for the ML-based model. Thereafter, the ML-based models are implemented in saturated
and unsaturated porous media. Regarding the former, Section 3 describes the informed-graph-based ANNs for the com-
putation of the intrinsic permeability tensor. As for the latter, Section 4 describes the path-dependent ML models for the
computation of the retention curves of biphasic fluid flow in unsaturated porous domains, that is, the 1D CNN and recur-
rent neural network (RNN) models. The difference in the performance of the two history-dependent MLmodels in terms
of accuracy and speed of training is also clarified. In the end, concluding remarks are found in Section 5.

2 LBM FOR FLUID FLOW SIMULATION AND PERMEABILITY COMPUTATION

Proceeding from the particle methods of the lattice gas automata, the LBM solves the Boltzmann equation32 in a mesh-
based approach. In this section, a succinct description of the LBM theory in terms of single- and multiphase fluid flow is
presented. Subsequently, the LBM results of the intrinsic permeability and retention curves are presented.
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892 CHAABAN et al.

2.1 LBM for single-phase fluid flow

The Boltzmann equation in LBM governs the space and time dynamics of the so-called velocity distribution function
𝑓(𝐱, 𝝃 , 𝑡) . This function characterizes a set of particles located at a position 𝐱 and time 𝑡 with discrete lattice velocity
vector 𝝃 . The exchange of momentum and energy amongst these particles occurs through the streaming and collision
phases, namely,

𝑑𝑓

𝑑𝑡
|||streaming = 𝑑𝑓

𝑑𝑡
|||collision , 𝜕𝑓

𝜕𝑡
+ 𝝃 ⋅

𝜕𝑓

𝜕𝐱
⏟⎴⎴⏟⎴⎴⏟
streaming operator

= Ω(𝑓) .

⏟⏟⏟
collision operator

(1)

The local fluid density 𝜌 and fluid velocity 𝐯𝐹 can be computed as a function of 𝑓(𝐱, 𝝃 , 𝑡) via

𝜌 (𝐱, 𝑡) = ∫ 𝑓(𝐱, 𝝃 , 𝑡) 𝑑𝝃 and 𝐯𝐹 (𝐱, 𝑡) =
1

𝜌 ∫ 𝝃 𝑓(𝐱, 𝝃 , 𝑡) 𝑑𝝃 . (2)

For space discretization, a particle is restricted to stream in 19 possible directions in 3D, that is, D3Q19, namely,

𝐞𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0, 0, 0) 𝑖 = 0

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 𝑖 = 1, 2, … , 6

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 𝑖 = 7, 8, … , 18,
(3)

where 𝐞𝑖 is the direction of the velocity vectors 𝝃𝑖 = 𝑐 𝐞𝑖 . Herein, 𝑐 is the ratio of the distance between the nodes Δ𝑥 to the
time step Δ 𝑡.
With regard to the collision operator Ω(𝑓) in (1), the Bhatnagar-Gross-Krook (BGK)33 model is utilized since it can

be numerically implemented in a straightforward manner and has been broadly utilized in fluid flow simulations.34 The
BGK collision operator ΩBGK is formulated via

ΩBGK = −
𝑓𝑖 − 𝑓

𝑒𝑞
𝑖

𝜏
, with 𝜏 ∶=

1

2
+ 𝜈𝑙 𝑐

−2
𝑠 . (4)

In this, the relaxation time 𝜏 is a function of the lattice fluid viscosity 𝜈𝑙 and lattice speed of sound 𝑐𝑠 = 1∕
√
3 . The BGK

formulation prescribes the relaxation of the distribution functions 𝑓𝑖 toward equilibrium distributions 𝑓𝑒𝑞
𝑖
at a collision

frequency 𝜏−1. The formulation of 𝑓𝑒𝑞
𝑖
is expressed as follows

𝑓
𝑒𝑞
𝑖
= 𝑤𝑖 𝜌

(
1 +

𝐞𝑖 ⋅ 𝐮𝑙

𝑐𝑠
2
+
(𝐞𝑖 ⋅ 𝐮𝑙)

2

2𝑐𝑠
4

−
(𝐮𝑙 ⋅ 𝐮𝑙)

2

2𝑐𝑠
2

)
, (5)

where 𝑤𝑖 presents the lattice weights, that is,

𝑤𝑖 =

⎧⎪⎨⎪⎩
1∕3 𝑖 = 0

1∕18 𝑖 = 1, 2, … , 6

1∕36 𝑖 = 7, 8, … , 18 .

(6)

Ultimately, the distribution functions are updated via

𝑓𝑖(𝐱 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖(𝐱, 𝑡)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

streaming

= ΩBGK
⏟⏟⏟
collision

. (7)
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CHAABAN et al. 893

In terms of the boundary conditions (BCs), the Zou-He35 bounce-back boundary dynamics are prescribed. For more
detailed descriptions of the LBM approach for single-phase fluid flow, the reader is referred to ref. [4].

2.2 LBM for multiphase fluid flow

Amongst the various LBM models for modeling multiphase fluid flow through porous media, the pseudopotential Shan-
Chen (SC) model36 has been selected for this study. The aforementioned model enables the manipulation of the kinetic
viscosity of the fluid phases and the fluid-fluid interaction. As a kind of extension of the formulation of single-phase fluid
flow, the BGK model is expressed for each fluid phase 𝛽 = 1, 2 in biphasic flow as

𝑓
𝛽
𝑖
(𝐱 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓

𝛽
𝑖
(𝐱, 𝑡) = −

𝑓
𝛽
𝑖
(𝐱, 𝑡) − 𝑓

𝛽, 𝑒𝑞
𝑖

(𝐱, 𝑡)

𝜏𝛽
. (8)

The local equilibrium distribution function 𝑓𝛽, 𝑒𝑞
𝑖

is written as

𝑓
𝛽, 𝑒𝑞
𝑖

= 𝑤𝑖 𝜌
𝛽
⎛⎜⎜⎝1 +

𝐞𝑖 ⋅ 𝐮
𝛽, 𝑒𝑞

𝑙

𝑐𝑠
2

+
(𝐞𝑖 ⋅ 𝐮

𝛽, 𝑒𝑞

𝑙
)2

2𝑐𝑠
4

−
(𝐮
𝛽, 𝑒𝑞

𝑙
)2

2𝑐𝑠
2

⎞⎟⎟⎠. (9)

Herein, 𝐮𝛽, 𝑒𝑞
𝑙

presents the equilibrium velocity, that is,

𝐮
𝛽, 𝑒𝑞

𝑙
= 𝐮′𝑙 + (𝜏

𝛽 𝐟 𝛃)(𝜌𝛽)−1 with 𝐮′𝑙 ∶= (𝜌
𝛽 𝐮

𝛽

𝑙
∕𝜏𝛽)(𝜌𝛽∕𝜏𝛽)−1 , (10)

where 𝐮′𝑙 denotes the common velocity. The total force acting on fluid phase 𝛽 is characterized by 𝐟 𝛃. It is the combination
of forces at the fluid-fluid and fluid-solid interfaces, that is, 𝐟 𝛽

𝑓𝑓
and 𝐟 𝛽

𝑓𝑠
, respectively. In addition, the external force is

presented by 𝐟 𝛽𝑒 . The aforementioned forces are formulated as follows

𝐟
𝛽

𝑓𝑓
(𝐱)=−𝜓𝛽(𝐱) 𝐺𝛽𝛽

∑
𝐱′

2∑
𝛽=1

−𝜓𝛽 (𝐱′) 𝐞𝑖 , 𝐟
𝛽

𝑓𝑠
(𝐱) = −𝜌𝛽𝐺

𝛽

𝑎𝑑𝑠
(𝐱)

∑
𝑖

𝑤𝑖𝑠(𝐱
′) 𝐞𝑖 , 𝐟

𝛽
𝑒 = 𝜌

𝛽𝑔 ≈ 0 . (11)

For the pseudopotential 𝜓𝛽(𝐱) in (11)1, several formulations can be found in the literature.36–40 In our work, the relation
found in the works of Martys and Chen41 and Pan et al.42 is used, that is, 𝜓𝛽 = 𝜌𝛽 . In this common form of 𝜓𝛽 , the pseu-
dopotential is not bound and small values for the density 𝜌𝛽 need to be prescribed to avoid divergence of the interaction
force 𝐟 𝛽

𝑓𝑓
.15 As for 𝐱′ , it presents the neighbor lattice position, that is, 𝐱′ = 𝐱 + 𝐞𝑖 . Moreover, 𝐺𝛽𝛽 is the coupling coeffi-

cient that dictates the fluid-fluid interaction. In terms of the fluid-solid interaction force 𝐟 𝛽
𝑓𝑠
in (11)2, 𝑠 equals 1 for the solid

phase and 0 for the fluid phase. Also, the adsorption coefficient is presented by 𝐺𝛽
𝑎𝑑𝑠

. As for (11)3, the external force 𝐟
𝛽
𝑒 is

assumed negligible. For additional discussion about the numerical stability of LBM in multiphase fluid flow, see.4,15
The equation of state (EOS) of the SC multicomponent model36 is used to compute the lattice pressure 𝑝𝑙 at each node

as follows

𝑝𝑙 = 𝑐
2
𝑠

∑
𝛽

𝜌𝛽 +
𝑐2𝑠 Δ𝑡

2

2

∑
𝛽𝛽

𝐺𝛽𝛽𝜓𝛽𝜓𝛽 . (12)

2.3 LBM computation of the intrinsic permeability tensor

For the computation of the intrinsic permeability components, the geometries of the Bentheimer networks of each level
of deformation, or degree of strain, are input to the single-phase LBMmodel, described in Section 2.1. The main objective
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894 CHAABAN et al.

behind these simulations is that a corresponding average lattice fluid velocity is computed for each prescribed pressure
gradient of the fluid phase applied across the porous domain via each of the hydrodynamic axes 𝐱1, 𝐱2 and 𝐱3, that is,
∇𝑝1, ∇𝑝2 and∇𝑝3, respectively. From the simulation results, the lattice intrinsic permeability tensor 𝐊𝑆

𝑙
, expressed in

lattice units [l.u.] , of each of the deformed Bentheimer networks has been determined under the assumption of a sym-
metric and positive definite permeability tensor using the approach of Kuhn et al.43 Herein, they suggested two types of
fluid flow simulations for each hydrodynamic direction: one with the prescription of a no-slip BC and another with the
assignment of a natural slip BC for the surfaces parallel to the direction of the fluid flow. The reason behind such consid-
eration is that the average computed velocity in the pressure direction of the no-slip BC is lower in comparison to the case
of a natural slip BC. Hence, the difference between the two velocities gives an indication to the additional fluid flow in
the direction that is orthogonal to the pressure gradient direction. Regarding the former, the diagonal components of the
permeability tensor are computed via the following lattice-accommodated Darcy-like filter law:

(𝐾𝑆
𝑙
)𝑖𝑖 = −𝜈𝑙

(𝑢𝑙)𝑖, avg

∇𝑖 𝑝𝑙
[l.u.] , with 𝑖 = 1, 2, 3. (13)

In this, the lattice pressure gradient, presented by∇𝑖 𝑝𝑙 = 𝜕𝑝𝑙∕𝜕𝑥𝑖 is induced between twoopposing surfaces perpendicular
to the flow direction to calculate the average lattice fluid velocity (𝑢𝑙)𝑖, avg . As for the latter, the unknown non-diagonal
elements of the permeability tensor are computed as follows43

⎡⎢⎢⎢⎣
∇2 𝑝𝑙 ∇3 𝑝𝑙 0

∇1 𝑝𝑙 0 ∇3 𝑝𝑙

0 ∇1 𝑝𝑙 ∇2 𝑝𝑙

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
(𝐾𝑆
𝑙
)12

(𝐾𝑆
𝑙
)13

(𝐾𝑆
𝑙
)23

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
−𝜈𝑙 (𝑢𝑙)1, avg − (𝐾

𝑆
𝑙
)11 ∇1 𝑝𝑙

−𝜈𝑙 (𝑢𝑙)2, avg − (𝐾
𝑆
𝑙
)22 ∇2 𝑝𝑙

−𝜈𝑙 (𝑢𝑙)3, avg − (𝐾
𝑆
𝑙
)33 ∇3 𝑝𝑙

⎤⎥⎥⎥⎦
. (14)

Other approaches for the computation of the anisotropic permeability tensor via LBM are also present, such as in the
study of Galindo-Torres et al.44 In their method, the pressure gradient is prescribed as a function of an angle of an octa-
hedral plane. Therefore, for the determination of the nine unknown indices of the anisotropic permeability tensor, where
they did not initially assume the symmetry of the tensor, they required flow simulations for three different octahedral
angles. In this sense, they would have adequate equations to solve for the unknowns. The difference of the aforemen-
tioned method to the implemented approach by Kuhn et al.43 in our study is that the flow simulations are done twice per
hydrodynamic direction with different BCs to solve for the non-diagonal components as explained above.
Conclusively, the lattice permeability results are converted to their macroscopic counterpart as follows

𝐾𝑆
𝑖𝑗
= (𝐾𝑆

𝑙
)𝑖𝑗 (𝛿𝑥𝑖 𝛿𝑥𝑗)

[
m2

]
, (15)

where 𝛿𝑥𝑖 and 𝛿𝑥𝑗 characterize the spatial resolution of the 𝝁-CT images in the 𝑖 and 𝑗 directions, respectively. The 𝜇-CT
images of the Bentheimer networks are published by Moon and Andrew45 at a resolution of 𝛿𝑥1 = 𝛿𝑥2 = 𝛿𝑥3 = 8.96 𝜇m
per pixel. For the selection of the suitable RVE size of the geometry of the Bentheimer Sandstones, the reader is referred
to our work in ref. [46]. For visualization of the output of LB simulations, exemplary results are shown in Figure 1.

2.4 Investigation of the anisotropy and generation of database

In building an objective ML-based permeability model, it is crucial to understand in advance whether the model is
anisotropic and whether the anisotropy changes during the deformation process. This can be figured out through the
computation and comparison of the eigenvalues and eigenvectors of the permeability tensors, which represent the prin-
cipal permeability components and the directions of these components, respectively. Hence, the anisotropic nature of
the deformation-dependent intrinsic permeability is initially investigated. For this purpose, the permeability tensors are
computed at three different pressure gradients, that is, ∇𝑝 = 2.4, 7.62, and 15.19 [MPa∕m] for the different degrees of the
strain 𝜀 in the range of [0, 0.5] . The values of the pressure gradient have been selected in this manner to include moderate
to high fluid velocities in the anisotropy analysis. Herein, a comparison between the principal values of each permeabil-
ity tensor as well as the deformation-related changes of the principal directions is accomplished. In this regard, spectral
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CHAABAN et al. 895

F IGURE 1 Exemplary simulation output for the porous domain with 𝜀 = 0.02: vector representation of the computed lattice velocity
fields 𝑢𝑙 when the pressure gradient was applied in the 𝐞1-direction for the single phase LB simulation. In this, the blue skeleton represents
the solid phase (left); biphasic simulation of the drying process, where the non-wetting and wetting agents are shown in red and yellow,
respectively, at two different time steps 𝑡1 (middle) < 𝑡2 (right). LB, lattice Boltzmann.

decomposition is utilized to determine the eigenvalues and eigenvectors of a given permeability tensor𝐊𝑆 as

𝐊𝑆 =

3∑
𝑖=1

𝐾𝑆
𝑖
(𝐧𝑘𝑖 ⊗ 𝐧𝑘𝑖) , (16)

where𝐾𝑆
𝑖
are the eigenvalues of the permeability tensor and𝐧𝑘𝑖 are the corresponding eigenvectors. The orthogonal eigen-

vectors, which can be normalized, enable the construction of the 3 × 3 rotation tensors, fromwhich the three Euler angles
can be calculated. It is noteworthy that other alternatives for the representation of rotation exist, such as the quaternions
or Cardano angles. However, the Euler angles are used in our study due to their straight-forward numerical application
and common usage47 (the reader is also referred to our work in ref. [8] for alternative rotation representation). Herein,
the rotation tensors can be expressed as

𝐑𝑘 =
[
𝐧𝑘1 𝐧𝑘2 𝐧𝑘3

]
, (17)

where 𝐑𝑘 ∈ 𝑆𝑂(3). The rotation tensor with nine components can be expressed by three equivalent Euler angles, that is,
{𝜑𝐾, Θ𝐾, 𝜓𝐾}∈ 𝔼 ⊂ ℝ+ .
Within the analysis of the relation between the principal permeabilities and the induced deformation, an increase in the

values of the principal permeabilities 𝐾𝑆1 , 𝐾
𝑆
2 and 𝐾

𝑆
3 is witnessed as the volumetric strain increases to 𝜀 ≈ 0.1 , compare

Figure 2. The increase in the principal permeabilities is caused by the increase of the porosity 𝑛𝐹 , as shown in Figure 3.
This is attributed to the method used in deforming the Bentheimer geometries in the published images of Moon and
Andrew.45 Herein, they implemented the elastic simulation technique, using the algorithm of Rutka andWiegmann,48 to
create the series of the compressed Bentheimer networks. In this, the solid phase, presented by the particles, is assumed to
be compressible and linear elastic. At the early stages of compression,where lowvalues of volumetric strain are applied, the
particles are compressed or congregated together within the porous matrix. In turn, this gives a possibility for the increase
of the voids, that is, the porosity 𝑛𝐹 at this early stage of deformation. Nevertheless, the principal permeabilities decrease
drastically for strain values 𝜀 > 0.1 . This can be explained by the decrease of the porosity due to the rearrangement of the
particles and compression of the pore channels while increasing the applied volumetric strain. Except for the principal
permeability results at 𝜀 ≈ 0.3 , an evident difference between the values of the principal permeabilities𝐾𝑆

𝑖
is witnessed for

most of the strain degrees. An analogous observation is noted in the analysis of the Euler angles. For strain levels 𝜀 < 0.2 ,
the attained principal directions are almost equal. However, as the strain 𝜀 exceeds 0.3, the principal directions diverge
and a considerable difference is noted amongst them. This can be attributed to the alteration of the pore structure and flow
paths due to the induced deformation, which consequently affects the prinicpal directions. In turn, this shows the need
for consideration of the anisotropic character of the intrinsic permeability throughout the different deformation levels.
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896 CHAABAN et al.

F IGURE 2 The strain degree 𝜀 versus the principal values 𝐾𝑆𝑖 of the permeability tensor (top) and the corresponding Euler angles
(bottom) for pressure gradients ∇𝑝 = 2.4MPa∕m (left), 7.62MPa∕m (middle), and 15.19MPa∕m (right).

F IGURE 3 The change of porosity 𝑛𝐹 with respect to the increase of strain 𝜀 . At the early increasing steps of the strain, that is, 𝜀 ≈ 0.02 ,
a slight increase in the porosity 𝑛𝐹 is witnessed.

Afterward, the required database by the ML-based model for the prediction of the permeability has been generated. To
this end, the sample sources are created from the findings of the LB computations on themicrogeometry of the Bentheimer
Sandstones. Initially, the 𝜇-CT images correspond to the size of 1024 × 1024 × 1024 voxels.45 However, this causes high
numerical costs on themicroscopic numerical simulations. Therefore, a suitable size of the RVE of 350 × 350 × 350 voxels
is determined.46 The size of the dataset for theMLmodel includes 2286 datapoints, whereby each datapoint corresponds to
an increment of the pressure gradient on the porous domain. Herein, the LB model assigns for each strain degree several
increasing increments of the pressure gradient of the fluid across the porous domain to calculate the resulting average
velocity of the fluid. This is achieved for each type of the previously discussed BCs per hydrodynamic direction. Herein,
the range of applied fluid pressure gradients includes fluid flows with Reynolds number in the range of [0.15, 1.36]. In this
manner, the fluid flow exhibits both Darcy flow, which is characterized by laminar flow with Reynolds number less than
0.2,49 and a non-Darcy flow.

2.5 LBM for the deformation-dependent retention curves

Several phenomenological retention curve models, such as the VG, are not designed to capture the hysteresis of unsat-
urated porous materials’ wetting and drying paths. Neglecting the hysteresis may affect the reliability of the numerical
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CHAABAN et al. 897

F IGURE 4 The retention curves showing the plots of saturation degree 𝑠𝑊 versus the capillary pressure 𝑝𝑐 for strain degrees 𝜀 ≤ 0.20
(left) and 0.30 ≤ 𝜀 ≤ 0.50 (right). For discussions regarding the effects of deformation on the retention curves, such as the hysteretic behavior,
see our work in ref. [46].

models that involve cyclic drying/wetting processes, which leads for instance to inaccurate computation of both Bishop’s
effective stress of unsaturated porousmedia and the relative permeability. Furthermore, these retention curves are affected
by the state of the material deformation, which adds an additional source of inaccuracy to the single-curve hand-crafted
retention curve models. Considering deformable unsaturated porous media, a link is established in this section between
the LBM, as a tool to generate databases from the lower-scale simulations, and the ML approach, used for generating
constitutive laws for the continuum mechanical simulations. In particular, the data generated for the path-dependent
retention behavior using the SC LBM model, discussed in Section 2.2, is used to generate an ML model for the retention
behavior. In order to ensure hysteretic retention behavior, a cyclic pressure differential of the non-wetting fluid, that is,
the invading fluid, has been prescribed to attain drying/wetting cycles across the domain. In turn, the saturation degree
𝑠𝑊 is computed for every increment of the capillary pressure 𝑝𝑐, defined as the difference between the non-wetting and
wetting effective pressures 𝑝𝑛𝑤 and 𝑝𝑤 , respectively. The biphasic LBM simulations were accomplished for all deformed
geometries of the strain degrees, see Figure 4 for a summary of the results. Formore details regarding the LBM simulations
and related discussions, such as the effect of deformation on hysteresis or the air-entry value, the reader is referred to our
work in ref. [46].
Themicro-geometry of the deformed porous media is available for nine different increments of the strain 𝜀.45 Neverthe-

less, the strain increment for 𝜀 ≤ 0.10 is set at 0.02 , which represents a relatively small deformation increment. However,
the increment highly increased to 0.10 for 𝜀 > 0.10. In turn, this caused a sudden shift in the trends of the retention curves
for high values of strain, such as 𝜀 = 0.40 and 0.50. For this reason, the dataset did not prove sufficient for the RNN
model for training, validation, and testing purposes. Therefore, additional sets of strain degrees were deemed necessary
for input to the training of the RNN model. In order to artificially expand our database, RVEs for additional assumed
strain degrees 𝜀 = 0.12, 0.14, 0.16, and 0.18 are created. Consequently, RVEs within the available micro-geometry data of
𝜀 = 0.10 and 0.20 with similar porosity characteristics, such as the intrinsic permeability 𝐾𝑆 , shown in Figure 2 and the
porosity 𝑛𝐹 , shown in Figure 3, were extracted for the aforementioned assumed strain degrees. For example, RVEs for
𝜀 = 0.12 and 0.14 were extracted from the micro-geometry of 𝜀 = 0.10, and RVEs for 𝜀 = 0.16 and 0.18 were extracted from
the micro-geometry of 𝜀 = 0.20. Afterward, these geometries were input into the LBM biphasic fluid flow simulations for
the generation of additional numerical data needed to input into the ML model, that is, capillary pressure and porosity
of the deformed porous domain, to compute the corresponding saturation degree. Due to the little dataset provided for
the deformed Bentheimer geometries for deformations 𝜀 > 0.20, we restricted the computation of the retention curves for
the RNN model for strain degrees 𝜀 ≤ 0.20 . The dataset for the ML models for the computation of the retention curves
includes 6240 data points.

3 ML-BASED ANISOTROPIC PERMEABILITYMODEL

This section describes the supervisedMLmodel used for the estimation of the deformation-dependent anisotropic intrinsic
permeability. In particular, a multi-step ANN model is applied to determine the path-independent response, where an
informed graph model is utilized in this process.
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898 CHAABAN et al.

F IGURE 5 Representation of the informed directed graph model for the supervised ML-based permeability. The yellow node represents
the root node, whereas the pink nodes are the target nodes. A two-step FFNN is applied to predict the velocities with no-slip BCs, that is,
𝐯𝐹,Di, and the velocities with natural slip boundaries, that is, 𝐯𝐹,NDi. BC, boundary conditions; FFNN, feed-forward regression neural network;
ML, machine learning.

F IGURE 6 Illustration of the ANN structure in the ML-based permeability prediction model. Input parameters are represented by the
pressure gradient ∇𝑝𝑖 and porosity 𝑛

𝐹 . The output parameters are the components of the fluid velocity 𝑣𝐹𝑖 with 𝑖 = 1, 2, 3 . ANN, artificial
neural networks; ML, machine learning.

3.1 Informed-graph-based permeability model

Themain scheme of theMLmodel in this section is summarized in two steps: (1) the prediction of the fluid velocity for the
no-slip BC (𝐯𝐹,Di) based on the input pressure gradient and porosity of the domain, and (2) the prediction of the fluid veloc-
ity for the natural slip BC (𝐯𝐹,NDi) based on 𝐯𝐹,Di, the pressure gradient, and the porosity. Herein, a two-step feed-forward
regression neural network (FFNN) is used for the prediction, compare Figure 5. The choice of implementing FFNN in the
prediction of the intrinsic permeability is due to its capability in training path-independentmaterial behavior.8 Later in the
prediction of the hysteretic retention behavior in Section 4, FFNN is replaced with RNN to replicate the path-dependent
material behavior, which depends on the data history.
In this informed, directed graph approach, information streams from the root (input), that is, 𝑛𝐹 and ∇𝑝 , to the first

leaf (output), that is, 𝐯𝐹,Di, which represents the fluid velocity for the no-slip BC. This step is referred to as FFNN(1).
Afterwards in step FFNN(2), we proceed with the root (𝑛𝐹 , ∇𝑝) and first leaf (𝐯𝐹,Di) for the prediction of the second leaf,
that is, the fluid velocity for natural slip BC, represented by 𝐯𝐹,NDi .

3.2 Training and testing of the ANN permeability model

In the aforementioned steps, the involved ANN iterates an array of predictions on the fluid velocities as well as in-between
quantities, realized as hidden layers in Figure 6, to achieve enhanced accuracy of the output velocity results, see, for
example [2, 11, 50] For all the strain degrees, the input layers incorporated the pressure gradients across the three hydro-
dynamic directions, namely,∇𝑝1 ,∇𝑝2, and∇𝑝3 , in addition to the porosity 𝑛

𝐹 of the deformed porous network, in order
to calculate the corresponding fluid velocities 𝑣𝐹1 , 𝑣𝐹2, and 𝑣𝐹3 . Afterwards the computation of the components of the
permeability tensor is achieved via solving the inverse problem in (13) and (14).
The pre-processing of the data obtained from the LBM simulations is done using the open-source Python data analysis

library Pandas.51 Herein, a random shuffling of the rows is carried out first. Thereafter, data splitting is applied in the
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CHAABAN et al. 899

TABLE 1 A summary of the NN settings considered in the feed-forward neural network-based permeability model.

NN setting description Abbreviation Values
Neuron type subset 𝑁𝑒𝑢𝑟𝑜𝑛𝑇𝑦𝑝𝑒 𝑀𝐿𝑃

Hidden layers subset 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟𝑠 2
Number of neurons per layer 𝑛𝑢𝑚𝑁𝑒𝑢𝑟𝑜𝑛𝑠𝑃𝑒𝑟𝐿𝑎𝑦𝑒𝑟 80
Dropout rate subset 𝐷𝑟𝑜𝑝𝑂𝑢𝑡𝑅𝑎𝑡𝑒 0.0
Optimizer type subset 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝐴𝑑𝑎𝑚

Activation functions subset 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝐿𝑈, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Batch sizes subset 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 8

following manner: 67% of the dataset is considered as the training subset and utilized for computing the weights and
biases of the ANN, 11% of the dataset is considered as the validation subset to compute the errors during the training and
to assist in tuning weights, whereas the remaining 22% of the dataset is chosen as the testing or unseen subset that is used
for independent evaluation of the trainedMLmodel. Before the obtained data is input into theMLmodel, a normalization
procedure is carried out and the data is transformed into a range between 0 and 1 using the MinMaxScaler class of the
sklearn.preprocessing toolkit.52 In turn, the predicted data is rescaled to its original range after the training of the ML
model is done. The settings of the ML model, such as the number of layers, choice of the optimizers, objective functions,
and error estimations, are implemented with the help of the DL open-source code Keras53 with built-in neural networks
such as the multilayer perceptrons (MLPs). Herein, the system architecture entails an input layer, two hidden layers with
80 neurons for each, and the Rectified Linear Unit (ReLU) activation function, as well as an output layer with the sigmoid
activation function. Concerning the optimization approach, the first-order gradient method, that is, ADAM,54 is utilized.
A summary of the chosen NN settings is given in Table 1. It is important to note that the choice of hyperparameters is not
unique. In our research, we used the DRL algorithm presented inHeider et al.2 to test whether alternative hyperparameter
settings yield higher prediction accuracy. Our analysis consistently confirmed that the proposed hyperparameters (Table 1)
are among the best choices in terms of prediction accuracy. For an in-depth examination of our hyperparameter setting
methods and additional sources, see ref [2].
In this work, the estimation of the difference between the true data, namely, Xtrue , and predicted data Xpred is achieved

via the scaled mean squared error (scaled MSE), which is expressed for each experiment 𝑖 with a total number of output
data points 𝑁 as follows

scaledMSE𝑖 =
1

𝑁

𝑁∑
𝑗=1

[
(Xtrue)𝑗 − (X

𝑀

pred)𝑗

]2
with Xtrue ∶= MinMaxScaler(𝑋true) . (18)

Herein, the MinMaxScaler is only based on the true data and, afterwards applied on the predicted values to yield X
𝑀

pred .
In the training, an EarlyStopping callback is assigned, which applies early stopping of the training if the loss does not
improve for 100 weight updates (epochs).
Concerning the FFNN(1) step, the presented MLmodel required a total of 538 weight updates for the training, compare

Figure 7 for the resulting accuracy and values of the loss function toward computing 𝐯𝐹,Di .
To have a closer look at the performance of the MLmodel, Figure 8, left, presents a qualitative comparison between the

scaled MSE of the testing, validation, and training datasets. It shows that the errors in all cases are uniformly distributed
and below 0.015. To quantitatively assess those results, we calculate the non-parametric, empirical cumulative distribu-
tion functions (eCDFs), see,.55 In this, eCDFs are calculated for the MSE𝑖 of testing (𝑁testdata), validation (𝑁valddata), and
training (𝑁traindata) datasets considering all the corresponding cases of the dataset (all), that is, 𝑖 ∈ [1,𝑁all

testdata] , 𝑖 ∈

[1,𝑁all
valddata] , 𝑖 ∈ [1,𝑁

all
traindata]. Thus, for a dataset 𝑁 with MSE𝑖 sorted in ascending order, the eCDF can be computed

as

𝐹𝑁(MSE) =

⎧⎪⎪⎨⎪⎪⎩

0, MSE < MSE1,

𝑟

𝑁
, MSE𝑟 ≤ MSE < MSE𝑟+1, 𝑟 = 1,… ,𝑁 − 1,

1, MSE𝑁 ≤ MSE .

(19)
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900 CHAABAN et al.

F IGURE 7 The accuracy (left) and values of the loss function (right) with respect to the number of weight updates of the training and
validation steps within FFNN(1), where the ML model computed the velocities regarding the no-slip BCs based on the pressure gradient and
porosity. BC, boundary conditions; FFNN, feed-forward regression neural network; ML, machine learning.

F IGURE 8 Scaled MSE of the different cases of training, validation, and testing datasets within FFNN(1) step (left). eCDF versus scaled
MSE of the training, validation, and testing datasets within the FFNN(1) step (right). eDCF, empirical cumulative distribution functions;
FFNN, feed-forward regression neural network; MSE, mean squared error.

F IGURE 9 Comparison between the true output of the LBM simulations and the predicted output of the ML model regarding the fluid
average velocity versus the pressure gradient, that is, 𝐯𝐹1,Di w.r.t. ∇𝑝1 (left), 𝐯𝐹2,Di w.r.t. ∇𝑝2 (middle) and 𝐯𝐹3,Di w.r.t. ∇𝑝3 (right), of the
no-slip BC. BC, boundary condition; LBM, lattice Boltzmann method; ML, machine learning.

Looking at the errors in Figure 8, right, it is clear that the trainedmodel does not suffer from over-fitting, that is, the errors
in the training and testing subsets are close to each other and in the range≈ [10−2, 10−6]. In the eCDFerror representation,
the more the curve is vertical, the better the results, that is, close errors in all cases of the dataset. A more vertical curve
can be obtained by, for example, considering a bigger dataset.
Following this, the trained ML model is applied to the unseen testing dataset in order to compare the predicted output

with the true output of the average velocities for each hydrodynamic direction, compare Figure 9. In general, the predicted
outputs show close results to the true output. Small deviations from the true output can be seen in the 𝐯𝐹,Di plot, which
is in agreement with the occurring errors that are visualized in Figure 8.

 10969853, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3668 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHAABAN et al. 901

F IGURE 10 The accuracy (left) and values of the loss function (right) with respect to the number of weights updates (epochs) of the
training and validation steps within FFNN(2). This ML model computes the velocities regarding the natural slip BCs based on the pressure
gradient, porosity and the fluid velocities for the no-slip boundary conditions. BC, boundary conditions; FFNN, feed-forward regression
neural network.

F IGURE 11 Scaled MSE of the different cases of training, validation, and testing datasets within FFNN(2) model (left). eCDF versus
scaled MSE of the training, validation, and testing datasets within the FFNN(2) model (right). eCDF, empirical cumulative distribution
functions; FFNN, feed-forward regression neural network; MSE, mean squared error.

The second step in building the supervised ML model is the prediction of the velocities 𝐯𝐹,NDi related to the natural
slip boundaries (cf. FFNN(2) in Figure 5). The NN settings and training steps for FFNN(1) are repeated for FFNN(2).
Herein, a random shuffling of the rows of the dataset is carried out first. Thereafter, data splitting is applied with 67% for
the training, 11% for the validation, and 22% for the testing. Moreover, a normalization procedure is carried out and the
data is transformed into a range between 0 and 1. Similarly to FFNN(1), the accuracy and values of the loss function are
computed at each epoch in the FFNN(2) for the training and validation datasets, compare Figure 10.
To have a closer look at the performance of the trained ML model, we apply the trained FFNN(2) model to predict the

fluid velocity with natural slip boundaries 𝐯𝐹,𝑁𝐷𝑖 , where the inputs are 𝑛𝐹 and∇𝑝 of the original dataset and the velocities
𝐯𝐹,Di that result from FFNN(1) prediction. Figure 11, left, presents a qualitative comparison between the scaledMSE of the
testing, validation, and training datasets. It shows that the errors in all training, validation, and testing are uniform and
below 0.004. To quantitatively assess those results, we also calculate the non-parametric eCDFs. Looking at the errors in
Figure 11, right, it is clear that the trained model does not suffer from over-fitting, that is, the errors in the training and
testing subsets are close to each other and in the range ≈ [5 × 10−3, 10−8].
Finally, the trained FFNN(2)MLmodel is applied to the unseen testing dataset in order to compare the predicted output

velocities (𝐯𝐹,NDi) with the true ones, compare Figure 12. Following the informed graph 5, the input velocities 𝐯𝐹,Di result
from the FFNN(1)model. In general, the predicted outputs show close results to the true output. Small deviations from the
true output can be seen in the 𝐯𝐹,NDi plot, which is in agreement with the occurring errors that are visualized in Figure 11.
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902 CHAABAN et al.

F IGURE 1 2 Comparison between the true output of the LBM simulations and the predicted output of the ML model regarding the fluid
average velocity versus the pressure gradient, that is, 𝑣𝐹1,NDi w.r.t. ∇𝑝1 (left), 𝑣𝐹2,NDi w.r.t. ∇𝑝2 (middle) and 𝑣𝐹3,NDi w.r.t. ∇𝑝3 (right), of the
natural slip BC based on the fluid velocities computed from FFNN(1). BC, boundary condition; FFNN, feed-forward regression neural
network; LBM, lattice Boltzmann method; ML, machine learning.

F IGURE 13 3D representation of the retention curves showing the plots of saturation degree 𝑠𝑊 versus the capillary pressure 𝑝𝑐 for
strain degrees 𝜀 ≤ 0.20 that correspond to different porosities 𝑛𝐹 .

4 MLMODELS FOR THE RETENTION BEHAVIOR OF BIPHASIC FLOW IN
DEFORMABLE POROUSMEDIA

In contrast to the history-independent permeability model discussed in Section 3, the ML model for retention behavior
should be able to mimic the path-dependent hysteretic nature of the saturation degree with respect to the capillary pres-
sure. For this purpose, two neural network models, namely 1D CNN in Section 4.1 and RNN in Section 4.2, are employed
to take into account the history and deformation dependency of the retention response. For the generation of the ML-
based material model, a dataset for the retention curves that considers 10 various states of deformation, corresponding
to 0.02 ≤ 𝜀 ≤ 0.2, and includes scanning drying/wetting-intermediate cycles is prepared, with more details in Section 2.5.
For an illustration of the dataset, Figure 13 includes a 3D representation of the deformation-dependent retention curves
used in both 1D-CNN and RNN models

4.1 1D CNNmodel

We test in this section the applicability, efficiency, and accuracy of 1D CNN to generate a ML-based retention curve
model. CNN, as a class of ANN used for DL, is widely used in applications like image classification and object or text
detection. It requires mostly data that have a grid-like nature, such as images or time-series data, see, e.g,56–61 for review
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CHAABAN et al. 903

F IGURE 14 Illustration of the 1D CNN architecture and information flow that include data preparation, convolution operations,
pooling operation, flatten, and fully-connected MLP layers. CNN, convolutional neural network; MLP, multilayer perceptron.

and applications. CNN is considered as a FFNN approach with weight-sharing characteristics that are achieved through
convolutional and pooling (subsampling) layers. The major components of CNN are:

∙ Convolution Operation: This is carried out by multiplying the input data by a 2D filter (also called kernel or feature
detector) to generate a feature map.

∙ Pooling Operation: This is applied after the convolution operation by multiplying the feature map with a 2D filter. The
aim is to down-sample the feature map by calculating, for instance, their maximum or average values and send the
important features only to the next CNN layer.

∙ Multi-Layer Perceptron (MLP): the fully-connected (dense) or MLP layers have the pooled feature map as an input and
a 1D feature vector as an output.

Based on this, we distinguished between the “CNN layers”, the “pooling layers”, and the “MLP layers” in the construction
of the CNN model.
Unlike 2D CNNs that are designed to deal with data as images, 1D CNNs have the capability to deal with one-

dimensional sequences of data, such as in the case of path-dependent retention curves. In comparison with the 2D CNNs,
1D CNNs have the advantage of lower computational complexity, see.28 In this work, the 1D-CNNmodel is implemented
using Keras with Python installed in a Jupyter notebook with Anaconda environment. The architecture of this 1D-CNN
model is illustrated in Figure 14.
It includes the following features:

∙ Data preparation: In this, the raw data, which represent the capillary pressure 𝑝𝑐, the degree of saturation 𝑠𝑊 , and
porosity 𝑛𝐹 at each time step 𝑡𝑛 , is reshaped into segments of fixed length. Each segment contains a subset of the time
series data, that is, [𝑝𝑐𝑛−3, 𝑝

𝑐
𝑛−2, 𝑝

𝑐
𝑛−1, 𝑝

𝑐
𝑛, 𝑝

𝑐
𝑛+1, 𝑛

𝐹
𝑛+1] as input and [𝑠

𝑊
𝑛+1] as output. The choice of five history values of

𝑝𝑐 is consistent with the RNN approach discussed in the previous section. Following this, normalization of the input
is carried out by computing the corresponding mean and standard deviation in order to improve the performance and
stability of the network during training. Thereafter, each segment is passed through the network as a separate input,
allowing the network to learn features and patterns at the segment level.

∙ Three convolutional layers (Conv1D) with filter (kernel) size = 3 for the first layer and 2 for the second and third layers
are considered. The filter is moved one step at a time across the input data, that is, stride = 1, and no padding is added
to the input data. The activation function in convolutional layers is chosen as ReLU.

∙ One max pooling layer with a pool size (sub-sampling) of 2 is used. This allows downsampling of the input sequence
by taking the maximum value of every two adjacent values.

∙ One flatten layer is used to convert the 2D output of the pooling layer into a 1D array, which is used as an input to the
fully-connected layers.

∙ Fully-connected MLP layers follow the flatten layer, which contain two hidden layers and the output array. The hidden
layers include 80 neurons and ReLU as an activation function.
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904 CHAABAN et al.

F IGURE 15 The values of the loss function with respect to the number of weight updates (epochs) of the training and validation steps
(left) and the scaled MSE versus the number of states of deformations of the training, validation, and testing data (right) within the 1D CNN
model. CNN, convolutional neural network; MSE, mean squared error.

F IGURE 16 Comparison between the results of the LBM biphasic simulations, that is, true output, and the predicted output of the 1D
CNN model regarding the saturation degrees versus the capillary pressure for deformation states 𝜀 = 0.06 (left) and 𝜀 = 0.08 (right). The
ML-computed plots capture the scanning-drying and -wetting curves. CNN, convolutional neural network; LBM, lattice Boltzmann method;
ML, machine learning.

∙ RMSprop (Root Mean Square Propagation) optimizer is used for training with a learning rate of “0.0002”. Alternatively,
we tested the more expansive ADAM optimizer, which resulted in similar trained model accuracy.

The computed values of the loss function over the number of weight updates (epochs) are shown in Figure 15 (left).
In this, EarlyStopping technique is used to prevent overfitting during the training. In particular, the training ends when
the loss metric monitored during training stops improving by a minimum delta (Δmin = 10−7) after a patience number of
50 epochs.
Figure 15, right, presents a comparison between the scaled MSE of the testing, validation, and training datasets. In this,

a mean value of the scaled MSE of each state of deformation (a complete retention curve) is computed. The figure shows
that the errors in all training, validation, and testing are below 0.008, whereas slightly fewer errors in the validation and
testing cases.
Thereafter, we apply the final trained ML-based retention model to cases from the unseen test dataset, see Figure 16

for exemplary results for deformation states 𝜀 = 0.06 and 0.08 . The 1D CNN model proves its capability in capturing the
hysteretic path-dependent retention behavior and the effect of deformation on the latter.

4.2 RNNmodel

Alternative to the 1D CNN model for the history-dependent retention curve, a RNN-based retention curve model is
proposed in the following. The chosen ML model for retention behavior depends on the data history for the compu-
tation of the saturation degree 𝑠𝑊 . Figure 17 illustrates the difference between phenomenological models, such as the
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CHAABAN et al. 905

F IGURE 17 Graph representation of the VG retention model (left) and that of the machine learning RNN model (right).2 RNN,
recurrent neural network; VG, van-Genuchten.

F IGURE 18 Illustration of the ANN structure in the ML-based retention curve model. The input parameters are the capillary pressure
𝑝𝑐 and porosity 𝑛𝐹 , and the output is the degree of saturation 𝑠𝑊 .2 ANN, artificial neural network; ML, machine learning.

van-Genuchten VG model, which is limited to yielding only one unique saturation degree 𝑠𝑊𝑛+1 for each value of the
capillary pressure 𝑝𝑐, 𝑛+1, and the proposed general ML-based RNN model, which utilizes the history of the capillary
pressure, that is, [𝑝𝑐𝑛−3, 𝑝

𝑐
𝑛−2, 𝑝

𝑐
𝑛−1, 𝑝

𝑐
𝑛, 𝑝

𝑐
𝑛+1], as input parameters in addition to the deformation-dependent porosity 𝑛

𝐹

to determine the current saturation degree 𝑠𝑊𝑛+1, see
2 for analogy.

In this approach, the numerical data is similarly normalized in the pre-processing phase using theMinMaxScaler func-
tion. Within the RNN approach, we applied the LSTM neural network62 implemented in Keras to take into account the
history of the input variables in the prediction of the path-dependent retention curves. An illustration of theANN structure
in the ML-based retention curve model is shown in Figure 18. This shows the input parameters, which are the capillary
pressure 𝑝𝑐 and porosity 𝑛𝐹 , and the output, which is the degree of saturation 𝑠𝑊 .
In the model fitting, we distinguish between the training subset, chosen as 60% of the total database, the validation sub-

set, chosen as 20% of the database (via the built-in “validation_split = 0.2” feature in Tensorflow), and the unseen testing
subset, chosen as 20% of the database. As this data split is not unique, different ratios of the database can be examined
to explore their effect on the accuracy of the trained model. In the presented results, the retention curves with states of
deformation 𝜀 ∈ {0.02, 0.04, 0.1, 0.12, 0.16, 0.18} are chosen for the training, the curves with the states of 𝜀 ∈ {0.14, 0.20}
for the validation, and the curves with the states of 𝜀 ∈ {0.06, 0.08} for the testing.
In the training, a loss function based on the MSE of the scaled output data is used, see (18). The implemented NN

settings are summarized in Table 2. They are chosen after carefully handcrafted testing and comparing different combi-
nations of the settings. Applying the hyperparameter tuning approach presented in Heider et al.2 shows that the proposed
hyperparameters (Table 2) are among the best choices in terms of prediction accuracy of the trained model.
The loss function values over the number of weight updates (epochs) are presented in Figure 19, left. It is evident that the

training and validation datasets result in coinciding curves, where no significant over-fitting can be observed. Figure 19,
right, presents a comparison between the scaledMSE of the testing, validation, and training datasets. In this, a mean value
of the scaled MSE of each state of deformation (a complete retention curve) is computed. The figure shows that the errors
in all training, validation, and testing are below 0.008, whereas slightly more errors in the validation and testing cases (as
also observed in Figure 19, left) are obtained.

 10969853, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3668 by T

echnische Inform
ationsbibliothek, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



906 CHAABAN et al.

TABLE 2 NN settings considered in the RNN-based retention model.

NN setting description Abbreviation Values
Neuron type subset 𝑁𝑒𝑢𝑟𝑜𝑛𝑇𝑦𝑝𝑒 𝐿𝑆𝑇𝑀

Hidden layers subset 𝑛𝑢𝑚𝐻𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟𝑠 2
Number of neurons per layer 𝑛𝑢𝑚𝑁𝑒𝑢𝑟𝑜𝑛𝑠𝑃𝑒𝑟𝐿𝑎𝑦𝑒𝑟 100
Dropout rate subset 𝐷𝑟𝑜𝑝𝑂𝑢𝑡𝑅𝑎𝑡𝑒 0.0
Optimizer type subset 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝐴𝑑𝑎𝑚

Learning rate 𝑙𝑟 0.01
Activation functions subset 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Batch sizes subset 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 16

F IGURE 19 The values of the loss function with respect to the number of weight updates of the training and validation steps (left) and
the scaled MSE versus the states of deformations of the training, validation, and test data (right) of the RNNmodel. MSE, mean squared error;
RNN, recurrent neural network.

F IGURE 20 Comparison between the results of the LBM biphasic simulations, that is, true output, and the predicted output of the RNN
model regarding the saturation degrees versus the capillary pressure for states of deformation 𝜀 = 0.06 (left) and 𝜀 = 0.08 (right). LBM, lattice
Boltzmann method; RNN, recurrent neural network.

Similar to Section 4.1, the final trained ML-based retention model is applied to cases from the unseen testing dataset,
compare Figure 20 for exemplary results for strain 𝜀 = 0.06 and 0.08 . As the results shown, the RNN model proves its
capability in representing the deformation- and path-dependent hysteretic retention behavior.
The results presented in Sections 4.1 and 4.2 show the effectiveness of 1D CNN and RNN in processing sequential data

related to the path-dependent retention model. The resulting ML models also show comparable accuracies as presented
in Figures 15 and 19.
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CHAABAN et al. 907

5 DISCUSSION AND CONCLUSIONS

This work presented the implementation of ML-based models trained by the output data of LBM simulations in the mul-
tiscale study of interstitial single-phase flow and retention behavior of biphasic flow through deformable porous media.
The advantage of this approach lies in the extraction of crucial material properties and responses from the microscale,
for example, intrinsic permeability tensor and water saturation degree, and conveying these data to the macroscopic
scale via ML-based models. Furthermore, the presented approach to calculate the anisotropic permeability tensor or the
retention curve can be generalized to other types of porous media with different microgeometries and pore fluids with
different fluid properties. As a first step, the LBM has been utilized to simulate single- and biphasic fluid flow through the
deformable porous networks of the available micro-geometry of Bentheimer Sandstones. Concerning the former, investi-
gation of the anisotropy of the intrinsic permeability was additionally achieved through comparison among the principal
values of the permeability tensors and analyzing the changes of the principal directions due to deformation. As for the
latter, the retention curves providing the relation between the saturation degree and capillary pressure for each strain
degree have been determined. Consequently, the database from the LBM simulations was used for training theML-based
models.
For the ML-based anisotropic deformation-dependent permeability model, the FFNN approach has been utilized

as the response is history independent. In this, a two-step FFNN model has been developed to first predict the
fluid velocity of the no-slip boundary condition and then that of the natural slip boundary condition. The results
proved the capability of the aforementioned ML model to accurately compute the output fluid velocity resulting from
the fluid pressure gradient, although a nonlinear relationship exists between the two quantities. Based on that, the
informed-graph-based FFNN provided accurate predictions of the fluid velocity in both Darcy and non-Darcy flow
regimes.
As for theMLmodels used for determining the retention curves of the unsaturated deformable porousmaterials, the 1D

CNN and RNN approaches have been used to simulate the path-dependent hysteretic nature of the saturation degree with
respect to the capillary pressure. The advantage of suchMLmodels is the computation of more than one saturation degree
in the case of cyclical drying/wetting processes. This is not present in phenomenological models, such as the VG, where
only one saturation degree is obtained for both processes. Moreover, ML-based models have been used for the first time
to model hysteretic retention behavior. The 1D CNN and RNN models yielded comparable results in terms of accuracy
for the retention curves. However, the training of the 1D CNN model required less computational costs than the RNN
model. Nevertheless, both models proved their capability in predicting hysteretic retention curves for biphasic fluid flows
through deformable porous materials.
Despite the fact that theMLmodels presented in this paper were able to compute the permeability tensor and retention

data in a qualitatively accurate manner, enhancements can be made in future works. These include generating perme-
ability datasets using multiphase flow in LBM and comparing the resulting unsaturated permeability tensor with the
permeability tensor of fully saturated porous media. The future extensions also include the involvement of transfer learn-
ing in order to fix the data-insufficiency problem. In this, experimental retention data of deformable porous materials can
be imported into the available database. In addition, our presented approach can be tested on another type of porousmedia,
such as fibrous porousmaterials, for example, the gas diffusion layers of polymer electrolyte fuel cells, or open-celled foam
materials with interconnected channels. In this regard, we plan to create a larger in-house database, which will help us
test ML training methods like cross-validation effectively. We aim with this to overcome issues related to model general-
ization and, thus, enhance the reliability of our ML models. Our future research will additionally explore the application
of Physics-Informed Neural Networks in conjunction with our data-driven material model. This combined approach can
efficiently and accurately solve boundary-value problems, even with limited data, ensuring that the solutions adhere to
the underlying physics of the system.
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