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Abstract
In this work, we consider space-time goal-oriented a posteriori error estimation for parabolic
problems. Temporal and spatial discretizations are based on Galerkin finite elements of
continuous and discontinuous type. The main objectives are the development and analysis
of space-time estimators, in which the localization is based on a weak form employing a
partition-of-unity. The resulting error indicators are used for temporal and spatial adaptivity.
Our developments are substantiated with several numerical examples.

1 Introduction

Space-timemethods for solvingdifferential equationswithGalerkin-typefinite elementmeth-
ods go back to [50] and a recent state-of-the-art summary was compiled in [40]. Space-time
methods can be divided into two categories: the numerical solution and error estimation.
In this work, we are primarily interested in the latter. After the previously mentioned early
work, various problems have been considered in space-time formulations such as incom-
pressible flow [61], first-order hyperbolic systems [15], elastic wave equation [31, 32, 34],
visco-acoustic/visco-elastic wave equations [16], financial mathematics [28], the Biot equa-
tions in poroelasticity [6], and fluid–structure interaction [26, 30, 60, 62–64]. Advancements
for the numerical solution by means of space-time methods, such as for example multigrid
methods, were undertaken in [27, 49, 55] and with space-time domain decomposition [58].

Classical norm-based a posteriori error estimation was done for parabolic problems in [21,
22, 37, 39, 59, 68]. Goal-oriented error estimation of space-time problems was performed
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in [10, 43, 56, 57]. Therein, space-time formulations may serve three purposes: spatial error
estimation, temporal error estimation [26, 28, 45, 46] or both simultaneously [4, 10, 15, 16,
56, 57]. Decoupling space and time for rate-dependent problems in elasto-plasticity was con-
sidered in [51]. Moreover, we mention space-time developments in PDE-based optimization
with and without a posteriori error control [7, 24, 25, 33, 38, 41–43, 47, 48]. A brief review of
space-time concepts for goal-oriented a posteriori error estimation in fluid–structure interac-
tion for deriving the adjoint in goal-oriented error estimation and optimization was conducted
in [69].

Employing the dual-weighted residual method [8, 9] for space-time goal-oriented error
estimation comes with the challenge that the adjoint problem is running backwards-in-time.
For nonlinear problems, this means that the primal solutionmust be available at the respective
time points. This can be done by simply storing all primal solutions in the RAM (random
access memory) or hard disk, or by using checkpointing techniques [43, 56].

Themain objective in this work is to combine space-time concepts from [57] with an easy-
to-implement partition-of-unity localization proposed in [53]. The latter was established for
stationary problems, which is extended in this study to space-time error estimation. Two error
estimators are proposed: joint and split. Because of Galerkin orthogonality, we need higher-
order information in the adjoint problem for calculation of the primal residual estimator. There
are different ways to achieve this. For stationary problems a mixed order approach is often
used. There, we discretize the primal problem with the low order cG(s)dG(r) elements and
the adjoint problemwith high order cG(s+1)dG(r+1) elements. The notationwas proposed
in [20, 23] and means that spatial discretization is based on cG(s) or cG(s + 1) continuous
Galerkin finite elements respectively, where s ∈ N indicates the polynomial degree, while
temporal discretization is based on dG(r), discontinuous Galerkin finite elements, where
r ∈ N0 indicates the temporal polynomial degree.

This approach needs interpolation operators to calculate the low order adjoint solution.
In the equal low order approach both problems are discretized with low order elements and
the high order solutions are obtained by a suitable patch wise reconstruction operator. For
the adjoint estimator higher-order information in the primal problem is needed as well. For
the two earlier approaches this can again be calculated by patch wise reconstruction. Alter-
natively, in the equal high order approach both problems can be discretized with high order
elements. Then, only interpolation operators are needed but the whole solution becomes
more expensive. Additionally, these approaches can be mixed by using different approaches
for temporal and spatial discretization. From the resulting a posteriori error estimates, local
error indicators are extracted to establish adaptive algorithms for both temporal and spatial
mesh refinement. For verification, error reductions and effectivity indices are observed. Some
preliminary results were published in the conference proceedings papers [66] (heat equation)
and [67] (low Mach number combustion). Moreover, the successfull application to incom-
pressible flow is documented in [54] and a summary of all developments appeared in [65].
However, technical derivations and the theory have not been worked out therein. Moreover,
the current work provides (for the first time) detailed computational comparisons of the joint
and split error estimators in terms of effectivity indices as well as thorough investigations of
the PU-DWR method in a space-time context.

The outline of this paper is as follows: In Sect. 2, the primal problem statements are pro-
vided including their space-time discretizations. Next, in Sect. 3, the dual-weighed residual
method is recapitulated. Afterward in Sect. 4, partition-of-unity DWR space-time goal-
oriented a posteriori error estimators are proposed. In Sect. 5, three numerical examples
are studied in order to substantiate our algorithmic developments. We summarize our work
in Sect. 6.
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2 Space-Time Notation and Problem Formulations

In this section, we introduce notation and space-time spaces. Then, abstract forms on the
continuous level, semi-discrete in time level, and fully discrete level are introduced. These
are subsequently realized with specific problem statements, namely the heat equation and
a combustion problem, respectively. The road map of our developments is first based on
abstract derivations as we believe that with this knowledge our results can be more easily
applied to other problem statements such as incompressible flow, e.g., as already done in
[54], and further nonstationary, nonlinear, coupled problems.

2.1 Notation and Spaces

The space time domain is denoted by � ⊂ R
d+1 with � = {�(t) ⊂ R

d : t ∈ I }, with
the temporal interval I = (0, T ) and spatial domain �. In this paper, we consider time-
independent domains �, resulting in � = � × I .

Using V = V (�) = H1
D(�) = {v ∈ H1(�); v|�D = 0} and H = H(�) = L2(�) we

can define our space-time Hilbert space as

X :=X(I , V ):=W ((I , V (�)):={v : v ∈ L2(I , V (�)) and ∂tv ∈ L2(I , V ∗(�))} (1)

where L2(I , V (�)) is the Bochner space of L2 functions over I with values in V (�).
Here,�D ⊆ ∂� denotes the Dirichlet boundary with condition v(t) = 0 on �D . For inhomo-
geneous conditions i.e. v(t) = g(t) on �D the ansatz space is X(I , V )+ g, we will however
limit derivations to the homogeneous case for the sake of brevity. On X(I , V ) we can use
the L2(I , L2(�)) scalar product

(u, v):=(u, v)L2(I ,H) =
T∫

0

(u(t), v(t))Hdt . (2)

Since we want to use discontinuous Galerkin discretizations in time we have to define
an infinite dimensional space X̃(Tk, V (�)) that allows for jumps at the grid points of the
temporal mesh Tk .
To obtain Tk we decompose the temporal interval I into M open subintervals Im :=(tm−1, tm)

of length km = tm − tm−1, with the condition that

Ī = Ī1 ∪ Ī2 ∪ · · · ∪ ĪM and Ii ∩ I j = {} ∀i 	= j (3)

hold. Then, Tk is the collection of all intervals from I1 to IM .
Following the nomenclature of [14] we can define the broken Bochner space

X̃(Tk, V (�)):={v ∈ L2(I , L2(�)) and v|Im ∈ W (Im, V (�)) ∀Im ∈ Tk}. (4)

For each local space the continuous embedding W (Im, V (�)) ⊂ C( Īm, H(�)) holds such
that the limits from above and below, i.e. v±

m := lim
ε→0

v(tm ± ε) are well defined.

Using these we can define the jump across temporal intervals as

[v]m :=v+
m − v−

m (5)

for all inner temporal grid points tm ∈ Tk .
Additionally, we introduce [v]0 as a shorthand for the weakly imposed initial conditions, i.e.

[v]0:=v+
0 − v0. (6)
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Finally, let A : X × X → R be a semi-linear form representing the PDE (partial differential
equation) in weak form, being nonlinear in the first argument and linear in the second argu-
ment. Let F : X → R be a linear form representing given right hand side data. Then, the
abstract problem reads:

Problem 2.1 (Abstract form on the continuous level) Find u ∈ X such that

A(u)(ϕ) = F(ϕ) ∀ϕ ∈ X . (7)

We provide strong forms and the respective weak forms in terms of (7) for the heat equation
and a combustion problem in Sects.2.3 and 2.4, respectively.

2.2 Discretization

In principle, the discretization steps are the same for all parabolic problems. Since we want to
be able to have different trial functions in time and space, we split the discretization, starting
with the temporal basis functions.

2.2.1 Semi-discretization in Time

Given the temporal triangulation Tk as defined above we can obtain the semidiscrete space
by discretization of the temporal functions into piecewise polynomials of degree r ∈ N0:

X̃r
k (Tk, V ):= {

vk ∈ L2(I , H) and vk |Im ∈ Pr (Im, V )
} ⊂ X̃ (Tk, V ) . (8)

with A(uk)(ϕ) and F(ϕ) depending on the actual problem, the general time-discrete weak
dG(r) formulations reads:

Problem 2.2 [(Abstract form semi-discrete in time) Find uk ∈ X̃r
k(Tk, V ), where r ≥ 0, such

that

A(uk)(ϕk) = F(ϕk) ∀ϕk ∈ X̃r
k (Tk, V ) . (9)

2.2.2 Fully Discrete Abstract Problem

For the spatial discretization we use triangulations T m
h of �, where m = 1, . . . , M indicates

each temporal subinterval Im . These are decomposed into quadrilateral/hexagonal elements
K and we use continuous test and trial functions of degree s resulting in V s

h

(
T m
h

) ⊂ V (�)

defined as

V s
h

(
T m
h

) := {
vh ∈ V and vh |K ∈ Qs(K )∀K ∈ T m

h

}
. (10)

We notice that we can have different triangulations on different subintervals, resulting in
time-dependent or dynamic meshes. Using this, we can define the fully discrete function
space:

X̃r ,s
k,h

(
Tk, T 1,...,M

h

)
:= {

vkh ∈ L2(I , H) and vkh |Im ∈ Pr
(
Im, V s

h

(
T m
h

)) ∀Im ∈ Tk
}

⊂ X̃r
k (Tk, V ) .

With these definitions, we obtain the fully discrete cG(s)dG(r) formulation:
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Problem 2.3 (Abstract form fully discrete level) Find ukh ∈ X̃r ,s
k,h(Tk, T

1,...,M
h ), such that

A(ukh)(ϕkh) = F(ϕkh) ∀ϕkh ∈ X̃r ,s
k,h

(
Tk, T 1,...,M

h

)
. (11)

Specific realizations are provided in the following two subsections, Sects.2.3 and 2.4, respec-
tively, by setting

A(ukh)(ϕkh) := Aheat(ukh)(ϕkh), F(ϕkh) := Fheat(ϕkh),

A(ukh)(ϕkh) := Acomb.(ukh)(ϕkh), F(ϕkh) := Fcomb.(ϕkh).

2.3 Heat Equation

Having the abstract formulations on the continuous, semi-discrete (in time) and fully discrete
levels at hand, we now proceed and provide two specific realizations. First, the heat equation
is considered in this subsection and then a combustion problem is introduced in the next
subsection. Let u : � → R be the solution of the heat equation

∂t u − �u = f in �,

u = 0 on ∂� × I ,

u = u0 on � × {t = 0}, (12)

for a given initial condition u0 ∈ H and right hand side function f ∈ L2(0, T ; V ∗). Using
the discretization steps as described above, we obtain the following equations

Aheat(ukh)(ϕkh) :=
M∑

m=1

∫

Im

(∂t ukh, ϕkh)H dt + (∇ukh,∇ϕkh) (13)

+
M−1∑
m=1

(
[ukh]m , ϕ+

kh,m

)
H

+
(
u+
kh,0, ϕ

+
kh,0

)
H

Fheat (ϕkh) := ( f , ϕkh) +
(
u0, ϕ+

kh,0

)
H

. (14)

2.4 Combustion

The following coupled nonlinear PDE describes the temperature dependent reaction and
diffusion of a combustible substance without the influence of an additional fluid flow (v ≡ 0);
see [36]. Therefore, the lowMach number hypothesis holds and the fluid flow is not influenced
by the reaction and can be ignored. The resulting equations for the dimensionless temperature
θ : � → R and the species concentration Y : � → R are

∂tθ − �θ = ω(θ, Y ) in �, (15)

∂t Y − 1

Le
�Y = −ω(θ, Y ) in �, (16)

with the combustion reaction described by Arrhenius law

ω(u) := ω(θ, Y ):= β2

2Le
Y exp

(
β(θ − 1)

1 + α(θ − 1)

)
. (17)
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The Arrhenius law is parametrized by the Lewis number Le > 0, the gas expansion α > 0
and the dimensionless activation energy β > 0.Wewant to be able to allow all three common
types of boundary conditions i.e. those ofDirichlet,Neumann andRobin type. For thiswe split
the boundary ∂� into three non-overlapping parts �D , �N and �R . The Dirichlet boundary
conditions are built into the function spaces, which is the usual approach. The Neumann and
Robin boundary conditions are given by

∂nθ = gθ
N on �N × I (18)

∂nY = gYN on �N × I (19)

aθ
Rθ + bθ

R∂nθ = gθ
R on �R × I (20)

aYRY + bYR∂nY = gYR on �R × I . (21)

It remains to state the initial conditions:

θ = θ0 on � × {t = 0},
Y = Y 0 on � × {t = 0}.

By following the typical steps for the derivation of a weak formulation, integration by
parts in space, and subsequent summation, we obtain

(
∂tθ, ϕθ

) + (∇θ,∇ϕθ
) −

∫

I×∂�

∂nθϕθdsdt − (
ω(θ, Y ), ϕθ

)

+ (
∂t Y , ϕY ) + (∇Y ,∇ϕY ) −

∫

I×∂�

∂nYϕY dsdt + (
ω(θ, Y ), ϕY ) = 0.

Splitting the boundary integrals and considering homogeneous Dirichlet conditions on some
parts, i.e., ϕθ |�D = ϕY |�D = 0, we get

∫

I×∂�

∂nθdsdt =
∫

I×�N

gθ
Nϕθdsdt +

∫

I×�R

gθ
R

bθ
R

ϕθ − aθ
R

bθ
R

θϕθdsdt, (22)

∫

I×∂�

∂nYdsdt =
∫

I×�N

gYNϕY dsdt +
∫

I×�R

gYR
bYR

ϕY − aYR
bYR

YϕY dsdt . (23)

By introducing jump terms as described earlier, we obtain the following semi-linear and
linear forms, respectively:

Acomb.(ukh) (ϕkh) :=
M∑

m=1

∫

Im

(
∂tθkh, ϕ

θ
kh

)
H + (∇θkh,∇ϕθ

kh

)
H dt +

M−1∑
m=1

(
[θkh]m , ϕ

θ,+
kh,m

)
H

+
M∑

m=1

∫

Im

(
∂t Ykh, ϕ

Y
kh

)
H

+
(
∇Ykh,∇ϕY

kh

)
H

dt +
M−1∑
m=1

(
[Ykh]m , ϕ

Y ,+
kh,m

)
H

+
∫

I×�R

aθ
R

bθ
R

θϕθ + aYR
bYR

YϕY dsdt +
(
ω (ukh) , ϕY

kh − ϕθ
kh

)

+
(
θ+
kh,0, ϕ

θ,+
kh,0

)
H

+
(
Y+
kh,0, ϕ

Y ,+
kh,0

)
H

, (24)
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Fcomb. (ϕkh) :=
∫

I×�N

gθ
Nϕθ + gYNϕY dsdt +

∫

I×�R

gθ
R

bθ
R

ϕθ + gYR
bYR

ϕY dsdt

+
(
θ0, ϕ

θ,+
kh,0

)
H

+
(
Y 0, ϕ

Y ,+
kh,0

)
H

, (25)

with ukh = (θkh, Ykh) and ϕkh = (ϕθ
kh, ϕ

Y
kh).

2.5 General Formulation of Parabolic Problems

A general parabolic weak formulation that includes the previous problem statements can be
stated by

Agen.(ukh) (ϕkh):=
M∑

m=1

∫

Im

(∂t ukh, ϕkh)H dt + a (ukh, ϕkh)

+
M−1∑
m=1

(
[ukh]m, ϕ+

kh,m

)
H

+
(
u+
kh,0, ϕ

+
kh,0

)
,

Fgen. (ϕkh):= ( f , ϕkh) +
(
u0, ϕ+

kh,0

)
H

(26)

with an elliptic operator a(u, ϕ):=
T∫
0
ā(u(t), ϕ(t))dt . Then, (non-)linearity of A solely

depends on the (non-)linearity of ā.

Remark 2.4 We notice that additional terms due to Neumann or Robin boundary conditions
would appear inside ā(u(t), ϕ(t)) and/or F(·).

2.6 Numerical Solution

In the algorithmic realization, we notice that the choice of trial and test spaces allow for a
decoupling of the temporal discretization into slabs, i.e. slices of the space-time cylinder. In
the simplest case a slice just encompasses a single temporal interval, resulting in a sequential
time-stepping scheme due to the dG(r) test functions, and therefore effectively yielding
classical time discretization schemes. For dG(0) an implicit Euler-type scheme is recovered.
At each time slab, the spatial problems are solved as described in the following.

For the basic implementation of the (linear) heat equation with a classical DWR error
estimator, we refer to the dwr-diffusion package [35] and the solvers implemented therein.
There, the sparse direct solver UMFPACK [13] is used for the linear equation systems.

For the nonlinear combustion equationwe employ a classicalNewton-type solver as briefly
described in the following. In the space-time setting we have to solve

A(ukh) (ϕkh) = 0 ∀ϕkh ∈ X̃r ,s
kh

(
Tk, T 1,...,M

h

)
,

where ukh is the complete space-time solution over all intervals. Given an initial guess
u0kh , find the update δu ∈ X̃r ,s

kh (Tk, T 1,...,M
h ) of the linear defect-correction problem for

j = 0, 1, 2, . . .

A′
u

(
u j
kh

)
(δu, ϕkh) = −A

(
u j
kh

)
(ϕkh) ,
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u j+1
kh = u j

kh + αδu, α ∈ (0, 1]. (27)

Remark 2.5 Aswe have discontinuous test functions the nonlinear problem can be decoupled
into one subproblem per time interval. Then, we obtain a time-stepping scheme with one
Newton loop per interval.

The defect-correction problems are solved using the parallel sparse direct solver MUMPS
[1]. The Jacobian A′(·)(·, ·) is derived by using analytical expressions, e.g., [70, Chapter 13],
in order to maintain superlinear (or quadratic) convergence. However, for j > 0 reassembly
of the matrix is omitted if the relative reduction of the residual is below a certain threshold.
This simplified Newton approach saves a lot of computational time as the factorization only
needs to be done after a reassembly step. This approach also benefits from preconditioned
Krylow methods as the preconditioner is only recomputed after reassembly. The step size α

is determined by a damping line-search after solving the defect-correction problem.

3 The Dual Weighted Residual Method in a Space-Time Setting

In this section, we review the general ideas of the DWR method. We then derive joint and
split error identities and corresponding error estimators.

3.1 Error Representation and Estimation

Let J : X → R be some goal functional representing some quantity of interest (QoI). The
general form reads

J (u) =
∫ T2

T1
u(t) dt + u(T ), (28)

where T1, T2 ∈ I , e.g., T1 = 0 and T2 = T and T is the end time value. We are interested
in the discretization error J (u) − J (ukh) and more specifically to minimize this error for a
reasonable computational cost:

min J (u) − J (ukh)

This becomes a constrained optimization problem since the solutions u ∈ X and ukh ∈ X̃r ,s
k,h

are obtained as PDE solutions from (7) to (11), respectively. These PDE problem statements
are seen as constraint in terms of the optimization problem. Consequently, for a given goal
functional J (u) we want to solve the following optimization problem

min
u∈X(I ,V )

J (u) s. t . A(u)(ϕ) = F(ϕ) ∀ϕ ∈ X(I , V ). (29)

This problem setting is the same in [9, Sect. 2.2, (2.13)]. Clearly, after the discretization, we
can then measure the discretization error J (u)− J (ukh). We notice that from an optimization
viewpoint J (ukh) is a constant in (29) and therefore implicitly contained therein modulo the
constant shift.
We apply the method of Lagrange multipliers for this constrained optimization problem (see
e.g., [9]) and introduce the dual variable z ∈ X(I , V ). To account for the discontinuities
in the primal problem we define a discontinuous Lagrange functional L̃(u, z) : X̃(Tk, V ) ×

123
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X̃(Tk, V ) → R, such that

L̃(u, z):=J (u) − A(u)(z) + F(z). (30)

Note that A(u)(z) and F(z) contain the jump terms and weakly imposed initial conditions.
For stationary points (u, z) ∈ X(I , V ) × X(I , V ) all jump terms vanish and the initial
conditions are met exactly, such that L̃(u, z) is consistent with the continuous functional
L(u, z). The first order optimality conditions yield the original primal problem A(u)(ϕ) =
F(ϕ) as well as the adjoint problem:
Find z ∈ X̃(Tk, V ) such that

A′
u(u)(ψ, z) = J ′

u(u)(ψ) ∀ψ ∈ X̃(Tk, V ). (31)

Remark 3.1 Note that the test and trial functions are switched in (31). Accordingly, the
temporal derivative is now applied to the test functionψ . To rectify this, we apply integration
by parts to the corresponding scalar product, obtaining:

M∑
m=1

∫
Im

(ψ,−∂t z) + ā′
u(u)(ψ, z) dt +

M−1∑
m=1

(
ψ−
m ,−[z]m

)
H

+ (ψ(T ), z(T ))H =
(
ψ(T ), zM

)
H

+ J ′
u(u)(ψ) ∀ψ ∈ X̃ (Tk, V ) .

(32)

The negative sign of the temporal derivative means the adjoint problem has to be solved
backwards in time, with an initial value zM depending on the goal functional.
For functionals evaluated on the whole temporal domain zM = 0 holds and for functionals
defined only at T J ′

u(u(T ), ψ(T )) can be reinterpreted as an initial value zM for details see
e.g. [43].

For linear PDEs and linear goal functionals we obtain the exact error representations (see
[9]):

J (u) − J (ukh) = F (z − zkh) − A (ukh, z − zkh) (primal error) (33)

= J (u − ukh) − A (u − ukh, zkh) (adjoint error). (34)

In the following, we focus on the primal error representation. As we can see we would need
both the exact dual solution z and the discrete dual solution zkh . As this is infeasible for
complicated problems we use a discrete solution of higher order for z. In the equal low order
approach both primal and adjoint problem are discretized using the same low order elements.
The higher order adjoint solution is then obtained by a patch wise reconstruction. This
reconstruction is described in detail in [57]. In the mixed order approach the adjoint problem
is discretized by higher order elements and the solution is used as the representation of the
exact solution. The fully discrete solution is then obtained by interpolation into the lower
order space. It is also possible to use different approaches in time and space e.g. discretizing
the primal problem with cG(1)dG(0) and the adjoint problem with cG(2)dG(0).

Additionally, (33) can be split into a temporal and a spatial part by introducing the semidis-
crete adjoint solution zk such that

J (u) − J (ukh) = J (u) − J (uk) + J (uk) − J (ukh), (35)

where temporal and spatial errors are given by, respectively,

J (u) − J (uk) = F(z − zk) − A(ukh, z − zk), (36)

J (uk) − J (ukh) = F(zk − zkh) − A(ukh, zk − zkh). (37)

That way (36) can be used for temporal refinement and (37) for spatial refinement.
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3.2 DWR for Nonlinear Time Dependent Problems

3.2.1 Adjoint Problem Statements

For Agen. the left hand side of the adjoint problem (31) in the space-time context explicitly
reads as

A′
u,gen.(u)(ψ, z) :=

M∑
m=1

∫
Im

(ψ,−∂t zkh) + ā′
u(u(t)) (ψ(t), z(t)) dt

+
M−1∑
m=1

(
ψ−
m , [zkh]m

)
H + (ψ(T ), zkh(T ))H .

(38)

As an example, for the combustion problem described in the Sect. 2.4 we obtain F = Fcomb.

as well as the operator of the semi-linear form and its directional derivative, respectively,

ā(u(t), ϕ(t)) = (∇θ,∇ϕθ
)
H +

(
∇Y ,∇ϕY

)
H

+
(
ω(u), ϕY − ϕθ

)
H

+
∫

�R

aθ
R

bθ
R

θϕθ + aYR
bYR

YϕY ds, (39)

ā′
u(u(t))(ψ, z) = (∇ψθ ,∇zθ

)
H +

(
∇ψY ,∇zY

)
H

+
(
ω′

θ (u)
(
ψθ

)
, zY − zθ

)
H

+
∫

�R

aθ
R

bθ
R

ψθ zθ + aYR
bYR

ψY zY ds +
(
ω′
Y (u)

(
ψY

)
, zY − zθ

)
H

. (40)

Therein ω′(u)(ψ) is the directional derivative of ω(u) into the direction ψ .

3.2.2 Goal-Oriented Error Representations

As there are two ways to separate the full estimator into parts, we want to use a clear and
precise terminology to distinguish between those two.

Firstly, we can separate by the problem residuals we compute. This gives the primal
and adjoint/dual estimators. Oftentimes, the average of those two parts is also called mixed
estimator instead of full estimator.

Secondly, we can split the difference between the exact and the fully discrete solution by
introducing the time-discrete solution. Not doing so we will call the resulting estimator the
joint estimator. If we calculate both the temporal and spatial error estimator, we will call
the sum of both the split error estimator. As both seperations can be done simultaneously,
combined expressions like split primal estimator or joint dual estimator are possible.

For nonlinear problems we obtain the following error representation [9]:

Theorem 3.2 (Joint error identity) Let the primal problem and adjoint problem be given.
Let (u, z) ∈ X̃(Tk, V ) × X̃(Tk, V ), (uk, zk) ∈ X̃r

k(Tk, V ) × X̃r
k(Tk, V ) and (ukh, zkh) ∈

X̃r ,s
k,h(Tk, T

1,...,M
h ) × X̃r ,s

k,h(Tk, T
1,...,M
h ). Then, we have the space-time joint error identity

J (u) − J (ukh) = 1

2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh, (41)

with the primal error estimator ρ and the adjoint error estimator ρ∗

ρ(ukh)(z − zkh) := F(z − zkh) − A(ukh, z − zkh),
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ρ∗(ukh, zkh)(u − ukh) := J ′(ukh)(u − ukh) − A′
u(ukh)(u − ukh, zkh),

as well as a remainder term Rkh of higher order.

Proof With X̃r ,s
k,h(Tk, T

1,...,M
h ) ⊂ X̃(Tk, V ) and J (ukh) = L̃(ukh, zkh) the assumptions of

[57][Proposition 3.1] hold, proving the representation. ��
Theorem 3.3 (Split error identity) With the previous assumptions, we have the split error
identity

J (u) − J (ukh) = (J (u) − J (uk)) + (J (uk) − J (ukh)),

with

J (u) − J (uk) = 1

2
ρ(uk)(z − zk) + 1

2
ρ∗(uk, zk)(u − uk) + Rk,

J (uk) − J (uhk) = 1

2
ρ(ukh)(zk − zkh) + 1

2
ρ∗(ukh, zkh)(uk − ukh) + Rh .

Proof The proof follows the same ideas as before but with X̃r ,s
k,h(Tk, T

1,...,M
h ) ⊂ X̃r

k(Tk, V ) ⊂
X̃(Tk, V ) as well as J (ukh) = L̃k(ukh, zkh) and J (uk) = L̃(uk, zk). ��

3.2.3 Error Estimators

From the previous error identities, we obtain error estimators in four variants. First, we have
the full error estimator

η := 1

2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh . (42)

However, the unknown solutions u and z still enter. This is already an error estimator, because
for cases where u and z are known, we can already estimate (discretization) errors in goal
functionals. Of course, for most problems in practice, this first version does not play a role.
To this end, higher-order approximations ũ ∈ X̃ and z̃ ∈ X̃ are introduced [9]. Examples of
such approximations are ũ := ur+1,s+1

kh and z̃ := zr+1,s+1
kh such that we obtain the computable

error estimator

η(r+1,s+1) := 1

2
ρ(ukh)

(
zr+1,s+1
kh − zkh

)
+ 1

2
ρ∗ (ukh, zkh)

(
ur+1,s+1
kh − ukh

)
+ Rkh .

(43)

If the remainder term is omitted (which is indeed usually done in practice) we obtain the
practical error estimator

η
(r+1,s+1)
h := 1

2
ρ(ukh)

(
zr+1,s+1
kh − zkh

)
+ 1

2
ρ∗ (ukh, zkh)

(
ur+1,s+1
kh − ukh

)
. (44)

Finally, we also introduce the primal-based error estimator:

η
(r+1,s+1)
prim := ρ(ukh)

(
zr+1,s+1
kh − zkh

)
. (45)

As we also need higher order information of the primal problem for (43) and (44) to cal-
culate the adjoint estimator we now have three possible approaches. In addition to the two
previous discretization approaches the equal high order approach uses a higher order ele-
ment discretization for both the primal and adjoint problem. Then, interpolation into a lower
order element space yields both ukh and zkh . However, inserting the interpolated ukh into the
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goal functional yields worse results compared to a native low order solution, so ideally the
primal problem should also be solved in low order to calculate the functional values. Various
algorithmic realizations with corresponding theoretical results, and performance analyses for
stationary problems were recently established in [19].

4 Error Localization

In this section, we address our key development, namely the construction of a space-time
partition-of-unity (PU) localization of goal-oriented a posteriori error estimators. In the pub-
lished literature as mentioned in the introduction, so far only stationary cases have been
addressed with the PU localization. Here, we first extend the idea to time-dependent prob-
lems. Since we want to use the DWR error estimator for grid refinement, we need to split
the estimator into element- or DoF-wise error contributions. Three known approaches are
the classical integration by parts [5, 9], a variational filtering operator over patches of ele-
ments [11] and a variational partition-of-unity localization [53]. For stationary problems, the
effectivity of these localizations was established and numerically substantiated in [53].

First, in Sect. 4.1, we exemplarily derive the variational partition of unity approach for
our space-time estimator of the heat equation. Second, Sect. 4.3 focuses on details of the
actual evaluation including the needed interpolation operations. Next, we list in Sect. 4.4 the
resulting error indicators, finally followed by the adaptive algorithms designed in Sect. 4.5.

4.1 The Partition-of-Unity Approach for the Heat Equation

In this key section, we extend the ideas from [53] and apply a partition-of-unity (PU) local-
ization to a space-time error estimator. To this end, we first design the PU space. The simplest
choice is VPU = X̃0,1

k,h , i.e. a cG(1)dG(0) discretization. Effectively, this yields one spatial

partition of unity (χi,m)
#DoFs(T m

h )

i=1 ∈ Q1(T m
h ) per time interval Im for m = 1, . . . , M . As

this is a Lagrangian finite element, we have

Proposition 4.1 For a function χ ∈ VPU , it holds

M∑
m=1

#DoFs(T m
h )∑

i=1

χi,m ≡ 1. (46)

Proof Follows immediately from the properties of the finite element functions. ��

Remark 4.2 Another common choice for the PU space is VPU = X1,1
kh , i.e. a cG(1)cG(1)

discretization, for example in native d + 1-dimensional discretizations [17]. In general this
ensures a coupling between neighboring temporal elements to address the problem shown
in [12]. However, for discontinuous Galerkin discretizations the dominating edge residuals,
i.e. jump terms, are explicitly included in the estimator.

Remark 4.3 Clearly, using a dG discretization in time yields a natural decoupling for which
the space-time PU reduces effectively to a PU in space. Nonetheless, we formulated our
concepts using a space-time PU as the methodology applies (see again [17]) to a larger class
of problems. As our work is one of the first into this direction in the literature, our aim is to
provide the full methodology in order to have a starting point for further future work.
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In the following, ũ ∈ X̃ and z̃ ∈ X̃ denote approximations of the exact solutions. In principle
the joint and split estimators only differ in the interpolation difference i.e z̃ − zkh or z̃ − zk
and zk − zkh respectively.

For the joint estimator the local contributions are summed over all DoFs of a fixed interval
to obtain the corresponding temporal estimator. Subsequent summation over all time intervals
yields the global estimator. For the split estimators the spatial estimator is summed over all
space-time DoFs and the temporal estimator is summed over all time intervals. The total error
estimator is then the sum of these two error parts.

Proposition 4.4 (Primal joint error estimator for the heat equation) For the space-time for-
mulation of the heat equation, we have the following a posteriori joint error estimator with
partition-of-unity localization:

|J (u) − J (ukh)| ≤|ηjoint|:=
∣∣∣∣∣
∑
m

ηmkh

∣∣∣∣∣ , with ηmkh :=
∑
i∈T m

h

η
i,m
kh , (47)

with the error indicators

η
i,m
kh :=

∫

Im

(
f , (z̃ − zkh) χi,m

)
H dt −

∫

Im

(∇ukh,∇
(
(z̃ − zkh) χi,m

))
H dt

−
∫

Im

(
∂t ukh, (z̃ − zkh) χi,m

)
H dt − (

[ukh]m−1 ,
(
z̃+ (tm−1) − z+kh (tm−1)

)
χi,m

)
H .

(48)

Proof We start from Theorem 3.2 with

J (u) − J (ukh) = 1

2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh,

which yields

|J (u) − J (ukh)| ≤ |1
2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh |.

Considering the primal part only (see (45)), gives us

|J (u) − J (ukh)| ≤ |η joint | := |ρ(ukh)(z − zkh)|.
Inserting the PU (46) yields

|J (u) − J (ukh)| ≤ |η joint | :=
∣∣∣∣∣∣

M∑
m=1

#DoFs(T m
h )∑

i=1

ρ(ukh)
(
(z − zkh)χi,m

)
∣∣∣∣∣∣ .

Then, employing the definition of the primal residual leads to

|J (u) − J (ukh)| ≤ |η joint | :=
∣∣∣∣∣∣

M∑
m=1

#DoFs(T m
h )∑

i=1

F
(
(z − zkh)χi,m

) − A(ukh)
(
(z − zkh)χi,m

)
∣∣∣∣∣∣ .

Here, we employ the left hand side and right hand side of the heat equation, namely (13) and
(14), respectively, by replacing the test function ϕkh by the PU-weighted adjoint sensitivity
measure (z − zkh)χi,m . Finally, the (unknown) solution z is approximated by some higher
order representation z̃ from which we obtain the assertion. ��
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Definition 4.5 (Effectivity and indicator indices) We notice that the effectivity index is
defined as

Ie f f := |J (u) − J (ukh)|
|η joint | .

Applying the triangle inequality on η joint yields a more strict criterion, i.e., here

|η joint | =
∣∣∣∣∣
∑
m

ηmkh

∣∣∣∣∣ ≤
∑
m

∑
i∈T m

h

|ηi,mkh |,

from which the so-called indicator index

Iind := |J (u) − J (ukh)|∑
m

∑
i∈T m

h

|ηi,mkh |

can be defined.

Remark 4.6 Note that we only use the temporal part for marking time steps and calculating
the global estimator. Since the indicators for each time step are obtained by summing over
all elements in said time step the spatial PU χi,m effectively cancels due to the PU property.
As a consequence, the spatial PU can be omitted directly in the computation of the temporal
indicators.

Proposition 4.7 (Primal split error estimator for the heat equation) For the space-time for-
mulation of the heat equation, we have the following a posteriori split error estimator with
partition-of-unity localization:

|J (u) − J (ukh)| ≤ |ηsplit|:=
∣∣∣∣∣∣
∑
m

⎛
⎝ηmk +

∑
i∈T m

h

η
i,m
h

⎞
⎠

∣∣∣∣∣∣ , (49)

with the temporal error indicators

ηmk :=
∫

Im

(
( f , z̃ − zk)H − (∂t ukh, z̃ − zk)H − (∇ukh,∇ (z̃ − zk))H

)
dt

− (
[ukh]m−1 , z̃+ (tm−1) − z+k (tm−1)

)
H ,

(50)

and the spatial error indicators

η
i,m
h :=

∫

Im

(
f , (zk − zkh) χi,m

)
H dt −

∫

Im

(∇ukh,∇
(
(zk − zkh) χi,m

))
H dt

−
∫

Im

(
∂t ukh, (zk − zkh) χi,m

)
H dt − (

[ukh]m−1 ,
(
z+k (tm−1) − z+kh (tm−1)

)
χi,m

)
H .

(51)

Proof For the primal split error estimator we start with Theorem 3.3. Then, we proceed for
both parts with the primal estimator:

|J (u) − J (uk)| ≤ |ρ(uk)(z − zk)|,
|J (uk) − J (uhk)| ≤ |ρ(ukh)(zk − zkh)|.
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Combining the left hand sides to the full error estimator and utilizing the PU in a similar way
as the proof of Proposition 4.4 yields

|J (u) − J (ukh)| ≤ |ρ(uk)(z − zk) + ρ(ukh)(zk − zkh)|

≤
∣∣∣∣∣∣
∑
m

⎛
⎝ηmk +

∑
i∈T m

h

η
i,m
h

⎞
⎠

∣∣∣∣∣∣
=: |ηsplit|.

Here the error indicators are obtained as in the proof of Proposition 4.4, which yields the
assertion. ��
Remark 4.8 Note that the basis functions are globally defined, so the DoF-wise errors contain
an implicit sum over all elements in practice. However, calculating element based estimators
by constraining the spatial integrals to each element K yields the unlocalized estimator, as
the sum over all χi,m on a single element is 1 and effectively cancels out. To use well-
known element based marking strategies the DoF-estimators have to be calculated globally.
Afterwards element wise estimators can be calculated by summing all estimators belonging
to the DoFs of the corresponding element:

ηmK =
∑
i∈K

ηi,m• , (52)

where • stands for h or kh.

Proposition 4.9 (Adjoint joint error estimator for the heat equation) For the space-time for-
mulation of the heat equation, we have the following a posteriori joint error estimator with
partition-of-unity localization:

|J (u) − J (ukh)| ≤
∣∣∣η∗

joint

∣∣∣ :=
∣∣∣∣∣
∑
m

η
m,∗
kh

∣∣∣∣∣ , with η
m,∗
kh :=

∑
i∈T m

h

η
i,m,∗
kh , (53)

with the error indicators

η
i,m,∗
kh :=

∫

Im

J ′
u (ukh)

(
(ũ − ukh) χi,m

)
dt −

∫

Im

(∇ (
(ũ − ukh) χi,m

)
,∇zkh

)
H dt

+
∫

Im

(
(ũ − ukh) χi,m, ∂t zkh

)
H dt + ((

ũ−(tm) − u−
kh(tm)

)
χi,m, [zkh]m

)
H .

(54)

Proof We start from Theorem 3.2 with

J (u) − J (ukh) = 1

2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh,

which yields

|J (u) − J (ukh)| ≤ |1
2
ρ(ukh)(z − zkh) + 1

2
ρ∗(ukh, zkh)(u − ukh) + Rkh |.

Considering the adjoint part only, gives us

|J (u) − J (ukh)| ≤
∣∣∣η∗

joint

∣∣∣ := ∣∣ρ∗ (ukh, zkh) (u − ukh)
∣∣
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= ∣∣J ′(ukh)(u − ukh) − A′
u(ukh) (u − ukh, zkh)

∣∣ .
Utilizing the PU as in the proof of Proposition 4.4 and the respective definition of J in (28)
and the adjoint A′

u of the heat equation by again approximating u by some higher-order
approximation ũ yields the assertion. ��
Proposition 4.10 (Adjoint split error estimator for the heat equation) For the space-time
formulation of the heat equation, we have the following a posteriori split error estimator
with partition-of-unity localization:

|J (u) − J (ukh)| ≤
∣∣∣η∗

split

∣∣∣ :=
∣∣∣∣∣∣
∑
m

⎛
⎝η

m,∗
k +

∑
i∈T m

h

η
i,m,∗
h

⎞
⎠

∣∣∣∣∣∣ , (55)

with the temporal error indicators

η
m,∗
k :=

∫

Im

(
J ′
u(ukh)(ũ − uk) + (ũ − uk, ∂t zkh)H − (∇(ũ − uk),∇ukh)H

)
dt

− (ũ−(tm) − u−
k (tm), [zkh]m, )H ,

(56)

and the spatial error indicators

η
i,m,∗
h :=

∫

Im

(
J ′
u(ukh)((uk − ukh)χi,m

)
dt −

∫

Im

(∇ (
(uk − ukh)χi,m

)
,∇zkh

)
H dt

+
∫

Im

(
(uk − ukh)χi,m, ∂t zkh

)
H dt − ((

u−
k (tm) − u−

kh(tm)
)
χi,m, [zkh]m

)
H .

(57)

Proof The proof starts as in Proposition 4.7, but now taking the adjoint residual. The rest is
then a combination of the previous three propositions and follows conceptionally the same
lines. ��
Remark 4.11 We emphasize that in this work, we estimate discretization errors only. The
space-time extension of stationary PU-DWR versions such as [18, 44, 52] to linear or non-
linear iteration errors in our current space-time setting is part of future work.

4.2 The Partition-of-Unity Approach for the Combustion Problem

In this section, we state the error estimator of the combustion problem:

Proposition 4.12 (Primal split error estimator for combustion) Let us assume homogeneous
boundary conditions on �N as well as for the species concentration on �R. For the tem-
perature we have the cooling conditions κθ + ∂nθ = 0 on the Robin boundary, such that
gθ
N = gYN = gθ

R = gYR ≡ 0, aθ
R = κ , bθ

R = 1 and aYR = bYR = 0 hold. Then, we have the
following a posteriori primal split error estimator with partition-of-unity localization for the
space-time formulation of the time-dependent combustion problem:

|J ({θ, Y })−J ({θ, Y }kh)| ≤ |η| :=
∣∣∣∣∣∣
∑
m

⎛
⎝ηmk +

∑
i∈T m

h

ηmi,h

⎞
⎠

∣∣∣∣∣∣ , (58)
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with the temporal error indicators

ηmk = −
∫

Im

((
∂tθkh, z

θ − zθk
)
H + (∇θkh,∇

(
zθ − zθk

))
H

)
dt

+
∫

Im

∫

�R

κθ
(
zθ − zθk

)
dsdt

+
∫

Im

(
∂t Ykh, z

Y − zYk

)
H

+
(
∇Ykh,∇

(
zY − zYk

))
H
dt

−
∫

Im

(
ω (θkh, Ykh) , zθ − zθk

)
H +

(
ω (θkh, Ykh) , zY − zYk

)
H
dt

−
(
[θkh]m−1 , zθ,+ (tm−1) − zθ,+

k (tm−1)
)
H

−
(
[Ykh]m−1 , zY ,+ (tm−1) − zY ,+

k (tm−1)
)
H

,

(59)

and the spatial error indicators

ηmi,h = −
∫

Im

(
∂tθkh,

(
zθk − zθkh

)
χi,m

)
H + (∇θkh,∇

((
zθk − zθkh

)
χi,m

))
H dsdt

+
∫

Im

∫

�R

κθ
(
zθk − zθkh

)
χi,mdsdt

+
∫

Im

(
∂t Ykh,

(
zYk − zYkh

)
χi,m

)
H

+
(
∇Ykh,∇

((
zYk − zYkh

)
χi,m

))
H
dsdt

−
∫

Im

(
ω (θkh, Ykh) ,

(
zθk − zθkh

)
χi,m

)
H +

(
ω (θkh, Ykh) ,

(
zYk − zYkh

)
χi,m

)
H
dt

−
(
[θkh]m−1 ,

(
zθ,+
k (tm−1) − zθ,+

kh (tm−1)
)

χi,m

)
H

−
(
[Ykh]k,m−1 ,

(
zY ,+
k (tm−1) − zY ,+

kh (tm−1)
)

χi,m

)
H

.

(60)

Proof We start as in Proposition 4.7 and employ for the primal residual and the right hand
side the weak form of the combustion problem, i.e., (24) and (25), respectively. ��
Proposition 4.13 (Adjoint split error estimator for combustion) Using the same boundary
conditions, we have the following a posteriori adjoint split error estimator with partition-of-
unity localization for the space-time formulation of the time-dependent combustion problem:

|J ({θ, Y })−J ({θ, Y }kh)| ≤ |η| :=
∣∣∣∣∣∣
∑
m

⎛
⎝η

m,∗
k +

∑
i∈T m

h

η
m,∗
i,h

⎞
⎠

∣∣∣∣∣∣ , (61)

with the temporal error indicators

η
m,∗
k = J ′

θ ({θkh, Ykh})(θ − θk)
∣∣Im + J ′

Y ({θkh, Ykh})(Y − Yk)
∣∣
Im

−
∫

Im

(
θ − θk,−∂t z

θ
kh

)
H + (∇ (θ − θk) ,∇zθkh

)
H +

∫

�R

κ(θ − θk)z
θ
khdsdt
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−
∫

Im

(
Y − Yk, ∂t z

Y
kh

)
H

+
(
∇(Y − Yk),∇zYkh

)
⎞
⎟⎠

H

dt

−
∫

Im

(
ω′

θ (θkh, Ykh) (θ − θk) + ω′
Y (θkh, Ykh) (Y − Yk), z

Y
kh − zθkh

)
H
dt

− ((
θ−(tm) − θ−

k (tm)
)
, [zθkh]m

) −
((
Y−(tm) − Y−

k (tm)
)
,
[
zYkh

]
m

)
,

and the spatial indicators

η
m,∗
i,h = J ′

θ

({
θkh, Ykh

})((
θk − θkh

)
χi,m

)∣∣
Im

+ J ′
Y

({
θkh, Ykh

})((
Yk − Ykh

)
χi,m

)∣∣
Im

−
∫

Im

((
θk − θkh

)
χi,m ,−∂t z

θ
kh

)
H + (∇((

θk − θkh
)
χi,m

)
,∇zθkh

)
H

+
∫

�R

κ
(
θk − θkh

)
χi,mz

θ
khdsdt

−
∫

Im

((
Yk − Ykh

)
χi,m , ∂t z

Y
kh

)
H

+
(
∇

((
Yk − Ykh

)
χi,m

)
,∇zYkh

))
H
dt

−
∫

Im

(
ω′

θ

((
θk − θkh

)
χi,m

)(
θk − θkh

) + ω′
Y

(
θkh, Ykh

)((
Yk − Ykh

)
χi,m

)
, zYkh − zθkh

)
H
dt

− ((
θ−
k (tm) − θ−

kh(tm)
)
χi,m ,

[
zθkh

]
m

) −
((
Y−
k (tm) − Y−

kh(tm)
)
χi,m ,

[
zYkh

]
m

)
.

Proof We start as in Proposition 4.10 and the respective definition of J in (28). In contrast,
the adjoint A′

u is now derived from the combustion system by approximating u = (θ, Y ) by
some higher-order approximation ũ = (θ̃ , Ỹ ) yields the assertion. ��

4.3 Evaluation of the Space-Time PU-DWR

For the practical evaluation we need to properly define the interpolation differences. Depend-
ing on the approach, we need interpolations from a high order space into a low order space
and reconstructions the other way around. In space we denote them as

i (s+1)
h : X̃r ,s+1

k,h �→ X̃r ,s
k,h and i (s+1)

2h : X̃r ,s
k,h �→ X̃r ,s+1

k,h .

In time we use

i (r+1)
k : X̃r+1,s

k,h �→ X̃r ,s
k,h and i (r+1)

2k : X̃r ,s
k,h �→ X̃r+1,s

k,h .

In the following, we take a closer look at the interpolation difference for a higher order
solution as used in the mixed and equal high order approach, i.e. the interpolations i (s+1)

h and

i (r+1)
k . After that we write down the resulting localized error estimators for each PU-DoF. For
good visual representations of the high order reconstructions based on a low order solution
see [53, 57] for the spatial part i (s+1)

2h and temporal part i (r+1)
2k respectively.

For our visualization the high order space X̃1,2
k,h and the loworder space X̃0,1

k,h are used. Then,

uk and zk are elements of X̃0,2
k,h . Furthermore, we notice that in this specific case of piecewise

constant discrete solutions the identities u−
k (tm) = u+

k (tm−1) and u
−
kh(tm) = u+

kh(tm−1) hold.
With this, we obtain the following operators:
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Fig. 1 Different interpolation levels on a single 1 + 1D space-time element

Definition 4.14 (Temporal interpolation operators for r = 0)
The interpolation operator from piecewise linear elements to piecewise constant elements
reads as

i1k z̃(t) =
{
z̃−(tm) for t ∈ Im,

z̃−(t1) for t = 0.
(62)

The reconstruction of the high order solution, i. e. the other way around, is obtained by linear
interpolation

z̃|Im (t) = tm − t

km
z−k (tm−1) + t − tm−1

km
z−k (tm).

For the spatial interpolation operator i2h we use a linear finite element ansatz with the vertex
DoFs of the spatial triangulation. Using i2h on the temporally interpolated solution ik z̃ yields
ikh z̃ and vice versa. To illustrate this, Fig. 1 shows the different interpolation levels for a
single 1+1D finite element.

Definition 4.15 (Application of operators depending on the choice of solution spaces) Let û
and ẑ denote the approximated solutions of the primal and adjoint problems, depending on
the choice of finite elements for each problem. Then, we obtain our terms by the following
evaluations:

u−
kh(tm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

û−(tm) for û ∈ X̃0,1
k,h,

i1k û(t) for û ∈ X1,1
k,h,

i2h û
−(tm) for û ∈ X̃0,2

k,h,

i2h i
1
k û(t) for û ∈ X1,2

k,h,

(63)

z−k (tm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i22h ẑ
−(tm) for ẑ ∈ X̃0,1

k,h,

i1k i
2
2h ẑ for ẑ ∈ X1,1

k,h,

ẑ−(tm) for ẑ ∈ X̃0,2
k,h,

i1k ẑ for ẑ ∈ X1,2
k,h .

(64)

For z−kh(tm) we have the same interpolations on ẑ as for u−
kh(tm) on û.

For these finite element spaces we can use the midpoint rule with t0 = (tm+1 − tm)/2 for all
temporal integrals when the resulting terms are linear in time. For temporal nonlinearities
and higher-order right hand side functions f , higher-order quadrature rules, usually Gauss
quadratures, have to be used.
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Remark 4.16 (Reconstructions for the adjoint estimator) For the adjoint estimator we addi-
tionally need uk and u. The semi-discrete uk can be obtained the same way as zk , but for u
we need to change the interpolation direction, which results in

ũ|Im (t) = tm − t

km
u−
k (tm) + t − tm−1

km
u−
k (tm+1).

Remark 4.17 Finally, we comment on the treatment of pointwise evaluations such as in
Proposition 4.10 and Proposition 4.13 in the terms u−

k (tm)− u−
kh(tm) and Y−

k (tm)−Y−
kh(tm),

respectively. As an example, we explain more details for the heat equation. Due to the reverse
construction into a higher order space using i (r+1)

2k , it holds u−(tm) = u−
k (tm+1) for which

we deal with a jump at tm , which in general is not identically equal to zero. Moreover, we
note that these jump terms include a spatial integration which is done by Gauss-Legendre
quadrature, i.e. with quadrature points that do not lie on the boundaries of the spatial ele-
ments. Therefore, ((u−

k (tm)−u−
kh(tm))χi,m, [zkh]m) and corresponding terms will in general

be nonzero as well, irrespective of the spatial interpolation. Conversely, if the difference is
zero then the low order solution is an exact representation of the high order solution such
that no refinement is needed.

4.4 Error Indicators in Space and Time

With the previous evaluations, we can now define the respective indicators in space and time
for the heat equation and the combustion problem. Note that the temporal derivative ∂t ukh
vanishes for ukh ∈ X̃0,s

k,h , i.e. piecewise constant elements in time.

4.4.1 Natural PU cG(1)dG(0)

Employing the previously introduced PU, namely cG(1)dG(0) yields to the following results
for the error indicators.

Proposition 4.18 (Joint primal error indicator for the heat equation) We have the following
joint error indicator for the heat equation

η
i,m
kh,heat =

tm∫

tm−1

(
f (t),

(
z̃(t) − z−kh(tm)

)
χi,m

)
Hdt

− (
u−
kh(tm) − u−

kh

(
tm−1

)
,
(
z−k

(
tm−1

) − z−kh(tm)
)
χi,m

)
H

− km
2

· (∇u−
kh(tm),

(∇z−k
(
tm−1

) + ∇z−k (tm) − 2∇z−kh(tm)
)
χi,m

)
H

− km
2

· (∇u−
kh(tm),

(
z−k

(
tm−1

) + z−k (tm) − 2z−kh(tm)
)∇χi,m

)
H

(65)

with the time step size km = tm − tm−1.

Proof Starting from Proposition 4.4 and the representations of ηi,mkh , we evaluate the temporal
integrals and employ the interpolation operators derived in Sect. 4.3 and obtain the joint error
indicator η

i,m
kh,heat. ��

Accordingly, we have
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Proposition 4.19 (Split primal error indicators for the heat equation) The split indicators
ηmk,heat and η

i,m
h,heat for the heat equation are given by

ηmk,heat =
tm∫

tm−1

(
f (t),

(
z̃(t) − z−k (tm)

))
Hdt − km/2 · (∇u−

kh(tm),∇(
z−k

(
tm−1

) − z−k (tm)
))

H

− (
u−
kh(tm) − u−

kh

(
tm−1

)
,
(
z−k

(
tm−1

) − z−k (tm)
))

H , (66)

and

η
i,m
h,heat =

tm∫

tm−1

(
f (t),

(
z−k (tm) − z−kh(tm)

)
χi,m

)
Hdt

− km · (∇u−
kh(tm),

(∇z−k (tm) − ∇z−kh(tm)
)
χi,m + (

z−k (tm) − z−kh(tm)
)∇χi,m

)
H

− (
u−
kh(tm) − u−

kh

(
tm−1

)
,
(
z−k (tm) − z−kh(tm)

)
χi,m

)
H . (67)

Proof Starting from Proposition 4.7 and the representations of ηmk and η
i,m
h , we evaluate the

temporal integrals and employ the interpolation operators derived in Sect. 4.3 and obtain the
error indicators ηmk,heat and η

i,m
h,heat. ��

Using the same interpolations we obtain

Proposition 4.20 (Split primal error indicators for combustion) For the combustion problem
we have the following primal error indicators

ηmk,combustion = −km/2
[(∇θ−

kh(tm),∇(
zθ,−
k

(
tm−1

) − zθ,−
k (tm)

))
H(∇Y−

kh(tm),∇(
zY ,−
k (tm−1

) − zY ,−
k (tm)

))
H

+
∫

�R

κθ−
kh(tm)

(
zθ,−
k

(
tm−1

) − zθ,−
k (tm)

)
ds

− (
ω

(
θ−
kh(tm), Y−

kh(tm)
)
, zθ,−

k

(
tm−1

) − zθ,−
k (tm)

)
H

+ (
ω

(
θ−
kh(tm), Y−

kh(tm)
)
, zY ,−

k

(
tm−1

) − zY ,−
k (tm)

)
H

]

− (
θ−
kh(tm) − θ−

kh

(
tm−1

)
, zθ,−

k

(
tm−1

) − zθ,−
k (tm)

)
H

− (
Y−
kh(tm) − Y−

kh

(
tm−1

)
, zY ,−

k

(
tm−1

) − zY ,−
k (tm)

)
H

(68)

and

η
i,m
h,combustion = −km

[(∇θ−
kh(tm),∇((

zθ,−
k (tm) − zθ,−

kh (tm)
)
χi,m

))
H(∇Y−

kh(tm),∇((
zY ,−
k (tm) − zY ,−

kh (tm)
)
χi,m

))
H

+
∫

�R

κθ−
kh(tm)

(
zθ,−
k (tm) − zθ,−

kh (tm)
)
χi,mds

− (
ω

(
θ−
kh(tm), Y−

kh(tm)
)
,
(
zθ,−
k (tm) − zθ,−

kh (tm)
)
χi,m

)
H

+ (
ω

(
θ−
kh(tm), Y−

kh(tm)
)
,
(
zY ,−
k (tm) − zY ,−

kh (tm)
)
χi,m

)
H

]

− (
θ−
kh(tm) − θ−

kh

(
tm−1

)
,
(
zθ,−
k (tm) − zθ,−

kh (tm)
)
χi,m

)
H

− (
Y−
kh(tm) − Y−

kh

(
tm−1

)
,
(
zY ,−
k

(
tm

) − zY ,−
kh (tm)

)
χi,m

)
H .

(69)
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Proof Starting from Proposition 4.12 and the representations of ηmk and η
i,m
h , we evaluate

the temporal integrals and employ the interpolation operators derived in Sect. 4.3 and obtain
the error indicators ηmk,combustion and η

i,m
h,combustion. ��

Remark 4.21 (Identity of the indicator variants) Since
∑

i∈T m
h

χi,m ≡ 1 in Proposition 4.1 holds,

we have

ηmk +
∑
i∈T m

h

η
i,m
h =

∑
i∈T m

h

η
i,m
kh , (70)

such that the choice between the two indicator variants is only important for adaptive refine-
ment. If one is only interested in estimating the error then both variants are identical.

4.4.2 Alternative PU cG(1)cG(1)

To investigate the impact of the choice of the PU space we derive the split primal indicators
for the heat equation based on a cG(1)cG(1) PU. Now, the right hand side integration might
need even higher order quadrature rules. Apart from that, the highest temporal order in the
temporal indicators is quadratic (constant primal solution, linear adjoint solution and PU)
so we apply Simpsons rule instead. Additionally, we obtain two sets of spatial and temporal
indicators per interval Im , i.e.

ηm−1
k,m,heat, ηmk,m,heat, η

i,m−1
h,m,heat, η

i,m
h,m,heat.

The temporal indicators for refinement of Im are then obtained by

ηmk,heat,cG(1) =
∑

i∈V 1
h (T m−1

h )

ηm−1
k,m−1,heat +

∑
i∈V 1

h (T m
h )

ηm−1
k,m,heat + ηmk,m,heat +

∑
i∈V 1

h (T m+1
h )

ηmk,m+1,heat.

(71)

For the spatial element indicators we first have to interpolate the indicator vectors
(η

i,m−1
h,m−1,heat)i∈V 1

h (T m−1
h )

and (η
i,m
h,m+1,heat)i∈V 1

h (T m+1
h )

to T m
h . Then, the element indicator for

K ∈ T m
h is calculated as

η
K ,m
h,heat,cG(1) =

∑
i∈K

η
i,m−1
h,m−1,heat + η

i,m−1
h,m,heat + η

i,m
h,m,heat + η

i,m
h,m+1,heat. (72)

Employing these derivations for the new choice of the PU, Simpson’s rule for quadrature in
time, and then proceeding as in Sect. 4.4.1, we obtain the following results.

Proposition 4.22 (Split primal error indicators for the heat equation with cG(1)cG(1) PU)
The split indicators for the heat equation are given by

ηm−1
k,m,heat =

tm∫

tm−1

(
f (t),

(
z̃(t) − z−k (tm)

) tm − t

tm − tm−1

)
H
dt

− 2km/6 · (∇u−
kh(tm),∇ (

z−k (tm−1) − z−k (tm)
))

H

− (
u−
kh(tm) − u−

kh (tm−1) ,
(
z−k (tm−1) − z−k (tm)

))
H ,

(73)
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and

ηmk,m,heat =
tm∫

tm−1

(
f (t),

(
z̃(t) − z−k (tm)

) t − tm−1

tm − tm−1

)
H
dt

− km/6 · (∇u−
kh(tm),∇ (

z−k (tm−1) − z−k (tm)
))

H ,

(74)

as well as

η
i,m−1
h,m,heat =

tm∫

tm−1

(
f (t),

(
z−k (tm) − z−kh(tm)

) tm − t

tm − tm−1
χi,m

)
H
dt

− km/2 · (∇u−
kh(tm),

(∇z−k (tm) − ∇z−kh(tm)
)
χi,m + (

z−k (tm) − z−kh(tm)
) ∇χi,m

)
H

− (
u−
kh(tm) − u−

kh(tm−1), (z
−
k (tm) − z−kh(tm))χi,m

)
H ,

(75)

and

η
i,m
h,m,heat =

tm∫

tm−1

(
f (t),

(
z−k (tm) − z−kh(tm)

) t − tm−1

tm − tm−1
χi,m

)
H
dt

− km/2 · (∇u−
kh(tm),

(∇z−k (tm) − ∇z−kh(tm)
)
χi,m + (

z−k (tm) − z−kh(tm)
) ∇χi,m

)
H

(76)

For the general adjoint estimator we also need zkh and uk from Im+1 which can be obtained
by the interpolations described in (63) and (64) respectively. Additionally we only look at
goal functionals of the types

J1(u)(ϕ) =
T∫

0

( J̄1(u), ϕ)Hdt, J2(u)(ϕ) =
T∫

0

∫

∂�

J̄2(u)ϕdsdt,

which are essentially interchangeable in the following formulas. Therefore, we only write
down the indicators for J1.

Proposition 4.23 (Joint adjoint error indicator for the heat equation) We have the following
joint error indicator for the heat equation

η
i,m,∗
kh,heat =

tm∫

tm−1

J ′
u(ukh)

((
ũ(t) − u−

kh(tm)
)
χi,m

)
dt

+ ((
u−
k (tm+1) − u−

kh(tm)
)
χi,m, z−kh(tm+1) − z−kh(tm)

)
H

− km
2

· ((∇u−
k (tm+1) + ∇u−

k (tm) − 2∇u−
kh(tm)

)
χi,m,∇z−kh(tm)

)
H .

(77)

Proposition 4.24 (Split adjoint error indicators for the heat equation) The split indicators
η
m,∗
k and η

m,∗
h,i for the heat equation are given by

η
m,∗
k,heat =

tm∫

tm−1

J ′
u(ukh)

(
ũ(t) − u−

k (tm)
)
dt − km/2 · (∇(

u−
k

(
tm+1

) − u−
k (tm)

)
,∇z−kh(tm)

)
H

+ (
u−
k

(
tm+1

) − u−
k (tm), z−kh

(
tm+1

) − z−kh(tm)
)
H , (78)
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and

η
i,m,∗
h,heat =

tm∫

tm−1

J ′
u(ukh)((u

−
k (tm) − u−

kh(tm))χi,m)dt

− km · ((∇u−
k (tm) − ∇u−

kh(tm))χi,m + (u−
k (tm) − u−

kh(tm)∇χi,m,∇z−kh(tm))H

+ ((u−
k (tm) − u−

kh(tm))χi,m, z−kh(tm+1) − z−kh(tm))H . (79)

All functionals we want to examine for the combustion equation are only dependent on
ukh and the primal weight, which is at most linear in time. Therefore, we can simplify the
estimator by also applying the midpoint rule to the functional.

Proposition 4.25 (Split adjoint error indicators for combustion) For the combustion problem
we have the following adjoint error indicators

η
m,∗
k,combustion = km/2

[(
J ′
1,θ

(
θ−
kh(tm), Y−

kh(tm)
)
, θ−

k (tm+1) − θ−
k (tm)

)
H

+ (
J ′
1,Y

(
θ−
kh(tm), Y−

kh(tm)
)
, Y−

k

(
tm+1

) − Y−
k (tm)

)
H

− (∇(
θ−
k

(
tm+1

) − θ−
k (tm)

)
,∇zθ,−

kh (tm))H −
∫

�R

κ
(
θ−
k

(
tm+1

) − θ−
k (tm)

)
zθ,−
kh (tm)ds

− (∇(
Y−
k (tm+1) − Y−

k (tm)
)
,∇zY ,−

kh (tm)
)
H

− (
ω′

θ

(
θ−
kh(tm), Y−

kh(tm)
)(

θ−
k (tm+1) − θ−

k (tm)
)
, zY ,−

kh (tm) − zθ,−
kh (tm)

)
H

+ (
ω′
Y

(
θ−
kh(tm), Y−

kh(tm)
)(
Y−
k (tm+1) − Y−

k (tm)
)
, zY ,−

kh (tm) − zθ,−
kh (tm)

)
H

]

+ (
θ−
k (tm+1) − θ−

k (tm), zθ,−
kh

(
tm+1

) − zθ,−
kh (tm)

)
H

+ (
Y−
k (tm+1) − Y−

k (tm), zY ,−
kh (tm+1) − zY ,−

kh (tm)
)
H ,

(80)

and

η
i,m,∗
h,combustion = km

[(
J ′
1,θ

(
θ−
kh(tm), Y−

kh(tm)
)
,
(
θ−
k (tm) − θ−

kh(tm)
)
χi,m

)
H

+ (
J ′
1,Y

(
θ−
kh(tm), Y−

kh(tm)
)
,
(
Y−
k (tm) − Y−

kh(tm)
)
χi,m

)
H

− (∇((
θ−
k (tm) − θ−

kh(tm)
)
χi,m

)
,∇zθ,−

kh (tm)
)
H

− (∇((
Y−
k (tm) − Y−

kh(tm)
)
χi,m

)
,∇zY ,−

kh (tm)
)
H

−
∫

�R

κ(θ−
k (tm) − θ−

kh(tm))χi,mz
θ,−
kh (tm)ds

− (
ω′

θ

(
θ−
kh(tm), Y−

kh(tm)
)(

θ−
k (tm) − θ−

kh(tm)
)
χi,m, zY ,−

kh (tm) − zθ,−
kh (tm)

)
H

+ (
ω′
Y

(
θ−
kh(tm), Y−

kh(tm)
)(
Y−
k (tm) − Y−

kh(tm)
)
χi,m, zY ,−

kh (tm) − zθ,−
kh (tm)

)
H

]

+ ((
θ−
k (tm) − θ−

kh(tm)
)
χi,m, zθ,−

kh (tm+1) − zθ,−
kh (tm)

)
H

+ ((
Y−
k (tm) − Y−

kh(tm)
)
χi,m, zY ,−

kh

(
tm+1

) − zY ,−
kh (tm)

)
H .

(81)

4.5 Adaptive Algorithm

There are multiple options for solving the primal and adjoint problems, i.e. time-stepping,
time-slabbing and fully simultaneous space-time, which all need adjustments to marking
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and refinement. However, all simulations shown here are time-stepping based so we limit
ourselves to this approach. Again, we note that in a space-time context the adjoint problem
runs backward in time. Then, all information is collected to evaluate the error estimators.

Since one of the error components might dominate, we employ an equilibration for time-
stepping as proposed in [57]. This will sometimes restrict refinement to space or time. The
overall procedure follows the typical loop: solve, estimate, mark, and refine.

For error estimation in time-stepping we obtain Algorithm 1. There, the main choice is in
whether to use the split or joint estimators. Note that in the case of the joint estimator, the
indicators ηmkh and η

m,∗
kh are calculated by summation of the spatial indicators.

Algorithm 1 ESTIMATE on a single interval Im , i.e. time-stepping based
Require: ûkh on Im−1 and Im and ẑkh on Im−1, Im and Im+1
interpolate/reconstruct ũ, uk , ukh as well as z̃, zk , zkh at quadrature points.
Calculate ηm� and η

m,∗
� , where � denotes k or kh

Calculate η
i,m• and η

i,m,∗• for each PU-DoF i on T m
h , where, again, • denotes h or kh

Having calculated the estimators we mark and refine elements by following Algorithm 2.
There, the equilibration is done by first calculating the global estimators. Note that these
coincide in the joint case, such that no equilibration is performed.

Algorithm 2MARK and REFINE for the time-stepping approach
Require: indicators on each interval Im and equilibration factor c > 0

Calculate global temporal estimator ηk = 1
2

M∑
m=1

(ηm� + η
m,∗
� )

Calculate global spatial estimator ηh = 1
2

M∑
m=1

∑
i∈T m

h

(η
i,m• + η

i,m,∗• )

if |ηk | ∗ c ≥ |ηh | then
mark Im for temporal refinement based on chosen strategy

end if
if |ηh | ∗ c ≥ |ηk | then

for m = 1, . . . , M do
mark and refine elements in T m

h based on chosen strategy
end for

end if
for m = 1, . . . , M do

if Im is marked then
Split/Refine Im into two intervals with (possibly new) mesh T m

h
end if

end for

5 Numerical Tests

In this final section, we substantiate our space-time error estimators and algorithms with
the help of three numerical experiments. In the first configuration, a 2 + 1D heat equation
with manufactured solution is considered. This allows us to investigate in detail effectivity
indices. Next, in Configuration 2, again a 2+1D heat equation is utilized, but with a dynamic
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manufactured solution inspired by Hartmann [29]. In our final configuration, we consider a
nonlinear coupled problem, namely nonlinear combustion. Therein, very detailed compar-
isons of different polynomial degrees, primal, adjoint and full estimators are undertaken. The
computations are based on extensions of the DTM package dwr-diffusion [35], which itself is
based on deal.II [3]. The programming codes are open-source can be found on https://github.
com/jpthiele/pu-dwr-diffusion and https://github.com/jpthiele/pu-dwr-combustion respec-
tively, and follow good practices of sustainable research software developments [2].

5.1 Configuration 1: 2 + 1D Heat Equation with a Simple Manufactured Solution

5.1.1 Problem Statement

To test the 2 + 1D implementation and the derived estimators we prescribe the following
solution for the heat equation introduced in Sect. 2.3

u(t, x, y) = −
(
x2 − x

) (
y2 − y

)
4

t . (82)

Inserting the solution into the PDE yields the right hand side function

f (t, x, y) = −
(
x2 − x

) (
y2 − y

)
4

+
(
x2 − x

)
2

t +
(
y2 − y

)
2

t . (83)

5.1.2 Configuration

The PDE is solved on the unit square and the temporal interval (0, 1), i.e. T = 1. Inserting
x = 0, y = 0 or t = 0 yields u = 0, resulting in homogeneous Dirichlet boundary conditions
and an initial condition of u0 ≡ 0.

5.1.3 Goal Functionals

To test whether the error identity holds, we need a linear goal functional. A simple choice is
the averaged solution

J (u) = 1

|�|T
T∫

0

∫

�

u(t, x)dtdx . (84)

Inserting the analytical solution for an arbitrary T we obtain

J (u) = − T

288
, (85)

as reference value.

5.1.4 Discussion of Findings

We expect (33) and (34) to hold, which is identical to Ieff = 1. We observe the effectivity
indices for all three approaches in space defined as

I s/̃seff = η
s/̃s
kh

J (u) − J (ukh)
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Table 1 Section5.1: Performance
of the primal (left) and adjoint
(right) error estimators under
global refinement for temporal
dG(0) discretization of the
adjoint equation

M N I 1/1eff I 1/2eff I 2/2eff

1000 64 1.008726 1.000479 1.012815

2000 256 1.002999 1.001123 1.004264

4000 1024 1.002757 1.002329 1.003109

8000 4096 1.004806 1.004705 1.004896

1000 64 1.018668 1.031224 1.012812

2000 256 1.005793 1.008949 1.004263

4000 1024 1.003508 1.004289 1.003109

8000 4096 1.005001 1.005192 1.004896

Averaged solution functional

with η
s/̃s
kh as the general estimator for ûkh ∈ X̃0,s

k,h and ẑkh ∈ X̃0,̃s
k,h as defined in Proposi-

tions 4.19 and 4.24 for the primal and adjoint estimators respectively. All estimators are
computed using Algorithm 1.

Table 1 shows that all approaches yield effectivity indices very close to 1. We also notice,
that the biggest difference between primal and adjoint estimator is obtained for the mixed
order approach.
However, this is not surprising as the approach is tailored to the primal estimator and calculat-
ing the adjoint estimator could be seen as questionable for the two following reasons. When
interpolating the higher order solution for the adjoint problem for zkh we do not obtain the
optimal zkh compared to solving with bilinear elements directly. Additionally, reconstructing
the higher order primal solution yields a worse approximation compared to solving directly
with biquadratic finite elements.
Furthermore, we notice that we use a lot more elements in time than in space. In space-time,
the estimator is dependent on a good balance between space and time discretization. For the
sake of brevity we investigate this further in the following configuration as the solution is
much more interesting.

5.2 Configuration 2: 2 + 1D Heat Equation with a Dynamic Manufactured Solution

5.2.1 Problem Statement

This test case was designed in [29]. We again solve the heat equation. The manufactured
solution is a rotating hill on a unit-square spatial domain � = (0, 1)2 in the time interval
(0, T ), T = 1.
The manufactured solution is given as

u(x, y, t) = 1

1 + 50
(
(x − x0(t))2 + (y − y0(t))2

) , (86)

x0(t) = 1

2
+ 1

4
cos(2π t), (87)

y0(t) = 1

2
+ 1

4
sin(2π t). (88)
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The right hand side of the problem is obtained as in Sect. 5.1 by inserting this solution into
the heat equation. Additionally, all definitions for η

s/̃s
kh and I s/̃seff are the same using again

Algorithm 1 to compute the indicators.

5.2.2 Goal Functional

Sincewe are interested in capturing the local behaviour of the solution,we choose the L2-error
as functional of interest, i.e.

J (ukh) = (u − ukh, u − ukh)
1/2. (89)

5.2.3 Comparison of the Different Spatial Approaches

We start by looking at the exact error and the resulting estimators for different choices of
Minitial. We see that the estimators in Tables 2, 3, 4 and 5 are converging to relatively stable
values with rising Minitial. We can also see that since the temporal elements are only doubled
while the spatial elements are quadrupled, the initial number of temporal elements has to be
large enough for uniform refinement. In adaptive simulations we can control this better as we
can choose different fractions of spatial and temporal elements to be marked for refinement.

The equal low order estimators (Table 3) are underestimating the error with an effectivity
of roughly 0.34−0.40 for the coarsest mesh. This gets much better after the two refinements
where the estimator is close to the exact L2-error. However, as the reconstruction effectively
works on an even coarser mesh this is not surprising.

The mixed order estimators (Table 4) are less dependent on the spatial mesh size but over-
estimate the error with an effectivity of 1.20− 1.48. We can also see that the overestimation
gets smaller with rising Minitial but this is of course an additional cost factor.

The equal high order estimators (Table 5) are also less dependent on the spatial mesh
size, but they also use double the amount of degrees of freedom for the primal problem.
They also overestimate the error but for large enough Minitial the effectivity is less than 1.10.
However, Table 6 shows that solving the primal problemwith biquadratic elements and using
a bilinear interpolation between the vertices does not recover the best approximation ukh . In
practice this means that the primal problem should be solved natively with bilinear elements
to obtain the solution for which the error is actually estimated, which leads to additional
costs. This gets especially expensive for nonlinear problems. Note that in this particular case
the resulting adjoint solution and consequently the estimators would also be different as the
L2 error itself factors into J ′

u , so the accuracy of the estimator could be better.
In conclusion, both reconstructing a higher order solution and natively solving the primal

or adjoint problem with higher order elements in space work well for linear problems, but
the reconstruction is cheaper and leads to a better estimator for fine enough meshes.
How the low and mixed order approach perform for higher order finite elements and corre-
sponding errors could be subject of further studies.

5.2.4 Comparison of Adaptive Refinement to the Original Computations

For this configuration we want to compare our results to those described by Hartmann [29],
where the manufactured solution was first formulated. To our knowledge this configuration
was not reproduced and published so far, so the original thesis is the only point of comparison.
There, the classical estimator is used,which is obtained bypartial integration to obtain a strong
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Table 2 Section5.2: The exact L2 error under global refinement for different initial (uniform) temporal grids
and bilinear finite elements in space

N Minit = 100 Minit = 400 Minit = 800 Minit = 1600

64 1.68717e − 02 1.65372e − 02 1.64827e − 02 1.64555e − 02

256 4.72445e − 03 4.51407e − 03 4.48052e − 03 4.46392e − 03

1024 1.28165e − 03 1.16287e − 03 1.14457e − 03 1.13561e − 03

4096 3.67307e − 04 3.01477e − 04 2.91814e − 04 2.87159e − 04

Table 3 Section5.2: The primal equal low order error estimator η
1/1
kh under global refinement for different

initial (uniform) temporal grids

N Minit = 100 Minit = 400 Minit = 800 Minit = 1600

64 6.74336e − 03 5.77335e − 03 5.65418e − 03 5.60003e − 03

256 3.66291e − 03 3.30266e − 03 3.22538e − 03 3.18913e − 03

1024 1.41226e − 03 1.10956e − 03 1.06963e − 03 1.05100e − 03

4096 4.84373e − 04 3.13938e − 04 2.92451e − 04 2.82709e − 04

Table 4 Section5.2: The primal mixed order error estimator η
1/2
kh under global refinement for different initial

(uniform) temporal grids

N Minit = 100 Minit = 400 Minit = 800 Minit = 1600

64 2.05887e − 02 1.99047e − 02 1.98049e − 02 1.97567e − 02

256 6.13544e − 03 5.64178e − 03 5.57640e − 03 5.54573e − 03

1024 1.74073e − 03 1.46754e − 03 1.43250e − 03 1.41630e − 03

4096 5.44978e − 04 3.87165e − 04 3.67990e − 04 3.59415e − 04

Table 5 Section5.2: The primal equal high order error estimator η
2/2
kh under global refinement for different

initial (uniform) temporal grids

N Minit = 100 Minit = 400 Minit = 800 Minit = 1600

64 1.82979e − 02 1.77462e − 02 1.76630e − 02 1.76224e − 02

256 5.38291e − 03 4.95363e − 03 4.89527e − 03 4.86777e − 03

1024 1.52650e − 03 1.28219e − 03 1.25015e − 03 1.23518e − 03

4096 4.80895e − 04 3.38434e − 04 3.20913e − 04 3.12975e − 04

Table 6 Section5.2:The approximated L2 error under global refinement for different initial (uniform) temporal
grids and biquadratic finite elements in space, where the solution is interpolated down to bilinear elements

N Minit = 100 Minit = 400 Minit = 800 Minit = 1600

64 2.16806e − 02 2.13230e − 02 2.12638e − 02 2.12343e − 02

256 6.38393e − 03 6.17212e − 03 6.13780e − 03 6.12076e − 03

1024 1.72805e − 03 1.61279e − 03 1.59468e − 03 1.58575e − 03

4096 4.78600e − 04 4.16052e − 04 4.06646e − 04 4.02072e − 04
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Table 7 Section5.2: Our results
with the equal low order primal
split (top) and joint (bottom)
PU-DWR estimator with fixed
rate marking of 95% in time and
40% in space

M Nmax ||e||L2(�) η
1/1
spli t Ieff

16 64 1.92e−02 2.57e−02 1.34

32 151 6.77e−03 7.64e−03 1.13

64 364 2.73e−03 3.32e−03 1.22

127 898 1.26e−03 1.57e−03 1.24

250 2110 6.08e−04 9.24e−04 1.52

490 4840 3.07e−04 6.15e−04 2.00

M Nmax ||e||L2(�) η
1/1
joint Ieff

16 64 1.92e−02 2.57e−02 1.34

32 151 6.77e−03 7.64e−03 1.13

64 364 2.73e−03 3.32e−03 1.22

127 898 1.26e−03 1.57e−03 1.24

250 2110 6.08e−04 9.24e−04 1.52

490 4840 3.07e−04 6.15e−04 2.00

form with jump terms in space. There, Q1 elements in space and dG(0) elements in time are
used as well, but it is unknown which quadrature formula was used in time for the nonlinear
f . We used the right box rule as this is what corresponds to the implicit Euler scheme and
got our error (1.92e − 02) closest to the error of the original results (1.75e − 02). Table 7
shows our results with the split and joint estimators. These perform very well in comparison
to the original Hartmann results from [29, Table 3.4].

Even though the marking strategy used by Hartmann is unknown, we got close to the
number of temporal elements and the maximum number of spatial elements with fixed rate
marking in Algorithm 2. In comparison, our estimators better localize the error as we get
comparable errors with one less loop that additionally has a smaller maximum number of
spatial elements. This can be seen in Fig. 2, where the original results are only performing
roughly as well as our computation with uniform refinement, while both PU-DWR estimators
yield better convergence. We plotted the L2 error against M ∗ Nmax which is an upper bound
for the actual number of space-time elements as no further information was available from
the original computations. However, Table 8 shows that at least for our simulations the actual
number is not too far from the upper bound. Additionally, we can see that, as expected, the
split estimator outperforms the joint estimator.
Finally, Fig. 3 shows that the local refinement nicely matches the corresponding solution of
Fig. 4 and that the meshes are indeed changing over time.

5.2.5 Comparison of PU Spaces

Here, we want to examine whether the additional coupling with a cG(1) partition-of-unity in
time is beneficial for adaptive refinement. For this, we performed multiple adaptive simula-
tions with the corresponding low, mixed and high order estimators. Figures5, 6 and 7 show
the exemplary results with an initial temporal mesh of 1600 elements with fixed rate marking
of 60% in time and 40% in space. In all three cases the dG(0) PU performs better than
the cG(1) PU, with the lowest difference for the equal high order estimator. For the equal
high order case the L2-error is calculated on the interpolated primal solution, which does
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Fig. 2 Section5.2: Error convergence of the Hartmann testcase

Table 8 Section5.2: Comparison of actual number of space time elements and estimation by M ∗ Nmax

Loop M ∗ Nmax(spli t) #elements(spli t) M ∗ Nmax( joint) #elements( joint)

0 1024 1024 1024 1024

1 4832 4646 4928 4760

2 23,296 21,910 23,488 22,144

3 114,046 104,962 108,234 100,512

4 527500 486,745 492,776 451,433

5 2,371,600 2,186,416 2,207,898 1,993,332

Fig. 3 Section5.2: Grid after 4 refinement loops with the split PU-DWR estimator at t = i/4, i ∈ {1, 2, 3, 4}

Fig. 4 Section5.2: Solution after 4 refinement loops with the split PU-DWR estimator at t = i/4, i ∈
{1, 2, 3, 4}
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Fig. 5 Section5.2: Error convergence of the Hartmann testcase for η1/1 and Minit = 1600

Fig. 6 Section5.2: Error convergence of the Hartmann testcase for η1/2 and Minit = 1600

Fig. 7 Section5.2: Error convergence of the Hartmann testcase for η2/2 and Minit = 1600

not recover the actual best approximation solution of directly solving the primal solution in
the low order space, such that the initial error is higher than for uniform refinement. Finally,
Fig. 8 shows the results for the mixed order estimator with a finer initial temporal mesh,
which are qualitatively the same as for Fig. 6.
Overall we conclude that for discontinuous Galerkin discretizations in time the dG(0)
partition-of-unity is completely sufficient in addition to being cheaper to compute and easier
to implement.
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Fig. 8 Section5.2: Error convergence of the Hartmann testcase for η1/2 and Minit = 3200

5.3 Configuration 3: Nonlinear Combustion

5.3.1 Problem Statement

The final test case is as described in [57] (originally based on [36]) and some preliminary
results were published in our prior work [67]. Here, we solve the nonlinear combustion
equations described in Sect. 2.4.

5.3.2 Configuration

The reaction is simulated in a rectangular channel of length L = 60 and height H = 16 in
which two cooled rods of length L/4 and height H/4 are inserted into both channel walls at
L/4. The reaction is solved for a total of T = 60 with 256 time and 896 space DoFs initially.
The cooling of �R is described by the Robin boundary condition ∂nθ = −0.1θ , with homo-
geneous Neumann conditions for the species concentration. The left wall �D is kept at a
constant temperature of θD = 1 without any combustible species YD = 0. All other walls
�N are described by homogeneous Neumann boundary conditions. An initial flame front is
described by

θ0 =
{
1, x ≤ 9

exp(9 − x), x > 9
(90)

Y 0 =
{
0, x ≤ 9

1 − exp(Le(9 − x)), x > 9.
(91)

5.3.3 Parameters

The reaction parameters are a Lewis number of Le = 1, a gas expension of α = 0.8 and a
dimensionless energy of β = 10.
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Table 9 Section5.3: Performance of the primal error estimators under global refinement for J1

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 1.08154812e−02 9.99898726e−04 1.54141116e−03 3.73046753e−03

512 3584 2.49545713e−03 5.00929317e−04 1.13434333e−03 1.33777161e−03

1024 14,366 5.67139257e−04 2.17940341e−04 5.88255119e−04 5.98302490e−04

2048 57,344 1.11745245e−04 8.34682775e−05 3.46300197e−04 3.45416860e−04

5.3.4 Goal Functionals

The first functional we investigate is the average reaction rate i.e.

J1(θ, Y ) = 1

T |�|
T∫

0

∫

�

ω(θ, Y )dxdt . (92)

This nonlinear functional is defined on the whole space-time domain. For the second func-
tional we calculate the average species concentration on the cooled rods �R i.e.

J2(θ, Y ) = 1

T |�R |
T∫

0

∫

�R

Ydsdt . (93)

This is a linear functional, but it is only defined on part of the boundary.

5.3.5 Discussion of Findings for J1

For both functionals the indicators for η
s/̃s
kh are computed using Propositions 4.20 and 4.25

and Algorithm 1 with ũ, uk , ukh and z̃, zk , zkh following from (63) to (64) with ûkh ∈ X̃0,s
k,h

and ẑkh ∈ X̃0,̃s
k,h . Then, the full estimators are computed by taking the averages of the primal

and adjoint indicators at each space-time Dof and summing over all DoFs.
Tables 9, 10 and 11 show the behaviour of the primal, adjoint and full estimators for

J1 respectively. We can see that all estimators with the mixed order and equal high order
approach behave similarly. For both, the adjoint estimator and the resulting full estimator are
overestimating the error by about two orders of magnitude. However, the primal estimators
are not too far off. The equal low order approach yields the best results on the finest level, and
the primal and adjoint estimators are comparable. It can be inferred that there is no benefit
from calculating the full estimator in this case. Therefore, we use Algorithm 2 with fixed
rate marking refining 50% of all temporal elements and on each interval 30% of all spatial
elements based only on the primal indicators.

Figure9 shows the error convergence under adaptive refinement when using only the
primal estimator. When only counting the primal unknowns for both estimators, our findings
for equal low order and mixed order are comparable, and both perform better than global
refinement. However, when both the number ofDofs of the adjoint and the PU are additionally
taken into account, the low order approach clearly outperforms the mixed order approach.
We can also see that the starting disadvantage of having the same error on the coarsest mesh
with more DoFs is rectified by the first adaptive refinement step.
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Table 10 Section5.3: Performance of the adjoint error estimators under global refinement for J1

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 1.08154812e − 02 8.82511469e − 04 4.84743239e − 01 1.88545655e − 01

512 3584 2.49545713e − 03 4.48390977e − 04 1.99398985e − 01 1.28924222e − 01

1024 14366 5.67139257e − 04 2.11190606e − 04 6.62293691e − 02 5.78821980e − 02

2048 57344 1.11745245e − 04 8.29692632e − 05 2.08643837e − 02 1.99891703e − 02

Table 11 Section5.3: Performance of the full error estimators under global refinement for J1

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 1.08154812e − 02 9.41205097e − 04 2.41600914e − 01 9.24075938e − 02

512 3584 2.49545713e − 03 4.74660147e − 04 9.91323210e − 02 6.37932253e − 02

1024 14366 5.67139257e − 04 2.14565473e − 04 3.28205570e − 02 2.86419478e − 02

2048 57344 1.11745245e − 04 8.32187704e − 05 1.02590417e − 02 9.82187670e − 03

Fig. 9 Section5.3: Error convergence for the reaction rate functional. On the left only the number of unknowns
for the primal problem and on the right all unknowns are taken into account

Fig. 10 Section5.3: reaction rate and grid at t = 20 (left) and t = 60 (right)

Figure10 shows the reaction rate and the corresponding grids for two different time points.
We can see that the grid evolves nicely and follows the combustion reaction. This shows that
our localization works well in capturing the physics and refining accordingly.

5.3.6 Discussion of Findings for J2

Tables 12, 13 and 14 show the behaviour of the primal, adjoint and full estimators for J2
respectively. The equal low order approach shows a similar behaviour to the previous func-
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Table 12 Section5.3: Performance of the primal error estimators under global refinement for J2

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 2.78670640e − 02 1.57134836e − 02 1.68459624e − 03 2.40117972e − 03

512 3584 1.29349400e − 02 8.36950568e − 03 7.70832432e − 04 7.82054826e − 04

1024 14366 4.17247100e − 03 3.88418655e − 03 3.57626628e − 04 3.52168282e − 04

2048 57344 1.07518500e − 03 1.63053161e − 03 1.77990354e − 04 1.76929659e − 04

Table 13 Section5.3: Performance of the adjoint error estimators under global refinement for J2

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 2.78670640e − 02 1.46726666e − 02 1.51762190e − 01 6.21329632e − 02

512 3584 1.29349400e − 02 7.65035908e − 03 4.68479946e − 02 3.34542288e − 02

1024 14366 4.17247100e − 03 3.79109953e − 03 1.26131290e − 02 1.13551533e − 02

2048 57344 1.07518500e − 03 1.62278719e − 03 3.29583742e − 03 3.19336781e − 03

Table 14 Section5.3: Performance of the full error estimators under global refinement for J2

M N J (u) − J (ukh) η
1/1
kh η

1/2
kh η

2/2
kh

256 896 2.78670640e − 02 1.51930751e − 02 7.53851823e − 02 3.12572585e − 02

512 3584 1.29349400e − 02 8.00993238e − 03 2.31194532e − 02 1.64872919e − 02

1024 14366 4.17247100e − 03 3.83764304e − 03 6.13512088e − 03 5.51198299e − 03

2048 57344 1.07518500e − 03 1.62665940e − 03 1.55892353e − 03 1.50821907e − 03

Fig. 11 Section5.3: Error convergence for the species concentration functional. On the left only the number
of unknowns for the primal problem and on the right all unknowns are taken into account

tional. However, the overestimation of the adjoint estimators for the mixed order and high
order approach is not as bad as for the nonlinear functional. On the other hand their respec-
tive primal estimators are underestimating the error by quite a bit. In the full estimators these
over- and underestimations are cancelling out quite nicely such that this estimator would
be more useful here. For this reason the simulations for Fig. 11 were done by using the full
estimator for adaptivity in Algorithm 2 with the same marking strategy as before. As with
the first functional we see that both approaches yield comparable results when only counting
the memory cost for solving the primal problem.We also see that both approaches eventually
outperform uniform refinement when taking the total cost into account. But the equal low
order approach is again and still the best choice.

Figure12 shows the species concentration and the refined grids based on J2 at different
time steps. We see that along the cooled rods the grid again follows the combustion reaction.
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Fig. 12 Section5.3: Rod species concentration and corresponding grid at t = 20 (left) and t = 60 (right)

As that is the area where we have changes in the concentration this fits well. We also see that
the mesh is refined around the cooled rod once the reaction moved past them. Together with
the convergence behaviour we see again that the novel localization works well.

6 Conclusions

In this work, we proposed partition-of-unity (PU) dual-weighted residual a posteriori error
estimators and space-time adaptivity for linear and nonlinear partial differential equations.
From the algorithmic side, the main novelties are the extension of the PU localization to
space-time Galerkin finite element discretizations and the realization of split and joint error
estimators. From the implementation side, despite starting from pre-implementations in the
DTMpackage dwr-diffusion [35] and deal.II [3], extensive code developments and debugging
was necessary, which greatly exceed existing implementations, specifically for the nonlinear
features such as the nonlinear combustion PDE as well as nonlinear goal functionals. In three
numerical examples,we studied in the detail the computational performance for the linear heat
equation and also for a nonlinear lowMach number combustion problem.We also found that
the equal low order approach yielded the best estimation and adaptive performance across the
board and that a cG(1)dG(0) PU is sufficient for cG(s)dG(r) discretizations of the primal
problem. Furthermore, an example of an immediate practical application of our framework
can be foundwithin the excellence cluster PhoenixD1 in which space-timemethods and goal-
oriented error estimation are of interest for the efficient solution of multiphysics problems
and where the heat equation and the Navier–Stokes equations are needed.
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tively, and follow good practices of sustainable research software developments [2]. Moreover, the

1 https://www.phoenixd.uni-hannover.de/
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reproducibility codes can be found on zenodo via https://zenodo.org/records/10641104 and https://zenodo.
org/records/10641119.
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