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1 Introduction

There is strong evidence that primordial density fluctuations were generated during a period
of cosmic inflation in the very early universe [1, 2]. The amplitude of the primordial spectrum
of curvature fluctuations, as measured by Cosmic Microwave Background (CMB) observations,
is around 10−9 on the largest observable scales, and it is almost scale invariant [1, 2]. The
spectrum of fluctuations on small scales though, which were generated towards the end of
inflation, is for the moment mostly unconstrained. Two promising probes of small scale
primordial fluctuations are Primordial Black Holes (PBHs) [3–6] and induced Gravitational
Waves (GWs) [7–13] (see also [14–24] for current and future constraints on the small scales
primordial spectrum). However, for them to be detectable, the primordial spectrum of
fluctuations must be enhanced by several orders of magnitude with respect to CMB scales.

There are numerous models of inflation in the literature capable of enhancing the
primordial spectrum of fluctuations. Some examples are phases of ultra slow-roll, bumps
in the potential, sudden turns in the inflationary trajectory, resonances during inflation,
etcetera [25–65]. See ref. [66] for a recent review on inflation and PBHs. By now, there
is also a good analytical understanding of the mechanism behind the enhancement of the
primordial spectrum in single field inflationary models [67–72] and it often involves departures
from attractor trajectories. More recently, the δN formalism [73–77] (see [78] for a recent
book) is employed to explore the tail of the Probability Distribution Function (PDF) of
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primordial fluctuations [79–87], which is crucial for PBH formation [88]. For example, in
ultra-slow-roll the PDF of primordial fluctuations may present an exponential tail, instead
of the usual Gaussian distribution.

Sometimes, it is also useful to consider simple yet exact models. Beyond being toy
models, they may help to further deepen our understanding and may be especially helpful to
explore implications beyond the linear regime. Two examples of such models are Starobinsky’s
piecewise linear potential [89, 90] (also see [91, 92] for a recent thorough analysis) and constant
roll inflation [93–95] (see [96] for reconstruction methods for the inflaton’s potential). In this
work, we consider a model which is exact also for non-attractor trajectories: inflation with a
piecewise exponential potential. Also known as power-law inflation in the attractor [97], the
exponential potential has known exact background solutions for arbitrary initial conditions [97–
99] and exact solutions for linear perturbations along the attractor trajectory [100] (see
e.g. [101, 102] for applications in CMB). Although in the simplest case the linear spectrum
of fluctuations may share some similarities with Starobinsky’s piecewise linear potential, as
for small field excursions the exponential is well approximated by a linear potential, the fact
that we have general background solutions enables us to follow any non-attractor trajectory
and make use of the δN formalism.

In addition to the interesting inflationary dynamics, PBHs and induced GWs are recently
attracting considerable attention for their rich phenomenology. On one hand, PBHs may
explain the dark matter [29, 103–107], some of the LIGO, VIRGO, KAGRA binary black
hole merger events [108–111] and the seeds of supermassive black holes [112, 113].1 On
the other hand, there is the possibility that the reported evidence of a GW background
by PTAs [122–131] are induced GWs from primordial fluctuations [132–154] (or the merger
of supermassive PBHs [155–157]).

This paper is organized as follows. In section 2 we review the general background
dynamics in the exponential potential and apply it to general slow-roll to slow-roll transitions.
In section 3 we study linear perturbations in the piecewise exponential potential and derive
close to exact solutions in the non-attractor regime. We provide analytical solutions to the
primordial spectrum of fluctuations for both enhancement and suppression cases. We also
study the imprint of the primordial spectrum in the induced GW spectrum. In section 4
we have a close look at the δN formalism and we use it to derive the PDF of non-linear
curvature fluctuations. We conclude our work in section 5.

2 General background solutions

We start by reviewing the general exact solutions of a scalar field ϕ in an exponential
potential in a Friedmann-Lemaître-Robertson-Walker (FLRW) metric as in [97–99]. The
action in this model reads

S =
∫

d4x
√

−g

{
M2

pl
2 R − 1

2gµν∂µϕ∂νϕ − V (ϕ)
}

, (2.1)

1In addition to the collapse of primordial fluctuations, other PBH formation mechanisms include first-
order phase transitions [114, 115], the collapse of Q-balls [116–118] and long-range forces stronger than
gravity [119–121].
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Figure 1. Illustration of the piecewise exponential potential that we use in this work. We plot V (ϕ)
normalized to the amplitude V⋆ with respect to the field ϕ centered at ϕ = ϕ⋆. In blue we show
the first piece of the potential with parameter λ1 and in red the second piece of the potential with
parameter λ2. The parameter ϕc is fixed by eq. (2.3) such that the potential is continuous at ϕ = ϕ⋆.
In each figure, the scalar field rolls from left to right down the potential. On the left, we chose λ1 > λ2
but more concretely λ1 = 0.1 and λ2 = 0.01. In this case, the scalar field after the matching point
transitions from slow-roll to (a slower) slow-roll going through an ultra-slow-roll phase. On the right,
we chose λ1 < λ2, concretely λ1 = 0.01 and λ2 = 0.1. The scalar field after the matching point enters
an accelerated phase and transitions from a slow-roll to (a faster) slow-roll.

where M2
pl = 1/(8πG) is the reduced Planck mass, R is the Ricci scalar and V (ϕ) is the

potential of the scalar field. Since we are interested in enhancing/suppressing primordial
fluctuations in a fully analytical model, we consider a piecewise exponential potential given by

V (ϕ) = V⋆

e−λ1ϕ/Mpl ϕ ≤ ϕ⋆

e−λ2(ϕ−ϕc)/Mpl ϕ > ϕ⋆

, (2.2)

where λ1 and λ2 are constants, ϕ⋆ is the position of the matching point and continuity
of the potential requires

ϕc = ϕ⋆

(
1 − λ1

λ2

)
. (2.3)

Note that we could set ϕ⋆ = 0 via a redefinition of V⋆ without loss of generality. Nevertheless,
we keep ϕ⋆ as an explicit reminder of the matching point. We illustrate the piecewise
exponential potential we consider in figure 1.

Before getting into the details, let us make some clarifications. First, we will only
be interested in the case when |λ1|, |λ2| < 1 as it leads to cosmic inflation, as we show
later. Second, throughout the paper, we do not assume any hierarchy between λ1 and λ2,
although we advance that primordial fluctuations are enhanced when λ2 < λ1. Then, for
concreteness, we always set the initial conditions in the region where ϕ < ϕ⋆. Then, as the
potential decreases for increasing ϕ, we impose λ1, λ2 > 0 so as to have uninterrupted inflation.
Otherwise, if λ2 < 0 the scalar field would eventually stop and roll back. While this may
lead to an interesting situation like that of ref. [63], we leave the case when λ2 < 0 for future
work. We also show in appendix A that in order to explain CMB observations [2], one needs
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λ ∼ 0.18. When needed we will fix either λ1 or λ2 to such fiducial value. We refer the reader
to appendix A for an extended discussion of power-law inflation and CMB measurements.

The model (2.1) has exact analytical solutions in both regions, that is ϕ < ϕ⋆ and
ϕ > ϕ⋆, in a flat FLRW metric given by

ds2 = gµνdxµdxν = −dt2 + a2(t)dx2 , (2.4)

where t is cosmic time and a the scale factor. We first review the general solutions for a single
exponential potential, say V = V⋆e−λϕ, and we later focus on matching the two solutions in
the piecewise potential (2.2). From eqs. (2.1) and (2.4), the equations of motions are given
by the Klein-Gordon and Friedmann equations, namely

ϕ̈ + 3Hϕ̇ + V,ϕ = 0 , (2.5)

3M2
plH

2 = 1
2 ϕ̇2 + V , (2.6)

where H = ȧ/a is the Hubble parameter, ˙ = d/dt and V,ϕ = ∂V/∂ϕ. Following [98, 99], one
finds that, after time and field redefinitions given by

dξ

dt
=

√√√√3
4

V (ϕ)
M2

pl
,

ϕ

Mpl
=
√

2
3 (v − u) , ln a = 1

3 (v + u) , (2.7)

the exact solutions for arbitrary initial conditions which are given by

u = Au +
√

1 − α

1 + α
ξ + 1

1 + α
ln
(
1 + Be−2ωξ

)
, (2.8)

v = Av +
√

1 + α

1 − α
ξ + 1

1 − α
ln
(
1 − Be−2ωξ

)
, (2.9)

with α = λ/
√

6 and ω2 = 1 − α2. Au, Av and B are integration constants fixed by the initial
conditions. The solutions (2.8) and (2.9) are valid for both ϕ < ϕ⋆ and ϕ > ϕ⋆ by replacing
λ with the corresponding parameter, respectively λ1 and λ2. The same applies to α and
ω. Note that the solutions (2.8) and (2.9) are valid as long as the arguments inside the
logarithms are positive which sets a lower bound on ξ. The exact attractor solution of [97] is
given by B = 0. We postpone a detailed discussion of the general inflationary trajectories
in phase space in section 4 as it is relevant for the δN formalism, but see refs. [98, 99]
for a broader discussion not restricted to inflation. From now on, we will set M2

pl = 1 for
simplicity and recover the units a posteriori.

For practical purposes, it is more convenient to recast the exact solutions for ϕ and ln a,
eqs. (2.8) and (2.9), through (2.7) with a new time variable given by

Z ≡ 2 × arctanh
[
Be−2ωξ

]
. (2.10)
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We advance that in the regime of interest Z is directly related to the number of e-folds defined
as N = ln a.2 In fact, we can understand the physical range of Z by computing

ϕ,N ≡ dϕ

dN
= dϕ/dξ

d ln a/dξ
=

√
6 α + tanh(Z)

1 + α tanh(Z) =
√

6 tanh (Z + arctanh[α]) , (2.11)

where in the last step we used the properties of the tanh to simplify the formula. From
eq. (2.11), we see that as soon as |Z| ≪ 1 the system is closing in into the attractor regime where

ϕatt
,N =

√
6α = λ, (2.12)

and superscript “att” refers to the attractor. Thus, Z always evolves towards zero with time.
The sign of Z tells us whether we approach the attractor value from above (Z > 0) or from
below (Z < 0). In passing, we note that the first slow-roll parameter, which is given by

ϵ ≡ − Ḣ

H2 = 1
2ϕ2

,N , (2.13)

is exactly constant in the attractor regime and given by

ϵatt = 1
2λ2 . (2.14)

The second slow-roll parameter, defined by

η ≡ d ln ϵ

dN
= 2ϕ,NN

ϕ,N
(2.15)

vanishes exactly in the attractor. Eq. (2.14) also implies that the universe is expanding as
a power-law of time, that is a ∝ tp where p = 2/λ2. So, in order to have an accelerated
expansion and slow-roll inflation we need p ≫ 1 and, hence, λ ≪ 1 [97]. This is the reason
why we restrict our attention to λ ≪ 1.

The usefulness of Z (2.10) is that its value at a pivot scale, e.g. at Z⋆, is determined only
by the derivative of the field at that time, that is ϕ,N⋆, which in our case will be given by
the first phase of slow-roll inflation. After inverting (2.11), we have that

Z⋆ = arctanh
[

ϕ,N⋆ −
√

6α√
6 − αϕ,N⋆

]
= arctanh

[
ϕ,N⋆√

6

]
− arctanh [α] . (2.16)

Lastly, we write ϕ and N = ln a (2.7) as

ϕ = ϕ⋆ + 1
ω2

√
2
3

(
Z⋆(1 − z) + α ln

( sinh(Z⋆)
sinh(Z⋆z)

))
, (2.17)

N = N⋆ + 1
3ω2

(
αZ⋆ (1 − z) + ln

( sinh(Z⋆)
sinh(Z⋆z)

))
, (2.18)

2With this new variable the relation with cosmic time is given by

dZ
dt

= −2ω sinh Z

√
3
4

V (ϕ)
M2

pl
.

As a curiosity, we found that with Z one can find an exact expression for t(Z) in terms of hypergeometric
functions, as well as for the conformal time. However, they are not very informative so we omit them.
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where we introduced the variable z given by

z = Z/Z⋆ , (2.19)

as it allows to take a smooth limit to the attractor solution by sending Z⋆ → 0 but keeping z
fixed. One can check that in the attractor we have a linear relation between N and ϕ, that is

N = N⋆ + ϕ − ϕ⋆√
6α

, (2.20)

which is independent of ϕ,N⋆. In the general case, once we have the boundary conditions for
ϕ⋆ and Z⋆ (or alternatively ϕ,N⋆) the evolution of the system is fixed. Note that although the
value of N⋆ can be absorbed by a redefinition of time, we will keep it for later convenience.

In passing, we later found that the system of equations (2.5) can also be readily solved by
using e-folds as a time variable from the start. In that case, the Klein-Gordon equation reads

ϕ,NN +
(

3 − 1
2ϕ2

,N

)(
ϕ,N + V,ϕ

V

)
= 0 . (2.21)

This equation can be solved by splitting it into two first-order differential equations, namely

π = ϕ,N (2.22)

π,N = −1
2
(
6 − π2

) (
π −

√
6α
)

. (2.23)

Note that eq. (2.23) shows that all phase space trajectories are independent of ϕ, consistent
with the shift symmetry of the exponential potential. Then, we integrate eqs. (2.22) and (2.23)
once in terms of π, that is

N − N⋆ =
∫ π

π⋆

dπ

π,N
and ϕ − ϕ⋆ =

∫ π

π⋆

π

π,N
dπ , (2.24)

which recovers eqs. (2.17) and (2.18) after using eq. (2.11). We show some examples of
trajectories in the phase space of (ϕ, π) in figure 2.

2.1 Exact solutions in the piecewise potential

Now, let us come back to the piecewise potential (2.2). Our inflationary model has two
phases, one before and one after the matching point ϕ⋆. We will respectively denote with
subscripts 1 and 2 any variable before and after the matching point. Also, we assume that
the first phase of inflation is a standard slow-roll inflation and the system is in the exact
attractor regime. In this case we have that Z1⋆ = 0,

ϕ1,N = λ1 , z1(N1) = e−3ω2
1(N1−N⋆) , and ϕ1 = λ1N1 =

√
6α1N1 , (2.25)

where we fixed N⋆ = λ1ϕ⋆. The first phase stops at ϕ⋆ and we enter the second phase
with the initial conditions ϕ2⋆ = ϕ⋆ and ϕ2,N⋆ = λ1. Continuity of ϕN at ϕ⋆ implies from
eq. (2.16) that in the second phase we have

Z2⋆ = arctanh [α1] − arctanh [α2] . (2.26)
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Figure 2. Examples of phase space trajectories in the piecewise potential. Blue and red lines
respectively show the trajectories in the first and second phases. The thickness of the lines indicates
the magnitude of the second derivative (ϕNN or πN ). The orange line shows the main trajectory of a
transition from a slow-roll attractor to another slow-roll attractor. The vertical dashed lines show
the matching point ϕ⋆. On the left we show λ1 = 0.18 and λ2 = λ1/5. On the right, we show the
opposite case, namely λ2 = 0.18 and λ1 = λ2/5.

Interestingly, when α2, α1 ≪ 1 we have that |Z2⋆| ∼ O(min(α1, α2)) ≪ 1 and z2 is by definition
bounded by 1 > z2 > 0. This conveniently justifies, in our set-up, a Taylor expansion for
|Z2⋆| < 1, which turns out to give an accurate and useful approximation when dealing with
perturbations. For later use, we present here the expressions for small Z2⋆, namely

ϕ2 ≈ ϕ⋆ + 1
ω2

2

√
2
3 (Z2⋆(1 − z2) − α2 ln z2) + O(Z2

2⋆) , (2.27)

N2 ≈ N⋆ + 1
3ω2

2
(α2Z2⋆ (1 − z2) − ln z2) + O(Z2

2⋆) . (2.28)

In figures 3 and 4 we show the first and second slow-roll parameters for α1 > α2 and α1 < α2,
respectively. See how the leading order approximations (2.27) and (2.28) are in fact quite
accurate in the regime of interest.

We can also explicitly write z2 in terms of e-folds N2 by inverting (2.27) by means of the
Lambert function. However, as far as e-folds are concerned, the term linear in z2 in (2.27) is
always subdominant for z2 < 1. Thus, we have up to a very good approximation that

z2(N2) ≈ e−3ω2
2(N2−N⋆) , (2.29)

which is exact in the attractor regime. Note that this simple relation (2.29) is only valid for
z2(N2). The connection with cosmic and conformal time involves V (ϕ) by eq. (2.7) for which
the linear term in z of (2.27) cannot be initially neglected until close enough to the attractor.

It is also useful to compute ϕ2,N (2.11) at leading order in Z2⋆, which yields

ϕ2,N ≈
√

6
(
α2 + ω2

2Z2⋆z2
)

≈
√

6
(
α2 + ω2

2Z2⋆e−3ω2
2(N2−N⋆)

)
. (2.30)

Using eq. (2.30) we may estimate the duration of the transition from the slow-roll attractor to
the next slow-roll attractor by finding the time it takes for the second slow-roll parameter (2.15)
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Figure 3. First and second slow-roll parameters, eqs. (2.13) and (2.15), respectively on the left and
right figures, as a function of e-folds N for λ1 = 0.18 and λ2 = λ1/100. We show the numerical
solutions in solid black lines, the exact solutions in magenta dashed lines, and the approximation for
small Z⋆ in orange dashed lines. See how the approximation is very good after the matching point at
N = N⋆. The η parameter after the matching point is at most given by η = −6 as ϕ,NN ≈ −3ϕ,N .

to fall below unity. This roughly leads us to

∆Ntr. = N⋆⋆ − N⋆ ≈ 1
3

(
ln
∣∣∣∣1 − α1

α2

∣∣∣∣+ ln 5
)

, (2.31)

where N⋆⋆ is defined through |η(N⋆⋆)| = 1, the subscript “tr.” refers to transition and we
assumed that α1, α2 < 1 and so ω2 ∼ 1 and Z2⋆ ∼ α1 − α2. For α1 < α2 we have that
∆Ntr. ≈ 0.5 and the transition is practically over after half an e-fold. For α1 > α2 though,
we have that ∆Ntr. ≈ 1

3 ln α1
α2

. For α2 ∼ 10−3α1 this yields ∆Ntr. ≈ 2.8. In fact, if we look
closer to eq. (2.30) we see that for α2 < α1, i.e. the field decelerates after the matching
point, the initial decay of ϕ2,N is close to ϕ2,N ∼ a−3. This means that the system enters
a period of quasi ultra-slow-roll [28] after the matching point. As expected, the larger the
hierarchy between α1 and α2 the longer the duration of the ultra-slow-roll phase. We now
proceed to study the linear perturbations.

3 Fluctuations in a slow-roll to slow-roll transition

To study quantum fluctuations during inflation, we perturb the flat FLRW metric and focus
only on scalar fluctuations (see e.g. [158–163] for reviews). In general, we have fluctuations of
the metric as well as the scalar field, say δϕ. For fluctuations during inflation, it is customary
to work in the uniform-ϕ slicing, also referred to as comoving slicing, where perturbations
of ϕ are set to zero, that is δϕ = 0. Then, one focuses on metric perturbations only, the
so-called comoving curvature perturbation R. The second order action in perturbation theory
for the curvature perturbation is given in Fourier modes by

S2 =
∫

d3xdτ a2ϵ
(
R′

k
2 + k2R2

k

)
, (3.1)

where τ is conformal time, given by dt = adτ , ′ = d/dτ , Rk are the mode functions and
k is the wavenumber of the fluctuation. The mode functions satisfy the Mukhanov-Sasaki
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Figure 4. First and second slow-roll parameters, eqs. (2.13) and (2.15), respectively on the left
and right figures, as a function of e-folds N for λ2 = 0.18 and λ2 = λ1/10. We show the numerical
solutions in solid black lines, the exact solutions in magenta dashed lines, and the approximation
for small Z⋆ in orange dashed lines. See how the approximation is very good after the matching
point at N = N⋆. In this case, the η parameter after the matching point can be arbitrarily large as
ϕ,N ≪ ϕ,NN .

equation, namely

R′′
k + 2aHR′

k + k2Rk = 0 . (3.2)

Canonical quantization then fixes the amplitude of quantum fluctuations of Rk by requiring

R∗
kR′

k − RkR′
k

∗ = − i

2a2ϵ
. (3.3)

For analytical and numerical purposes, we also present the Mukhanov-Sasaki equation in
terms of e-folds, which reads

R,NN +
(

3 − 1
2ϕ2

,N + 2ϕ,NN

ϕ,N

)
R,N +

(
k

aH

)2
R = 0 , (3.4)

where we omit the subscript k hereon for simplicity. We may substitute ϕ,NN using the
Klein-Gordon equation in terms of e-folds, that is eq. (2.21).

It is sometimes convenient to work in terms of δϕ as well. The easiest way to do so is
to relate the curvature perturbation with the scalar field fluctuations (in the spatially flat
slicing where curvature perturbation vanishes) via a gauge transformation, which gives

R = −H

ϕ̇
δϕ = − δϕ

ϕ,N
. (3.5)

In the attractor, we have that R and δϕ are just related by a constant, explicitly

Ratt = − 1√
6α

δϕatt , (3.6)
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where we used eq. (2.12). Thus, in the attractor, the dynamics of R and δϕ are exactly the
same.3 We obtain the equations of motion for δϕ after plugging (3.5) into (3.4), which yields

δϕ,NN +
(

3 − 1
2ϕ2

,N

)
δϕ,N +

(
k

aH

)2
δϕ +

m2
δϕ

H2 δϕ = 0 , (3.7)

where we defined

m2
δϕ

H2 =
(

3 − 1
2ϕ2

,N

)(
ϕ2

,N + 2ϕ,N
V,ϕ

V
+ V,ϕϕ

V

)
, (3.8)

and we used eq. (2.21) to simplify the form of m2
δϕ. In passing, we also write explicitly

for later use that

a2H2 = e2N V (ϕ)
3 − 1

2ϕ2
,N

. (3.9)

Since the relation z(N) (2.29) is exact in the attractor and a very good approximation in
the non-attractor phase, it will be convenient to use z instead of N . In terms of z the
equations for δϕ, eq. (3.7), read

d2

dz2 δϕ +
(1

6ϕ2
,N − α2

) 1
ω2z

d

dzδϕ +
(

k

3ω2zaH

)2
δϕ +

m2
δϕ

H2
1

9ω4z2 δϕ = 0 . (3.10)

Before studying the behavior of the perturbations in the piecewise potential, let us first
review the exact solutions for the mode functions in the attractor regime. In the attractor,
we have that ϕN =

√
6α and, hence, eq. (3.10) exactly becomes

d2

dz2 δϕ + κ2z1/µ−2δϕ = 0 , (3.11)

where we defined

κ = k

3ω2k⋆
, k⋆ = a⋆H⋆ and µ = 3

2
ω2

3ω2 − 2 . (3.12)

Eq. (3.11) also holds for R in the attractor. The general solutions to (3.11) are given by [100]

δϕ = 2−µ iπ

Γ[µ]
(
CxµH(1)

µ (x) − DxµH(2)
µ (x)

)
, (3.13)

where C and D are constants, H
(1)
µ (x) and H

(2)
µ (x) respectively are the Hankel functions

of the first and second kind and we defined

x = 2µκz
1

2µ . (3.14)

We note that in the attractor x actually coincides with −kτ where τ is the conformal time.
Also note that in eq. (3.13) we have chosen the prefactor such that

δϕ(x → 0) = C + D . (3.15)
3In fact, they are also the same for tensor modes. The only practical difference is the overall normalization.
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Bunch-Davies initial conditions further sets D = 0 [100] and canonical quantization (3.3) yields

C = i4µ−1(2µ − 1)1/2−µΓ[µ]√
π

κ−µ

a⋆

√
k⋆

. (3.16)

If we only had a single stage of power-law inflation, then the dimensionless primordial
spectrum of curvature fluctuations at the end of inflation would be given by

Pδϕ(x → 0) = k3

2π2 |δϕ|2 = k3

2π2 |C|2 = 24µ−5(2µ − 1)1−2µΓ2[µ]
π3 κ3−2µ H2

⋆

M2
pl

. (3.17)

Using eq. (3.6) we recover the well-known result for the curvature perturbation at leading
order in λ (µ ∼ 3/2), namely

PR(k) = 1
8π2

H2
⋆

ϵattM2
pl

(
k

k⋆

)−λ2

. (3.18)

The main difference with the standard approach is that we need not evaluate the mode
functions at Hubble horizon crossing, that is when k = aH, as we have exact solutions.

3.1 Perturbations in the piecewise potential

In the piecewise power-law inflation case, we have that the initial conditions for the mode
functions are given by the attractor solution eqs. (3.13) and (3.16) by fixing the parameters
of the first phase, e.g. µ → µ1. To avoid later confusions, they are explicitly given by

δϕ1 = C1 2−µ1 iπ

Γ[µ1]x
µ1
1 H(1)

µ1 (x1) , (3.19)

where

κ1 = k

3ω2
1k⋆

, µ1 = 3
2

ω2
1

3ω2
1 − 2

and x1 = 2µ1κ1z
1

2µ1
1 (3.20)

and

C1 = i4µ1−1(2µ1 − 1)1/2−µ1Γ[µ1]√
π

κ1
−µ1

a⋆

√
k⋆

. (3.21)

Then, the equations of motion for δϕ (3.10) after the transition in general read

d2

dz2
2
δϕ2 +

(1
6ϕ2

2,N − α2
2

) 1
ω2

2z2

d

dz2
δϕ2

+
1 − ϕ2

2,N /6
ω2

2

 V (ϕ2)
V (ϕatt

2 )κ2
2z1/µ−2

2 +

(
ϕ2,N −

√
6α2

)2

3ω4
2z2

2

 δϕ2 = 0 ,

(3.22)

where to keep the same notation for κ we defined

κ2 = ω2
1

ω2
2

κ1 . (3.23)
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We now proceed as follows in order to investigate the dynamics of δϕ after the transition.
To simplify the equations and remove the friction term, we first define

δϕ2 = ef(z2)φ , (3.24)

where

f(z2) =
∫ z2

1
dz̃2

(
α2

2 − 1
6ϕ2

,N

) 1
2ω2

2 z̃2
≈ Z2⋆(1 − z2)

(
α2 + 1

2Z2⋆ω2
2(1 + z2)

)
, (3.25)

where in the last step we used eq. (2.30). We note that since f ≪ 1 the redefinition will
not have much effect when relating φ and δϕ2 via eq. (3.24). Then we find at next to
leading order in Z2⋆ that

d2φ

dz2
2

+ (1 − 2Z2⋆z2α2)e
2α2
ω2

2
Z2⋆(1−z2)

κ2
2z1/µ2−2

2 φ + 1
2Z2

2⋆(5ω2
2 − 2)φ + O(Z3

2⋆)φ = 0 . (3.26)

The mass term in (3.26) is O(Z2
2⋆) ∼ O(min(α2

1, α2
2)) and since we have 0 < z2 < 1 the

suppression due to the constant mass is negligible. For the same reason, we neglect the
leading order terms in Z2⋆ and we arrive at

d2φ

dz2
2

+ κ2
2z1/µ2−2

2 φ + O(Z2
2⋆) = 0 , (3.27)

which is the equation for the mode function in the attractor. We note that this result is
rather general. It shows that, in the exponential potential, scalar field fluctuations follow
very closely the attractor solution even though the background trajectory is off-attractor,
as long as the system is in the slow-roll regime, i.e. ϕ,N < 1.

The approximate solutions for δϕ2 are then given by

δϕ2 = 2−µ2 iπ

Γ[µ2]
(
C2xµ2

2 H(1)
µ2 (x2) − D2xµ2

2 H(2)
µ2 (x2)

)
, (3.28)

where

µ2 = 3
2

ω2
2

3ω2
2 − 2

and x2 = 2µ2κ2z
1

2µ2
2 . (3.29)

The reason that fluctuations of δϕ are well approximated by the attractor solution is that,
although the attractor of the second phase is reached for z2 > z(N⋆⋆) (see eq. (2.31)), the
change of vacuum is effectively instantaneous. In fact, the coefficients C2 and D2 in eq. (3.28)
are the Bogolyubov coefficients due to the sudden change of vacuum.

The derivation above tells us that the main effect of the transition is the matching between
attractor solutions. If we consider the full piecewise potential (2.2), the mass term (3.8) in
the full equation for δϕ, that is (3.7), has a Dirac delta-like feature in the second derivative
of the potential, concretely given by

V δ
,ϕϕ = (V1,ϕ − V2,ϕ) δ(ϕ − ϕ⋆) . (3.30)
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Inserting eq. (3.30) into (3.7), and integrating once, yields the matching conditions,4 namely

δϕ2(z⋆) = δϕ1(z⋆) , (3.31)
d

dz2
δϕ2(z⋆) = d

dz1
δϕ1(z⋆) +

(
1 − α2

α1

)
δϕ1(z⋆) , (3.32)

where by definition z⋆ = 1. By performing the matching we obtain

C2/C = 1
κ1

(
1− α2

α1

)
H(1)

µ1 (x1⋆)H(2)
µ2 (x2⋆)− ω2

1
ω2

2
H(1)

µ1 (x1⋆)H(2)
µ2−1 (x2⋆)+H

(1)
µ1−1(x1⋆)H(2)

µ2 (x2⋆) ,

(3.33)

D2/C = 1
κ1

(
1− α2

α1

)
H(1)

µ1 (x1⋆)H(1)
µ2 (x2⋆)− ω2

1
ω2

2
H(1)

µ1 (x1⋆)H(1)
µ2−1 (x2⋆)+H

(1)
µ1−1(x1⋆)H(1)

µ2 (x2⋆) ,

(3.34)

where we defined x1⋆ = 2κ1µ1, x2⋆ = 2κ2µ2 and

C = −iπµµ1
1 µ1−µ2

2 ω−2µ2
1 ω2µ2

2 κµ1−µ2+1
1

Γ(µ2)
2Γ(µ1) × C1 . (3.35)

In eq. (3.35) C1 is given by the canonical normalization in the first phase, that is eq. (3.21).
Then, after some simplifications, the power spectrum of δϕ at the end of inflation is given by

Pδϕ(x2 → 0) = k3

2π2 |δϕ|2 = k3

2π2 |C2 + D2|2

= H2
⋆

4π
κ3−2µ2

1 ×
(

3ω2
1

2

)3

µ
2(µ1−µ2)
1 Γ2[µ2 + 1]2

4µ1(2µ1 − 1)1+2(µ2−µ1)

(2µ2 − 1)2µ2

×
∣∣∣∣H(1)

µ1 (x1⋆)
((

1 − α2
α1

)
Jµ2(x2⋆) − κ2Jµ2−1(x2⋆)

)
+ κ1H

(1)
µ1−1(x1⋆)Jµ2(x2⋆)

∣∣∣∣2 .

(3.36)

As we show in figure 5 this provides a very good approximation to the numerical solution at
all scales for both the cases when α2 < α1 (enhancement) and α2 > α1 (suppression). In our
numerical calculations, we solved for R using e-folds, that is eq. (3.4), with initial conditions
given by the exact attractor solutions few e-folds before the transition. We now investigate
the two cases, enhancement and suppression, separately below.

3.2 Enhancement of fluctuations

We turn our attention to the case when primordial fluctuations are enhanced due to the
transition. Since δϕ on small scales maintains the amplitude, this case corresponds to λ2 < λ1
from eq. (3.5). With our close to exact analytical solutions for the perturbations, we can study

4We used that

dϕ2

dz

∣∣∣
z=z⋆

= dϕ1

dz

∣∣∣
z=z⋆

= − ϕ1,N

3ω2
1z⋆

= −
√

6α1

3ω2
1z⋆

.
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Figure 5. Power spectrum of curvature fluctuations at the end of inflation in the piecewise exponential
potential. Black solid lines show the result of numerical integration. Dashed lines show the analytical
result (3.36) after using eq. (3.6) to relate δϕ and R. On the left figure, we show the case when
λ1 > λ2 (α1 > α2) with λ1 = 0.18. Orange, red and magenta dashed lines respectively show λ1/λ2 =
{10, 102, 103}. On the right figure, we show the opposite case, namely λ2 > λ1 with λ2 = 0.18. In
this figure orange, red and magenta dashed lines respectively show λ2/λ1 = {10, 102, 103}. Deviations
between the analytical and numerical solutions during the oscillations are due to numerical errors.

two limits: large scales κ1 ≪ 1 and small scales κ1 ≫ 1. On one hand, for κ1 ≪ 1 we find that

(C2 + D2)(κ1 ≪ 1) ≈ C1

×
{

α2
α1

+ κ2
1

α1

(
µ1

µ1 − 1(α1 − α2µ1) − µ2
µ2 + 1

ω4
1

ω4
2

(α1 + α2µ2)
)}

. (3.37)

From eq. (3.37) we first see that for very long wavelengths we have

lim
κ1→0

|C2 + D2|2 = |C1|2 × λ2
2

λ2
1

, (3.38)

which means that there is a suppression of λ2
2/λ2

1 between the large and small scale power
spectrum since the overall amplitude of the small scale power spectrum does not change.
Second, we note that the power spectrum vanishes at

κ2
1,dip = α1(µ1 − 1)(µ2 + 1)ω4

2
(µ1 − 1)µ2ω4

1(α1 + α2µ2) + µ1(µ2 + 1)ω4
2(α1 − α2µ1)

≈ 5α2
18α1

= 5λ2
18λ1

, (3.39)

which is the position of the dip. In the second step in eq. (3.39) we only took the leading
order value in α2 < α1 ≪ 1 for simplicity. Thus, the higher the enhancement of the power
spectrum, the lower the position of the dip. Lastly, we find that there is a phase of κ4

1
in the power spectrum

|C2 + D2|2(κ1,dip ≪ κ1 ≪ 1) = κ4
1

α2
1

(
µ1(α1 − α1µ1)

µ1 − 1 + µ2ω4
1(α1 + α2µ2)

ω4
2(µ2 + 1)

)2

≈ 324
25 κ4

1 ,

(3.40)
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where the second step is again at leading order in α2 < α1 ≪ 1. In that approximation,
we note that the amplitude of the κ4

1 piece is independent of the ratio of α2/α1. The κ4
1

scaling is the general expectation for sharp transitions and, in most situations, it is the
steepest growth in single field inflation [68, 71]. The position of the dip is also consistent
with the general analysis of refs. [67, 68, 71].

In the other limit, that is for κ1 ≫ 1, we have that

|C2 + D2|2(κ1 ≫ 1) ≈ |C1|2×κ
2(µ1−µ2)
1 Γ2[µ2]

2Γ2[µ1] µ2µ1−1
1 µ1−2µ2

2 ω−4µ2−2
1 ω4µ2−2

2

×
(
ω4

1 + ω2
2 +

(
ω4

1 − ω4
2

)
sin [πµ2 − 4κ2µ2]

)
. (3.41)

Although the oscillations in eq. (3.41) are subdominant, they share the same frequency of
the larger oscillations, which is about 4µ2

ω2
1

ω2
2
. This frequency is twice the argument of the

Hankel functions at leading order in α2 < α1 ≪ 1, that is x⋆1 ≈ x⋆2 ≈ 3κ1. Besides the
oscillations, we checked that

lim
κ1→∞

|C2 + D2|2 ≈ |C1(1 → 2)|2 , (3.42)

where C1(1 → 2) is C1 (3.21) but replacing µ1 → µ2 and κ1 → κ2, as if the very short
wavelength modes were in the Bunch-Davies vacuum since the start. Thus, our analytical
solution recovers both the expectations for long and short wavelengths. Lastly, although we
have not found any simple formula for the largest oscillations, we find that the maximum
lies at κ1 ≈ 1 with amplitude of the order

|C2 + D2|2(κ1 ≈ 1) ≈ 0.45 × |C(κ1 = 1)|2 , (3.43)

and that the relative amplitude with the second peak is about 1.5. We obtained the number
∼ 0.45 by taking the limit α1, α2 → 0 of κ1 × |C2 + D2|2/|C|2, which is independent of α1
and α2, and then we found the maximum value numerically. We show the accuracy of the
approximations and explain the features in the primordial spectrum on the left plot of figure 6.

From figure 6 we also see that our results are qualitatively similar to Starobinsky’s
piecewise linear potential shown in figure 2 of ref. [92]. The reason for the similarity is the fact
that around the matching point, the exponential potential is well approximated by the linear
one. The plateaus at low and high κ are similar in slope due to the slow-roll approximation
but its precise value is different. The main differences with [92] are that we do not assume H

to be a constant and that the exponential potential allows us to solve directly δϕ instead of R.

3.3 Suppression of fluctuations

Our formulas are also valid in the case where λ2 > λ1, which suppresses fluctuations on small
scales. This case might also be relevant for PBHs and induced GWs. First, a suppression
of the spectrum can be useful if after the enhancement inflation returns to the original
slow-roll phase. This model would include a second transition point and a two-piecewise
potential. Second, we later find in section 4 using the δN formalism that an abrupt end
from the ultra-slow-roll transition phase due to, e.g., a new stage with λ2 > λ1 yields larger
non-Gaussianity and an exponential tail of the PDF. For these reasons, we use our exact
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Figure 6. Analytical power spectrum for δϕ fluctuations (3.36) as a function of κ1. In black solid
lines, we show the exact analytical result from eq. (3.36). On the left we respectively show in red,
blue and magenta dashed lines the limiting behaviors for α2 < α1 for low κ1, eqs. (3.37) and (3.40),
and large κ1, eq. (3.41). On the right the red, blue and magenta dashed lines the limiting behaviors
for α2 > α1 for low κ1, eqs. (3.37), and large κ1, eq. (3.44). The orange stars in both figures denote
the wavenumber κ1 below which the standard δN formalism does not strictly apply, in the sense that
the scalar field fluctuations δϕ on superhorizon scales are initially not constant after the field crosses
the matching point ϕ⋆. For more details see the discussion around eq. (4.18) and figure 9.

formulas to study the behavior of the decay in the primordial spectrum and understand the
main features. This would be a good approximation if the second transition takes place a
few e-folds after the first matching point.

We start with the low κ1 limit. In this case, i.e. when κ1 ≪ 1, we recover eq. (3.37).
However, we find no cancellations when α2 > α1. In the limit when κ1 → 0 we have that
Pδϕ ∝ λ2

2/λ2
1, which is enhanced with respect to the small scale spectrum. The large κ1 limit

now corresponds to κ1 ≫ α2/α1, so that we can drop the first term in the right hand side of
eqs. (3.33) and (3.34). This limit is also given by eq. (3.41), which recovers the amplitude
of fluctuations in the second phase as if no transition happened. The different feature with
respect to the λ2 < λ1 case is that the decay is approximated by

|C2 + D2|2(1 ≪ κ1 ≪ α2/α1) = |C1|2 × κ
2(µ1−µ2−1)
1 Γ[µ2]2

2α2
1Γ[µ1]2

× (α1 − α2)2µ1
2µ1−1µ1−2µ2

2 (ω2/ω1)4µ2+2 (1 − sin [µ2π − 4µ2κ2]) . (3.44)

We see that while the enhancement of fluctuations led to a κ4
1 growth, the decay instead follows

a milder power-law given by κ
2(µ1−µ2−1)
1 ∼ κ−2

1 . We also note that during the decay there are
O(1) oscillations linear in κ1 with frequency given by 4µ2

ω2
1

ω2
2
. We show the analytical solution

and the different features in the power spectrum on the right plot of figure 6. This possibility
was briefly considered by ref. [92] in Starobinsky’s piecewise linear potential but the change in
slopes was taken to be much milder. However, we also expect the main features to be similar.

3.4 The induced GW signal

An important signal to test the enhancement of primordial fluctuations is the associated
induced gravitational waves after inflation. With an analytical expression for the primordial

– 16 –



J
C
A
P
0
3
(
2
0
2
4
)
0
0
2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
log10(κ1)

−4

−3

−2

−1

0

1
lo

g 1
0
(Ω

G
W
,c
/P

2 2,
R

)

k3 ln2 k
0.82× κ6−4µ2

1

−3 −2 −1 0 1 2 3
log10(κ1)

−1

0

1

2

3

4

5

lo
g 1

0
(Ω

G
W
,c
/P

2 2,
R

)

k4(µ2−µ1−1)

0.82× κ6−4µ2

1

0.82× κ6−4µ1

1
λ4

2

λ4
1

Figure 7. Induced GW spectrum with amplitude normalized to P2
2,R (eq. (3.18) with the parameters

of the second phase) as a function of κ1. In solid blue lines we show the results of numerical integration
with SIGWfast [164] and in dashed lines the behaviors described in section 3.4. On the left, we
show the case when α1 > α2 with α2 = 10−3 α1. See how the low-frequency tail follows the universal
scaling of k3 with a logarithmic correction [165, 166]. To be precise, in our model, the induced GW
spectrum also present a plateau for very low frequencies but it is 3 × 4 = 12 orders of magnitude
below the high plateau. Therefore, we ignore it. On the right figure, we show the case α1 < α2 with
α2 = 10 α1. In this case, the two plateaus are 4 orders of magnitude apart.

spectrum in the piecewise exponential potential, we can also compute the predicted induced
GW spectrum for different parameters. We use SIGWfast [164] to compute the resulting
induced GW spectrum, which uses the analytical expressions of refs. [48, 167–169], assuming
Gaussian primordial fluctuations. We show our results in figure 7. Although we show the
spectrum for specific choices of the parameters, we provide explanations for the different
slopes in the induced GW spectrum below. We neglect induced GW during inflation as they
are expected to be much smaller within single field inflation [170]. Note that this might not
be the case in general, specially when several fields are involved [171].

We first approximate the primordial spectrum by two broken power-laws as

PR(κ) ∝ AR ×


κ3−2µ1 (κ < κa)
κn (κa < κ < κb)
κ3−2µ2 (κ > κb)

, (3.45)

where n = 4, κa ∼
√

α2/α1, κb ∼ 1 for α1 > α2 and n = 2(µ2−µ1−1), κa ∼ 1 and κb ∼ α2/α1
for α1 < α2. AR is an arbitrary amplitude of the power spectrum to be determined from
eq. (3.36). Then we use the results of refs. [52, 166, 172–174] to give the asymptotic behavior of
the induced GW spectrum in the three different regions. For the almost flat plateaus we obtain

ΩGW,c ≈ 0.82A2
R × κ6−4µi ∝ P2

R(κ) , (3.46)

where i = {1, 2} depending on which plateau we consider and the numerical coefficient is
computed for the exact flat case (µ ∼ 3/2). On one hand, for α1 > α2 where the spectrum
grows as κ4 we find that

ΩGW,c(κa < κ < κb) ∝ A2
R × κ3 ln2 κ , (3.47)
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which follows the expected universal low-frequency scaling for induced GWs [165, 166, 172]. On
the other hand, for α1 < α2 where there is a suppression of the spectrum as κ−2 we have that

ΩGW,c(κa < κ < κb) ∝ A2
R × κ4(µ2−µ1−1) ∝ P2

R(κ) . (3.48)

In a nutshell, if the spectrum is not steep enough, which corresponds to n < 3/2 for the
growth or n > −4 for the suppression, the induced GW spectrum is proportional to the
squared of the primordial spectrum. We show in figure 7 that the approximate power-law
behaviors described above fit well with the numerically computed induced GW spectrum. The
bump in the left plot of figure 7 is due to the typical resonance of induced GWs during the
radiation of the largest peak in the primordial spectrum, see figure 6. It is also interesting to
note that the induced GW spectrum is not very sensitive to the oscillations in the primordial
spectrum. This is because, as explained in refs. [175–177], the induced GWs are a secondary
effect and oscillations tend to smear out. That being said, O(1) oscillations in the primordial
spectrum do become visible in the induced GW spectrum [58, 175, 178].

The mass function of the PBH counterpart is studied in ref. [92] for Starobinsky’s
piecewise linear potential but due to the similarities of the resulting primordial spectrum (see
section 3.2), it will be very similar for the piecewise exponential potential. In addition to
the similarities, the high amplitude plateau for large κ1 might be producing too many small
PBHs, as commented in [92]. To avoid this, we should invoke the suppression of fluctuations
as in section 3.3. Furthermore, the main point of this paper is the analytical treatment in an
exact model and not the phenomenology of PBHs. For these reasons, we omit the calculation
of the PBH mass function and refer the interested reader to ref. [92] for further details.

4 δN formalism and the tail of the distribution

In section 3 we have studied the enhancement/suppression of linear primordial fluctuations
during inflation and their induced GW signal after inflation. For the calculation of the induced
GWs, we assumed that linear fluctuations are mostly Gaussian, which is expected to be a good
approximation since the GWs are induced by typical fluctuations. However, PBHs form from
large and very rare fluctuations, which highly depend on the tail of the PDF of primordial
fluctuations. The δN formalism provides a way to study the probability distribution of large
primordial curvature fluctuations, under the separate universe approach [73–77].

Intuitively speaking, the separate universe approach tells us that each Hubble patch
evolves according to the background equations of motion, including the contribution of any
superhorizon fluctuation, say δϕ, to the energy density inside each patch. The difference
in the “local” expansion of a given Hubble patch is then determined by the fluctuation
δϕ in that patch, the size of which is randomly distributed according to the PDF. At the
same time, the difference in the expansion measured in terms of e-folds from the end of
inflation, say δN , is related to the curvature perturbation R at the end of inflation, i.e.
δN = R. In this way, the δN formalism gives a non-linear relation between δϕ (evaluated
in the spatially flat slices) and R.

In our model, we have exact solutions for the background equations of motion and for the
fluctuations δϕ, both of which are important for the δN formalism. Since we have the exact
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solutions, we study each step relevant to δN formalism in some detail. First, we will have a
closer look at the general phase space trajectories. Second, we will study the solutions of
superhorizon perturbations from the perturbed background equations and the equations for
the mode functions. In this way, we will understand from which moment the δN formalism
is applicable. Lastly, we will use δN formalism to investigate non-Gaussianities and the tail
of the PDF. Recent references in this direction are [79–86].

4.1 Phase space trajectories and number of e-folds

To use the δN formalism, we need the total number of e-folds from the end of inflation to an
initial time with general initial conditions, given by quantum fluctuations exiting the Hubble
horizon. In other words, we have to compute how a given off-attractor trajectory modifies the
total number of e-folds. In section 2 we presented the general solutions in a parametric form,
namely we have ϕ(Z) and N(Z) in eqs. (2.17) and (2.18). To study trajectories in the phase
space though, it is more useful to express Z in terms of ϕ,N via eq. (2.11). To be consistent
with the recent literature, we use the notation π ≡ ϕ,N as in eq. (2.22). Then, we arrive at

ϕ = ϕ⋆ + 1
ω2

√
2
3

(
arctanh

[
π⋆√

6

]
− arctanh

[
π√
6

]
+ α ln

(
π⋆ −

√
6α

π −
√

6α

√
π2 − 6
π2

⋆ − 6

))
, (4.1)

N = N⋆ + 1
3ω2

(
α arctanh

[
π⋆√

6

]
− α arctanh

[
π√
6

]
+ ln

(
π⋆ −

√
6α

π −
√

6α

√
π2 − 6
π2

⋆ − 6

))
. (4.2)

From eq. (4.1) we find that any trajectory in phase space satisfies

F (ϕ, π) ≡

∣∣∣π −
√

6α
∣∣∣2α

(√
6 − π

)α+1 (√
6 + π

)α−1 × e
√

6ω2ϕ = constant . (4.3)

The case where the constant is exactly zero corresponds to the exact attractor solution.
For the number of e-folds it is more convenient to use eq. (4.1) to replace the logarithm
in eq. (4.2) for ϕ, which leads us to

N − N⋆ = ϕ − ϕ⋆√
6α

+ 1
3α

(
arctanh

[
π√
6

]
− arctanh

[
π⋆√

6

])
. (4.4)

Constant N slices in the phase space are then given by

ϕ +
√

2
3arctanh

[
π√
6

]
= constant . (4.5)

Although we can work with the general solution, we proceed with some simplifica-
tions for clarity. We will limit ourselves in the regime where π ≪

√
6 so that 3H2 ≈ V ,

which corresponds to the slow-roll regime. In the slow-roll regime, eqs. (4.1) and (4.2) are
approximately given by

ϕ − ϕ⋆ ≈ 1
3ω2

(
π̃⋆ − π̃ +

√
6α ln π̃⋆

π̃

)
, (4.6)

N − N⋆ ≈ 1
3ω2

(
α√
6

(π̃⋆ − π̃) + ln π̃⋆

π̃

)
= 1√

6α

(
ϕ − ϕ⋆ + 1

3 (π̃ − π̃⋆)
)

, (4.7)
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where for compactness we have introduced

π̃ = π −
√

6α. (4.8)

Note that the variable π̃ vanishes in the attractor trajectory. These simplifications also
allow us to compare our results with the case of ultra-slow-roll, which corresponds to the
limit α → 0. In the ultra-slow-roll limit we respectively have from eqs. (4.6) and (4.7) that
N − N⋆ = 1

3 ln(π⋆/π) and π − π⋆ = 3(ϕ − ϕ⋆), as in ref. [31]. Now, in contrast with the
implicit relations given by the exact solutions, we may isolate π̃ in terms of ϕ by inverting
eq. (4.6), namely

π̃√
6α

= W

[
π̃⋆√
6α

e
π̃⋆−3ω2(ϕ−ϕ⋆)√

6α

]
, (4.9)

where W is the Lambert function. Note that for α2 < α1 the argument of W is always
positive but for α1 < α2 we have that π̃⋆ is negative in the second phase and so one must
carefully use the appropriate branch of the Lambert function. With eq. (4.9) the number
of e-folds is a function of ϕ, ϕ⋆ and π⋆ only.

Before proceeding, let us study two limiting cases of eq. (4.9): close to the attractor
and far off the attractor. First, we note from eq. (4.9) that whenever π̃⋆ ∼ 0, i.e. we are
close to the attractor, we have

π̃ ≈ π̃⋆ × e
− 3ω2

√
6α

(ϕ−ϕ⋆)
, (4.10)

where we used that W [x ≪ 1] ≈ x. We thus see that the system approaches the attractor
exponentially fast. However, if we are very far from the attractor, e.g. when

√
6α ≪ π̃⋆ or

α ≪ ϕ⋆ − ϕ, we have that W [x ≫ 1] ≈ ln x and then

π̃ ≈ π̃⋆ − 3ω2(ϕ − ϕ⋆) , (4.11)

almost like in ultra-slow-roll. We show examples of trajectories in phase space in the piecewise
potential in figure 8. We note that eqs. (4.1) and (4.2), and the simplified version eqs. (4.6)
and (4.7), are valid for both phases with the appropriate parameters of each phase.

4.2 Evolution of superhorizon scalar fluctuations

The δN formalism assumes that δϕ is constant on superhorizon scales and that δπ quickly
decays and becomes unimportant. However, in a sudden transition, this might not be the
case and as we proceed to show, for some scales, δπ does not have enough time to decay
sufficiently for the standard δN approach to be valid.

Let us start by comparing the equations of motion for the perturbations, eq. (3.7) in
the exact k = 0 limit, and the perturbed background equations, eq. (2.23), in a given phase.
They are respectively given by

δϕ,NN + 1
2(6 − π2)δϕ,N + 1

2(6 − π2)
(
π −

√
6α
)2

δϕ = 0 , (4.12)
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Figure 8. Illustration of the trajectories involved in the δN formalism: a quantum fluctuation δϕ

exits the horizon and takes the trajectory out of the attractor background solution (in orange) to a
non-attractor one (in blue for the first phase and in red for the second). The new trajectories approach
the attractor exponentially fast and by the end of inflation, all of them end up in the second attractor.
On the left and right figures, we respectively show the cases when α2 < α1 and α2 > α1.

and

δπ,N + 1
2(6 − π2)δπ − π

(
π −

√
6α
)

δπ = 0 . (4.13)

These two equations are equivalent when

δπ = − 1
2π

(6 − π2)
(
π −

√
6α
)

δϕ = −π,N

π
δϕ , (4.14)

which is the relation between the perturbations of δπ and δϕ along a given background
trajectory by, e.g., perturbing eq. (4.3). For trajectories close to the attractor, we have that
the perturbed background equations (4.13) yield

δπ ∝ e−3ω2N ≈ e−3N . (4.15)

However, superhorizon fluctuations may behave differently, as we proceed to show. During
the first phase, δϕk on superhorizon scales is given by

δϕ1k ≈ C1 ×
(

1 + x2

4(µ1 − 1) + π4−µ1(i − cot(πµ1))
Γ[µ1]Γ[1 + µ1] x2µ1

)

≈ C1 ×
(

1 + (µ1κ1)2

µ1 − 1 e−2(1−3α2
1)(N1−N⋆) + π(i − cot(πµ1))

Γ[µ1]Γ[1 + µ1] (µ1κ1)2µ1e−3ω2
1(N1−N⋆)

)
,

(4.16)

where we expanded eq. (3.19) for small arguments. We recover here the subscript “k” to
denote quantum fluctuations and no subscript for the perturbed background solutions. As
clear from eq. (4.16), the leading order term in δπ1k = δϕ1k,N is δπ1k ∝ e−2N , which decays
slower than the perturbed background eq. (4.15), namely δπ ∝ e−3N . The slower decay per
se is not a problem but it may become important at the transition, as we shall see later.
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For superhorizon fluctuations after the transition, we have from eq. (3.28) that

δϕ2k ≈ (C2 + D2)
(

1 + (µ2κ2)2

µ2 − 1 e−2(1−3α2
2)(N2−N⋆)

)

+ (C2 − D2)π(i − cot(πµ2))
Γ[µ2]Γ[1 + µ2] (µ2κ2)2µ2e−3ω2

2(N2−N⋆) . (4.17)

We see that the coefficient of the constant and the e−2N terms are the same and, therefore,
once a mode is superhorizon the e−2N contribution quickly becomes negligible. This time,
however, depending on the value of k the coefficient of the third term in the Taylor series (4.17),
the one with e−3N , dominates. By equating the constant term with the latter we find that
δϕ2k can only be regarded as a constant for

N2 > N2,min = N⋆ + 1
3ω2

2
ln
∣∣∣∣ C2 − D2
|C2 + D2|

π(i − cot(πµ2))
Γ[µ2]Γ[1 + µ2] (µ2κ2)2µ2

∣∣∣∣ . (4.18)

Note that since µ ∼ 3/2 one may drop the cot(πµ2) term. Eq. (4.18) in the κ1 ≪ 1 limit gives

N2,min = N⋆ + 1
3ω2

2
ln
∣∣∣∣1 − α2

α1

∣∣∣∣
− 1

3ω2
2

ln
∣∣∣∣∣α2
α1

+ κ2
1

α1

(
µ1

µ1 − 1(α1 − α2µ1) − µ2
µ2 + 1

ω4
1

ω4
2

(α1 + α2µ2)
)∣∣∣∣∣ . (4.19)

In particular, we see that for κ2
1 ≪ α2/α1 we have N2,min − N⋆ ≈ 1

3 ln(α1/α2) which
corresponds to the end of the ultra-slow-roll phase in the case where α1 > α2 (see the
discussion around eq. (2.31)). For α1 < α2, we find that the e−3N term is barely important,
and δϕ can be regarded as constant soon after horizon crossing.

In figure 9 we show the value of N2,min for α1 > α2 on the left and α1 < α2 on the right.
We also show the e-fold corresponding to horizon crossing, which using eqs. (3.9), (2.25)
and (2.29) is given by

N − N⋆ =
(

µ − 1
2

)
ln
(

k

k⋆

)
. (4.20)

From figure 9 it is clear that for α1 > α2 and κ1 < 1, the fluctuation δϕ is not constant until
few e-folds after the matching point. This has implications for the standard δN approach
where δϕ is assumed to be constant. For α2 > α1 this effect is only important for scales
close to the matching scale k⋆. We also note that eq. (4.18) for the scale corresponding to
the dip in the primordial spectrum yields a divergent N2,min. This is because the constant
term vanishes exactly. This is artificial as quantum one-loop corrections are expected to
yield a non-vanishing dip [179, 180].5

4.3 Linear δN in the piecewise exponential potential

In section 4.2 we have found that δϕ can only be regarded as constant some time after
the matching point. This means that strictly speaking, we can only use the standard δN

5For an interesting discussion on the effects of one-loop corrections on large scales see refs. [72, 179, 181–188].
Also see ref. [61] for the one-loop calculation of models with enhancements due to resonances in oscillating
potential, which shows that the resonant models might be out of perturbative control.
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Figure 9. Number of e-folds versus wavenumber κ1. Blue dashed lines show the relation at horizon
crossing. The black dotted line shows the matching point N = N⋆. The red solid line is the minimum
number of e-folds, eq. (4.18), after which a mode δϕ2k may be regarded as constant. Thus, the δN

formalism where δϕ is assumed to be constant is only valid for N above the red line. On the left we
show the case where α2 = 10−3 α1 and on the right when α2 = 103 α1. See how only for α2 < α1 this
effect is important for κ1 < 1.

approach for N > N⋆. Nevertheless, one may wonder if δN still gives meaningful results for
N < N⋆. Let us show that, if that is the case, the momentum perturbation, which is often
neglected, of modes which left the horizon at ϕ < ϕ⋆ plays a very important role.

The total number of e-folds from the end of inflation back to an initial time for ϕ < ϕ⋆ reads

Ntot(ϕi < ϕ⋆) = N2e − N2⋆ + N1⋆ − N1i , (4.21)

where the subscripts 1 and 2 respectively refer to eq. (4.4), or eq. (4.6), evaluated during
the first and second phase and i and e respectively refer to the initial and end points. The
difference in the number of e-folds from a perturbed trajectory then reads

δN = Ntot(ϕi + δϕ, πi + δπ) − Ntot(ϕi, πi) , (4.22)

which applied to the current case yields

δN(ϕi < ϕ⋆) ≈ − 1√
6α1

(
δϕ + 1

3 (δπ − δπ1⋆)
)

− 1
3
√

6α2
(δπ2⋆ − δπe) . (4.23)

Interestingly, we see that while for ϕi ≪ ϕ⋆ the δN gets the right normalization, i.e. R =
− 1√

6α1
δϕ, this is not enough to explain the growth of fluctuations for κ1 < 1. In that respect,

we see that the coefficient in front of δπ2⋆ in eq. (4.23) is enhanced by a factor α1/α2 with
respect to δϕ. Thus, for modes close to the matching point, δπ did not have enough time to
decay and dominates the δN calculation. However, the results now depend on the time when
δπ is evaluated and whether one uses the results from the perturbed background equations
or the solutions for perturbations, which decay differently as we showed in section 4.2. We
found no straightforward way to generalize the δN calculation to include the δπ dependence
and recover the exact results of section 3 for the power spectrum of curvature fluctuations.
As this is out of the scope of this paper, we leave this issue for future work.
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Doing the same calculation for ϕi > ϕ⋆ we obtain

δN(ϕi > ϕ⋆) ≈ − 1√
6α2

(
δϕ + 1

3 (δπ − δπe)
)

. (4.24)

If the initial time is sufficiently far after the transition, we may neglect the momentum
contribution entirely and find that R = − 1√

6α2
δϕ which recovers the exact solution. Here we

used that if ϕe ≫ ϕi the momentum at the end of inflation is exponentially suppressed.

4.4 Local non-Gaussianity and probability distribution

Now that the range of applicability of the δN is clear, let us use the δN formalism to explore
the non-Gaussianity of the model and the tail of the PDF. We shall focus on ϕi > ϕ⋆, at
times when δϕ is constant according to the results of section 4.2. In that case, we have
from eq. (4.22) that

δN(ϕi > ϕ⋆) ≈ 1
3ω2

2

(
α√
6

(δπ + π̃e(ϕi, πi)− π̃e(ϕi +δϕ,πi +δπ))+ln π̃e(ϕi, πi)
π̃e(ϕi +δϕ,πi +δπ)

)
,

(4.25)

where π̃e(ϕi, πi) is given by eq. (4.9), explicitly

π̃e(ϕi, πi) =
√

6α2 W

[
π̃i√
6α2

e
π̃i+3ω2

2(ϕi−ϕe)
√

6α2

]
. (4.26)

For the moment, let us consider that ϕe is an arbitrary point where the off-attractor dynamics
ends. It may be the end of inflation or an abrupt change due to another piecewise exponential
potential. We anticipate that the results of the non-Gaussianity and the PDF will depend
on how close πe is to the attractor solution of the second phase.

Since we are evaluating the field perturbation δϕ in the regime when it is practically a
constant, we may neglect the initial momentum perturbation δπ as long as the system does
not transition to another ultra-slow-roll like phase. In this case, we may find the “Gaussian”
curvature perturbation Rg by expanding eq. (4.25) at linear order, which yields

δN(ϕi > ϕ⋆) ≈ −
1 + α2√

6 π̃e
√

6α2 + π̃e

δϕ + O(δϕ2) , (4.27)

and so we identify

Rg ≈ − δϕ√
6α2 + π̃e

= −δϕ

πe
, (4.28)

where to be consistent with our approximations, namely that π ≪
√

6, we drop terms
proportional to απ̃e. Rg is called the Gaussian variable since δϕ is mostly Gaussian if it
has a canonical kinetic term as in our case (2.1).

We find the value of local non-Gaussianity by the second-order expansion of eq. (4.25),
which gives

R ≈ Rg + 3
5fNLR2

g , (4.29)
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where

fNL ≈ 5
2

π̃e

π̃e +
√

6α2
= 5

2
πe −

√
6α2

πe
≈ − 5

12η . (4.30)

From eq. (4.30) we see that if the endpoint is very close to the attractor, where π̃e ≪ 1,
then it follows that fNL ≪ 1. In the exact limit where π̃e = 0 then fNL = 0.6 We also
see that for α2 < α1 (enhancement), π̃e is at most close to α1, which yields fNL ∼ 5/2 as
in ultra-slow-roll [31]. Interestingly, for α1 < α2 (suppression), we have that π̃e can be of
the order of α1, which leads to fNL < 0 and |fNL| ∝ α1/α2 ≫ 1. This result is consistent
with the fact that η can become very large in this case (see e.g. figure 4).7 This means
that ending the non-attractor transition in the suppression case (α1 < α2) can lead to very
large and negative non-Gaussianities.

To investigate the tail of the PDF, we need the full non-linear relation between Rg

and R. To do so, we start by expressing π̃e(ϕi + δϕ) in terms of δN = R from eq. (4.25),
which results in

π̃e(ϕi + δϕ) =
√

6
α2

W

[
α2π̃e(ϕi)√

6
e

α2π̃e(ϕi)√
6 × e−3ω2

2R
]

≈ π̃e(ϕi) × e−3ω2
2R , (4.31)

and in the last step we used that α2π̃e(ϕi) ≪ 1. We may also write δϕ in terms of π̃e(ϕi + δϕ)
by eq. (4.6), namely

δϕ ≈ 1
3ω2

2

(
π̃e(ϕi + δϕ) − π̃e(ϕi) +

√
6α2 ln π̃e(ϕi + δϕ)

π̃e(ϕi)

)
. (4.32)

Combining eqs. (4.31), (4.32) and (4.28) we arrive at

Rg ≈ 1
π̃e(ϕi) +

√
6α2

(√
6α2R + π̃e(ϕi)

3ω2
2

(
1 − e−3ω2

2R
))

. (4.33)

This is the general, approximate, relation between the Gaussian curvature fluctuation Rg

and the non-linear curvature fluctuation R.
With eq. (4.33) we can compute the PDF for R, which is given by

P [R] =
∣∣∣∣∂Rg

∂R

∣∣∣∣Pg[Rg] where Pg[Rg] = 1√
2π σR

e
−

R2
g

2σ2
R , (4.34)

and σ2
R =

∫
d ln k PRg (k) is the variance of the Gaussian curvature fluctuation. And, after

some simplifications, we arrive at

P [R] ≈
1 + π̃e(ϕi)√

6α2
e−3ω2

2R

√
2π σR

(
1 + π̃e(ϕi)√

6α2

) × exp

−

R + π̃e(ϕi)
3ω2

2
√

6α2

(
1 − e−3ω2

2R
)

√
2σR

(
1 + π̃e(ϕi)√

6α2

)


2  . (4.35)

6Strictly speaking fNL ̸= 0 because of the intrinsic non-Gaussianity of δϕ [189], which satisfies Maldacena’s
consistency relation [190] (see also ref. [91]). However, intrinsic non-Gaussianity of δϕ is proportional to ϵ and,
therefore, negligible.

7A large η might be in trouble with perturbativity but this issue can be solved by considering a sharp but
smooth transition. See the discussion in refs. [191–193].
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Let us discuss some interesting features of eq. (4.35), which is valid for any value of α1, α2 < 1.
First, we note that if the endpoint is in the attractor regime where π̃e(ϕi) ∼ 0, the PDF of R
is basically Gaussian. This is consistent with the results of ref. [31] for smooth transitions
using the in-in formalism and ref. [194] for Starobinsky’s piecewise linear potential using
the stochastic-δN formalism that takes into account quantum effects. Second, when there
is enhancement of fluctuations, i.e. α1 > α2, we may have that π̃e ≫

√
6α2. In that case,

we find the exponential tail e−3ω2
2R typical of ultra-slow-roll [79–82] and PBH formation is

also enhanced. Explicitly, we have in that limit that

P [R; π̃e ≫
√

6α2] ≈ e−3ω2
2R

√
2π σR

× exp
[
−

R2
g

2σ2
R

]
≈ e−3RPg[Rg] , (4.36)

where we used that ω2 ≈ 1 in the last step for easier comparison with, e.g., ref. [85], recovering
the results of exact ultra-slow-roll.

Lastly, when there is suppression of fluctuations, i.e. α1 < α2, it is possible that π̃e ∼ −α2.
This implies that the exponential tail is never important for this case but depending on
how close π̃e is to −

√
6α2 we have a large prefactor in the exponential of (4.35) which

suppresses PBH formation, consistent with the large negative non-Gaussianity we found
earlier. Concretely, we find that

P [R; π̃e ∼ −
√

6α2] ≈ 1
√

2π σR
(
1 + π̃e(ϕi)√

6α2

) × exp

− R2

2σ2
R

1 − 3ω2
2

2
R(

1 +
√

6α2
π̃e(ϕi)

)
2
 ,

(4.37)

where we Taylor expanded the Gaussian exponential for R < 1/3 and kept the next to
leading order in R. We see that for 1/3 > R >

(
1 +

√
6α2

π̃e(ϕi)

)−1
the second term in the

exponential dominates and we roughly have a dependence on e−R4 . For large R, i.e. R ≫ 1/3,
we find from eq. (4.35) that P [R] ≈ Pg[R; σ̃R], where we introduced an effective variance
σ̃R ≡ σR

(
1 + π̃e(ϕi)√

6α2

)
. Since we have that, for large R, σ̃R ≪ σR large fluctuations are

still approximately Gaussian but much more suppressed. Let us end by remarking that
it is quite interesting that using the δN formalism we arrived at eq. (4.35) which is valid
in various different situations.

5 Conclusions

We investigated the enhancement/suppression of primordial fluctuations during inflation in
the piecewise exponential potential. This model has exact background solutions for arbitrary
initial conditions as well as exact solutions for perturbations in the attractor. We found that
the same solutions are also valid for scalar field perturbations δϕ in non-attractor trajectories
as long as the scalar field is slowly rolling. This result allowed us to find close to exact
solutions for δϕ in a general slow-roll to slow-roll transition (eqs. (3.28), (3.33) and (3.34)).
The power spectrum of δϕ evaluated at the end of inflation is given by eq. (3.36), also
see figure 6. General features of the primordial spectrum only depend on the ratio of the
exponents of the potential and are consistent with the general analysis of refs. [67–72]. We
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showed how these features are imprinted in the induced GW spectrum in section 3.4 and
summarized them in figure 7. We also found that the final spectrum of curvature fluctuations
is similar to that of Starobinsky’s piecewise linear potential [92], which is consistent with
the fact that the enhancement/suppression is mostly due to a sudden change of vacuum at
the matching point. One interesting characteristic of the piecewise exponential potential
though is that we are able to find exact solutions for δϕ.

Most interestingly, exact background solutions for arbitrary initial conditions enabled us
to make use of the δN formalism to study the tail of the PDF of curvature fluctuations. With
the exact solutions for δϕ fluctuations we estimated from which moment on the standard
δN formalism is valid, i.e. by requiring that δϕ is constant and the momentum perturbation
δπ is irrelevant. This time is roughly a few e-folds after the matching point for the case
of enhancement and roughly soon after the matching point for the case of suppression (see
figure 9 for a summary). We found that if we try to use the δN formalism earlier than that
time, given by eq. (4.18), the momentum perturbation δπ becomes very important at the
matching point. This hints at a possible generalization of the δN formalism by also taking
into account δπ. However, as this is out of the scope of this paper, we left it for future work.

Nevertheless, the δN formalism is particularly powerful to study non-Gaussianities of
a model. We derived the general PDF for the non-linear curvature perturbation in the
piecewise exponential potential in eq. (4.35) for modes which exit the horizon during the
slow-roll to slow-roll transition. In the case of a single piecewise potential the transition is very
smooth and the resulting non-Gaussianity is negligible, consistent with the analysis of ref. [31].
However, our analysis is also valid for multiple piecewise exponential potentials. Therefore,
we considered that the transition may end abruptly due to an additional matching point.
In that case, non-Gaussianity and the PDF are sensitive to the end of the transition [31].
For the ultra-slow-roll like transition, i.e. enhancement of the spectrum, non-Gaussianity
is positive and at most O(1) as expected [31] and the exponential tail of the PDF [79–82]
may arise, depending on when the transition ends. For the suppression of fluctuations, we
find that non-Gaussianity is negative and can be very large. Furthermore, we find that the
PDF does not have a relevant exponential tail but that the main effect is a large prefactor
in the “Gaussian” exponential. It is remarkable that the PDF P [R] (4.35) derived using
the δN is applicable in various different situations.

Our work can be extended in several ways. First, it would be interesting to generalize
our results for the primordial spectrum of a single exponential potential to a succession of
piecewise potentials. It is plausible that depending on the different matching points the
growth of fluctuations exceeds the k4 bound [68], as in ref. [70]. It would also be interesting
to repeat the analysis in the case when the slope in the second phase changes signs and
eventually the system reaches ϕ,N = 0 before rolling backward, as in ref. [63]. This case has
been shown to abundantly produce tiny PBHs [63]. We note that the analysis of this paper
might not be straightforwardly applicable to this case since the scalar field spends most of
the time in non-attractor trajectories, as it must first reach ϕ,N = 0 before approaching the
attractor solution. With the analytical background solutions, one may also be able to make
use of the δN formalism to investigate the PDF of curvature fluctuations. Lastly, it would
be intriguing to do the one-loop calculations in our exact model.
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A Power-law inflation and CMB scales

Here we briefly compare power-law inflation with CMB results [2]. From CMB measurements
we have that at the CMB pivot scale (kpivot ≈ 0.05Mpc−1)

PR ≈ 2 × 10−9 . and ns − 1 ≈ 0.035 . (A.1)

Applied to the spectrum from power-law inflation (3.18) gives

p ≈ 58 and H⋆ ≈ 3 × 10−5Mpl . (A.2)

In the attractor regime, this corresponds to

λ ≈ 0.18 and V⋆e−λϕpivot = 9
64H2

⋆ M2
pl(6 − λ2

1) ≈ 7 × 10−10M4
pl . (A.3)

The bound on the tensor to scalar ratio is [2]

r = Pt

PR
= 16

p
< 0.06 . (A.4)

But this requires p > 266. As it is well-known, power-law inflation predicts too many
primordial tensor modes. Nevertheless, the tensor-to-scalar ratio can be suppressed by the
curvaton mechanism [195–197]. Nevertheless, we stress that the main point of our paper is
the analytical treatment of the enhancement/suppression and not the exact fit to CMB data.
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