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A B S T R A C T   

The alkaline comet assay is frequently used as in vivo follow-up test within different regulatory environments to 
characterize the DNA-damaging potential of different test items. The corresponding OECD Test guideline 489 
highlights the importance of statistical analyses and historical control data (HCD) but does not provide detailed 
procedures. Therefore, the working group “Statistics” of the German-speaking Society for Environmental Mu-
tation Research (GUM) collected HCD from five laboratories and >200 comet assay studies and performed 
several statistical analyses. Key results included that (I) observed large inter-laboratory effects argue against the 
use of absolute quality thresholds, (II) > 50% zero values on a slide are considered problematic, due to their 
influence on slide or animal summary statistics, (III) the type of summarizing measure for single-cell data (e.g., 
median, arithmetic and geometric mean) may lead to extreme differences in resulting animal tail intensities and 
study outcome in the HCD. These summarizing values increase the reliability of analysis results by better meeting 
statistical model assumptions, but at the cost of information loss. Furthermore, the relation between negative and 
positive control groups in the data set was always satisfactorily (or sufficiently) based on ratio, difference and 
quantile analyses.   

1. Introduction 

Originally developed in the 1980s (Ostling and Johanson, 1984; 

Singh et al., 1988), the alkaline comet assay (also known as single-cell 
gel electrophoresis) is nowadays an integral part of in vivo genotox-
icity testing strategies among others for industrial chemicals, pharma-
ceuticals, food ingredients, biocides and pesticides. It has been 
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introduced into several guidelines including the ICH guideline S2 (R1) on 
genotoxicity testing and data interpretation for pharmaceuticals intended for 
human use (ICH S2) and the Scientific opinion on genotoxicity testing 
strategies applicable to food and feed safety assessment of the European 
Food Safety Authority (EFSA Scientific Committee, 2011). The in vivo 
alkaline comet assay is recommended as follow-up option for chemicals 
with a positive result in vitro gene mutation tests as stipulated by the 
Reach Regulation (European Chemicals Agency, 2017). 

The assay detects DNA damage, i.e., DNA single- and double-strand 
breaks, alkali-labile sites (e.g., apurinic/apyrimidinic sites), as well as 
lesions resulting from incomplete DNA excision repair (Speit et al., 
2015). The migration of DNA fragments towards the anode during 
electrophoresis of agarose-embedded and subsequently lysed single-cell 
suspensions represents the basic principle of the alkaline comet assay. 
DNA damage is finally quantified by analysing the percentage of DNA in 
the comet tail (tail intensity, or % DNA in tail). To further specify DNA 
damage, enzyme-modified versions of the alkaline comet assay using an 
incubation step with, e.g., formamidopyrimidine DNA glycosylase or 
human 8-oxoguanine DNA glycosylase before electrophoresis have been 
developed to enable detection of DNA lesions such as oxidized pyrimi-
dines or purines (Muruzabal et al., 2021). 

The alkaline comet assay can detect nuclear DNA damage in virtually 
all eukaryotic cell types. Its versatility can also be seen from the wide 
range of species and tissues/organs that can be assessed. The most 
frequently used organ in the in vivo mammalian alkaline comet assay is 
the liver, due to its high metabolic capacity and ease of isolation of 
single-cell suspensions. Sites of first contact like stomach, intestine, skin 
or lung as well as kidney, bladder and other tissues have also been 
investigated in comet assay experiments (Sasaki et al., 2008). The assay 
is not limited to proliferating cells, it can be combined with other in vivo 
genotoxicity studies like the in vivo micronucleus assay and can be in-
tegrated into repeated-dose toxicity studies, thereby contributing to 
implementation of the 3 R principles according to Russel & Burch 
(Vasquez, 2010, Recio et al., 2010; Bowen et al., 2011, Rothfuss et al., 
2010). When evaluating published in vivo studies with 67 carcinogens 
that were negative or equivocal in the in vivo micronucleus test, the in 
vivo alkaline comet assay demonstrated higher sensitivity (detection of 
>90% of carcinogens), compared to transgenic rodent studies (TGR; 
detection of >50%), and unscheduled DNA synthesis (UDS; detection of 
<20%). The authors therefore concluded that the in vivo comet assay 

should play a more prominent role in regulatory testing strategies for 
detection of (rodent) carcinogens than the UDS test (Kirkland and Speit, 
2008). Following an extensive international validation, led by the Jap-
anese Center for the Validation of Alternative Methods (JaCVAM) (Uno 
et al., 2015), a respective OECD Guideline, i.e., No. 489 (“In Vivo 
Mammalian Alkaline Comet Assay”) was adopted in 2014 and later 
updated in 2016. 

During the last 20 years, different expert groups developed protocols 
for the conduct of the in vivo alkaline comet assay (Tice et al., 2000; 
Hartmann, 2003; Burlinson et al., 2007; Speit et al., 2015). They mainly 
cover aspects like doses, tissues, slide preparation, lysis, electrophoresis, 
measures of cytotoxicity, image analysis, and scoring. Besides recom-
mendations on experimental procedures and regarding minimum in-
formation for reporting of comet assay studies (MIRCA; Møller et al., 
2020), some publications also deal with specific aspects of the statistical 
evaluation of comet assay data. Amongst others, the importance of the 
experimental unit, summary measures, distributions, data trans-
formations, and confidence intervals (CIs) were discussed (Lovell et al., 
1999; Wiklund and Agurell, 2003; Lovell and Omori, 2008; Bright et al., 
2011). Several of these statistical considerations have become an inte-
gral part of the OECD Test guideline (TG) 489 (OECD, 2016), which 
highlights the importance of historical control data and statistical ana-
lyses, and, albeit not detailed, gives practical advice on data processing 
and feasible statistical methods. 

As given in OECD TG 489, study acceptance requires that “the con-
current negative control is considered acceptable for addition to the labora-
tory historical negative control database” and “concurrent positive controls 
should induce responses that are compatible with those generated in the 
historical positive control database”. Thus, to assess the validity of an in 
vivo comet assay study, compilation and analysis of historical control 
data is key. To finally evaluate the outcome of a study (positive or 
negative) it must be analysed whether any “test concentrations exhibit a 
statistically significant increase compared with the concurrent negative con-
trol”, whether “there is (a) concentration-related increase when evaluated 
with an appropriate trend test” and whether the “results are inside or outside 
the distribution of the historical negative control data”. This is even more 
important when results do not fulfill all criteria for a clear negative or 
positive result. In such cases, the outcome of a study is largely influenced 
by the quality of historical control data and the type of statistical 
methods used. 

Abbreviations 

ICH International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use 

3 R Replace: Reduce: Refine 
OECD Organization for Economic Co-operation and Development 
TG Test guideline 
GUM Society for Environmental Mutation Research 
LMA low melting point agarose 
NMA normal melting point agarose 
BL Blood 
LI Liver 
LU Lung 
DU Duodenum 
ST Stomach 
GLP Good Laboratory Practice 
TL Tail length 
TM Tail moment 
TI Tail intensity 
JaCVAM Japanese Center for the Validation of Alternative Methods 
PI Propidium iodide 
SG SYBR Gold 

MS Multispot 
SS Standard slide 
NC Negative/vehicle control 
PC Positive control, HCD Historical control data 
ANOVA Analysis of Variance 
ArithM Arithmetic mean 
TrArithM Trimmed arithmetic mean 
GeoM Geometric mean 
TrGeoM Trimmed geometric mean 
Med Median 
AQU Aqueous 
CEB Cellulose-based 
NIS Non-ionic surfactants 
OIL Oil 
OTH Others 
IQR Interquartile range 
IWGT International Workshop on Genotoxicity Testing 
EMS Ethyl methanesulfonate 
GI Gastrointestinal 
SAS Statistical Analysis System 
VCA Variance components analysis 
CIs Confidence intervals  
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For these reasons, the working group “Statistics” of the German- 
speaking Society for Environmental Mutation Research (“Gesellschaft 
für Umwelt-Mutationsforschung e.V.“, GUM), consisting of genetic 
toxicologists and statisticians from academia, the regulatory body, and 
industry, set out to provide recommendations for statistical analysis of in 
vivo alkaline comet assay data. A large set of male and female rat in vivo 
comet assay data (>200 studies) from five different laboratories/com-
panies were collected, including single-cell data from several organs 
(liver, lung, stomach, duodenum, and blood) of negative and positive 
control animals. Finally, mainly male rats of different strains were used 
for statistical analysis comprising in total 1081 negative and 940 posi-
tive control animals (for more details see 2.2). Using this comprehensive 
“real-world” data set, empirical data distributions were depicted, the 
impact of different summary measures was analysed, and the interre-
lationship between negative and positive control data was described. In 
addition, the handling of zero-values was critically reflected, and vari-
ance components analysis was carried out based on linear random (or 
mixed) effect models in order to provide insights in different sources of 
random variation (within and between laboratory variation). Compared 
to previously mentioned work, we used a large real data set rather than 
purely simulated data or simulated data based on a few individual 
studies. 

These in-depth investigations allowed us to better specify several 
aspects of data handling and statistical analysis, only briefly mentioned 
in OECD TG 489, and to provide further recommendations for scientists 
and statisticians regarding the design, data processing, and statistical 
analysis of in vivo comet assays studies. 

2. Materials & methods 

2.1. Data/experimental procedure 

Our data set was collected from 5 laboratories (labelled “A” to “E” in 
the following sections) covering a period of 10 years (2008–2018). 
Notably, about 48% of the data were generated according to OECD TG 
489, and, thus, from 2014 onward (see Table 1). There were some dif-
ferences in certain slide preparation steps and in the final analysis of 
DNA damage between laboratories and/or over the time of performance. 
Details of the respective protocols are given in Table 1. In general, slide 
preparation from organs was performed following the recommendations 
of the respective versions of OECD TG 489. Experiments, which were 
performed before issuance of OECD TG 489 in 2014, were included in 
the statistical analyses, when the used protocol fulfilled the re-
quirements of OECD TG 489. 

In brief, animals were sacrificed according to the applicable local 
animal welfare regulations. For keeping inter-sample variability to a 
minimum, tissues and cell suspensions were kept ice-cold until slide 
preparation, and slide preparation was done within 1 h from animal 
sacrifice. Shortly after sacrifice the abdomen was opened and the organ 

of choice was prepared carefully, placed in pre-cooled buffer, and single- 
cell suspensions were generated from liver and lung tissue by e.g., cut-
ting the tissue into small pieces by mincing with a scissor. In case of 
duodenum and stomach the cell layer of the inner surface was carefully 
wettened with pre-cooled buffer and scratched with a cell scraper after 
fixation on a preparation board, or the tissues were processed by 
mincing in pre-cooled mincing buffer. The minced or scratched tissues 
were transferred into a tube already containing pre-cooled tissue buffer, 
whereas blood was directly pipetted into pre-cooled tissue buffer for 
washing. Samples where then washed by centrifugation, subsequently 
mixed with low melting point agarose (LMA, about 37 ◦C) and pipetted 
onto a microscopic slide, pre-coated with normal melting point agarose 
(NMA). The cell-containing agarose layer was then covered with a 
coverslip and cooled for hardening. After removal of the coverslip a 
third agarose layer (LMA) was added and again a coverslip was placed 
on top until hardening. In the next step the coverslip was removed, and 
the slides were transferred into lysis buffer and incubated for at least 1 h 
in the refrigerator. The slides were randomly placed into a horizontal 
electrophoresis chamber and were covered with alkaline electrophoresis 
buffer. After an unwinding period, electrophoresis was started at a 
constant V/cm, initially adjusting the buffer volume to achieve the 
desired current. At the end of electrophoresis, slides were transferred to 
neutralization buffer followed by an optional dehydration step using 
ethanol and air drying or storage in a humid box before direct analysis. 
All steps from the removal of the organ out of the organism until elec-
trophoresis were done on ice using pre-cooled solutions (about 4 ◦C) and 
protected from direct sunlight. The slides were analysed regarding DNA 
strand break induction after staining with a certain fluorescence dye 
using a fluorescence microscope. The slides were scored by using image 
analysis systems, i.e., Comet Assay III or IV (INSTEM, UK) or Komet GLP 
(Andor, UK). 

The used data set contained raw data on a single-cell level from 
negative/vehicle (NC) and positive control (PC) animals of 215 comet 
assay experiments. Notably, the number of cells per slide (50–250), the 
number of slides per animal (2–5), and the number of animals per group 
(5–10) varied between the laboratories and certain experiments. As the 
data set comprised studies from 2008 to 2018, a minimum number of 
cells per animal according to OECD TG 489 in its updated version (150 
cells per tissue per animal) was present in 48 % (420/882) of the animals 
only (see Table 1 and S2). 

A total of 1126 animals in the negative control groups and 1109 
animals in the positive control group were collected and analysed in the 
five organs as listed in Tables 1 and i.e., blood (BL), liver (LI), lung (LU), 
duodenum (DU), and stomach (ST). As the data set was most compre-
hensive for liver tissue, the liver was used as primary organ for most of 
the statistical analyses. 

In general, comet assay data are structured on 3 levels, i.e., cell, slide, 
and animal level, with 50–100 cells per slide, and 2–3 slides per animal. 
In the current data set, typically 3 slides were available per animal with 

Table 1 
Data set overview focussing on negative (NC) and positive control (PC) animals after removal of studies with mice and female animals (see chapter 2.2).  

Laboratory Organ Total number 
of animals 

Number of 
studies 

Median number and 
range of animals per 
study 

Study 
performance 

Number of NC and PC animals with analysis of 

50 cells/ 
animal 

100 cells/ 
animal 

150 cells/ 
animal 

200 cells/ 
animal 

250 cells/ 
animal 

A BL 57 7 4 (3–8) 2009–2011 0 0 57 0 0 
A LI 64 8 4 (3–8) 2009–2012 0 7 51 0 6 
A LU 52 6 5 (3–8) 2009–2010 0 1 45 0 6 
B DU 230 21 5 (5–7) 2011–2017 6 93 121 10 0 
B LI 659 62 6 (5–10) 2014–2017 6 89 563 1 0 
B ST 176 16 6 (5–6) 2014–2017 5 24 147 0 0 
C LI 50 5 5 (5–5) 2008–2010 0 50 0 0 0 
C ST 50 5 5 (5–5) 2008–2010 1 49 0 0 0 
D LI 96 8 6 (6–6) 2013–2018 0 0 96 0 0 
E LI 587 53 6 (3–12) 2004–2013 0 587 0 0 0 

Blood (BL), liver (LI), lung (LU), duodenum (DU), and stomach (ST). 

T. Tug et al.                                                                                                                                                                                                                                      



Regulatory Toxicology and Pharmacology 148 (2024) 105583

4

50 cells analysed per slide. However, there were single studies, e.g., lab 
“E" for liver or lab “C" for liver, where, due to the common practice at 
that time, 100 cells from 2 slides were used per animal. Before starting 
statistical analyses, data quality was checked and finally found to be 
good. Notably, all experiments were carried out according to the prin-
ciples of Good Laboratory Practice (GLP) (Chemicals Act,), Appendix 1. 

On the single-cell level, different readouts can be used such as tail 
intensity (TI; synonyms: tail DNA or % DNA in tail), tail length (TL), and 
tail moment (TM; formula considering both tail intensity and tail length) 
(Wiklund and Agurell, 2003; Uno et al., 2015). For the present statistical 
analyses, TI was used as main measure, based on its linearity over a wide 
range and its direct correlation with the amount of DNA strand breaks, 
both justifying its recommendation by OECD TG 489. 

In addition to cell data, the laboratories were asked to fill for each 
individual study two methods questionnaires asking for animal strain, 
study design, slide preparation, cell lysis, electrophoresis, staining and 
analysis and study design, vehicle, positive controls, test species, organ 
used, and slide preparation, respectively (see Supplement Table S1 
“Method and Experiment”). 

Prior to data analysis, the quality of the data was checked. Data 
quality was assessed using the R package dataquieR, which is described 
in Schmidt et al. (2021). In addition, as recommended by OECD TG 489, 
control charts were generated to examine stability of the historical 
negative control data (HCD) over time. These were created for each 
laboratory and organ using the ggQC R package (Grey, 2018) and can be 
found as Supplemental Fig. S3. Notably, most of the studies were within 
the control limits set by company and organ, thus supporting appro-
priate data quality. Within the quality control context control limits here 
refer to means plus/minus three standard deviations. In the rest of the 
manuscript, in this paper the term “control limit” will be used 
generically. 

Many variables were collected from the almost 50 methodological 
questions. Unfortunately, some variables were dropped after the first 
analysis, because they were not identifiable (different settings between 
laboratories but always the same setting within a laboratory) or highly 
imbalanced (within a laboratory, almost always the same setting is 
used): Duration of electrophoresis (20, 30 or 40 min), lysis time (12, 16, 
24 min), microscopic magnification (20-, 40-, 200-fold), sandwich 
method (Yes/No), staining (Propidium iodide (PI)/SYBR Gold (SG)), 
system version (4.11, 4.1.1, 7.1.0.23, Comet IV, Version 3.0), tissue 
sampling within 10 min (Yes/No), electrophoresis buffer (13, alkaline 
buffer 300 mM NaOH, 1 mM EDTA, pH > 13), type of slide (Multispot 
(MS)/Standard slide (SS)), unwinding time (20, 30 min) and voltage 
(0.7, 1 V/cm). But other factors such as vehicle type were considered in 
further analyses. The types of vehicles were grouped into five categories. 
For details, see Table S2. 

2.2. Data processing 

To improve homogeneity of data and, thus, interpretability of results, 
88 of the 1169 (7.5%) NC animals and 81 (8.6 %) of the 1021 PC animals 
were removed prior to statistical analyses (Table S4). In more detail, 
initially, a small number of mice (6 NC and 6 PC animals) were removed, 
because all other experiments were performed with rats (99.5%), 
resulting in 2178 animals, 1163 NC and 1015 PC animals. In a second 
step, all experimental data of the few female rats, i.e., 82 (7.0%) NC and 
75 (7.3%) PC animals were excluded. The remaining 2021 animals 
(1081 NC and 940 PC animals) were all male rats (strains: Sprague- 
Dawley, Fisher 344 or Wistar HAN), and were finally included in sta-
tistical analyses. 

2.3. Basic statistical methods 

Basic statistical methods used for data description refer to descriptive 
statistical terms and methods such as (shapes of) distributions and 
summary measures. An understanding of the concepts is required to 

grasp statistical analyses that follow, which is why a short recapitulation 
is offered below. It is not required to understand in detail the more 
elaborate statistical methods, such as mixed effect models (Section 2.4), 
to follow the discussions. We refer interested readers to Heumann et al. 
(2016) for details on basic statistical concepts and to Brown (2021) for 
details on mixed-effect models. 

We here focused on the descriptive nature of empirical distributions 
and did not focus on more theoretical concepts. The empirical distri-
bution of an observed set of data can typically be described in qualitative 
terms such as symmetry, (right) skewness, and uni- or bimodality. 
Additionally, outliers or extreme values might be present in a data set. In 
Fig. S5, generated data for such scenarios are depicted with the corre-
sponding mean and median values. 

In the following, relevant summary measures are explained that will 
be of relevance in section 3.3. For a set of observations x1, …, xn, the 
(arithmetic) mean is calculated as x = 1

n (x1 + … + xn). For the calcu-
lation of a median, data are arranged in ascending order such that x(1) ≤

… ≤ x(n) and the median xmed is the value x((n+1)/2) in the middle if n is 
odd, or the average of the two values in the middle (x(n/2) + x(n/2 + 1))/2 
if n is even. The median is a robust measure since it is not influenced by 
outliers. Figure S5 a) - c) depicts how the mean is influenced by extreme 
values, but the median remains the same regardless of the presence of 
extreme values. 

The geometric mean xgeom is calculated as ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅x1 • … • xnn
√ . It averages 

the values on a multiplicative scale and is appropriate for right skewed 
data. A practical challenge for the geometric mean is the occurrence of 
zero-values in comet assay data sets on the single-cell level, as discussed 
in detail in Section 3.2. 

Both arithmetic and geometric mean are directly influenced by a 
single value change. If the largest value is extreme or an outlier, these 
summarizing measures become relatively large (compared to the me-
dian). To render the estimate for arithmetic or geometric mean more 
robust against extreme values, one can trim or remove a certain fraction 
of p% of the largest and smallest values. For NC data in the comet assay, 
it is only necessary to trim the largest p% of the data, as the smaller 
values are naturally bounded by zero. 

2.4. Variance components analysis 

To understand the variability between and within the studies, sta-
tistical modelling was done for the TI values obtained from the livers of 
male rats only, as all laboratories delivered respective data. Based on 
linear random (or mixed) effects models (Searle et al., 2006), the total 
variance of the observations in each laboratory was decomposed into 
variance components that can explain the between vs. the within study 
variation following the idea of Dertinger et al. (2023). 

It is noteworthy that the hierarchical structure of the HCD (different 
studies, several animals in each study, several slides per animal) leads to 
the violation of one of the key assumptions on which simple linear 
models (e.g., used for Analysis of Variance (ANOVA)) are based on, i.e., 
the assumption that all observations are (stochastically) independent 
from each other and hence, are uncorrelated, because all cells that 
belong to a certain randomization unit (e.g., a certain animal) might 
tend to show a similar reaction (e.g., above average TI). A common way 
to model such dependencies between the experimental units is the in-
clusion of random effects that reflect the experimental design. In so 
called random (or mixed) effects models, each random factor is assumed 
to follow a normal distribution, such that the total variance of the data 
can be expressed as the sum of variance components that correspond to a 
certain randomization structure. This kind of model can thus answer the 
question how much variance can be explained by the different studies, 
by the different animals in each study and by the slides per animal. 

Generally, measured percentages (such as TI) tend to be heavily right 
skewed (Fig. S6) and cannot always be centered by log10- 
transformations, especially if they contain many zero-values (Fig. 1A, 
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chapter 3.1). Hence, the assumption of normal distributed and variance 
homogeneous random effects is violated, if one fits a random (or mixed) 
effects model to the log10-transformed data on cell level (see supple-
mentary material S7 and S7a-e). 

Therefore, in a first step, the observations were aggregated as median 
TI per slide. Based on these data, random effects models were fit, taking 
studies, animals, and slides as random factors. But this procedure did not 
cure violation of the model assumptions up to a satisfactory level (since 
the right skewness persists) and therefore, was not pursued further. 

In a last step, the data was aggregated on the animal level, as rec-
ommended in OECD TG 489. Initially, the median per slide was 
computed and then the slide medians were averaged resulting in one 
value per animal. Linear random (or mixed) effects models were fit to 
log10-transformed TI values on animal level, taking the studies as 
random effects, as recommended by Bright et al. (2011). If a laboratory 
(B and E) used different rat strains, the strains were modelled as fixed 
effects in order to test if the strains have an impact on TIs (via type three 
ANOVA using Kenward Roger approximation of degrees of freedom). 

The aggregation on animal level could cure violation of the model 
assumptions up to a certain extent, but for some laboratories the log10- 
transformation led to slight right skewness (laboratory A) or slight 
bimodality (laboratory D). Diagnostic plots for each of the fitted models 
are given in the supplementary material (S7 and S7a-e). By modelling TI 
values aggregated on animal level, it is possible to decompose the total 
variance of the aggregated observations into two variance components: 
The between study variance that reflects the variability between his-
torical studies and the within study (residual) variance which reflects 
the variability that cannot be explained by the differences between the 
different historical studies. 

For each laboratory, the estimates for both variance components are 
depicted in Fig. 7 B together with their 95% confidence intervals. In a 
recent publication of Dertinger et al. (2023) it was stated that, if the 
between study variance is the major source of variation „comparisons 
between study data and the HCD bounds are less useful, and consequentially, 

less emphasis should be placed on using HCD to contextualize a particular 
study’s results “. 

To analyse between and within study variation, the ratio between the 
two estimated variance components was computed. If the between study 
variance is higher than the within study variance, the ratio will be 
greater than one, and it will be smaller than one, if the within study 
variance is higher than the between study variance. In other words, one 
can test the null hypothesis H0: between study variance/within study 
variance = 1. This can be done by application of a confidence interval. If 
the corresponding 95% confidence interval of the ratio does not cover 
one (the H0), it can be concluded that the two variance components 
differ significantly from each other (Fig. 7 in chapter 3.6). 

2.5. Computational details 

Data management, plotting and statistical modelling was done using 
R (R Core Team, 2022). Data management and plotting of the data was 
done based on the tidyverse packages (Wickham et al., 2019). Random 
and mixed effects models were fitted using lme4 (Bates et al., 2015), and 
type three ANOVA was done based on lmerTest (Kuznetsova et al., 
2017). The CIs depicted in Fig. 7A and B in chapter 3.6 are based on a 
parametric bootstrap and were calculated using lme4::bootMer(). 
The QQ-plots in the supplementary materials were obtained using the 
hnp package (Moral et al., 2017). The R code regarding the variance 
components analysis is given in supplementary material S7 and S7a-e. 
Data quality was assessed using the R package dataquieR (Schmidt 
et al., 2021) and ggQC (Grey, 2018). 

3. Results 

3.1. Data distributions 

As a rough overview, cell-level negative control values across studies 
and animals were agglomerated while stratifying for organ and 

Fig. 1. (A) Left: Distribution of TI values for negative controls after adding + 0.001 on the cell level and log-transformation, stratified by organs and laboratories 
(A–E). For better interpretability, the values on the x-axis indicate the values prior to log-transformation, i.e., the original values with constant 0.001 added. Right: 
For laboratory B and D, the liver values are displayed again but without the peak of (original) zero-values; (B): Distribution of TI values for negative controls after 
summarizing cell-level + 0.001 values using the median and then the resulting slide-level values using the arithmetic mean on a logarithmic scale. 
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laboratory (Supplementary S4). To obtain an overview of the data, there 
was no further stratification by other factors such as strain, electro-
phoresis time or vehicle type (cf. Chapter 3.4). For the most abundant 
organ liver, median TI values across all laboratories ranged from 0.050 
% (B) to 3.050 % (E), whereas for stomach, the median TI values 
amounted to 4.022 % (C) and 8.719 % (B). Single laboratories also 
provided data for blood (laboratory A, median TI: 1.106 %; 0.05 and 
0.95 quantiles: 0.031 and 6.981, respectively), lung (laboratory A, me-
dian TI: 2.870 %, 0.05 and 0.95 quantiles: 0.126 and 15.765, respec-
tively), and duodenum (laboratory B, median TI: 4.109 %, 0.05 and 0.95 
quantiles: 0.027 and 26.466, respectively). Control charts for data 
quality were generated (see supplementary S3) and can provide further 
initial impressions of the laboratories and organs over time. 

As TI data on the single-cell level cannot take values lower than zero, 
a normal distribution is not expected, and a more right skewed data 
distribution is observed. To deal with right skewed data, a log- 
transformation can be applied, but only after addition of a small con-
stant. Transformation is depicted in Fig. 1A and shows a peak of zero- 
values for some laboratory and organ combinations. Both abundance 
of zero-values and logarithmic transformations are discussed in Section 
3.2. In general, logarithmic transformation obviously helped in obtain-
ing a more normal or bell-shaped data distribution, compared to the 
more right skewed raw data. Please note that in the random and mixed 
effects models applied in this study, it is always assumed that the 
random effects that describe both the randomization structure and the 
residuals (random noise that remains unexplained by the model) follow 

a normal distribution (see Section 2.4 and supplementary materials). 
The right skewness of the empirical distribution of the NC data thus 
indicated that the assumption of normality for the random effects was 
violated. 

Interestingly, a bimodal distribution on cell level was noted for liver 
data of laboratory E after transformation (Fig. 1A). Due to a high number 
of zero values, in some cases there were peaks at 0.001 at the left of the 
data distributions, which is caused by the added small constant of 0.001. 
It was obvious that the recommended transformation (OECD TG 489) 
does not fully yield symmetrically distributed data, as discussed in detail 
in Section 3.2. Please note that for most, but not all (see 3.6), statistical 
analyses the constant of 0.001 was added on the single-cell level, in 
accordance with OECD TG 489. 

The main experimental unit in the in vivo comet assay is the animal 
(Lovell and Omori, 2008), and not the cell. Due to the hierarchical 
experimental design, the guideline recommends the aggregation of ob-
servations on animal level by the calculation of the medians of the cell 
level values of each slide and subsequently the arithmetic means of the 
slide medians. The empirical distributions of the used “real world” data 
set on the animal level are depicted in Fig. 1B. By respectively sum-
marizing the data, no zero-peaks remained and for some organs, the data 
appeared more symmetrical (e.g., liver data of laboratory A). Notably, 
bimodality of the single-cell liver data of laboratory E disappeared on 
the animal level. In contrast, for liver data of laboratory D, tendencies 
towards bimodality occurred on the animal level, which were not pre-
sent on cell level. Investigations showed that the study year, and related 

Fig. 2. (A) Violin plots of single-cell negative control data of five representative studies with five or six animals each for liver (top row) or stomach (bottom row) of 
laboratory B (left), C (middle) and E (right). The data per animal (the 5–6 panels within each sub-graphic) is subdivided into 2 or 3 available slides. For laboratory E, 
the red horizontal line represents the median of all negative control liver cell values + 0.001 to help to see the bimodality. (B) Regular boxplots of proportions of 
zero-values in all analysed slides stratified by organ and laboratory (A–E). The measurements of all studies for a laboratory and organ are summarized in one boxplot. 
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unknown factors, might be the cause of the bimodality (Fig. S8). 
Fig. 2A shows laboratory specific differences based on liver and 

stomach negative control data from representative studies on cell level. 
Comparing the laboratories across the five panels (see Fig. 2A), clear 
differences in the TI distributions can be noted. This includes mean TI 
and amount of zero-values. For example, there are more zero-values 
within the laboratory B data set, and generally the stomach TI values 
are larger than those of the liver. For laboratory E the bimodal distri-
bution of the single-cell measurements is even present within a single 
slide. A statistical overview of the original, negative control single-cell 
TI data by organ and laboratory is given in Fig. S9. 

3.2. Impact of zero handling 

Zero-values are a central challenge for statistical analyses and not 
rare in comet assay experiments. Zero-values on the cell level can occur 
in comet assays especially on slides of negative control animals, due to 
diverse technical reasons (Collins et al., 2014). The presence of a peak in 
the left part of the histograms given in Figs. S6 and 1A (chapter 3.1) 
reflects the amount of zero-values in the raw data sets, measured by the 
respective laboratory for the respective organ. For liver samples of 
laboratories B and D half of the analysed slides contain zero-values 
above 15% or 20% of total cells analysed, respectively (Fig. 2B), 
whereas for laboratories A and E only small amounts of zero-values were 
observed, and for laboratory C there were no zero-values at all for liver 
and stomach samples. 

Zero-values can considerably complicate statistical analyses both on 
the descriptive and the inferential level. To describe comet assay data, 
summary measures are usually used to sum up the cell and slide level 
values in order to have a single value representing genotoxicity in a 
single animal. If the geometric mean is preferred, a single zero-value in 
the cells of a slide leads to a final zero-value for the entire slide. For 
example, if 50 TI values x1,…, x50 are measured on a slide and all but 
one are real positive values and one is zero, then the geometric mean is 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x1 • … • x50

50
√

=
̅̅̅
050

√
= 0.

Zero-values do not only lead to unreasonable, descriptive summary 
measures, but also complicate statistical inference. For common statis-
tical tests or models such as a t-test or ANOVA, symmetrical data within 
each treatment group are assumed. However, cell level negative control 
comet assay data are typically right skewed (Fig. S6). For right skewed 
data, log-transformation can be applied on the raw data to achieve 
better symmetry (cf. Section 2.3). However, the logarithm is only 
defined for positive values. For a zero-value x = 0, the logarithm is not 
defined. 

A simple strategy to deal with zero-values is to add a small constant 
to all values, as suggested in OECD TG 489. The reasoning behind adding 
a constant to all and not just the zero-values is that by adding a small 
constant (0.001) to all values, variability of the data on the raw scale 
remains the same, as the entire data set is only shifted, and logarithmic 
transformation and statistical inference can be applied. Whether this 
strategy is reasonable for our data will be evaluated below. 

But even with this strategy, challenges remain. After respective 
processing of the raw data on cell level, the processed values are desired 
to be symmetrically distributed (because only negative control data is 
considered). Symmetrically distributed cell measurements per slide can 
be adequately represented by a single value using a summary measure. 
The summarizing step on slide level is finally followed by a summarizing 
step on the animal level, such that as a result, a single value per animal 
can be used. To further evaluate the strategy, it was elucidated with the 
collected data sets, how the presence of many zero-values on the cell 
level affects the distribution of processed cell values and the resulting 
summary measures. 

OECD TG 489 suggests using the median of the single-cell values per 
slide and the arithmetic mean to summarize the resulting slide medians 
on animal level (Uno et al., 2015; Tug et al., 2020). In this case, a peak of 
zeros in the raw data persists after adding a small constant to all data, as 
the peak is simply shifted to the value of the small constant, and it re-
mains, if in the next step a transformation such as the logarithm is 
applied. As consequence, any summary measure might not represent the 
data adequately and can under- or overestimate the target quantity (TI), 
because due to the nature of a summary measure, only a single value is 
calculated. We illustrate that on real data of a single slide. Fig. S10 
shows data of a single slide of a liver sample with 50 cell measurements. 
The red line indicates the arithmetic mean of (a) the raw and (b) the 
pre-processed data. It clearly demonstrates that the raw peak of 
zero-values remained after processing with its new location at log (0 +
0.001) = − 6.91. Hence, if many zero-values are present in raw cell data, 
pre-processing of the data will not lead to symmetrically distributed 
data. Consequently, in the summarizing step, the arithmetic mean does 
neither capture the center of the non-zero-values, nor does it contain 
information about the peak at zero. It is only a compromise not well 
representing the real data structure. 

As for the mean, also the median can be influenced by an excess of 
zeros in the data. With an increasing amount of zero-values, the median 
eventually becomes zero. This results in a lack of representation of the 
values at the upper end of the distribution. Hence, a single value as a 
summary measure cannot capture the data structure appropriately, if the 
data consists of two main parts, i.e., zero-values and the remaining non- 
zero-values. The slide used for illustration purposes was carefully 
selected, for containing a relatively high amount of zero-values (Sup-
plementary S10). However, high amounts of zero-values (>20%) can 
still appear regularly in some laboratories (Fig. 2A, chapter 3.1) and, 
therefore, should not be confused with an artificial phenomenon. 

As given above, OECD TG 489 suggests adding a small constant of 
0.001 to all measured cell-level values to avoid zero-values and their 
statistical consequences. It was, therefore, interesting whether this 
constant can also be deduced from the collected data sets. Obviously, the 
constant should generally be small as otherwise it might shift the entire 
data to tail intensities that indicate damage, where originally there is no 
damage at all. It could be argued that the smaller the constant the better, 
to keep the artificial shift in the data as non-influential as possible, while 
still enabling desired logarithmic transformations. Figure 3 shows that 
almost all smallest (non-zero) cell-level measurements, stratified by 
organ and laboratories, were above the OECD TG 489-proposed constant 
of 0.001 (red dotted line). From all non-negative cell-level measure-
ments in the negative control data set (except laboratory C) only 0.14% 
were smaller than 0.001, with 0.000372057% as the smallest non- 
negative value. However, already 8.3% of the values are below 0.01, 
clearly indicating that increasing the constant to 0.01 seems unreason-
able. The proposed constant is therefore, based on the present data set, 

Fig. 3. Smallest non-zero TI values per slide across laboratories and organs. The red 
dotted line indicates the OECD TG 489-proposed constant of 0.001 to be added to all 
data to enable processing steps such as a logarithmic transformation. The dashed line 
represents a heuristic alternative constant of 0.01 for comparison purposes. Blood 
(BL), liver (LI), lung (LU), duodenum (DU), and stomach (ST). 
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indeed small enough, as only a neglectable amount of non-zero-values 
were slightly smaller than 0.001. 

One might consider an even smaller constant such as 0.0001 or 10− 5, 
as it would change the data even less and, therefore, reduce a downside. 
But this is not true for the geometric mean or if log-transformed values 
are used for further statistical analyses that are typically mean-based. 
The smaller the constant that replaces a zero-value, the smaller the 
geometric mean of all values or, equivalently, the mean of log- 
transformed values. Note that mathematically, the mean of the loga-
rithmic values is the same as the logarithm of the geometric mean. This 
is visualized in Figs. S10a and S10b, as the mean of the log-transformed 
values (red line), keeps decreasing if the small constant is further 
decreased. Hence, an increasingly small constant would not help by 
alternating the data less, but instead might heuristically pull the often- 
used log-transformed data or the geometric mean towards zero, which 
can lead to false-positive results. The constant depends on the data scale 
and a smaller constant is thus not necessarily better. In summary, our 
data set confirms the OECD TG 489-proposed constant of 0.001 b y 
evaluating a large data set. As practical consequence laboratories should 
not round their data to two decimal places (like laboratory E) but use at 
least three decimal places. When using two decimal places, the smallest 
possible non-negative value must be set to 0.01. Non-negative values 
below this, like 0.004, would be rounded to zero and would then be 
shifted to 0.001 after adding the recommended constant. This unnec-
essarily changes the raw data and can easily be avoided by setting the 
number of decimal places to at least three. 

3.3. Impact of summarizing strategies 

In general, in the comet assay, tail intensities are determined on cell- 
level and then summarized per slide and animal afterwards. The current 
OECD TG 489 (2016) recommends analysing at least 150 cells per ani-
mal and organ, which can be done, e.g., by using 3 slides with 50 cells 

each. It is suggested to then take the median per slide and the arithmetic 
mean of the medians per animal. However, other summarizing statistical 
measures might be sensible in certain situations (see Wiklund and 
Agurell, 2003; Bright et al., 2011). To examine the dependency of the 
test result on the chosen summarizing strategy, we compared the 
following five measures on slide level, i.e., arithmetic mean (ArithM), 
median (Med), geometric mean (GeoM), trimmed arithmetic mean 
(remove upper 10 percent, apply ArithM on rest) (TrArithM), and 
trimmed geometric mean (remove upper 10 percent, apply GeoM on 
rest) (TrGeoM) and calculated their ArithM per animal. Summarized tail 
intensities of liver data per animal and laboratory are presented in Fig. 4. 
Tail intensities for further organs can be found in the Supplements (S11 – 
S14). 

For negative control animals OECD TG 489 suggests that the average 
negative control TI should not exceed 6% for rat liver. In our data set this 
requirement was fulfilled for most laboratories and summarizing stra-
tegies. However, the computation of ArithM per slide tended to result in 
remarkably large average tail intensities per animal and consequently 
also per treatment group. This is underlined in Fig. 4A, where arithmetic 
slide means are given in green and medians in blue color, indicating 
clear differences, particularly based on data from laboratories B and E. 
In the positive control group, a slightly different result was observed 
(Fig. 4B), with all summarizing strategies leading to a similar outcome 
on a lab-specific level, i.e., differing only marginally within the different 
laboratories. 

3.4. Effect of meta parameter 

During the data collection process, several methodological meta 
parameters such as analysis system or duration of electrophoresis were 
recorded for each study (Table S1). The aim of meta data collection was 
to give insights into relevant settings and to identify parameters that are 
very influential on measured cell damage and hence statistical analyses. 

Fig. 4. (A): Negative control group data and (B) positive control group data from the different laboratories for liver tissue using five different statistical slide 
summary measures (GeoM: geometric mean, purple; TrGeoM: trimmed (10%) geometric mean, orange; ArithM: arithmetic mean, green, TrArithM: trimmed (10%) 
arithmetic mean, yellow; Med: median, blue). For animal level the arithmetic mean from all respective slide summaries was calculated. The dashed red line in the 
upper figure represents the 6% upper TI limit for negative control liver tissue, given by OECD TG 489. 
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In the following, first a descriptive overview of experimental parameters 
is given, followed by a discussion of the interpretative limits to these 
observations. 

The used meta data collection sheet listing all meta parameters that 
were provided can be found in Table S1. For brevity reasons, we focused 
on a subset of these settings that were categorized in Fig. 5B. The choice 
for this subset was based on internal discussions and literature searches 
(Collins et al., 2014). 

Regarding technical settings and the analysis system, each laboratory 
maintained a single protocol (Table S15). For example, all data gener-
ated by laboratory A used an electrophoresis duration of 30 min. In 
contrast, the used vehicle varied within the laboratories (Fig. 4A, upper 
left), depending on the respective test item. We point out that the 
agarose concentration was the same (0.5%) across all laboratories, 
which is why its effect cannot be analysed using the present data. The 
vehicle types provided by the laboratories were categorizes into 
aqueous, cellulose-based (CEB), non-ionic surfactants (NIS), oil and 
other (cf. Section 2.1). No vehicle type was used by all laboratories. The 
most common vehicle was water, used by all laboratories except labo-
ratory E, which mostly used CEB as vehicle. Ethyl methanesulfonate 
(EMS) was used as sole positive control in all laboratories. However, the 
EMS dose varied between 125 and 300 mg/kg (not shown in Fig. 5). For 
details on the effect of the positive control concentration, we refer to 
Section 3.5. Furthermore, sample characteristics such as species, sex, 
and organ were collected. As described in Section 2.2, only data of male 
rats remain. Regarding the analysed organs, liver was the most studied 
organ, followed by stomach. Laboratory B furthermore conducted 26 
duodenum studies, and blood and lung were analysed by laboratory A 
with 8 studies each. All included studies were conducted between 2004 
and 2018, but laboratories B and D did not provide studies performed 
before 2011. 

Theoretically, several parameters can influence the results of the 
comet assay in vivo (see Section 4). To evaluate which settings in which 
way and to what extent affect the measured DNA damage, the different 
settings must be distributed in the available data such that the effect is 
statistically identifiable. However, the data for this work were provided 
retrospectively by the different laboratories, without a chance to assign 
settings prior the conduction of the studies for respective statistical 
analyses. Consequently, within a laboratory the same technical settings 
were used for all studies, while certain settings differed between 

laboratories. Therefore, the single settings are not statistically identifi-
able, and the influence of the settings could not be estimated. For 
example, it was impossible to conclude whether the larger animal-level 
value for laboratory E (yellow boxplot), as compared to the other lab-
oratories (Fig. 5A, right panel), was due to the longer electrophoresis 
time, the voltage of 0.7, or the analysis system (not shown). Only factors 
that were different within one laboratory could be examined. One factor 
that varied within the single laboratories was the type of vehicle. Fig. 5A 
(lower left) shows the liver negative control values on animal level 
across vehicles and laboratories (with at least two different vehicles). 
The data suggested that the effect of the vehicle is not robust across 
laboratories. For example, lower TI values for NIS, compared to CEB, as 
observed for laboratory D were not supported by data from laboratories 
B and E. Additionally, in laboratory E, the vehicle did not appear to have 
any effect. The analysis of the laboratory settings offers, in principle, an 
overview on experimental decisions. However, due to the structure and 
not the quality of the data, it was statistically not possible to deduce 
effects of the experimental parameters on the measured tail intensities 
across laboratories. 

3.5. Comparison of negative and positive control data 

An important measure for the quality of the experiment is a sufficient 
distance (dynamic range) between the NC and PC group. Therefore, it 
was initially evaluated for all studies if both NC and PC data were pro-
vided, and studies with either NC or PC missing has to be excluded from 
the analysis, resulting in a total of 254 studies. To ensure better 
comparability, the type, dose, and application mode (oral in all studies) 
of the PC substance were accounted for through stratification. Ethyl 
methanesulfonate (EMS) was used in 249 studies at 125, 200, 250, or 
300 mg/kg; in the other 5 studies, no information on the used positive 
control was provided. All but one laboratory used the same EMS dose 
throughout their studies (Fig. S16). Only Laboratory E provided a study 
with all four available EMS concentrations. Subsequent statistical ana-
lyses were focused on liver tissue, as respective data were available from 
all laboratories. 

Although the distances between negative and positive control groups 
varied, they differed clearly in most of the studies, when evaluating the 4 
laboratories with a constant EMS dose (Fig. S17). In laboratory E 
different EMS dosages were used in the provided studies, but, regardless 

Fig. 5. (A) Upper left: Distribution of study counts based on organ, vehicle, and study conduction year across laboratories. Lower left: Negative control tail intensities for liver 
tissue on animal level, stratified by laboratory (with at least two vehicles) and vehicles. Right: Non-identifiability of parameter effects for negative control tail intensities for liver 
tissue on animal level. Since each laboratory only has one setting, the effect of the factor cannot be distinguished as it is mixed up with the overall laboratory effect. Aqueous 
(AQU), cellulose-based (CEB), non-ionic surfactants (NIS), oil (OIL), and others (OTH) (B) Subset of meta parameters provided by laboratories for each study. 
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of the dose, clear differences between negative and positive control 
groups were noted (Fig. 6A). Thus, all laboratories demonstrated clear 
gaps between the negative and positive control groups, but its extent 
varied greatly. For laboratory E, at 125 and 300 mg/kg EMS, the first 
studies (first years) showed a slightly different behavior, compared to 
the other studies. 

Therefore, we first determined the interquartile range (IQR) for the 
positive control groups based on the medians on slide level to see if there 
were differences between the respective studies and the rest of the 
studies. For all studies (inconspicuous and conspicuous) the IQR values 
of the PC data lie in a similar range (up to 8 % TI) except for one study 
(17 % TI). Thus, the year does not influence the IQR of the PC studies 
and the first conspicuous studies are in the same range as the rest of the 
studies. We further analysed whether the PC mean values at animal level 
of the conspicuous studies differ clearly from the PC values of the 
inconspicuous studies. And if here the year matters. For most studies 
from all years, the mean values were within a range of 8–30 % TI for the 
EMS-treated animals. Five mean PC values were larger than 38% TI, 
with 4 corresponding studies conducted in 2006 and 1 study in 2010. 
Other variables (e.g., vehicle group) were not further investigated. 

For the user, the type and size of the distance between the two 
groups, NC and PC, matters. Previously, animal-level graphs were 
generated, and the differences were assessed visually. But the difference 
and the ratio of the two groups should better be determined at study 
level (arithmetic mean (study-level) of the arithmetic mean (animal- 
level) of the median values (slide-level)). Another stricter approach is to 
see what the difference or ratio is between the smallest animal value of 
the positive control group and the largest animal value of the negative 
control group. 

In both scenarios, i.e. difference and ratio, a clear separation of the 
two groups could be observed. In the case of the difference, the positive 
control values were clearly positive for all laboratories (mostly above 
10%), and for the ratio, the values are all clearly below 1 (Figs. S18 and 
S19). Overall, in no study the arithmetic mean value of the median tail 
intensities in the positive control group was smaller than that in the 
negative control group (analogous for the ratio). 

However, if one looks at the animal level and compares the largest 
value of TI of the NC group with the smallest value of TI in the PC group, 

a few studies with an overlap between the two groups were present, i.e., 
the value in the negative control group was larger than in the positive 
control group (Fig. S20) For most of those studies, a detailed look 
revealed that mislabelling of animals lead to an overlap between NC and 
PC. Only for one study the data remained critical as the overlap could 
not be explained through closer examination. 

Finally, different empirical quantiles of the per study ratio between 
the two groups were determined for each laboratory separately. The 
values vary extremely for the same laboratory (Fig. 6B). Increasing 
values are alarming, as, e.g., a value of 0.3 means that the value for the 
NC is already 30% of that of the PC. 

3.6. Variance components analysis 

A variance components analysis was performed to quantify the 
sources of variability in the data. The estimated variance components for 
the between and within study variance as well as their corresponding 
95% CIs are given in Fig. 7A. The ratios of the estimated between study 
variance and the estimated within study (residual) variance and corre-
sponding 95% CIs are given in Fig. 7B. If this ratio equals one, both 
estimates for the variance components are the same. A ratio below one 
means that the between study variance is smaller compared to the 
within study variance (and vice versa). 

From the five laboratories, only laboratories An und E fulfilled the 
suggestion that the estimated within study variance should be higher 
than the estimated between study variance (Dertinger et al., 2023). In 
contrast, in laboratories B, C, and D the estimated between study vari-
ance is the dominating part of the total variability. Note the low number 
of historical studies for laboratories A (n = 8), C (n = 5) and D (n = 8). 
Resulting uncertainty is reflected by corresponding large intervals in 
Fig. 7A. The OECD TG 489 suggests that preferably 20, but at least 10, 
historical studies should be available as pool for historical controls. We 
therefore focus on results obtained from laboratories B (n = 62) and E (n 
= 53). CIs. 

The sufficient amount of available information for laboratories B and 
E resulted in substantially narrower CIs for the variance components as 
well as for their ratios compared to the CIs for the other three labora-
tories. For each of the two laboratories the proportion of variance 

Fig. 6. (A) Comparison of negative control (NC) and positive control (PC) liver data derived from studies of laboratory E with different EMS concentration. For each study NC 
and PC on animal level were compared regarding the gap between both groups. (B) Overview of the quantiles of the different laboratories and organs used. The quantiles (1%, 
5%, 95%, 99%) of the ratio (NC/PC) can provide information about the quality of the studies within a laboratory. If the value approaches 1, the values of both groups are less 
distinguishable (red shading), and if the value approaches 0 (green shading) the NC and PC groups are better distinguishable. 
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components differed from each other, since their corresponding 95% CIs 
did not contain the one (vertical dashed line in Fig. 7B). For laboratory 
E, the between study variance was significantly smaller than the within 
study (residual) variance, whereas for laboratory B, the between study 
variance was significantly larger than the within study variance. 

Because of these findings, the interpretation of simple point esti-
mates ignoring their uncertainty can be heavily misleading, since the 
differences between the estimated variance components for laboratory 
A, C, and D may be caused by random variation. For both laboratories 
that used different strains for their experiments (B and E), the strain had 
no significant impact on the tail intensities measured (see supplemen-
tary material S7 and S7a-e). 

4. Discussion 

As a part of the 6th International Workshop on Genotoxicity Testing 
(IWGT), an expert working group on the comet assay evaluated critical 
topics related to the use of the in vivo comet assay in regulatory geno-
toxicity testing (Speit et al., 2015). The working group identified critical 
parameters that should be carefully controlled and described in detail in 
every published study report (see also Moller, 2020). In vivo comet assay 
results are more reliable if they were obtained in laboratories that have 
demonstrated proficiency. This includes demonstration of adequately 

low damage in the vehicle controls and an adequate response to a pos-
itive control for each tissue being examined. Adequate interpretation of 
the test data may require an extensive historical data base for the 
evaluated organ and scoring more cells and/or repeating experiments 
could help in reaching a clear conclusion in case of inconclusive data 
(van der Leede et al., 2014). Using valid statistical approaches, suiting 
the specifics of the datasets, is key to analyse experimental data. To 
achieve this, both toxicological and statistical expertise is needed to 
provide valid recommendations. Therefore, the working group “Statis-
tics” of the GUM was established comprising both genetic toxicologists 
and statisticians from academia, authority, and industry. So far, the 
working group has focused on the analysis of historical control data of 
the in vivo micronucleus test (Igl et al., 2019). Now this work is followed 
by considerations on the in vivo alkaline comet assay to provide rec-
ommendations on statistical methods to make the best use of historical 
control data for valid interpretation of compound test results. 

Right skewness and differences between laboratories and or-
gans. The empirical distribution of the raw (cell level) comet assay data 
is an important aspect for accurate statistical analyses. Data distribution 
on the cell level for negative/vehicle control comet assay data is typi-
cally right skewed with well-known organ-dependent differences and 
inter-laboratory variation that were also present in our “real-world” data 
set (Fig. S6, Table S9; Lovell et al., 2020). For the two most abundant 
organs, (liver and stomach) the laboratory- and organ-specific median 
values (TI) were within the JaCVAM control limits (Uno et al., 2015), 
where arithmetic mean (TI, animal level) damage is stated to be pref-
erably within 1–8% for liver (compare to our data: Fig. 4A) and within 
1–30 or 1–20 % for stomach (compare to our data: Fig. S11). For blood, 
duodenum and lung tissue, no guideline intervals are yet available. 
Although the summary measure at slide level is not explicitly stated in 
the paper by Uno et al., (2015), we assume that the study was conducted 
in accordance with the guideline and that the median was used such that 
comparability is given. Therefore, our data set might enhance future 
studies of less frequently studied organs. However, our results clearly 
showed limitation of fixed reference values due to large inter-laboratory 
variability. In general, we noted that the cell-level data distribution can 
vary substantially between different organs and also between labora-
tories, and that desirable symmetrical distributions for further statistical 
analyses could often not be achieved by simple transformations such as 
adding a small constant and then performing logarithmic trans-
formation. For one laboratory, a bimodal distribution was present that 
was notable even on the cell-level values of a single slide. Based on the 
present “real world” data set, the suggested (OECD TG 489) addition of a 
small constant of +0.001 could be confirmed to be adequate and useful. 
We therefore advise laboratories performing the in vivo alkaline comet 
assay to save and process their data with at least 3 decimal places. 

Zero-values and violated statistical assumptions. Another 
important observation in the present data set was the varying proportion 
of zero-values. For one laboratory, more than half of the negative/ 
vehicle control liver samples had more than 20% zero-values. Many 
zero-values prevent the appropriateness of distributional assumptions 
for further statistical analyses, such as normally distributed residuals. 
This issue persisted also after simple log10 transformations. The amount 
of zero-values can be influenced by experimental settings. It is known 
that there are certain critical experimental parameters like DNA- 
unwinding and electrophoresis time as well as electrophoresis condi-
tions (temperature, current, voltage) that influence TI (Plappert-Helbig 
and Guérard, 2015). Moreover, the staining procedure of DNA and 
different comet assay image analysis systems can have an impact on TI 
values (Plappert-Helbig and Guérard, 2015). Therefore, there is a large 
variability in the amount of zero-values in different laboratories, which 
reflects the different experimental setups. One well known experimental 
setting to reduce the amount of zero-values is the electrophoresis time 
(Plappert-Helbig and Guérard, 2015). Increasing the electrophoresis 
time allows non-damaged DNA to move slightly, such that there are no 
or almost no zero-values. In our data set, the effect of the laboratory 

Fig. 7. (A) Estimated variance components. Red dots: Between study variance; 
Blue dots: Within study (residual) variance black bars: 95% pointwise confi-
dence intervals, n: number of factor levels available for the estimation of the 
corresponding variance component. The different laboratories are given in the 
columns as upper cases (A–E). (B) Ratio of the estimated between study vari-
ance and the estimated within study (residual) variance with 95% confidence 
intervals. Black dots represent the estimated ratios, solid horizontal lines the 
95% confidence intervals, and the black vertical dashed line the ratio 1, cor-
responding to the null hypothesis H0: between study variance/within study 
variance = 1. If the CIs include one (the dashed line), the corresponding ratio 
does not differ significantly from one. 
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practice becomes evident as laboratories A and C have almost no zeros in 
their slides. However, it is important to note that increasing the elec-
trophoresis time is only conducive to a certain degree. In general, it 
helps to reduce the amount of zero-values. But, if the electrophoresis 
time is very long, basal DNA damage in the negative controls might 
become less distinguishable from that in the treatment groups or even 
the positive control group. This can result in reduced statistical power 
for detection of genotoxic effects. 

One approach to handle many zeros on the cell level is to use 
advanced statistical methods, e.g., zero-inflation models or Hurdle 
models (Rose et al., 2006). These methods are more complex and might 
therefore not be a feasible option for some practitioners due to a lack of 
statistical expertise. Therefore, after pointing out the limitations of 
simple statistical methods as summary measures when dealing with 
many zero-values and to improve the trustworthiness of statistical an-
alyses, we encourage the experimental setups to be considerate of zero- 
values. For regulatory purposes, the comet assay should, in addition, 
only be performed by laboratories that have demonstrated proficiency. 
We point out that a certain amount of zero-values is acceptable, as its 
effect on statistical analyses is diminished after summing up the data to 
the animal level. However, a high number of zero-values on cell level, 
say >50% within a single slide, are problematic. Even after summing up 
single-cell data, using the median per slide, zero-values can remain and 
can lead to potentially false positive results by artificially lowering the 
negative control measurements. 

Impact of summarizing strategies. Before the OECD TG 489 was 
issued in 2014 there were no general guidelines for statistical evaluation 
of individual cell data, and, therefore, laboratories used their own 
strategies for data handling. In addition to the well-known summary 
statistics such as arithmetic mean and median, also more “exotic” ones, 
such as the geometric mean or various trimmed means, were used. 

It frequently happens that the methodology by which data is 
aggregated per slide and/or animal is not specified precisely or only 
mentioned on animal level, see e.g., the JaCVAM paper by Uno et al. 
(2015). In addition, the OECD TG 489 (2016) refers to individual ob-
servations to be the “endpoint” (such as the measured TI on cell level). 
Then, the estimated effect is defined as a difference or ratio of an average 
estimate of the endpoint observed in the negative control and the 
treatment groups. Furthermore, the literature lacks a detailed justifica-
tion why different types of data aggregation are recommended. Usually, 
there is no distinction between the two summarizing levels, i.e., slide 
and animal level. However, based on a simulation study using a small 
data set Tug et al. (2020) concluded that the chosen summary statistics 
such as the mean or median has an immense impact on the final sta-
tistical test result and the outcome of the study. According to Tug et al. 
(2020), the difference between the summary statistics seems to become 
more and more negligible with increasing dose, but an extreme differ-
ence might be found at small doses or in the negative/vehicle control 
group. A similar effect was found in the present evaluation for all organs 
and laboratories. 

Effect of meta parameter. One of the aims of this work was to 
identify relevant effects of experimental settings on negative control 
data. The provided data set is large and offered broad insights into the 
used comet assay protocols, but, due to many differences across labo-
ratories and little variation of settings within laboratories, it was 
impossible to identify experimental settings and corresponding effects 
common to all laboratories. However, one parameter that varied also 
within laboratories was the chosen vehicle. For example, whereas for 
one laboratory the use of non-ionic surfactants compared to a cellulose- 
based vehicle appeared to lower the measured DNA damage in negative 
control liver cells, for another laboratory, it was the other way around. 

These results highlight the large inter-laboratory variability, which is 
in line with observations of Ersson et al. (2013) and Lovell et al. (2020), 
hence the challenge to harmonize comet assay experiments across lab-
oratories remains. The large inter-laboratory variability underlines that 
the use of fixed regulatory limits for all laboratories is critical, if the 

calculation of such thresholds does not account for this source of vari-
ability. However, if one accounts for inter-laboratory variability, the 
limits might be very wide. Hence, laboratory-specific thresholds, for 
example based on historical control data, should be considered and 
preferred. We refer to Menssen (2023) and Kluxen et al. (2021) for 
comprehensive overviews about the use of historical control data and 
the work of Menssen and Schaarschmidt (2022) on prediction intervals 
that are based on random effects models which can be used to set lab-
oratory specific historical control limits. 

Relation of negative and positive control data. A sufficiently high 
dynamic range (ratio between the largest and smallest value) of the 
study, as demonstrated by a high negative to positive control ratio, is 
considered one important factor to demonstrate proficiency of a test 
facility. The investigated data set demonstrated that almost all studies 
showed appropriately high differences between negative/vehicle and 
positive control data. Therefore, a sufficiently high dynamic range was 
not considered a frequent problem. However, when increasing the 
quantile of the ratio between the two control groups, the ratio increases 
(see Fig. 6B, chapter 3.5). Values for the PC and NC groups required for 
the ratio were calculated at the animal level in a guideline-compliant 
manner (arithmetic mean of slide medians). Small values for the ratio 
that are desired mean a big difference between NC and PC group. 
Empirical quantiles are used to look at the distributions of the ratios of 
each laboratory and organs combination to classify large values. At a 
quantile level of 95%, ratios are, e.g., >0.3 for gastrointestinal (GI) tract 
tissues (DU/ST) of laboratory B, i.e., that 5% of the ratios is greater than 
or equal to this value. The main value of historical control data is in 
monitoring both study quality with respect to reliability and robustness 
of the assay, proficiency of the test facility, and correct interpretation of 
the test compound results. This is especially important for borderline 
results, i.e., criteria for a positive result are fulfilled, but the measure-
ments for treatment groups are still inside the range of historical nega-
tive controls. In this respect the ratio between control groups (NC and 
PC) represents a measure of the dynamic range and sensitivity of the 
assay within a test facility. Therefore, the ratio value is also a parameter 
for the level of confidence in statements like “the result is well within the 
range of the historical negative controls”. It is noteworthy to mention 
that the concentration of the positive control substance needs to be 
evaluated separately. In Fig. 6A it is demonstrated for EMS as highly 
potent genotoxin in one test facility that the low concentration shows a 
positive response but does not provide a sufficient ratio value in some 
cases. As seen in Fig. S18, the effect of vehicle on the negative to positive 
control ratio was of no relevance, in contrast to the laboratory effect. 

Variance components analysis (VCA). The aggregation of obser-
vations on animal level was performed to cure violations of model as-
sumptions and is in line with the recommendations given in the OECD 
TG 489 test guideline. However, aggregation of data always results in a 
loss of information. Hence, the estimates for the within study (residual) 
variance shown in Fig. 7A and B represent the only measure of intra- 
study variation, which, without aggregation, could have been decom-
posed into three variance components (animal, slide and residual). 
Nevertheless, the models used were in line with the recommendations of 
Bright et al. (2011) regarding the modelling of comet assay data and 
were also applied by others (Dertinger et al., 2023). We would also like 
to refer to a more complex, Bayesian hierachical modelling approach of 
comet assay data by Ghebretinsae et al. (2013). 

We showed that the aggregation of tail intensities on animal level 
and their log10 transformation could cure the violation of model as-
sumptions to a certain extent. Nevertheless, for some laboratories, log10 
transformation resulted in slight right skewness or bimodality and thus 
in slight violations of model assumptions. Hence, it is questionable, if the 
modelling of log-transformed aggregated observations, as proposed in 
the test guideline, always leads to reliable and reproducible conclusions. 

A possible way to overcome this problem might be the application of 
Box-Cox-transformations based on random (or mixed) effects models 
that are fit to the unaggregated observations on cell level. This would 
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enable the researcher to analyse a current trial according to the exper-
imental design and hence to address all sources of variability that are 
present in the data. Box-Cox transformation is classically used on linear 
(fixed) effects models. This approach is implemented in standard soft-
ware like R (function boxcox (.) from R package MASS) or PROC 
TRANSREG in SAS, but it is not directly applicable in the context of 
random (or mixed) effects models, since it is based on the likelihood of 
the model. Methodology for Box-Cox transformation, based on linear 
random (or mixed) effects models, as applied for the variance compo-
nents analysis shown above, is described in Gurka (2006). But, to the 
authors knowledge, this approach is currently not implemented in 
standard software like R and SAS and is, therefore, not easily applicable 
for toxicologists. From this point of view, the implementation of the 
approach of Gurka (2006) and its application to comet assay data is 
promising. 

In their recent publication, Dertinger et al. (2023) stated: “When 
inter-study variation is the major source of variability, comparisons 
between study data and the HCD bounds are less useful, and conse-
quentially, less emphasis should be placed on using HCD to contextu-
alize a particular study’s results.” Based on CIs for the proportion of 
inter- and intra-study variance, two (B and E) out of the five laboratories 
showed significant differences between the variance components. For 
laboratory B, intra-study variance is significantly larger than inter-study 
variance and vice-versa for laboratory E. Following the suggestions by 
Dertinger et al. (2023) for our data, HCD bounds seem to be less useful 
for laboratory B to contextualize study data, as the variation between 
studies is significantly larger than the variation within a study. For 
laboratory E, HCD are likely useful to evaluate study responses and a 
HCD-derived interval. For the remaining three laboratories, no state-
ment can be made due to too relatively few historical studies. These 
laboratories have less historical studies than recommended by the OECD 
TG 489 and corresponding (non-significant) results depend on a rela-
tively high degree of uncertainty. Based on the results of the five labo-
ratories, no clear tendency to whether inter- or intra-study variability is 
dominating across laboratories can be observed. We recommend using 
CIs as additional uncertainty consideration in VCAs and workflows 
proposed by Dertinger et al. (2023) to help prevent too hasty conclu-
sions on inter- and intra-study variability. We note that this requires 
advanced statistical training, e.g. on bootstrapping approaches. How-
ever, high variation in our data set and in data analysed by Dertinger 
et al. (2023) suggest that adding uncertainty considerations through CIs 
when comparing inter- and intra-study variability is a useful extension 
to evaluate HCD quality. 

5. Conclusion 

The in vivo alkaline comet assay becomes increasingly important in 
regulatory genetic toxicology testing, considering, e.g., ICH S2 (R1) or 
the Scientific opinion on genotoxicity testing strategies applicable to food and 
feed safety assessment of the European Food Safety Authority (EFSA 
Scientific Committee, 2011). In recent years, updates of OECD technical 
guidance document for genotoxicity testing also draw attention towards 
the use of adequate statistics to be key for valid analyses and interpre-
tation of toxicological test data. Therefore, we set the focus on 
addressing different statistical questions, to provide a better and more 
understandable statistical evaluation as a tool for genetic toxicologists. 
From the various statistical analyses performed, the following conclu-
sions were drawn: 

The large inter-laboratory difference in effect size measured makes it 
impossible to define absolute control limits to evaluate test quality. The 
amount of zero-values on single-cell level should be closely monitored 
and laboratories should avoid large amounts of zero-values by opti-
mizing experimental settings. However, it is also acknowledged that 
over-optimizing experimental conditions to completely avoid any zero- 
value will most probably not improve the quality of the results. 

From a statistical perspective, relative amounts of >50% zero-values 

on a single slide are considered problematic and question acceptability 
of the slide, as even the robust median would yield a zero-value as slide 
summary. 

When using the geometric mean to summarize tail intensities on cell 
level, the investigator should be aware that a single zero-value would 
reduce the geometric mean to zero. 

OECD TG 489 suggests adding 0.001 to all TI values prior to log or 
square root transformation, if necessary. The adding of a constant to the 
observed tail intensities is only sensible, if zeros occur in the data set, 
since it is a heuristic method to enable log transformation in this case. If 
there are no zeros in the data set, the adding of a constant is unnecessary. 
Especially for negative control data, it is recommended to use at least 3 
decimal places when saving single-cell-level values. 

In part considerable differences in summarized negative control TI 
values can be found between certain statistical summary measures like 
median, arithmetic mean, and geometric mean. These differences are 
not eminent in positive control TI values. This effect is likely similar for 
many other biological test systems, as the variance of the relative effect 
size is high, when representing mainly the biological background of 
effect, and becomes smaller with increasing biological insult, i.e., 
increasing dose. 

The data set evaluated in this publication demonstrated that the 
relation between negative and positive controls, although different EMS 
concentrations had been used, seemed to be satisfactorily distinct for all 
laboratories with respect to the ratio, difference and quantile analyses of 
all related control groups. The statistical summarization of cell-level 
data to a single animal value increases reliability of results by partial 
fulfilment of the statistical model assumptions (e.g., log- 
transformation). However, summarization always results in a loss of 
information. This confirms the importance of detailed study protocols 
and reports to monitor study performance and robustness. 

In the variance component analysis, comparison of inter- and intra- 
study variability showed no clear tendency across the five labora-
tories, out of which 3 had too few historical studies for reliable con-
clusions. To properly capture such uncertainties, it is recommended to 
additionally calculate CIs for inter- and intra-study ratios, if expertise is 
available. 

The present results demonstrate that some statistical questions 
regarding in vivo comet assay data are still open for future analyses and 
discussions, such as the optimal level of summarization of data in the 
analysis to allow biologically relevant test interpretation. Here we pre-
sent what we believe to be an optimal trade-off between statistical fit 
and simplicity of understanding. For future investigations it would be 
very interesting to apply the statistical strategy identified in this work to 
further data sets, to confirm applicability of the identified 
recommendations. 
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