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Schalen sind auf natürliche Weise schön und effizient, weil die fließende 
und doppelt gekrümmte Form Lasten ohne Biegung, nur in der Fläche, also 
nur über Zug- und Druckkräfte fortleiten kann. Sie brauchen daher 
bedeutend weniger Material als biegebeanspruchte, ebene Tragwerke, 
beispielsweise Träger oder Platten.

Es besteht aber ein Gegensatz zwischen günstigem Tragverhalten und 
schwieriger, da doppelt gekrümmter Herstellung. Die Lösung dieses 
Gegensatzes ist eine wichtige Voraussetzung für den erfolgreichen 
Schalenbau.

Hans Schober, 2016

Shells are naturally beautiful and efficient. Their continuous, doubly curved 
shape is able to carry loads without bending, by only using tension and 
compression forces within the surface. Because of this behaviour, shells 
need substantially less material than flat structures, such as beams or 
plates, which require bending.

There is, however, a contradiction between the beneficial load-bearing 
behaviour and the highly complex fabrication of doubly curved structures. 
Resolving this contradiction is an important requirement to successfully 
construct shells.

Hans Schober, 2016



Zusammenfassung

Die vorliegende Arbeit untersucht zweifach gekrümmte Gitterstrukturen, 
mit dem Ziel deren Herstellung zu vereinfachen. Dafür werden Netzwerke 
mit konstanten geometrischen Parametern beschrieben, und die damit 
verbundenen Möglichkeiten für Entwurf und Konstruktion erarbeitet.

Es wird eine ganzheitliche Theorie „Repetitiver Strukturen“ unter 
Berücksichtigung geometrischer und konstruktiver Kriterien vorgelegt, die 
es ermöglicht die Verwendung gleicher Bauteile anhand einzelner Parameter 
zu untersuchen. Auf diese Weise werden Zusammenhänge von Form und 
Struktur aufgedeckt und eine neue Methode für den Entwurf und die 
Konstruktion elastisch geformter Gitterschalen entwickelt.
Die Arbeit verbindet Theorien der Differentialgeometrie mit Erfahrungen aus 
Architektur und Bauingenieurwesen und schafft dadurch neue Erkenntnisse 
für den modernen Schalenbau.

Auf der Grundlage eines kurzen Überblicks zum Stand der Forschung 
werden die theoretischen Rahmenbedingungen zur Analyse und Gestaltung 
Repetitiver Strukturen geschaffen. Diese werden zunächst auf bestehende 
Konstruktionen angewendet. Hieraus wird eine Übersicht über bestehende 
und zukünftige Möglichkeiten der Parameterwiederholung abgeleitet. Die 
Wechselwirkungen zwischen Fläche, Netzwerk und Parametern werden 
durch induktiven Studien dargestellt. Anhand experimenteller Entwürfe 
wird dann die elastische Verformung von Bauteilen als Konstruktionsstrategie 
untersucht. 

In einer deduktiven Studie werden die Krümmungseigenschaften von 
Gitterstrukturen in direkte Beziehung mit der elastischen Verformung der 
Gitterstäbe gebracht. Auf Basis dieser Abhängigkeiten wird eine 
Entwurfsmethode entwickelt, die sich die Eigenschaften asymptotischer 
Kurven auf Minimalflächen zunutze macht. Diese Methode ermöglicht eine 
Konstruktion zweifach gekrümmter Gitter mit geraden Lamellen und 
rechtwinkligen Knoten.

Schließlich wird die Theorie in einem architektonischen Projekt angewendet:
Anhand des Forschungspavillons „Asymptotic Gridshell“ werden die 
Herausforderungen und Potentiale repetitiver Strukturen für den 
Planungsprozess, das Tragverhalten und den Bauablauf einer elastisch 
geformten Gitterschale aufgezeigt.



Abstract

This thesis investigates doubly curved grid structures with the goal to 
simplify their fabrication. For this purpose, we examine networks with 
constant geometric parameters, and describe their potentials for design 
and construction.

A holistic theory of “repetitive structures” is established, which takes into 
account both geometric and constructive criteria. This allows us to 
investigate individual parameters in order to create identical building parts. 
The theory is used to uncover principles of form and structure, and develop 
a novel method to design and construct elastically formed gridshells.
The work combines theories from differential geometry with knowledge 
from architecture and structural engineering and thus gains new insights for 
modern shell design.

Based on a review of scientific publications and built examples, a theoretical 
framework is created to analyse and design repetitive structures. First, we 
apply this theory to existing structures, and generate an overview of current 
and future possibilities of parameter repetition. Next, we investigate the 
interdependence between surface, network and parameters within inductive 
studies. Through the prototypical design and fabrication of experimental 
structures, we examine the elastic deformation of building parts as a 
constructive strategy to achieve repetition.

In a deductive study, the parameters of curvature are related to the 
deformation behaviour of individual beams. Based on this dependency, a 
design method is developed, which utilizes the properties of asymptotic 
curves on a minimal surface. This method provides the geometric condition 
to construct a doubly curved grid from exclusively straight lamellas and 
orthogonal nodes.

Finally, the method is implemented in an architectural case study:
The practical challenges and advantages of repetitive structures are 
experienced through the planning process, the construction progress, and 
the load-bearing behaviour of the “Asymptotic Gridshell”.
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Nomenclature

Geometric

k1 Maximum principal curvature [m-1]
k2 Minimum principal curvature [m-1]
K Gaussian curvature: K = k1 · k2 [m

-2]
H Mean curvature: H = (k1 +  k2) / 2 [m-1]

A Area of a face [m²]
S Qualitative shape of a face

P  Planarity of a mesh face [m]
l Length of an edge [m]
c Continuity of a curve [°]
d Proximity of a network to a target surface [m]
d Seam variance measuring the tolerance between panels [m]

k Curvature of a spatial curve [m-1]
t Torsion of a spatial curve [m-1]
tg Geodesic torsion of a surface curve [m-1]
kn Normal curvature of a surface curve [m-1]
kg Geodesic curvature of a surface curve [m-1]

fe Orientation vector of an edge curve

t Tangent vector of a curve
n Normal vector of a surface
u Sideways vector of a surface curve
r Vector of a surface ruling

w Mesh angle at a node [°]
i Intersection angle at a node [°]

a Normal angle at a node [°]
b Geodesic angle at a node [°]
g Torsional angle at a node [°]

m Angle of deviation from the principal curvature direction [°]

o Offset distance of two parallel surfaces [m]
on Node offset [m]
oe Edge offset [m]
of Face offset [m]



Mechanic

t Thickness of a profile [mm]
h Height of a profile [mm]
g Mass density [g/cm³]

x Longitudinal orientation of a beam
y Lateral orientation of a beam
z Vertical orientation of a beam

kx Curvature (twist) due to torsion around the x-axis [m-1]
ky Curvature due to bending of a beam around the y-axis [m-1]
kz Curvature due to bending of a beam around the z-axis [m-1]

q Angle of rotation of a twisted beam [rad]

MT Torsional moment around the x-axis [Nmm]
My Bending moment around the y-axis [Nmm]
Mz Bending moment around the z-axis [Nmm]

IT Torsional constant [mm4]
Iy Moment of inertia with respect to the y-axis [mm4]
Iz Moment of inertia with respect to the z-axis [mm4]

ip Polar radius of gyration [mm4]

WT Section modulus of torsion [mm3]
WY Section modulus with respect to the y-axis [mm³]
WZ Section modulus with respect to the z-axis [mm³]

E Young’s modulus [N/mm²]
G Shear modulus [N/mm²]

fy Yield strength [N/mm²]
sy,k Normal yield stress: sy,k = fy · 1.0 [N/mm²]
ty,k Shear yield stress:    ty,k  = fy · √3  [N/mm²]

eH Strain due to Helix Torsion
ce Shift of the parabolic distribution of normal stress due to Helix Torsion





1Introduction

Figure 1 Structural grid of the Asymptotic Gridshell (Photo: Felix Noe 2017).

Introduction

Objective

Throughout the history of architecture, the use of repetitive building parts has been a key goal to simplify 
fabrication, ease construction, and save costs and time. This may be achieved by laying identical bricks 
or using identical ball joints, dividing a sphere into congruent triangles or rationalizing a curved façade to 
only use planar glass panels. In any case, using repetitive parts inevitably effects the overall shape or 
layout of a structure. 

There is a multitude of scientific studies and built examples which achieve repetition within double-curved 
structures. In geometry the term “repetitive” is used to describe congruent elements, such as nodes, 
edges or faces, within a network, while an architectural structure aims at identical building parts. These 
two perceptions do not always coincide: In practice, adjustable joints, tolerances or deformation allow the 
use of repetitive parts, even for a geometrically non-repetitive element.

The following work combines insights from mathematics and engineering to create a holistic theory of 
“repetitive structures” considering both the geometric and constructive parameters. This theory does not 
only offer an analysis of existing structures and a definition of strategies to achieve repetition. It is also 
used to systematically investigate the morphology of repetitive networks, define parametric relationships, 
identify fundamental principles of form and deduce parameter combinations for future designs.

A great potential lies in the use of elastic deformation to achieve a curved geometry from flat and straight 
building parts. The curvature of surface-curves is analysed and superimposed with the three axes of 
bending of load-bearing beams. In consequence, specific shapes and networks are identified which allow 
for a simplified construction of elastically formed grids. This strategy is used to develop a new design 
method for strained gridshells using asymptotic curves on a minimal surface.
The design and construction of a prototypical structure, the Asymptotic Gridshell, presents insights into 
the planning, fabrication and construction process, and its load-bearing behaviour.

Motivation
With the technological advances in both 3D modelling and fabrication, it is possible to design and construct 
any arbitrary shape or structure. Any surface can be subdivided into unique parts, which are then individually 
manufactured, labelled and assembled.
The question arises: Why bother rationalizing a form or network?
Understanding the complexity of a spatial network not only offers simplification of the construction with 
substantial cost savings. Foremost, it gives the architect the control over their designs: It opens up a 
spectrum of solutions to choose from, rather than capitulate to the most advanced fabrication tool. Being 
aware of the dependencies of shape, segmentation and building part lets us decide what rationalizations 
are most effective, which topology might be beneficial, and which tool to use for fabrication. 
Moreover, combining geometric expertise with the experience in material behaviour helps us find new 
fabrication-aware1 designs to create a symbiosis of form and support structure.

1 The term “fabrication-aware design” is used to describe computational design methods which take into account the fabrication 
and construction of a structure. This might entail a simple rationalization of the geometry, or the implementation of specific 
requirements for manufacturing techniques in the design process (Pottmann 2013).
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Methodology and Tools

Methodology
There are three methods used in this thesis to investigate repetition in grid structures: 
A deductive approach can be described as a “top-down” process: The theories of differential geometry 
are used to deduce geometric properties and then applied to design shapes and segmentations with 
repetitive parameters.
An inductive approach takes the inverse “bottom-up” route: The enforced repetition of specific parameters 
within a network, triggers a specific behaviour or shape adjustment, which is then documented and 
classified. The inductive approach is a “naïve” process, and may not display all possible solutions. 
However, it intuitively illustrates the morphology of repetitive grids and has the potential of uncovering new 
solutions and dependencies.
Finally, the concept of research by design2 is used to investigate repetitive structures. This approach relies 
on physical prototypes to design structures, combining all aspects of geometry, structure, fabrication and 
aesthetics.

Tools
The thesis heavily relies on both digital and physical modelling to investigate the behaviour of repetitive 
grids.
The digital tools include simple 2D and 3D modelling software, parametric applications and algorithmic 
scripting. They are used to create a digital representation of networks, model dependencies to rapidly alter 
a given geometry, and develop new tools that implement scientific insights. Next to these geometric 
applications, we conduct digital simulations and optimizations to investigate the morphological behaviour 
of networks under parameter constraints. Finally, FEM-software was used to analyse the load-bearing 
behaviour of a prototype structure.
Physical models not only allow us to investigate geometric features, but to – hands on – experience the 
construction process, the load-bearing behaviour and aesthetic qualities. They are used throughout our 
studies to verify theoretical findings and trigger further research questions.

2 The term “Research by design” was coined at the Faculty of Architecture in Delft (van Ouwerkerk 2001) referring to the general 
concept of producing new knowledge through the act of designing, and has been actively implemented as a tool to investigate 
scientific questions. A working group under the research committee of the EAAE1 has produced a rather cumbersome definition 
of this concept in 2011 (Hauberg 2012):

 - Research by design is any kind of inquiry in which design is a substantial part of the research process.

 - In research by design, the architectural design process forms a pathway through which new insights, knowledge, practices  
 or products come into being.

 - Research by design generates critical inquiry through design work that may include realized projects, proposals, possible  
 realities or alternatives.

 - Research by design produces forms of output and discourse proper to disciplinary practice, verbal and non-verbal, that  
 make it discussable, accessible and useful to peers and others.

 - Research by design is validated through peer review by panels of experts who collectively cover the range of disciplinary  
 competencies addressed by the work.

 In this thesis, our preliminary motivation to use research by design, is to uncover further design solutions beyond the inducible 
or deducible results. 
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Structure

This thesis is written for the designer - architect or engineer - who is responsible for the geometry of a 
curved building structure. The work is situated in the cross-field of architecture, engineering and 
mathematics, with a strong focus on geometry.
The work is divided into three parts:

- Part I: ‘State of the Art’ presents fundamental theories of geometry (Chapter 1), and gives a short 
overview of the most relevant geometric publications and architectural structures that investigate 
repetition (Chapter 2).

- Part II: ‘Repetitive Structures’ develops a theoretical framework of geometric and constructive 
parameters for repetitive structures, and defines fundamental geometric dependencies (Chapter 3). 
This framework is not only used to analyse existing constructions. It draws conclusions on common 
strategies and sets an impulse for further investigations (Chapter 4).

 Chapter 5 presents five independent but constitutive studies which investigate selected sets of 
parameters to explore the morphological behaviour of repetitive networks. These studies first 
compare smooth and discrete structures (Section 5.1), investigate tolerances and deformation for 
smooth, rectangular panelizations (Section 5.2), create prototypical modular designs (Section 5.3), 
deduce principle relationships of curvature and deformation of networks (Section 5.4), and finally 
develop a novel design method for strained gridshells (Section 5.5).

- Part III: ‘Case Study’ (Chapter 6) implements the novel method in the planning and construction 
process of a prototypical pavilion, the Asymptotic Gridshell, giving important insights into the design 
process, construction development and its load-bearing behaviour

Publications
Parts of this thesis are based on research which has already been published in peer reviewed papers or 
technical reports, and has been conducted in cooperation with co-authors.
Some studies of Chapter 5 are also found in:

- Eversmann, Philipp; Schling, Eike; Ihde, André; Louter, Christian (2016): Low Cost Double Curvature. Geometrical and 

Structural Potentials of Rectangular, Cold-bent Glass Construction. In K. Kawaguchi, M. Ohsaki, T. Takeuchi (Eds.): 

Proceedings of the IASS Annual Symposium 2016. Tokyo

- Schling, Eike; Barthel, Rainer (2017): Experimentelle Studien zur Konstruktion zweifach gekrümmter Gitterstrukturen. 

Experimental studies on the construction of doubly curved structures: Fachwissen. In Detail structure (01), pp. 52–56. 

- Schling, Eike; Barthel, Rainer; Tutsch, Joram (2014): Freie Form - experimentelle Tragstruktur. In Bautechnik 91 (12), pp. 859–

868. 

- Schling, Eike; Hitrec, Denis; Barthel, Rainer (2017a): Designing Grid Structures using Asymptotic Curve Networks. In Klaas 

de Rycke et al. (Eds.): Humanizing Digital Reality. Design Modelling Symposium Paris 2017. Singapore: Springer Singapore, 

pp. 125–140.

Chapter 6 contains further work from:
- Schling, Eike; Hitrec, Denis; Schikore, Jonas; Barthel, Rainer (2017b): Design and Construction of the Asymptotic Pavilion. 

In K.-U. Bletzinger, Eugenio Oñate, B. Kröplin (Eds.): VIII International Conference on Textile Composites and Inflatable 

Structures. STRUCTURAL MEMBRANES 2017. pp. 178–189. 

- Schling, Eike; Kilian, Martin; Wang, Hui; Schikore, Jonas; Pottmann, Helmut (2018): Design and Construction of Curved Support 

Structures with Repetitive Parameters. In Lars Hesselgren, Karl-Gunnar Olsson, Axel Kilian, Samar Malek, Olga Sorkine-

Hornung, Chris Williams (Eds.): AAG 2018. Advances in Architectural Geometry. Wien: Klein Publishing, pp. 140–165.
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1 Geometric Fundamentals

Designing freeform architectural structures commonly follows a similar workflow. The overall shape is 
defined by a design surface. The surface is subdivided into smaller segments suitable for fabrication and 
construction. This segmentation results in a network of faces, edges and nodes. The repetitive nature of 
these elements is dependent on the curvature of the initial surface, as well as the properties and topology 
of the network.

- Section 1.1 outlines the definitions of curvature based on curves and surfaces.

- Section 1.2 gives an overview of the classification of surfaces and their properties.

- Section 1.3 introduces the different types of segmentation and presents the geometric and 
architectural properties of common networks.

- Section 1.4 introduces network topology, its relationship to curvature and its potential to create 
repetition.

This fundamental knowledge of geometry is well described in literature on descriptive and differential 
geometry. The following chapter primarily refers to the educational book, Architectural Geometry 
(Pottmann et al. 2007a). Any further sources will be cited in situ.

Figure 1.1  Principal curvature lines on an ellipsoid (ES 2018).
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1.1 Curvature

Curves and surfaces can be described as one or two-dimensional, smooth3 arrays of points. Curvature 
describes the deviation of these continuous geometric elements from a straight or flat state.

1.1.1 Curvature of a Space Curve
A curve is a one-dimensional object. At each point a tangent vector t and normal plane define its local 
direction. The local curvature of a curve is measured at the osculating circle at each point. The curvature 
k is the inversion of the curvature radius r, k = 1/r.
The torsion t describes the rotation of the osculating plane4 about the tangent vector5. 
If k and t are constant, the curve describes a circle, helix or, if k = 0, a straight line. A planar curve displays 
no torsion, t = 0.

r

Darboux 
frame

r1

r2

t

t

u

n

n

τg

knkg

Figure 1.2  Curvature of a curve. A curve is a one-dimensional, smooth array of points. At each point, the direction is defined by a 
tangent vector and normal plane. The local curvature is the inverse of the radius of the osculating circle (ES 2016 based on Pottmann 
et al. 2007a, p. 227).

1.1.2 Curvature of a Surface
A surface is a two-dimensional object. At each point the normal vector n and tangent plane define its local 
orientation. The local curvature of a surface is calculated at each point individually:
The surface is intersected with the planes through the normal vector. The curvature of the resulting section 
curve (at that point) is called the normal curvature kn. There are infinitely many planes (and thus section 
curves) radial to this normal vector. The two section curves with the highest and lowest normal curvature 
determine the two principal curvatures k1 and k2. They are always perpendicular to each other and 
indicate the two principal curvature directions. From these two principal curvatures, the Gaussian curvature 
(K = k1 · k2) and the mean curvature (H = ( k1 + k2 ) / 2) are calculated.
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Figure 1.3  Curvature of a surface. A surface is a two-dimensional smooth array of points. At each point, the orientation is defined by 
the normal vector and tangent plane. The curvature of a surface is calculated from the two principal curvature radii at this point (ES 
2016 based on Pottmann et al. 2007a, p. 215).

3 without kinks or folds
4 The osculating circle is a tangent circle which best approximates the curve progression at a particular point. It is derived from a 

limit refinement of three consecutive  points. The osculating circle spans the osculating plane, which is tangent to the curve at 
that same point.

5 The normal plane and the osculating plane intersect along the principal normal of the curve which is the direction of the 
curvature radius. The normal vector to the osculating plane is called the binormal. The three vectors – curve-tangent, principal 
normal and binormal – define a coordinate system which is called the Frenet frame. The rotation of this frame around the tangent 
vector determines the torsion t of the space curve.
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The Gaussian curvature K is commonly used to describe the shape and magnitude of surface curvature. 
If the two principal curvature radii centers lie on the same side of the surface, their product is positive. This 
is called an elliptical surface point (Figure 1.4) with positive (synclastic) Gaussian curvature, as can be seen 
on an egg or a sphere.
If the two principal curvature radii centers lie on opposite sides of the surface, their product is negative. 
This is called a hyperbolic surface point (Figure 1.5) with negative (anticlastic) Gaussian curvature, as 
illustrated by the shape of a horse’s saddle.
If one of the two principal curvatures are zero, their product is also zero. This is called a parabolic surface 
point (Figure 1.6). Such single curvature can be seen on a cylinder or cone. 

The mean curvature H indicates the balance of curvature. If the two principal curvature radii have the 
same absolute value, but opposite orientation, the mean curvature is zero (Figure 1.7). Surfaces with a 
constant mean curvature of zero are called minimal surfaces (Section 1.2.3).

To illustrate the curvature behaviour at a surface point, we trace the values of normal curvature kn in 
relation to the rotation of section curves (Figure 1.4 - Figure 1.7). This curvature graph has two extremes, 
k1 and k2, which indicate the principal curvature directions, and two, one or none zero-crossings, which 
indicate the asymptotic directions.

Scenario. The asymptotic directions can be illustrated by the following scenario: Imagine a ruler standing 
upright on the saddle of a horse, touching it at one point. When rotating the ruler around this point, it will 
hit the saddle at two specific directions where the normal curvature is zero. These are the asymptotic 
direction. Repeating the same exercise on a synclastic surface, like a balloon, will not find a contact-
direction. The ruler can be freely rotated, as the normal curvature is never zero.
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2007a, p. 243). Right: If kn is never zero, there are no asymptotic directions (ES 2018).
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Figure 1.6  Single curvature. Left: A parabolic surface point indicates single curvature. One of the principal curvatures is zero (ES 
2018 based on Pottmann et al. 2007a, p. 243). Right: The curvature graph illustrates the coincidence of principal curvature and 
asymptotic directions (ES 2018).
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Figure 1.7  Mean curvature of zero. Left: A hyperbolic surface point of  k1 = –k2 (ES 2018). Right: The curvature graph illustrates the 
regularity/bisecting nature of principal curvature directions and asymptotic directions on a minimal surface (ES 2018).

These two types of directions can be imagined like a magnet field across a surface, indicating the directions 
of extreme and vanishing normal curvature. The normal curvature of any other direction can be calculated 
from k1 and k2 as a function of the deviation angle m from the principal curvature direction.

kn(μ) = k1(cosμ)2 + k2(sinμ)2  (1.1) 

  
The directions of vanishing normal curvature (kn = 0) are called the asymptotic directions. The asymptotic 
directions can be determined by cutting the surface with its tangent plane. They are the tangent directions 
of the section curves at that point.
There are two asymptotic directions at any hyperbolic surface point. They lie in symmetry about the 
principal curvature directions (Figure 1.5). At an elliptical surface point, the tangent plane does not intersect 
with the surface, and the normal curvature is never zero. There are thus no asymptotic directions (Figure 
1.4). At a parabolic surface point the two asymptotic directions fall together with the principal curvature 
direction at kn = 0 (Figure 1.6). If the mean curvature of a surface is zero, the asymptotic directions bisect 
the principal curvature directions (m = 45°) and are perpendicular to each other (Figure 1.7).

1.1.3 Curvature of Curves on a Surface
When analysing a curve on a surface, the information of direction (of the curve) and orientation (of the 
surface) are combined. In this case, the “Darboux frame” (Strubecker 1969), can be constructed from the 
normal vector n, tangent vector t and their cross product, the sideways vector u. 
The rotation about all three vectors of the Darboux frame can be measured. These three specific curvatures 
are called geodesic curvature kg (around n), geodesic torsion tg (around t) and normal curvature kn 
(around u). The curvature radii of kg and kn can simply be derived from the curvature k, by projecting its 
curvature-vector into the tangent, or tangent-normal plane.

k = �kn
2 + kg

2 
 

(1.2) 
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Figure 1.8  Curvatures of a curve on a surface. The curvature is measured separately for all three axes of the Darboux frame. They 
are called the geodesic torsion (around t), the geodesic curvature (around n) and the normal curvature (around u) (ES 2016).

Scenario. The three curvatures of a curve on a surface can be illustrated by using the following scenario: 
Imagine a car driving through a landscape of rolling hills. Where the road changes its incline - going up or 
down - the driver experiences normal curvature. If the road changes direction - turning right or left - the 
driver experiences geodesic curvature. If the road changes its lateral inclination and banks to the side, the 
car tilts due to geodesic torsion.

1.1.4 Total Curvature and Gaussian Image
The total curvature of a planar curve is defined mathematically as the integral of curvature along the 
curve. This value can be determined graphically by mapping each point of this curve onto a unit-circle. 
This image is generated through the unitized normal vectors of the surface drawn from a common origin.6

If the normal vector at the start and endpoint are equal, the total curvature is either 0 (for a meandering 
curve) or 2·π (for a circular curve). For any closed planar curve (without self-intersection) the total curvature 
is 2·π .
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Figure 1.9  The total curvature of a planar curve can be expressed graphically by the unit circle (ES 2018 based on Pottmann et al. 
2007a, p. 494).

The total curvature of a surface is determined in a similar way using the normal vector at each surface 
point to map an image of the surface onto a unit-sphere. This representation is called the Gaussian 
image. The signed area of the Gaussian image equals the total curvature. This value can be derived solely 
from its boundaries.

Surfaces which exhibit both positive and negative Gaussian curvature generate a self-intersecting 
Gaussian image with positive and negative regions overlapping. The total curvature is calculated from the 
difference of the areas created by the self-intersecting boundary.

6 If the curve changes from positive to negative curvature, the respective parts of the unit-circle are drawn twice by subsequent 
curve-vectors. These parts are labelled with a positive sign (in the direction of rotation) and negative sign (in the opposite 
direction), thus cancelling each other out in the calculation of total curvature.
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If the normal vector is constant along the boundaries of a surface, the total curvature is zero, because the 
boundary collapses to a point on the unit-sphere. Any closed surface has a total curvature of a multiple7 
of 4π, the surface area of the unit sphere.

The total absolute curvature is the absolute sum of positive and negative Gaussian curvature. It is 
determined by adding the absolute values of all areas of the Gaussian image.
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Figure 1.10  The Gaussian image is a representation of the curvature of a surface created by a spherical mapping. The difference 
between positive and negative area of the Gaussian image indicates the total curvature. Overlapping boundaries signify a change 
from positive to negative curvature (ES 2018 based on Pottmann et al. 2007a, p. 495). 

Scenario. The Gaussian image of a surface can be imagined like a bedsheet, whose size is not dependent 
on the area, but the curvature of the surface. Surface-regions which have the same orientation are folded 
on top of each other. Here the positive and negative curvature cancel each other out. The total curvature 
is the difference of positive and negative curvature which can be imagined as the two sides of the folded 
sheet. In this scenario, the total absolute curvature is the complete area of the unfolded bed-sheet.

7 A sphere has a total curvature of 4π, a torus on the other hand creates a so called “handle”, doubling the total curvature to 8π.
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1.2 Surfaces

The following section gives a short overview of surfaces based on the categorizations of Pottmann and 
Barthel (Pottmann et al. 2007a; Barthel 2015) in traditional, freeform and physical surfaces/shape 
optimizations. Apart from these continuously curved surfaces, a final section introduces the notion of 
polyhedral surfaces as an independent type.

1.2.1 Traditional Surfaces
Traditional surfaces (Figure 1.12, left) are classified by how they are constructed geometrically. The three 
primary families are ruled, translational and rotational surfaces. 
The construction of traditional surfaces is based on kinematic operations. They are defined by a profile 
curve moving along a smooth path. In the case of ruled surfaces this profile curve is a straight line (the 
ruling) moving along two individual path curves. A translational surface is described by the parallel 
movement of one profile curve (the generatrix) along one path curve (the directrix). Finally, a rotational 
surface is generated by rotating a profile curve about a central axis, resulting in a family of radial meridian 
curves and an orthogonal family of parallel circles. 

Further traditional surfaces are a pipe surface, described by the movement of a circle perpendicular to a 
path curve, or a helical surface described by the transformation of a profile curve along a helical path. 
There are combinations and subsets of these categories. A hyperbolic paraboloid e.g., can be described 
as a double-ruled surface or a translational surface of parabolas. Similarly, a one-sheet rotational 
hyperboloid is both a double-ruled and a rotational surface.

A subset of the family of ruled surfaces are developable surfaces. They hold the additional geometric 
property that along any ruling the surface has the same tangential plane. This is true if all rulings are 
parallel, such as in a cylindrical surface; if all rulings pass through the same point (the apex), such as in a 
cone or central extrusion; or if all rulings are tangent to a fixed space curve. Such rulings describe a so-
called tangent surface.
Developable surfaces are single-curved, i.e., have constant vanishing Gaussian curvature. They are of 
special importance to this research as they can be unrolled (i.e., developed or mapped isometrically) into 
the plane without stretching or shearing like a piece of paper. This makes developable design surfaces 
most receptive to repetitive patterns. Developable geometries of building parts, like panels or lamellas, are 
favourable for construction.
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Figure 1.11  Developable surfaces are either cylindrical, conical or tangential surfaces (ES 2018 based on Pottmann et al. 2007a, p. 
535).
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1.2.2 Freeform Surfaces
Digital freeform surfaces (Figure 1.12, middle) are defined via control points. They can assume virtually any 
smooth shape and can be manipulated locally within a confined region – a powerful tool for designers.
A freeform surface is generated by an algorithm, which approximates a two-dimensional array of control 
points. The three common types, Bezier surfaces, B-spline surfaces (B stands for “Basis”) and NURBS 
surfaces (Nonuniform rational B-spline curves), are based on the homonymous digital freeform curves. 
They have increasing control mechanisms:

- Bezier surfaces are constructed via a repeated linear interpolation of control points, invented by 
Paul De Casteljau in 1959. Changing a control point has a global effect on the shape.

- B-spline surfaces consist of several Bezier-segments of the same degree and thus allow a local 
shape control within each segment.

- NURBS surfaces have the additional control of “weights” at each control point. The designer is able 
to pull or release the curve/surface at any control point individually.
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Figure 1.13  Digital surfaces are defined by a quadrilateral network of control points with open or closed topology (ES 2018 based 
on Pottmann et al. 2007a, p. 361).

1.2.3 Physical Surfaces
Physical surfaces (Figure 1.12, right) represent a state of equilibrium under given loads or boundary 
conditions. They are derived from a natural formation process and thus show a high aesthetic quality. 
Digital modelling of physical surfaces is achieved through an optimization process, in which either their 
mechanical or geometrical properties are approximated. Their particular curvature-behaviour makes them 
susceptible for segmentations with repetitive elements. The most relevant types for subsequent research 
are minimal surfaces. Other examples are funicular forms, pneumatic (constant mean curvature) surfaces, 
surfaces with constant negative Gaussian curvature, or hydrostatic shapes.

A minimal surface is the surface of minimal area between any given boundaries. Minimal surfaces have a 
mean curvature of zero. They can be found in nature in the shape of soap films. Their form is found digitally 
in an iterative process by minimizing the area of a surface or finding the shape of equilibrium of tension.
Some minimal surfaces can be derived from mathematical definitions, such as: the plane (for any planar 
boundary curve), the catenoid (the rotational surface of a catenary curve), or the Enneper surface.
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A funicular form is the inverted hanging shape of a given net under a defined set of loads and supports. 
For a single line or thread under self-weight, this results in a catenary and, when inverted, resembles the 
thrust line of a double-hinged arch. This shape can be determined graphically through the theory of graphic 
statics. This method can be extended for three-dimensional structures enabling an intuitive load-based 
design of compression-only shell structures (Block 2009).
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Figure 1.15  Left: A funicular form is an inverted hanging shape, such as the chain models of the Multihalle in Mannheim (Barthel 
2005). Right: A funicular network can be found digitally within a physical simulation (ES 2018).

Surfaces with constant mean curvature (CMC) are the mathematical representation of inflated 
membranes, such as a soap bubble or pneus (from isotropic material). Their curvature behaviour 
corresponds to the equilibrium shape caused by a pressure difference (Lobaton and Salamon 2007). The 
simplest CMC surface is a sphere, where H = 1/r. Minimal surfaces are a subset of CMC surfaces, in which 
the pressure difference is zero, resulting in a constant mean curvature of zero.
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Figure 1.16  A constant mean curvature (CMC) surface is the mathematical representation of inflated structures. Left: Soap bubbles 
(Schaur and Bach 1977, p. 91). Middle: The pneumatic façade of the National Aquatics Center in Beijing (AB 2008). Right: All points 
on a CMC surface have the same mean curvature, and thus follow a symmetrical pattern on the curvature graph (ES 2018).

A pseudosphere is one example of a surface with constant negative Gaussian curvature. The term is 
used specifically to refer to a tractricoid, the rotational surface of the path of pulling an object under the 
influence of friction.8 Pseudospheres are isometric to the hyperbolic plane and display an exponential 
increase of surface area towards their boundaries. This quality is used e.g., in the design of acoustic 
horns/speakers.

8 A tractrix is the path of movement of an object which is pulled under the influence of friction. It is created when pulling the object 
in the horizontal plane by a string of constant length along a straight line perpendicular to its initial position. Rotating this curve 
around the direction of the pulling force creates the pseudospherical surface called “tractricoid” (Weisstein 2018b).
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Figure 1.17  Left: A pseudosphere is a surface of constant negative Gaussian curvature (ES 2018). Middle: Such shapes are used e.g. 
in the design of acoustic horns (NA 2015). Right: All points on such a surface follow a pattern on the curvature graph symmetrical to 
the function of zero mean curvature (ES 2018).

1.2.4 Polyhedral Surfaces
A smooth surface may be approximated by a discrete mesh (Section 1.3.1). The proximity of this mesh to 
the reference surface may vary greatly, and allow for independent geometric qualities. Examples of such 
independent polyhedral surfaces are voxel, lobel or honeycomb meshes (Section 2.2.1).
Assigning these meshes to a smooth surface class might be misleading. They are thus classified separately 
as polyhedral surfaces.

Ruled

Ruled + Translational Ruled + Rotational

Translational Rotational

HelicalPipeDevelopable

Torus Rough meshEllipsoidSphereCone

Hyperbolic 
Paraboloid

(HP-surface)

One-sheet
Rotational

Hyperboloid

Cylinder

Tangent 

Funicular

Bezier-surface
B-spline-surface
NURBS-surface

Minimal

Pneumatic

FreeformTraditional Physical

Polyhedral

Voxel mesh

Figure 1.18  Examples of polyhedral surfaces (ES 2018).



16 Part I: State of the Art

1.3 Segmentation

For the purpose of construction, the design surface is usually divided into smaller segments. This 
segmentation results in three entities which directly inform the geometry of building parts: The faces, 
which become the façade panels; the edges, which become structural beams, mullions or transoms; and 
the nodes, at which the beams are joined. The particular geometry of each element is related to the surface 
curvature, the type of segmentation and the quality of the network. 

1.3.1 Classification
A smooth shape can simply be subdivided by drawing a network of curves on the surface. This smooth 
segmentation creates curved faces and edges, both coinciding with the surface geometry. The nodes are 
locally planar and traversal9, connecting continuously smooth curves. This segmentation is used scarcely 
in building construction as the fabrication of double-curved panels and curved beams are a rare and costly 
feature.

The most common strategy to segment a curved building envelope is to approximate the smooth edges 
with straight lines from node to node. This discrete segmentation only touches the surface at the nodes. 
A discretization naturally creates tangential discontinuities10 at both the edges and faces.
Even though discretization greatly simplifies the geometry of faces and edges, it shifts the complexity to 
the nodes. “In general no two nodes are congruent and, which is worse, a typical node exhibits torsion, 
i.e., is a truly spatial object whose manufacturing is challenging” (Bo et al. 2011).

There are hybrid solutions of smooth and discrete segmentations allowing for some curvature of edges 
or faces, but discretizing other parts. A common method is to create a curved segmentation of edges in 
one direction and a discretized segmentation in the other. These “semi-discrete segmentations” result in 
a series of ruled surfaces strips (Pottmann et al. 2008). Another method is to create curved but non-
continous edges between nodes (Section 4.2.2).
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Figure 1.19  Classification of discrete, hybrid and smooth segmentation (ES 2016).

9 Nodes are called “traversal” if opposite edges are tangent to each other, i.e., edges run continuously smooth through the node.
10 Schiftner et al. (2013) differentiate between “discontinuity in position”, meaning a gap or overlap within a network, and 

“discontinuity in tangency”, describing a kink between curves or a fold between surfaces.



171  Geometric Fundamentals

1.3.2 Networks
Networks are defined by the type of pattern used in a segmentation. Choosing the network (triangular, 
quadrilateral, hexagonal or others) not only influences the overall appearance, it also effects the stability 
of the structure, and the shape and complexity of faces and nodes. This section gives an introduction of 
the most common architectural networks and highlights their geometric and architectural properties.

The most common networks in architecture are based on the three planar regular tesselations:
triangles, quadrilaterals and hexagons. Each polygon in these regular tessellations has an incircle touching 
all edges, and a circumcircle touching all nodes of the polygon.
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Figure 1.20  Overview of triangular, quadrilateral and hexagonal networks showing valence, mesh angles and density (ES 2016).

Triangular networks {3,6}11 are often used in discrete segmentations as they naturally create a rigid 
structure with planar faces. They consist of three families of continuous edge-curves and are dual12 to a 
hexagonal network. Triangular networks are dense (ratio edge/area = 3.22)13, and result in a high node 
complexity with six edges meeting at every joint. Moreover, triangular panels are less favourable for 
fabrication, as their cutting process creates more waste material.

  

Figure 1.21  Triangular networks. Left: Botanical Garden in Shanghai (AWA 2010). Right: King’s Cross Station in London (Photo: 
Jonas Schikore 2018).

Hexagonal networks {6,3} are dual to triangular networks. They are the least dense (ratio edge/area = 
1.32) and are unstable in a hinged assembly. They have three edge directions meeting at each node 
without creating continuous curves. It is possible to create hexagonal discretization with flat panels, 
however, for anticlastic surface regions, this results in non-convex panel shapes (Figure 1.22, right).

11 Regular tessellations may be labelled with the Schläfli symbol {p,q}, in which p describes the number of vertices (or edges) of 
the regular polygon and q the number of polygons meeting at each node. The latter is also called the valence.

12 Connecting the face midpoints of a tessellation creates another “dual” tessellation.
13 For the purpose of comparing network density, the edge length within a periodic patch of a network is divided by the area of this 

patch.
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Figure 1.22  Hexagonal networks. Left: Eden Project in Cornwall (GA 2001). The geodesic dome consists of a hexagonal and a tri-hex 
network together forming a space frame. Right: Landesgartenschau Exhibition Hall in Schwäbisch Gmünd (ICD 2014). The hexagonal 
shell consists of convex and non-convex timber plates.

Quadrilateral networks {4,4} are often preferred in architectural design. They consist of two families of 
continuous edge curves, are dual to themselves, and have a density ratio of 2.00. Quadrilateral networks 
are unstable in a hinged assembly, which is commonly restricted by diagonal cables. It is possible to 
create a discretization with planar quads along conjugate curves. Additionally, quadrilateral panels offer an 
efficient fabrication with few offcuts.

  

Figure 1.23  Quadrilateral networks. Left: Multihalle Mannheim, 1972 by Frei Otto (Photo: Rainer Barthel 2007). Right: House for 
Hippopotamus at the Berlin Zoo (SBP 1996).

Apart from these common networks, there is a large variety of hybrid patterns, which combine several 
types of polygons, like the tri-hex pattern used for the Centre Pompidou in Metz, the Islamic pattern of the 
Abu Dhabi Louvre, or the triangle-quad mesh of the Islamic Art Exhibition in the Louvre in Paris, and 
bespoke patterns with irregular combinatorics, like the Dutch National Maritime Museum in Amsterdam.

      

Figure 1.24  Hybrid and bespoke networks. A) Hybrid, tri-hex pattern of the timber gridshell, Centre Pompidou in Metz (SBA 2010). 
B) Hybrid pattern of regular triangles, squares and octagons as roof shading for the Louvre Abu Dhabi (AJN 2017). C) Bespoke pattern 
of the courtyard gridshell, Dutch National Maritime Museum in Amsterdam (NP 2011). D) Hybrid triangular and quadrilateral tiling of 

the courtyard roof, Islamic art exhibition in the Louvre in Paris (MBA 2012).

 A  B  C  D
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1.4 Network Topology

The network topology describes the way that faces and edges are connected. Creating nodes with higher 
or lower valence helps to adjust a network to the surface curvature and thus prevent distortion. The 
following section explains the relationship between network angles and curvature, introduces the 
manipulation of valences as an initiator of curvature, and presents singularities as a design feature and 
their potential for repetitive structures using the examples of platonic solids, geodesic domes and smooth 
freeform networks.

1.4.1 Discrete Curvature
Any planar tessellation has the property of a constant angle-sum of 360° at each node.14 If this sum is 
decreased, the polygons form a vertex-pyramid which is a discrete representation of synclastic curvature. 
This reduction of the angle-sum is equivalent to a reduction of area from the vertex outward, as ed by the 
gap which appears when unfolding the same polygons into the plane. If the sum of angles is increased 
beyond 360°, the surplus of area causes the polygons to fold up and down into a saddle shape resembling 
an anticlastic curvature.
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Figure 1.25  The sum of mesh angles is an indicator of discrete curvature (ES 2018 based on Pottmann et al. 2007a, p. 81).

Instead of changing the mesh angles of polygons, we can introduce nodes with irregular valence to create 
curvature. Reducing the valence of a quadrilateral node from 4 to 3 (i.e., subtracting one square from a 
regular quadrilateral node) reduces the angle sum to 270° and creates a vertex pyramid representing 
synclastic curvature. Adding two squares to this node increases the valence to six, and the angle sum to 
540° degrees, and thus represents anticlastic curvature.
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Figure 1.26  The sum of mesh angles can also be changed by reducing or increasing the valence at a node (ES 2017).

14 This logic is not reversible. A tiling of equilateral triangles with a constant angle sum of 360° may form a roughly folded polyhedral 
surface or a smooth mesh approximating single curvature. Similarly, a quadrilateral network with constant angle sum 360° may 
result in a cylindrical mesh. This behaviour is owed to the straight continuous folds that appear in regular triangular and 
quadrilateral segmentations, making these planar tilings the only geometrically unstable arrangement.
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1.4.2 Platonic Solids
If a reduction of valence is applied systematically to a regular tessellation, the vertex-pyramids form a 
platonic solid: Subtracting one triangle at each vertex of a triangular tessellation {3,6} creates an 
icosahedron {3,5}. It consists of 20 equilateral triangles meeting with a valence of 5 at every node. The 
same logic of valence-reduction can be applied two more times to form an octahedron {3,4} and a 
tetrahedron {3,3}. Similarly, a quad-network {4,4} may form a cube {4,3} if one square is deducted at every 
node. An assembly of three pentagons per node creates a dodecahedron {5,3}.
These five platonic solids are the closest discrete representation of a double-curved surface (a sphere) that 
achieve complete geometric repetition, i.e., consist of only congruent faces, edges and nodes.
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Figure 1.27  The platonic solids are derived from regular patterns by consistently reducing their valence. Their combinatorics are 
defined by the Schläfli diagram (ES 2018 based on Pottmann et al. 2007a, p. 82).

1.4.3 Geodesic Sphere
The geodesic sphere is derived from an icosahedron: Each triangle is subdivided and projected to the 
circumsphere of the platonic solid. With this method it is possible to achieve a better approximation of the 
spherical geometry, while only introducing a limited number of individual triangles. This method was used 
by Walter Bauersfeld and Richard Buckminster Fuller to construct their famous geodesic domes (Section 
2.3). The network is a triangular {3,6} pattern in which 12 nodes show a reduced valence of 5. They are 
called singularities and are located at the vertices of the initial icosahedron.
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Figure 1.28  Modelling process of a geodesic sphere. The subdivision of an icosahedron and subsequent projection onto its 
circumsphere creates a partially repetitive double-curved tiling. A subdivision into 4 and 9 triangles both result in only two unique 
faces. A further subdivision into 16 triangles creates 5 unique faces (ES 2018 based on Pottmann et al. 2007a, p. 98).
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1.4.4 Singularities
Singularities are the key to realizing a homogeneous network on a double-curved surface. On a synclastic 
surface this results in a reduction of the valence, on an anticlastic surface, the valence is increased. This 
topological behaviour of curved meshes not only plays an important role in the optimization of networks, 
it is also a fundamental part of curvature analysis (visible in the behaviour of principal curvature networks) 
and can be observed in nature in the forming process of chemicals and crystals.

    

Figure 1.29  Singularities often occur in curved structures: Left: Principal curvature lines on an ellipsoid (ES 2018). Middle: A carbon 
molecule (Buckminsterfullerene), named after Buckminster Fuller (WM 2004). Right: Singularities of valence 8 within a triangular 
network at the New Milan Trade Fair (FA 2005).

To illustrate the effect of singularities, we modelled an equilateral quad network on a sphere. Due to the 
double curvature, the network is distorted to the extent that edges start to overlap.
A comparable segmentation with four symmetrical singularities (but no equilateral edges), creates a 
homogeneous network with little distortion. This is because the topology of the underlying mesh better 
approximates the shape of the sphere.

Figure 1.30  A comparison of two networks with (right) and without (left) singularities. The topology of the network with singularities 

better approximates the shape of the sphere, and thus creates less distortion (ES 2018).



22 Part I: State of the art



232  Literature Review

2 Literature Review

The following chapter is divided into three sections which present the constitutive research phases of this 
thesis: 

- Section 2.1 focuses on the terminology and perception of repetition in geometry and architecture. A 
fundamental insight of this review was the varying perception of repetitive structures in theory and 
practice.

- The subsequent review of repetitive structures is therefore separated into geometric investigations 
(Section 2.2) and architectural developments (Section 2.3). It resembles the foundation for the 
theoretical framework (Chapter 3) and the subsequent analysis (Chapter 4).

- Finally, the constructive properties of one particular reference, the Multihalle in Mannheim, are 
described in Section 2.4. They are the primary reference for the development of the novel construction 
method presented in Section 6.2.

Figure 2.1  Repetitive circular panels covering the Selfridges building in Birmingham (WM 2010).



24 Part I: State of the art

2.1 Terminology and Perception

The following section first reviews common terms used to describe repetitive structures. Thereafter, two 
publications are compared to clarify the perception of repetitive structures from a geometric and 
constructive standpoint.

2.1.1 Terminology
The term ‘repetitive’ is often used interchangeably with the architectural term ‘modular’, as well as the 
geometric terms ‘congruent’ and ‘isometric’. The following section will define each term and discuss its 
relevance to this research.

Repetitive. The term repetition is derived from Latin ‘repetere’, meaning ‘to repeat or to demand back’. 
The act of repeating is focused on a reproduction, copy, or replica of the initial entity, and does not imply 
a transformation or manipulation. A repetitive element is understood as having the identical shape and size 
throughout its use.

Modular. The meaning of the term ‘module’ has evolved throughout history: Vitruv introduced the term 
‘modulus’ in his Book IV on the rhythmic design of the Parthenon. The module was used as the common 
denominator of all building parts which defines the subdivisions and proportions of the Doric temple. 
During the industrialization of the 19th century, the module became the product of a series-production. In 
the 1950s, Konrad Wachsmann and Richard Buckminister Fuller developed architectural building-systems 
for space structures made from identical modular parts (Ludwig and Cook 1998).
“In our digital age, CAD/CAM-Planning and fabrication technologies enable a more differentiated notion of 
the module” (Agkathidis 2009). The module is moving away from identical components towards a 
“parametric and associative diagram” (Tessmann 2009).
Today, a module is not necessarily considered identical in scale nor in shape. It merely describes an 
architype, from steel-joint to cubic housing-cell, which can be modified in each iteration. It is therefore not 
synonymous with our understanding of a repetitive part.

Figure 2.2  The modular housing complex, Habitat 67, in Montreal (WM 2006).

Congruent. The term ‘congruent’ is derived from the Latin ‘congruere’, meaning ‘to correspond, to 
coincide’. It is used synonymously with the word ‘identical’, meaning that two elements have the same 
shape and size. Two elements are congruent if they can be mapped onto each other by applying a 
congruence transformation or ‘isometry’, such as rotation or translation. Apart from this direct congruence, 
an opposite congruence can also be achieved by reflecting an element which preserves the length and 
angles, but flips the orientation. The term ‘congruent’ is used in this thesis to describe a repetitive 
parameter.
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Figure 2.3  Congruence. The two triangles are oppositely congruent, having the same shape and size, but alternating orientations (ES 
2018 based on Pottmann et al. 2007a, p. 141).

Isometric. The term ‘isometry’ describes a congruence transformation which maps two congruent 
elements onto each other. An ‘isometric mapping’ extends this notion of congruence: It is the transformation 
of a point, curve or pattern from one surface to another, preserving length, angles and Gaussian curvature. 
This means that an isometric mapping is only possible between two surfaces of equal Gaussian curvature. 
This is the case for all single curved (developable) surfaces which can be mapped isometrically onto the 
plane.
Isometric mapping corresponds to our definition of ‘developable deformation’, which allow a geometric 
comparison of elastically bent edges or faces (defined in Section 3.2.3).
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Figure 2.4  Isometric mapping. A developable surface S is isometric to its unrolled planar image S’. This means that the length, 
angles, area and Gaussian curvature are preserved (ES 2018 based on Pottmann et al. 2007a, p. 496).
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2.1.2 Perception
Repetition is addressed in geometric and constructive publications, meaning both congruent geometric 
entities and identical building parts. This might cause confusion when labelling a structure as ‘repetitive’. 
The following section looks at two exemplary sources, a review on Architectural Geometry (Pottmann et 
al. 2015), and a description of the construction of the Reticulated Dome in Neckarsulm (Schober 2016), 
which illustrate the perception of repetitive elements in theory and practice. At the same time, the 
publications introduce important criteria for the analysis and classification of repetition.

Geometry
The review on architectural geometry adresses repetition as an autonomous topic of geometric research. 
Pottmann et al. (2015) introduce important strategies and categories of repetition and give a short overview 
of structures which achieve repetitive elements with respect to nodes, edges and faces.
Within discrete meshes, Pottmann et al. (2015) differentiate between “structures aiming at smoothness” 
and “non-smooth structures”. The latter is seen as a strategy to achieve repetition: “Element repetition for 
meshes is probably best achieved if one thinks of non-smoothness as a design element and intentionally 
plays with the rough surface, or with no surface at all” (p. 158).
“Real projects involving repetition” are introduced as a separate section claiming that: “In practice the 
problem of introducing repetition is circumvented rather than solved by not using true freeform structures 
at all” (p. 158).

Tolerances are seen as a driver for repetition. They are especially relevant for the panelization of a structure 
rather than the structural grid itself. For smooth double-curved skins, the reuse of moulds is mentioned as 
a hidden repetivity; “…hidden repetitive geometry is obviously highly relevant. Unfortunately, it is very 
difficult to detect in general” (p. 153).

Gridshell construction
In his book on form, topology and structure of shells, Schober (2010) describes the principles of the 
Netzkuppel as an equilateral, quadrilateral network with freely rotating joints to form any freeform network 
with constant edge length. Subsequently, the construction of the Reticulated Dome in Neckarsulm is 
explained as follows: “The entire cupola, despite its double-curvature, consists of only identical parts: one 
type of butt-strap, one type of edge beam, and one type of cable clamp” (p. 42).

The project is constructed from identical parts despite variable geometric parameters (joint angles). While 
the repetition of edge beams is owed to the repetitive geometry of the Reticulated Dome (Netzkuppel), the 
repetition of joints is achieved through an adaptable hinged construction detail.

Conclusion
The articles introduce several fundamental criteria of repetition, such as the separation of faces, edges 
and nodes, the differentiation between theory and practice, and the understanding of distinct strategies to 
achieve repetition. They pose the challenge that repetition is partly hard to detect, but propose no method 
to uncover or quantify it.
In all listed examples repetition is understood with respect to elements, not parameters. The repetition of 
building parts, however, is not necessarily consistent with that of geometric entities. 
To enable a holistic analysis and design of repetitive structures, a differentiation of geometric parameters 
and constructive criteria will be introduced in Chapter 3.
Consequently, the remaining literature review examines both geometric and architectural developments.
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2.2 Geometric Investigations

In geometric publications, the term ‘repetition’ is understood as the instalment of identical faces, equilateral 
edges or congruent nodes, while the investigation of planar faces or torsion-free nodes is considered a 
simplification rather than a repetition. Nonetheless, all methods are considered in this literature review if 
they lead to a repetition of geometric parameters. 

The section is separated into discrete and smooth segmentations. The examples are roughly sorted by 
their geometric entity (face, edge and node) or strategy to achieve this repetition.

2.2.1 Discrete Segmentation

Repetitive faces
A common method in computational design is to transform an existing mesh, and optimize it to achieve a 
high number of identical faces based on a set tolerance. During this process, other geometric properties, 
such as surface proximity, edge continuity or alignment might be taken into account. By weighting the 
different optimization goals, the designer can choose how important repetition should be in influencing the 
overall appearance. The result is a compromise which best fulfils all requirements.

Such an optimization may result in a preferably low number of unique elements called “equivalence 
classes” (Singh and Schaefer 2010). Enforcing a reduced number of unique faces has a direct effect on 
the smoothness and curvature of the resulting mesh. This is well illustrated in the investigation on K-Set 
tilable surfaces (Fu et al. 2010).

Figure 8: Resultant K-set tilable surfaces (from top to bottom): SWISS RE TOWER (528 quads); TUNNEL (1152 quads); SEASHELL (400
quads); DECOCUBE (480 quads); MONKEY SADDLE (100 quads); and DE BEERS GINZA (80 quads).
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Figure 2.5  K-Set tilable surfaces. Optimizing a mesh with the goal of reducing the number of unique mesh faces automatically 

creates a rough surface (Fu et al. 2010). 
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Tiling an arbitrary shape with a limited number of unique tiles may only be achieved if a rough surface is 
accepted. Taking this concept to the extreme and generating a full repetition of all entities, one obtains a 
coarse mesh, as illustrated by a Lego model (Lipson 2002). Such a discretization is called a voxel mesh.
Restricting each face, edge and node to a fixed building block not only results in a rough representation 
with considerable deviation from the reference surface, but it also restricts the orientation of panels in 
space. The shape is approximated solely by local changes in the mesh topology.
Huard et al. (2015) developed a method to rationalize a surface based on such regular space filling 
polyhedra, also called voxels. The method finds the intersection of a target surface with a three-dimensional 
“foam” of voxels and picks the closest faces in each polyhedra to create one continuous polyhedral 
surface with identical panels.
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Fig. 15 Three different Voxel Mesh sheets demonstrating the versatility of Voxel Meshes: each
column shows the same panelization with different renderings. The results can appear as anything
between completely abstract 2D patterns, to tectonic textures, to fully 3D structures. These results
also demonstrate the design influence of the reference surface: all three results used the generator
OctaTetra (see Fig. 14a). For the left and middle columns, the same reference surface was used but
with a different scale and orientation. For the right column, the same reference surface as in Fig. 13
was used, and the shown structure is actually exactly the same structure as shown in Fig. 17 right.
All three panelizations repeat only a single equilateral triangle

Figure 2.6  Voxel meshes create polyhedral surfaces with just one repetitive face. Left: Lego model approximating a Catalan minimal 
surface (Lipson 2002). Middle and Right: Two voxel meshes approximating the same freeform surface at different resolutions using 
only equilateral triangles (Huard et al. 2015).

A more flexible concept of a rough, polyhedral surface is illustrated by a crumpled piece of tiled cloth as 
was created by the designer Lisa Strozyk in the shape of wooden textiles (Strozyk 2011). A double-curved 
shape can be approximated by creating deep folds which account for the change in surface area. This 
approach creates a full repetition of faces (and thus edges), while accepting a varying kink between each 
face. The example shown in Figure 2.7 approximates a semi-sphere creating a rough polyhedral mesh.
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Fig. 10 Study of a non-smooth equilateral triangle mesh following a wave at different resolutions.
Dropping the smoothness requirement leads to increased design freedom but makes it more
challenging to control the aesthetics of the result

Fig. 11 Without the smoothness requirement it becomes possible for regular equilateral triangle
meshes to approximate double curved shapes, which automatically leads to a crumpled impression

Similarly as when trying to cover a sphere with a piece of paper, as soon as we
try to approximate a double curved surface with equilateral triangles, the result will
start to crumple. This effect is demonstrated in Fig. 11.

Since we want to use any type of surfaces as guides, it is in general difficult to
provide an accurate initialization similar to the one we used in Sect. 3.2. Instead, we
propose a pre-optimization step: starting from any equilateral triangular mesh, we
compute a few optimization iterations with the parameters !1 � !2; !3 D 0. This
results in a mesh approximating closely the reference surface, while still loosely
controlling the edge distortion from the target length l . We then move on to the
actual optimization process and set the parameters such that !1 � !2 D !3. Even
though smoothness isn’t our goal, it is necessary to give it a non-zero weight to
prevent the results from self-intersecting.

The main challenge is to control the aesthetics. Without smoothness, it is natural
to look for a substitute criterion, ensuring the results still have an aesthetical
value. In the case of corrugated surfaces, one could look at the existence of
regular patterns along the surface, or symmetries. These properties are more global
than standard smoothness properties and are thus difficult to enforce through
optimization algorithms. This makes the results hard to control and while some
results are very appealing, others look off. To the human eye, a surface featuring
almost but not quite perfect regularity has in general even less aesthetical value than
a result lacking any regularity. In that sense, this subjective effect recalls the famous
“uncanny valley” encountered in robotics and computer graphics.
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Gauss-Newton, being a least-squares solver, does not guarantee reaching the
exact same edge lengths for all triangles. By iteratively reducing the importance
of all weights except for the target edge length, however, the results can basically
be arbitrarily exact down to floating-point precision. For all our results, the edge
lengths are identical within practical tolerances (<0.001 mm), making the results
exact equilateral structures for the architectural application.

3.2 Smooth Structures: Approximating Developable Surfaces

What can we achieve with repeating a single equilateral triangle if we require
the result to be smooth? Note that when we talk about smoothness of polygonal
structures we always mean smoothness in a discrete sense. For an equilateral triangle
mesh to look smooth, all vertices of the panelization should have six neighbours.
More or less neighbours will lead to high angles around the vertex and a “kinked”
impression as shown in Fig. 3. We can easily obtain a planar shape with equilateral
triangles and all six-neighbours vertices. Think of this shape as a discretization of
a planar sheet of paper: we could start to design curved shapes by “bending” the
initially planar shape (Fig. 3). This provides us with an immediate intuition of the
set of classes achievable with equilateral triangles, namely the developable surfaces.

Our experiments show that if the triangles are small enough with respect to the
curvature, we are indeed able to smoothly approximate any developable surface with
an equilateral triangle mesh. This is a highly useful class of surfaces in architecture,
as we know from their impressive use by architects like Frank Gehry. We are
not aware that this general connection between equilateral triangle meshes and
developable surfaces has been investigated so far in architecture.

To describe the connection on a more theoretical level: if all triangle vertices have
six neighbours (vertices have valence 6), the mesh is said to be a regular mesh. Since
all the angles equal �

3
, the sum of incident angles to each vertex equals 2� , which

means the mesh represents a discrete developable surface (its discrete Gaussian

Fig. 3 Patches with equilateral triangles. Left to right: Planar tiling – A regular patch with
all valence 6 vertices can “bend” to approximate smooth developable shapes – Introducing a
singularity of valence <6 will automatically lead to a non-smooth impression – The same is true
for singularities of valence >6

Figure 2.7  Equilateral triangular meshes can be used to create either rough and “crumpled” polyhedral surfaces (Strozyk 2011) or 
discrete segmentations of developable surfaces (Huard et al. 2015).

Such a network of repetitive triangular faces may also assume a smooth curved shape. However, its 
shape spectrum is restricted to single curved surfaces. French architect Alain Lobel presented a large 
number of meshes, called Lobel Frames, which are built entirely from equilateral triangles (Lobel 2005). By 
introducing singularities, Lobel creates convex curved shapes with kinks and folds, all of which approximate  
piecewise developable surfaces. A computational method to model these shapes was presented by Huard 
et al. (2015) illustrating both a rough and smooth tesselation with equilateral triangles.
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In their article on Triangle-Based Point-Folding Structures, Zimmer et al. (2012) rely on standardized 
pyramidal moulds to produce the panels for a triangulated freeform surface. The same strategy was used 
for the ArboSkin façade mock-up in Stuttgart (Köhler-Hammer 2013).
The double-curved triangulated façade is built from identical pyramidal moulds which are cut individually 
to fit the varying triangular faces.
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Rationalization of Triangle-Based Point-Folding Structures

Henrik Zimmer Marcel Campen David Bommes Leif Kobbelt

RWTH Aachen University

Figure 1: Point-folding structure built from pyramidal elements according to a triangulated free-form base surface. Although
almost all base triangles are non-similar, thanks to rationalization only 21 mold dies are necessary to produce the 270 elements.

Abstract
In mechanical engineering and architecture, structural elements with low material consumption and high load-
bearing capabilities are essential for light-weight and even self-supporting constructions. This paper deals with so
called point-folding elements – non-planar, pyramidal panels, usually formed from thin metal sheets, which exploit
the increased structural capabilities emerging from folds or creases. Given a triangulated free-form surface, a cor-
responding point-folding structure is a collection of pyramidal elements basing on the triangles. User-specified
or material-induced geometric constraints often imply that each individual folding element has a different shape,
leading to immense fabrication costs. We present a rationalization method for such structures which respects the
prescribed aesthetic and production constraints and finds a minimal set of molds for the production process, lead-
ing to drastically reduced costs. For each base triangle we compute and parametrize the range of feasible folding
elements that satisfy the given constraints within the allowed tolerances. Then we pose the rationalization task
as a geometric intersection problem, which we solve so as to maximize the re-use of mold dies. Major challenges
arise from the high precision requirements and the non-trivial parametrization of the search space. We evaluate
our method on a number of practical examples where we achieve rationalization gains of more than 90%.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The rationalization of complex free-form designs currently
receives increasing attention in Architectural Geometry
and Computer Graphics. Before being fabricated, free-form

shapes are usually tessellated into sets of (discrete) so-called
panels. Here the number and complexity of the panels di-
rectly influence the production cost of the design – if all ele-
ments require unique individual molds, production costs can
quickly become prohibitive. The goal of rationalization is to

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.
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1 ArboSkin Bioplastics-Facade Mock-Up; photo: Manfred Richard Hammer, ITKE 

 
Mock‐Up: 
The bioplastics facade mock‐up was created within the framework of Research Project Bioplastic Facade, a 
project supported by EFRE (Europäischer Fonds für Regionale Entwicklung/ European Fund for Regional 
Development). It demonstrates one of the possible architectonic and constructional applications of the 
bioplastic materials developed in the course of this project. The blueprint is based on a triangular net made up 
of mesh elements of varying sizes. 

 
Research Project Bioplastic Facade:   
ITKE can look back on numerous years of experience in both teaching and researching the computer based 
planning, simulation, and production of cladding for buildings with complex geometries. Currently, materials 
made from petroleum‐based plastic, glass, or metal are used to encase such structures. Thermoformable 
sheets of bioplastics will constitute a resource‐efficient alternative in the future as they combine the high 
malleability and recyclability of plastics with the environmental benefits of materials consisting primarily of 
renewable resources.  

 

Collaborating materials scientists, architects, product designers, manufacturing technicians, and environmental 
experts were able to develop a new material for facade cladding which is thermoformable and made primarily 

Figure 2.8  Repetitive moulds: Triangle-Based Point-Folding Structure by (Zimmer et al. 2012) and the ArboSkin Façade mock-up 
(Köhler-Hammer 2013) both rely on standardized pyramidal moulds to produce panels for a triangulated freeform surface.

Planar Faces
A less restrictive, but desirable goal is to create planar faces as they have decisive advantages for the 
fabrication of panels. While discrete triangles always have planar faces, hexagons and quads require 
systematic rationalization to achieve this property. 

It is possible to tile any surface with planar hexagons. However, the Gaussian curvature has an effect on 
the hexagonal shapes. Positive Gaussian curvature creates convex, honeycomb-like hexagons, while 
negative Gaussian curvature produces non-convex hexagons (Jiang et al. 2015).

The design of a hexagonal mesh is usually achieved by means of duality to a triangular mesh (Pottmann 
et al. 2015): Troche (2008), for example, uses the nodes of a dual triangular tessellation to intersect a set 
of planes and thus create a hexagon tiling with planar faces. Another method is triangulating the Gaussian 
image of the surface and mapping this image back to obtain a planar hexagonal mesh (Almegaard et al. 
2007).
Both approaches have limited control over the location of the final nodes. They are mostly successful if the 
initial triangular mesh is aligned with the principal curvature directions. This way, they exhibit the least 
amount of geodesic torsion, thus creating regular intersection edges, and naturally implementing 
singularities.

S S ′

MMMMMMMMMMMMMMMMM

M ′

Figure 10: Creation of the mesh M ′ which Figure 1 is based on. This example demonstrates that meshes with properties interesting from the
mathematical viewpoint can yield aesthetically pleasing results; and that a designer has access to additional degrees of freedom by applying
some nonstandard geometric transformations. Here we start with the Koebe polyhedron S and construct the mesh M which is of constant
mean curvature with respect to S (the Gauss mapping σ : M → S has an overfolding, with the inflection circle on M corresponding to
the apparent boundary of S ). Applying a Laguerre transformation results in the EO mesh M ′, which has the Gauss image mesh S ′. This
L-transform was found interactively.

3.3 Designing with EO meshes

The edge offset property is rather restrictive. Quad-dominant mesh-
es which have vertex or face offsets (i.e., the circular and conical
meshes), are capable of approximating arbitrary shapes. This is no
longer the case with EO meshes.

Computing EO meshes from Koebe polyhedra. We may use the
following general procedure when designing a mesh M with the
edge offset property: First we determine the combinatorics of the
mesh and compute a Koebe polyhedron S with that combinatorics,
using the procedure of [Bobenko and Springborn 2004]. The mesh
M we are looking for is then found within the space P(S), e.g. by
optimization. An example of this is shown by Figure 11, where S
is a Koebe polyhedron with pentagonal faces and M is found by
minimizing the fairness functional fLaplacian defined by

fLaplacian(M ) =
X

vertices mi

`
mi −

1

deg(mi)

X
mj∈star(mi)

mj

´2
, (3)

under appropriate sign constraints for the factors λij of Equ. (1)
(see the figure caption for more details). Once an EO mesh is found,
we may apply geometric transformations to it – this is the topic of
the next paragraph. It is obvious that these methods are not useful
for geometric modeling in the usual sense, but only for form finding
purposes.

Laguerre transformations of EO meshes. From the various
equivalent descriptions of Laguerre geometry [Cecil 1992], the fol-
lowing, which employs the spheres of R3 as basic elements, is per-
haps shortest: A sphere S with center (m1, m2, m3) and signed
radius r is identified with the point xS = (m1, m2, m3, r) ∈ R4.
We think of normal vectors of spheres pointing to the outside if and
only if r > 0. Points are spheres of zero radius. An L-transforma-
tion then has the form xS �→ A · xS + a, where a ∈ R4 and A is
a 4 × 4 matrix with AT JA = J and J = diag(1, 1, 1,−1). Every
Euclidean transform permutes the set of spheres and can be writ-
ten as an L-transform. Another simple example of an L-transform
(A = I4 and a = (0, 0, 0, d)) is the offsetting operation which
increases the radius by the value d. It is well known that the set
of spheres tangent to an oriented cone of revolution is mapped by
any L-transform α to a set of the same type [Cecil 1992]. Thus, an
oriented cone of revolution Γ becomes an entity of Laguerre geom-
etry: Take two spheres S1, S2 tangent to Γ and define α(Γ) to be
tangent to the spheres α(S1), α(S2). After these preparations we
can state:

Proposition 4 An L-transformation maps an edge offset mesh M
to another edge offset mesh M ′, if both are seen as the respective
collection of vertex cones Γi, Γ′

i according to Proposition 3.

The proof is not difficult, but exceeds the scope of this paper. We
use Proposition 4 for the modification of edge offset meshes. An
example is furnished by the mesh Figure 1 is based on; the trans-
formation we use is illustrated by Figure 10.

Possible shapes of EO meshes (quad and hex mesh cases).
For a mesh M with the edge offset property, the Gauss image mesh
S is a Koebe polyhedron. Bobenko et al. [2006] show that in case of
quad meshes, S is a so-called s-isothermic mesh and thus the mesh
M is a discrete variant of a curvature line parametrization whose
Gauss image is an isothermic curve network. Such “L-isothermic
surfaces” are mentioned by Blaschke [1929], but not much seems to
be known about their shapes. Likewise, the description of the pos-
sible shapes obtainable by quadrilateral EO meshes is an unsolved
problem at the present time.

Hexagonal meshes, which here is a synonym for meshes with pla-
nar faces and vertices of valence three, have better approximation
properties (cf. e.g. [Cutler and Whiting 2007]). In order to create
a hexagonal EO Mesh M which approximates a given surface Φ,
we could start with any Koebe polyhedron S which is a hexagonal
mesh (cf. Figures 10 and 18) and determine the vertices mi of M as
follows: Parallel translate the three planes which are adjacent to the
vertex si in the mesh S so that they touch Φ, and intersect them. By

M

S

Figure 11: Edge offset mesh of negative curvature. The mesh M
with pentagonal faces has a parallel mesh S whose edges are tan-
gent to the unit sphere, so M has the edge offset property. Cor-
responding edges of M and S are parallel, but the correspondence
is orientation-reversing for some edges. The general pattern which
edges keep their orientation and which do not is indicated by the
schematic diagram. The mesh S is a Koebe polyhedron; M was
found by minimizing the Laplacian energy of Equation (3) in the
space P(S), under appropriate sign constraints on the coefficients
λij of Equation (1).

Figure 2.9  A planar hexagonal network on a freeform surface displays convex hexagons in areas of positive Gaussian curvature and 
non-convex hexagons in areas of negative Gaussian curvature (Pottmann et al. 2007b).
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There is a large number of publications investigating planar quad (PQ) meshes and their geometric 
properties, computation and optimization in combination with other properties, such as rectangular panels 
or torsion-free nodes.
PQ meshes are geometrically defined as the discrete representation of conjugate curve networks (Sauer 
1970). A network is conjugate if the two families of curves are related such that the tangent vectors of one 
family form the rulings of a developable surface at the intersections with a curve of the other family. For 
more background we refer to Pottmann et al. (2007a, pp. 680–684).

Any surface has an infinite number of conjugate curve networks and thus infinite solutions for a planar 
quad mesh. However, the closer this network is oriented to the principal curvature directions, the more 
rectangular the faces become. Conjugate curve networks are formed, e.g., by the meridian curves and 
circles of a rotational surface (which are at the same time the principal curvature directions) or the profile 
and path curves of a translational surface.15

        

Figure 2.10  Planar quad meshes. Left: Illustration of a conjugate curve network with tangent vectors as rulings of a developable strip 
(Pottmann et al. 2007a, p. 680). Right: An example of a PQ mesh which is designed towards the principal curvature directions 
(Pottmann et al. 2007a, p. 683).

Translational meshes are modelled from a profile and a rail-polyline. Each profile-polyline is copied 
parallel to each vertex of the rail-polyline, creating a quadrilateral network with planar parallelograms.
Similarly, rotating a polyline about a central axis and connecting the vertices with polygonal circles creates 
a rotational mesh with planar trapezoids. Schober (2016) used polylines with equilateral edges to design 
reticulated shells. He devised more shape variations by linearly scaling and rotating the profile curves, 
stretching the profile curve from a central focus point or scaling the whole mesh in one, two or three 
dimensions. These variations are called ‘Scale-Trans-Surface’ and preserve the geometric property of 
planar faces but not necessarily of equilateral edges.

  

Figure 2.11  Translational mesh and Scale-Trans-Surfaces. Deforming a translational mesh by scaling it in 3D, 2D or 1D, preserves 
the property of planar faces (Schober 2016, p. 138).

15 The profile and path curves of a translational surface do not necessarily align with the principal curvature directions. The 
resulting PQ mesh may thus display extreme oblique angles.
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Equilateral Edges
In differential geometry, equilateral, quadrilateral networks are called Chebyshev nets, named after the 
Russian mathematician who first described them in 1878 (Chebyshev 1878).
Naturally, equilateral edges are closely related to repetitive faces (as described above). If all faces are 
regular, all edges are of equal length as well. A constant edge length is also a property of the translational 
meshes.
An equilateral, quadrilateral net can assume any curved shape through the individual rotation of mesh 
angles. The initially square faces become rhombuses and thus account for the change in surface area 
(Section 1.4.1). Such a quad mesh does not necessarily have planar faces.

The Institute for Lightweight structures (IL) has conducted a series of experiments on the geometry of “the 
uniform mesh net with square meshes” to create prestressed or funicular structures (Hennicke 1974). A 
variety of chain-models with triangular, quadrilateral, hexagonal, hybrid and non-uniform mesh formats 
was tested. Only equilateral triangles do not allow for the tolerance in mesh angle. Hence, their shape 
spectrum is restricted to single curved surfaces or results in discontinuous, slagging edges (Figure 2.12, 
left). Quadrilateral and hexagonal equilateral nets, however, can be transformed into a broad spectrum of 
synclastic and anticlastic shapes. They are only limited by the maximum rotation of the mesh angles (Bach 
and Kullmann 1975).

  

Figure 2.12  Triangular, hexagonal and quadrilateral chain models with equilateral edges (Hennicke 1974, pp. 43, 45, 85).

A more recent publication by Garg et al. (2014) looks at a computational approach to adapt Chebyshev 
nets to complex freeform surfaces to create wire mesh designs. 
The research uses the formula of Hazzidakis (1879), 

� Κ(u, v)dA = 2π −  �αi

3

i=0𝐷𝐷𝐷𝐷
 

  

 
(2.1) 

  
which states that the total curvature of a rectangular patch D of a Chebyshev net is equal to 2π minus the 
sum of its four interior angles ai. In other words, if the total curvature of a surface is larger then 2π (the 
curvature of a semisphere), it is impossible to cover this patch with an aligned Chebyshev net without self 
intersection of the interior angles (compare Figure 1.10 and Figure 1.30).

Wire Mesh Design
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Figure 1: Wire mesh design allows creating physical realizations (1st and 5th images) of a given design surface (2nd and 4th images)
composed of interwoven material (middle image) in an interactive, optimization-supported design process. Both the torso and the Igea face are
constructed from a single sheet of regular wire mesh.

Abstract

We present a computational approach for designing wire meshes, i.e.,
freeform surfaces composed of woven wires arranged in a regular
grid. To facilitate shape exploration, we map material properties
of wire meshes to the geometric model of Chebyshev nets. This
abstraction is exploited to build an efficient optimization scheme.
While the theory of Chebyshev nets suggests a highly constrained
design space, we show that allowing controlled deviations from the
underlying surface provides a rich shape space for design explo-
ration. Our algorithm balances globally coupled material constraints
with aesthetic and geometric design objectives that can be specified
by the user in an interactive design session. In addition to sculptural
art, wire meshes represent an innovative medium for industrial ap-
plications including composite materials and architectural façades.
We demonstrate the effectiveness of our approach using a variety
of digital and physical prototypes with a level of shape complexity
unobtainable using previous methods.
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1 Introduction

Wire meshes enjoy broad application in art, architecture, and engi-
neering, including handmade sculptures, filters, support structures in
composite materials, and architectural façades (see Fig. 3). Despite
their widespread use, a systematic design methodology for freeform
wire meshes is lacking. While physical exploration helps build
intuition in early concept design, rationalizing a surface entails nu-
merous constraints that are often globally coupled. Artists currently
use an incremental, trial-and-error approach, where an initially flat
piece of wire mesh is gradually bent by hand to conform to a desired
surface. Likewise, in architecture wire meshes are restricted to very
simple shapes, such as planes, cylinders, cones, or half-spheres, de-
spite great interest in freeform façades. We show that a much richer
space of wire meshes can be more effectively explored using digital
tools, which automatically account for the strong global coupling of
physical and geometric constraints.

While in our fabrication examples (but not for our design tool), we
have focused on wire mesh made of steel, wire mesh encompasses a
much broader range of materials, such as fishnet stockings, woven
reinforcements in composite materials, or even onion nets. Indeed,
even something as prosaic as a simple onion net reveals some of the
core structural properties of wire mesh: inextensible fibers that are
woven in a criss-cross pattern such that the warp and weft directions
cannot stretch but may significantly shear towards (or away from)
one another (see Fig. 5). In order to gain intuition for designing with
wire mesh, one may try to “dress” a given target shape, such as a
vase, a bust, or a ball with an onion net. Soon one then discovers
that due to shearing some features cannot be captured, that more
material may be required in certain areas, or that it is difficult to
preserve the fine details of the given target shape.

Such difficulties are ubiquitous when working and designing with
wire mesh: If a wire mesh is required to lie exactly on a given target
design surface, incremental layout often fails to adequately represent
the desired shape. We substantiate this observation by modeling
wire meshes as discrete Chebyshev nets (§3), revealing fundamental
limitations in the kind of shapes that can be equipped with a single
wire mesh. Further insights from the theory of Chebyshev nets allow
us to formulate an optimization scheme where the mesh can deviate

Figure 2.13  Wire mesh designs made from interwoven material (Garg et al. 2014).
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Repetitive Nodes
There are a few methods which achieve a constant mesh angle while accepting a varying kink between 
faces, such as the Lobel meshes presented above.
Connecting the centre point of each triangle in such a network creates a dual, hexagonal network with 
regular angles of 120° between the “honeycomb walls” (Jiang et al. 2014).16 Furthermore, all node axes 
are oriented normal to the surface. This quality is especially useful with respect to multi-layered structures.
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Figure 10: Honeycombs and polyhedral patterns. (a) A honeycomb following the “flying
carpet” roof in the Cour Visconti in the Louvre, Paris. Its walls are near-orthogonal to the
reference geometry in so far as they have been initialized this way, before projection onto the
constraint manifold has been applied.

(b) The Lobel mesh dual to this honeycomb. Developability of this surface is visualized
by a rendering with tangential light, recalling crumpled paper.

(c–e) (opposite page) Consider the top layer hex mesh of the honeycomb in (a), introduce
new edges (colored strokes in left hand insets) and seek a nearby polyhedral mesh, guided
by an alternate smoothness energy. While the patterns in (c) and (d) follow a single rule, the
one in (e) is irregular. It is created by a greedy rule: among the three possibilities to split
a hexagon in half we take the one which makes the resulting quads most planar. The inset
figures are right show a detail and the quality of planarity by color coding faces according to
the value of δ, where δ is defined as distance of diagonals, divided by average edge length.
We also give the value σ which is the distance of vertices to the reference geometry, divided
by average edge length of the mesh.
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Figure 2: Designing honeycomb structures is an in-
stance of modeling with constraints: A collection of
quadrilaterals form the walls of a honeycomb struc-
ture, if their combinatorial arrangement is along the
edges of a hexagonal-dominant mesh, and their in-
tersection angle is 120◦. Constraints are planarity
of quads and the correct intersection angles. Note
that one can find a Lobel mesh which intersects the
honeycomb orthogonally, and vice versa.

Polyhedral meshes. A more complex example are meshes whose faces can be ar-
bitrary n-gons, but are required to be planar. In addition to vertices, we here use
the normal vectors n1,n2, . . . as variables. The condition that face No. k is planar is
expressed by (vi −vj)

T nk = 0, for all edges vivj of that face. It is also convenient to
require the normalization nT

k nk = 1. Again, we get a set of quadratic constraints.

Honeycomb structures, as defined by Figure 2 are studied by Jiang et al. [2014].
They are arrangements of quadrilaterals combinatorially different from the arrange-
ment of faces of a mesh; however the constraints describing their planarity are the
same. The required intersection angles of 120◦ are most elegantly expressed by re-
quiring that whenever faces No. i, j, k meet in a common axis, their normal vectors
must form an equilateral triangle, which results in the equation ni +nj +nk = o.

Self-supporting meshes. We wish to incorporate forces in our computational set-
ting, since meshes with compressive equilibrium forces in their edges (Figure 4)
play an important role e.g. in the stability analysis of masonry, see e.g. [Block and
Ochsendorf 2007]. The force which vertex No. j exerts on vertex No. i has the form
wij(vi−vj). Since wij = wji, information on forces is stored via one force coefficient
wij per edge. This edge experiences compression if wij ≥ 0. The inequality wij ≥ 0 is
made an equality by introducing a dummy variable ωij and requiring wij =ω2

ij (while
wij represents a force per edgelength, ωij is there only to assist in a mathematical
trick and does not have a physical interpretation).

As to constraints, we must formulate what the forces should be in equilibrium
with. The simplest case, which e.g. applies to Figure 4b, is discussed by Figure 3.

vi vjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvj

wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)wij(vi −vj)

Figure 3: Force equilibrium. The simplest case is
that forces wij(vi −v j) in edges viv j counterbalance
the weight of edges, which is modelled by the weight
“ρ” per unit length. With (0,0,−1) as direction of
gravity, force balance at vertex vi reads

(0,0,−1) ·∑ j∼i ρlij = ∑ j∼i wij(vi −vj)

where summation is over all vertices vj connected to
vi by an edge, and the edge lengths are defined by
l2
ij = (vi −vj)

T (vi −vj).
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Figure 10: Honeycombs and polyhedral patterns. (a) A honeycomb following the “flying
carpet” roof in the Cour Visconti in the Louvre, Paris. Its walls are near-orthogonal to the
reference geometry in so far as they have been initialized this way, before projection onto the
constraint manifold has been applied.

(b) The Lobel mesh dual to this honeycomb. Developability of this surface is visualized
by a rendering with tangential light, recalling crumpled paper.

(c–e) (opposite page) Consider the top layer hex mesh of the honeycomb in (a), introduce
new edges (colored strokes in left hand insets) and seek a nearby polyhedral mesh, guided
by an alternate smoothness energy. While the patterns in (c) and (d) follow a single rule, the
one in (e) is irregular. It is created by a greedy rule: among the three possibilities to split
a hexagon in half we take the one which makes the resulting quads most planar. The inset
figures are right show a detail and the quality of planarity by color coding faces according to
the value of δ, where δ is defined as distance of diagonals, divided by average edge length.
We also give the value σ which is the distance of vertices to the reference geometry, divided
by average edge length of the mesh.

Figure 2.14  Left: Discrete network from equilateral triangles. Middle/Right: Connecting the centre point of each triangle creates a 
dual, hexagonal mesh with constant mesh angle, measured in-plane (Jiang et al. 2014).

Node Angles
In their publication on reticulated structures on freeform surfaces, Stephan et al. (2004) systematically 
explain the geometric parameters and related detailing of steel joints in a discrete segmentation. Their 
definitions are used as a basis of the parametric definitions for discrete segmentations in Section 3.1.
Three angles are differentiated – horizontal, vertical and twisting – which define the geometry of any steel 
node in relation to its centre axis.
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Figure 2.15  Definition of three node angles U, V and W defining the horizontal and vertical arrangement, and twist at a joint (ES 2018 
based on Stephan et al. 2004).

The horizontal angle (Horizontalwinkel) Ui is measured between two adjacent edges projected onto the 
tangent plane. Stephan describes a general dependency of Ui to the choice of network (hexagonal, 
quadrilateral or triangular).
The vertical angle (Vertikalwinkel) Vi is measured between each edge and the node axis. Stephan mentions 
a general dependency of Vi with the normal curvature of the surface.
The twisting angle (Verdrehwinkel) Wi is measured between the orientation axis of an edge and the plane 
created by the node axis and the edge. Again, Stephan conjectures a general dependency with the surface 
curvature.

16 This angle is not equivalent to the mesh angle measured between edges, but equates to its value in projection to the tangent 
plane. This angle is called the Horizontalwinkel by Stephan et al. (2004).
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Offset Meshes
Creating a mesh offset is not trivial. Two meshes are offset if they are parallel and at constant distance to 
each other. The offset distance can be measured in between nodes, edges or faces. For triangular meshes, 
creating an offset mesh is not possible without changing the connectivity of the mesh.17

A common goal for quadrilateral and hexagonal meshes is to create a torsion-free, geometric support 
structure, meaning an arrangement of planar quads connecting the edges of top and bottom offset 
meshes, such that the edge-quads at a node intersect at a common node axis (Pottmann et al. 2007b).

For quadrilateral meshes, differential geometry offers three respective solutions of torsion-free support 
structures. Circular, conical and edge-offset meshes. They all create planar faces and respectively have a 
constant node, face and edge distance. They are aligned to the principal curvature direction.

- In a circular mesh each face is inscribed in a circumcircle through every corner. Circular meshes 
may assume any shape and allow a constant node-offset.

- In a conical mesh all faces at one node are tangent to a cone of revolution around the node axis. 
They may assume any shape and allow a constant face-offset.

- An edge offset mesh (EO mesh) is best found via its Gaussian image. Here, each face possesses 
a tangent incircle and all edges at one node are tangent to a cone of revolution around the node 
axis. This type of mesh, however, is limited to so-called L-isothermic surfaces.

18

Fig. 9 A discrete surface of negative Gaussian curvature in the shape of a circular mesh
(right), which arises as the diagonal mesh of a rhombic mesh (left). It is circular of
constant radius, and also conical of constant opening angle. The mesh is also shown by
Fig. 5, together with a face+vertex offset.

mesh m′′ at constant vertex distance d � 0 (a vertex offset). The most
interesting case here is that there is a mesh with both properties, i.e., where
we can choose m′ = m′′:

Proposition 29 If a mesh m : Z2 → R3 has a parallel mesh m′ which is a face
offset for distance D and vertex offset at distance d, then it has a parallel SCR mesh
m̃ : Z2 → S2 with circle radius r =

√
1 −D2/d2. Conversely, any mesh parallel

to an SCR mesh m̃ has offset meshes which are not only at constant face distance,
but also at constant vertex distance. Such meshes are also conical, with constant
cone opening angle.

Proof By our assumptions, the mesh m̃ := 1
d (m′ − m) has vertices in the

unit sphere, and its faces are at distance D/d from the origin o. Obviously,
D/d < 1. Consider the face planes F̃i j of m̃ and the circles C̃i j = S2∩ F̃i j. Since
dist(F̃i j, o) = D/d = const, the radius of the circles C̃i j is as stated above.

Conversely we may start with m̃ and consider any mesh m parallel to
m̃. The mesh m′ = m + δm̃ is at vertex distance δ and, by construction, at
face distance δD

d .
The statement about the cone opening angle follows directly from

Proposition 28 via parallelity.

We combine previous results on the relationship of conical meshes and
circular meshes to this case of meshes with both properties:

Theorem 30 A mesh m which has offset meshes at both constant face and vertex
distance is circular and conical of constant cone opening angle. There is another
mesh c with the same properties and the same cone opening angle, whose face
planes pass through the vertices of m, and such that there is a rhombic mesh
r : Z2 → S2 whose diagonal meshes m̃ and c̃ are parallel to m and c, respectively.

Proof We construct m and the SCR mesh m̃ parallel to m according to
Proposition 29, so that there is a rhombic mesh r whose diagonal mesh is
m̃. The other diagonal mesh c̃ is also an SCR mesh of the same cone opening

  

(a) (b) (c)

Figure 7: (a)–(c): Hierarchy of PQ meshes obtained by iterative
application of Catmull-Clark subdivision and PQ perturbation.

A single PQ strip can be subdivided by applying a curve subdivi-
sion rule like Chaikin’s to its boundaries, and subsequent applica-
tion of PQ perturbation in order to achieve face planarity. Alternat-
ing application of these two steps is a subdivision algorithm which
generates developable surfaces. Because of our treatment of PQ
perturbation as a black box it is in general not possible to write
down the limit of this subdivision process explicitly. Nevertheless
it is a much simpler design tool than developable B-spline surfaces,
whose control points have to satisfy a set of nonlinear constraints.

As illustrated in Fig. 8, the relation of the input PQ strip to the final
developable surface is very intuitive – certainly more so than the
dual control structure in terms of tangent planes, which can be used
to avoid nonlinear constraints (cf. [Pottmann and Wallner 2001]).

In the perturbation phase of the algorithm, the term fdet in (5) is
important for maintaining planarity. The term fangle discourages
self-intersecting quads and thus acts against the common problem
that the singular curve enters the designed patch. Finally, ffair helps
to prevent a zig-zag effect in adjacent quads.

(a) (b) (c)

Figure 8: Developable subdivision surfaces generated with the per-
turbed cubic Lane-Riesenfeld algorithm; this nonlinear subdivision
scheme keeps the planarity of quads and thus achieves developa-
bility of the limit. The control entity (a) is a piecewise-planar PQ
strip. (b) and (c): 1 and 3 rounds of subdivision.

4 Conical meshes

Principal curvature lines form a special network of conjugate curves
on a surface. Apart from umbilic points, where this network pos-
sesses singularities, it behaves nicely, since its curves intersect at
right angles. This is not necessarily true for an arbitrary conjugate
curve network; asymptotic (self-conjugate) directions give rise to
degenerate situations that make such networks unsuitable for mesh-
ing purposes (Fig. 4).

A particular discretization of the network of principal curvature
lines are the circular meshes, which are quad meshes whose quads
are not only planar, but also have a circumcircle [Martin et al. 1986;
Bobenko and Suris 2005]. Even though they are not the focus of the
present paper, it is however easy to extend our PQ perturbation al-
gorithm to the computation of circular meshes (see Section 5 and
Fig. 17). It turns out that another discrete analogue of the principal

Figure 9: Developable Möbius band in the shape of a trefoil knot.
Left: PQ strip as control structure. Right: Result of subdivision
augmented by PQ perturbation. Numerical smoothness is C2, as
seen from smooth reflection lines ( fPQ,penalty = 2.9×10−11).

curvature lines – the conical meshes to be introduced in this sec-
tion – have geometric properties essential for architectural design
of freeform structures. For their computation via an augmented PQ
perturbation algorithm, see Sec. 5.

A vertex v of a quad mesh is a conical vertex if all the four (ori-
ented) face planes meeting at v are tangent to a common (oriented)
sphere. This is equivalent to saying that these oriented face planes
are tangent to a common oriented cone of revolution Γ (see Fig.
10a). The axis G of Γ can be regarded as a discrete surface normal
at that vertex.

We call a PQ mesh a conical mesh if all of its vertices of valence
four are conical. For theoretical investigations, we consider only
regular quadrilateral meshes whose vertices have valence 4, except
for valence-2 or valence-3 vertices on the boundary. A conical mesh
is in some sense dual to a circular mesh. Instead of requiring the
four vertices of a quad to be co-circular, we require that the four
(oriented) faces incident with a mesh vertex be tangent to an (ori-
ented) cone of revolution. We will see that conical meshes, like
circular meshes, discretize the network of principal curvature lines.

There are exactly three types of conical mesh vertices, which can be
characterized geometrically as follows. A small sphere S centered
in a mesh vertex v intersects the mesh in a simple 4-sided spherical
polygon P. If the four vertices pi of P cannot be contained in the
same hemisphere, v is of the hyperbolic type. Otherwise (i.e., the
four vertices pi are contained a hemisphere) v is either of elliptic
type (see Fig. 10a) or of parabolic type, depending on whether P
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Figure 10: (a) Configuration of the faces of a conical mesh at a ver-
tex. The faces touch the common cone Γ along rulings R1, . . . ,R4,
and have interior angles ω1, . . . ,ω4. (b) Faces of a conical mesh at
two adjacent vertices vi, j and vi, j+1, and the intersection point ri, j
of neighboring axes Gi, j , Gi, j+1.

  

3.1 Types of exact offset meshes

Recall that a mesh M ′ ∈ P(M ) at constant distance from M is
an offset of M . Different ways to define the precise meaning of
“dist(M , M ′) = d” lead to different kinds of offsets:

• vertex offsets: The distance of corresponding vertices mi, m′
i

equals a constant d, which does not depend on the vertex.
• edge offsets: The distance of corresponding parallel edges (actu-

ally, lines which carry those edges) does not depend on the edge
and equals d.

• face offsets: The distance of faces (actually, planes which carry
faces) is independent of the face and equals d.

Discrete Gauss images. If p is a point of a smooth surface and n
is the unit normal vector there, then p′ = p + dn would be a point
of an offset surface at distance d. If p,p′ are given, we can recover
the unit normal vector by n = (p′ −p)/d. If M ′ is an offset mesh
of M we can mimick this construction and define a discrete Gauss
image mesh S := (M ′−M )/d, whose vertices si = (m′

i−mi)/d
can be regarded as discrete normal vectors.

Proposition 2 Consider a mesh M , its offset mesh M ′ at distance
d, and define the Gauss image mesh S = (M ′ − M )/d. Then the
following is true:

1. M ′ is a vertex offset of M ⇐⇒ the vertices of S are con-
tained in the unit sphere S2. If S is a quad mesh and no edges
degenerate, then M has a vertex offset if and only if M is a
circular mesh, i.e., each face has a circumcircle.

2. M ′ is an edge offset of M ⇐⇒ the edges of the Gauss image
mesh S are tangent to S2.

3. M ′ is a face offset of M ⇐⇒ the faces of the Gauss image
mesh S are tangent to S2. A mesh has a face offset if and only
if it is conical, i.e., the faces around a vertex are tangent to a
cone of revolution.

So in all three cases we have the equivalence dist(M , M ′) = d
⇐⇒ dist(S ,o) = 1, which means that the vertices, or the edges,
or the faces of S are at distance 1 from the origin.

Proof: The equivalence dist(M ′, M ) = d ⇐⇒ dist(S ,o) = 1
is elementary. The statements about circular and conical meshes
are reviewed in [Pottmann and Wallner 2007]. �

This relation between a pair of offset meshes M , M ′ and the Gauss
image mesh S is illustrated by Figure 8. Proposition 2 has an im-
portant consequence: If the mesh M has an offset mesh at constant
vertex/edge/face distance, then every mesh parallel to M has this
property. This is because the Gauss image mesh S ∈ P(M ) can

S2

S

M ′ = M + dS

M

Figure 8: A mesh M with an edge offset mesh M ′ at distance d
has a parallel mesh S = (M ′ − M )/d whose edges are tangent to
the unit sphere S2. The faces of S intersect S2 in a circle packing,
cf. Section 3.2.

be used to construct an offset not only for M , but for any further
mesh in P(M ). Another observation will be important later: We
can first construct a mesh whose vertices/edges/faces are at distance
1 from the origin. Then any mesh M ∈ P(S) has offset meshes
M ′ = M + dS .

3.2 Meshes with edge offsets

We are interested in meshes which have edge offsets (EO meshes)
because they can be built with beams of constant height meeting at
the nodes in a geometrically optimal way (see Figure 6). Proposi-
tion 2 mentioned that a mesh M has an edge offset mesh, if there is
a mesh S parallel to M whose edges are tangent to the unit sphere.
The following paragraphs deal with the interesting mathematical
theory of EO meshes, with a focus on the geometry of S .

Proposition 3 If a mesh M has an edge offset M ′, then for each
vertex mi of M , the edges emanating from mi are contained in a
cone of revolution Γi. The node axis Ai spanned by corresponding
vertices mi ∈ M , m′

i ∈ M ′ is the axis of the cone Γi.

Proof: The statement about cones is true for the mesh M if and
only if it is true for at least one mesh in P(M ) which does not have
zero edges (because corresponding edges are parallel). It is thus
sufficient to show it for the Gauss image mesh S = (M ′ − M )/d,
where d = dist(M , M ′). According to Proposition 2, the edges
of S are tangent to the unit sphere S2 (see Figure 8 and especially
Figure 9). Obviously, all lines emanating from a vertex si which
touch S2 lie in a cone of revolution eΓi, so the statement is true for
S . Consequently it is true for M . The axis of eΓi passes through
the origin, so it is parallel to the vector si. It follows that the axis
Ai of the cone Γi associated with the vertex mi contains the point
m′

i = mi + dsi. �
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Figure 9: A Koebe polyhedron and related circles and cones.

EO meshes and Koebe polyhedra. A mesh S with planar faces
whose edges e touch S2 in points te (a so-called Koebe poly-
hedron) has very interesting geometry [Bobenko and Springborn
2004; Ziegler 1995]. Each face F intersects S2 in a circle cF which
touches the boundary edges of F from the inside (see Figures 8 and
9). For any vertex si, the vertex cone eΓi touches the unit sphere in a
circle csi . Obviously the edge e has a point of tangency te with S2,
and two circles of either type pass through te. Circles of the same
type touch each other, and circles of different types intersect at 90
degrees. The computation of such circle patterns via minimization
of a convex function is known [Bobenko and Springborn 2004] and
even possible on-line [Sechelmann 2006]. Closed Koebe polyhe-
dra are uniquely determined by their combinatorics up to a Möbius
transformation (i.e., a projective mapping which transforms S2 into
itself). For open polyhedra there is an additional degree of freedom
for each boundary vertex.

Figure 2.16  Diagrams showing the requirements of a circular mesh (left) (Pottmann and Wallner 2008), a conical mesh (middle) (Liu 
et al. 2006) and the Gaussian image of an edge offset mesh (right) (Pottmann et al. 2007b).

17 Few exceptions, such as spherical meshes or platonic solids, allow a constant offset of triangular meshes.



34 Part I: State of the art

2.2.2 Smooth Segmentation
The main advantage of smooth segmentation is the simplification of nodes. As all edges and faces are 
curved, they meet tangentially without any kinks or folds and create planar, traversal nodes.

Smooth Repetitive Moulds
The greatest challenge when constructing smooth segmentations is the fabrication of curved faces. 
Eigensatz et al. (2010) investigate the possibility to classify the faces of a freeform-segmentation into a 
limited number of “shape proxies”, such as plane, cylinder, paraboloid, torus or “cubic” (meaning freely 
formed). Each face is first assigned to one of these generic moulds. Afterwards, the best fitting shape is 
created by individual alignment. By tolerating a slight kink angle between panels, as well as a divergence 
of the panel-edges and faces from the reference surface, a substantial rationalization can be achieved.

200m

reference
surface F

divergencedivergence

kink anglekink angle

mold depot curve network

...cylinders cubicstori
curve samples c

0.2m

normal n(x)

foot point xfoot point x

ksurface segment s i

transformation Ti

assignment A

M C

Figure 3: Terminology and variables used in our algorithm. The reference surface F and the initial curve network C are given as part of
the design specification. The optimization solves for the mold depot M, the panel-mold assignment function A, the shape parameters of the
molds, the alignment transformations Ti, and the curve network samples ck.

Curved panels are commonly produced using a manufacturing
mold Mk. We call the collection M = {M1, . . . , Mm} with
m ≤ n the mold depot. To specify which mold is used to pro-
duce which panel(s), we define a panel-mold assignment function
A : [1, n] → [1, m] that assigns to each panel index the correspond-
ing mold index. The arrangement of panels in world coordinates is
established by rigid transformations Ti that align each panel Pi to
the reference surface F . Panels produced from the same mold are
sub-patches of the mold surface and need not be congruent.

Let c(Mk) be the fabrication cost of mold Mk and c(Mk, Pi) the
cost of producing panel Pi using mold Mk (see also Figure 9). The
total cost of panel production can then be written as

cost(F,P,M, A) =
m

∑

k=1

c(Mk) +
n

∑

i=1

c(MA(i), Pi). (1)

Ideally, the same mold will be used for the fabrication of multiple
panels to reduce cost. The choice of panel types depends on the de-
sired material and on the available manufacturing technology. Ma-
terials may be transparent or opaque, and include glass, glass-fibre
reinforced concrete or gypsum, various types of metal, and wood.

Currently we support five panel types: planes, cylinders,
paraboloids, torus patches, and general cubic patches. Planar pan-
els are easiest to produce, but result in a faceted appearance when
approximating curved freeform surfaces, which may not satisfy the
aesthetic criteria of the design. A simple class of curved panels
are cylinders, a special case of single-curved (developable) pan-
els. Naturally, such panels can lead to a smooth appearance only if
the given reference surface exhibits one low principal curvature.
General freeform surfaces often require double-curved panels to
achieve the desired tolerances in fitting error, divergence, and kink
angles. We consider three instances of such panels: paraboloids,
torus patches, and cubic patches. The former two carry families of
congruent profiles (parabolae and circles, respectively), which typ-
ically simplifies mold production. Cubic panels are most expensive
to manufacture, but offer the highest flexibility and approximation
power. Thus a small number of such molds are often indispensable
to achieve a reasonable quality-cost tradeoff.

Curve Network. The intersection curves between adjacent pan-
els are essential for the visual appearance of many designs (see
Figure 2) and typically affect the structural integrity of the build-
ing, as they often directly relate to the underlying support struc-
ture. An initial layout of these curves is usually provided by the
architect as an integral part of the design. While small deviations
to improve the paneling quality are typically acceptable, the final

solution should stay faithful to the initial curve layout and repro-
duce the given pattern as well as possible by the intersection lines
of adjacent panels. Our paneling algorithm supports arbitrary curve
network topology and is not restricted to predefined patterns. The
collection of all panel boundary curves forms the curve network that
we denote with C. Projecting C onto the input freeform surface F
yields a partitioning of F into a collection S = {s1, . . . , sn} of
segments si. The panel Pi associated with segment si can be cre-
ated by trimming the aligned mold surface M∗

i := Ti(MA(i)). The
trim curves are obtained by projecting the network curves associ-
ated with segment si onto M∗

i .

2.2 The Paneling Problem

We formulate the paneling problem as follows: Approximate a
given freeform surface by a collection of panels of preferred types
such that the total production cost is minimized, while the panel-
ing respects pre-defined thresholds on divergence and kink angle
between adjacent panels, and reproduces the initial curve network
as well as possible. A closer look at this specification reveals that
any solution of the paneling problem has to address the following
central aspects:

• Mold depot: determine the number and types of molds that
should be fabricated.

• Assignments: find the optimal assignment function to estab-
lish which panel is best produced by which mold.

• Registration: compute the optimal shape parameters for each
mold and the optimal alignment of each panel such that the
reference surface is faithfully approximated, thresholds on
kink angles and divergence are met, and the panel intersec-
tions curves respect the design intent.

Mold depot and assignment function determine the total cost of fab-
rication, while registration affects the quality of the rationalization.
Minimizing fabrication cost calls for a maximum amount of mold
reuse and the wider use of panels that are geometrically simple and
thus cheaper to manufacture (see Equation 1). On the other hand,
achieving the design constraints on the paneling quality pushes the
solution towards more complex panel shapes with less potential for
mold reuse.

The high intricacy of the paneling problem arises both from the
large scale of typical projects (1k – 10k panels) and the tight global
coupling of objectives. Neighboring panels are strongly linked lo-
cally through kink angle and divergence measures, but also subject
to a highly non-local coupling through the assignment function that

Figure 2.17  Smooth repetitive moulds. Terminology and variables used in the algorithm by Eigensatz et al. (2010) determining 
repetitive moulds for the smooth panelization of freefrom surfaces.

Developable Faces and Edges
A developable building skin can be attained by using a semi-discrete segmentation. The geometric 
principles are directly related to PQ meshes (Section 2.2.1). A linear arrangement of planar quads is nothing 
else than the discrete representation of a developable strip.
If a discrete, conjugate curve network is subdivided infinitely fine along one direction, it yields a smooth 
array of developable strips. This method is well documented (Liu et al. 2006, Pottmann et al. 2008) and 
has been implemented in the design of the Eiffel Tower Pavilions, which are constructed with single-
curved panels following the principal curvature directions (Eigensatz and Schiftner 2011).

(a) (b) (c)

Figure 7: (a)–(c): Hierarchy of PQ meshes obtained by iterative
application of Catmull-Clark subdivision and PQ perturbation.

A single PQ strip can be subdivided by applying a curve subdivi-
sion rule like Chaikin’s to its boundaries, and subsequent applica-
tion of PQ perturbation in order to achieve face planarity. Alternat-
ing application of these two steps is a subdivision algorithm which
generates developable surfaces. Because of our treatment of PQ
perturbation as a black box it is in general not possible to write
down the limit of this subdivision process explicitly. Nevertheless
it is a much simpler design tool than developable B-spline surfaces,
whose control points have to satisfy a set of nonlinear constraints.

As illustrated in Fig. 8, the relation of the input PQ strip to the final
developable surface is very intuitive – certainly more so than the
dual control structure in terms of tangent planes, which can be used
to avoid nonlinear constraints (cf. [Pottmann and Wallner 2001]).

In the perturbation phase of the algorithm, the term fdet in (5) is
important for maintaining planarity. The term fangle discourages
self-intersecting quads and thus acts against the common problem
that the singular curve enters the designed patch. Finally, ffair helps
to prevent a zig-zag effect in adjacent quads.

(a) (b) (c)

Figure 8: Developable subdivision surfaces generated with the per-
turbed cubic Lane-Riesenfeld algorithm; this nonlinear subdivision
scheme keeps the planarity of quads and thus achieves developa-
bility of the limit. The control entity (a) is a piecewise-planar PQ
strip. (b) and (c): 1 and 3 rounds of subdivision.

4 Conical meshes

Principal curvature lines form a special network of conjugate curves
on a surface. Apart from umbilic points, where this network pos-
sesses singularities, it behaves nicely, since its curves intersect at
right angles. This is not necessarily true for an arbitrary conjugate
curve network; asymptotic (self-conjugate) directions give rise to
degenerate situations that make such networks unsuitable for mesh-
ing purposes (Fig. 4).

A particular discretization of the network of principal curvature
lines are the circular meshes, which are quad meshes whose quads
are not only planar, but also have a circumcircle [Martin et al. 1986;
Bobenko and Suris 2005]. Even though they are not the focus of the
present paper, it is however easy to extend our PQ perturbation al-
gorithm to the computation of circular meshes (see Section 5 and
Fig. 17). It turns out that another discrete analogue of the principal

Figure 9: Developable Möbius band in the shape of a trefoil knot.
Left: PQ strip as control structure. Right: Result of subdivision
augmented by PQ perturbation. Numerical smoothness is C2, as
seen from smooth reflection lines ( fPQ,penalty = 2.9×10−11).

curvature lines – the conical meshes to be introduced in this sec-
tion – have geometric properties essential for architectural design
of freeform structures. For their computation via an augmented PQ
perturbation algorithm, see Sec. 5.

A vertex v of a quad mesh is a conical vertex if all the four (ori-
ented) face planes meeting at v are tangent to a common (oriented)
sphere. This is equivalent to saying that these oriented face planes
are tangent to a common oriented cone of revolution Γ (see Fig.
10a). The axis G of Γ can be regarded as a discrete surface normal
at that vertex.

We call a PQ mesh a conical mesh if all of its vertices of valence
four are conical. For theoretical investigations, we consider only
regular quadrilateral meshes whose vertices have valence 4, except
for valence-2 or valence-3 vertices on the boundary. A conical mesh
is in some sense dual to a circular mesh. Instead of requiring the
four vertices of a quad to be co-circular, we require that the four
(oriented) faces incident with a mesh vertex be tangent to an (ori-
ented) cone of revolution. We will see that conical meshes, like
circular meshes, discretize the network of principal curvature lines.

There are exactly three types of conical mesh vertices, which can be
characterized geometrically as follows. A small sphere S centered
in a mesh vertex v intersects the mesh in a simple 4-sided spherical
polygon P. If the four vertices pi of P cannot be contained in the
same hemisphere, v is of the hyperbolic type. Otherwise (i.e., the
four vertices pi are contained a hemisphere) v is either of elliptic
type (see Fig. 10a) or of parabolic type, depending on whether P

Γ

G

R1

L1

R2

L2 R3

L3

R4
L4

ω1
ω2

ω3
ω4

Qi−1, j−1

Qi−1, j

Qi, j−1

Qi, j

Qi+1, j−1

Qi+1, j

Gi, j Gi+1, j

vi, j vi+1, j

ri, j(a) (b)

Figure 10: (a) Configuration of the faces of a conical mesh at a ver-
tex. The faces touch the common cone Γ along rulings R1, . . . ,R4,
and have interior angles ω1, . . . ,ω4. (b) Faces of a conical mesh at
two adjacent vertices vi, j and vi, j+1, and the intersection point ri, j
of neighboring axes Gi, j , Gi, j+1.
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Figure 9: Phase 3. Design help tool for fine-tuning the glass layout, a distorted graph paper.  

Phase 4: Given the glass pattern, the radii and orientations of cylindrical panels 

were optimized in order to minimize the divergences in position and tangency in 

adjacent panels. Details about this process can be found in [Eigensatz and 

Schiftner 2011].  

 

Phase 5: The quality of the result of phase 4 was very satisfactory and maximum 

position discontinuity was lower than 2mm. This led to a second optimization 

phase with additional architectural constraints: cylinders were re-oriented to 

concentrate tangency discontinuities according to vertical strips to underline the 

ascensional character particular to the Eiffel Tower.  

 

Figure 10: Left: Results of optimization in phase 4. Right: Results of optimization in phase 

5, in which cylinders were re-oriented to concentrate tangency discontinuities according to 

vertical strips to underline the ascensional character particular to the Eiffel Tower.  

5 Evolution of detailed design 

5.1 Glass Fabrication 

The Pavilions host relevant spaces such as a conference hall, a cafeteria and a shop 

and therefore their function implies a thermal quality and a double glazing façade. 

The tolerance in the production of double curvature glass shaped by traditional 

mold annealing would have made the assembly of double glazed units too difficult 

and expensive, with the risk of spontaneous breakage due to the frozen stresses 

built into the units during the assembly. Thus the façade technology being used for 

the Lace Museum project is a double skin with internal and external single glazing.  

Figure 2.18  Developable surface strips. Left: A discrete planar quadrilateral strip is refined to approximate a developable strip (Liu 
et al. 2006). Right: The Eiffel Tower Pavilions are an example of such a semi-discrete segmentation (Eigensatz and Schiftner 2011).

For the additional simplification of having straight developments, Pottmann et al. (2010) propose a 
panelization along geodesic curves. To obtain a semi-discrete segmentation from nearly geodesic strips 
with constant width, the reference surface is partitioned separately allowing each pattern to better adjust 
to the principal curvature directions.
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Geodesic curves may also be used to create grid structures from developable strips with straight unrollings. 
It is, however, difficult to create homogeneous networks from geodesic curves. A hexagonal pattern, e.g., 
is only possible on surfaces with constant Gaussian curvature.
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Figure 1: Geodesic patterns on freeform surfaces. Left: For the cladding of a surface by wooden panels bendable only about their weak axis,
we perform segmentation into parts which can be covered by geodesic strips of roughly constant width. Right: A timber construction derived
from a hexagonal geodesic web has good manufacturing and statics properties.

Abstract

Geodesic curves in surfaces are not only minimizers of distance, but
they are also the curves of zero geodesic (sideways) curvature. It
turns out that this property makes patterns of geodesics the basic ge-
ometric entity when dealing with the cladding of a freeform surface
with wooden panels which do not bend sideways. Likewise a geo-
desic is the favored shape of timber support elements in freeform
architecture, for reasons of manufacturing and statics. Both prob-
lem areas are fundamental in freeform architecture, but so far only
experimental solutions have been available. This paper provides a
systematic treatment and shows how to design geodesic patterns in
different ways: The evolution of geodesic curves is good for local
studies and simple patterns; the level set formulation can deal with
the global layout of multiple patterns of geodesics; finally geodesic
vector fields allow us to interactively model geodesic patterns and
perform surface segmentation into panelizable parts.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object represen-
tations

Keywords: computational differential geometry, architectural ge-
ometry, geometry of webs, timber rib shell, cladding, freeform sur-
face, pattern, geodesic, Jacobi field.

1 Introduction

In recent years it has become apparent that methods from Geomet-
ric Computing bear a great potential to advance the field of freeform
architecture. This fact has created the new research area architec-
tural geometry, which draws from various branches of geometry
and which is motivated by problems originating in architectural de-
sign and engineering – see for instance the proceedings volume
[Pottmann et al. 2008a]. The topics studied in the present paper
belong to this line of research. They have as a common theme the
design of a pattern of geodesics on a freeform surface.

One problem concerns the cladding of a general double curved sur-
face with wooden panels. Such claddings will be mainly applied
to interior spaces (see Fig. 2). Even if the material may be differ-
ent from wood, the panels are assumed to be close to developable
and their development should fit well into a rectangle whose length
is much larger than its width. Hence, each panel should follow a
geodesic curve. The cladding problem can be approached in an ex-
perimental way as illustrated by Fig. 2. Computationally it means
decomposing a given surface into regions, each of which can be
covered by a sequence of nearly equidistant geodesic curves (see
Fig. 1).

Other applications of geodesic patterns lie in wooden construc-
tions where the geodesics are used for the supporting structure of
a curved shell. Extending pioneering technologies by J. Natterer
[2002], ongoing research at the EPF Lausanne aims at the design
of freeform timber rib shells, which are composed of a grid of geo-
desic curves (see Fig. 3). Other innovative timber constructions, as
seen in recent projects by Shigeru Ban (Fig. 4), would also benefit
from an efficient computational approach to the layout of geodesic
patterns on surfaces. One reason why geodesic curves are a pre-
ferred shape is statics: Geodesics – being minimizers of distance
– are the equilibrium shapes of elastic curves constrained to the
surface. Another reason is the manufacturing of laminated beams,
which are much easier to make if the individual boards can simply
be twisted and bent and along the weak axis [Pirazzi and Weinand
2006].

Figure 2.19  Geodesic patterns on freeform surfaces. Left: A freeform surface is partitioned and then covered in geodesic strips with 
roughly constant width. Right: A freeform surface is segmented with a smooth tri-hex network approximating geodesic curves 
(Pottmann et al. 2010).

Circular Arch Structures (CAS)
Disregarding the shape of panels, Bo et al. (2011) propose to optimize smooth quadrilateral and hexagonal 
networks to obtain circular edges and congruent nodes. First, the network is approximated with a discrete 
mesh. The edges are then computed as individual arcs meeting tangentially at every node. The result is a 
good approximation of a smooth network via basket arches. To additionally create radius-repetitive arches, 
Bo et al. propose a network along flow lines of constant curvature k. If the CAS network is aligned to the 
principal curvature directions, this method allows for congruent, torsion-free nodes in a multi-layered 
structure.
The cladding of such a CAS network can only be achieved if some kinks are tolerated: “… there is in 
general no curvature-continuous surface which contains a given CAS if vertex valences are 4 or higher. 
This is because the curvatures of the arcs adjacent to a vertex do not match” (Bo et al. 2011).
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Abstract

The most important guiding principle in computational methods for
freeform architecture is the balance between cost efficiency on the
one hand, and adherence to the design intent on the other. Key is-
sues are the simplicity of supporting and connecting elements as
well as repetition of costly parts. This paper proposes so-called cir-
cular arc structures as a means to faithfully realize freeform designs
without giving up smooth appearance. In contrast to non-smooth
meshes with straight edges where geometric complexity is concen-
trated in the nodes, we stay with smooth surfaces and rather dis-
tribute complexity in a uniform way by allowing edges in the shape
of circular arcs. We are able to achieve the simplest possible shape
of nodes without interfering with known panel optimization algo-
rithms. We study remarkable special cases of circular arc structures
which possess simple supporting elements or repetitive edges, we
present the first global approximation method for principal patches,
and we show an extension to volumetric structures for truly three-
dimensional designs.
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tations
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1 Introduction

Our work is motivated by the geometric challenges posed by free-
form architecture, and, in particular, by the problem of rational-
ization of a freeform design. This means its decomposition into
smaller parts, thereby meeting two competing objectives: feasibil-
ity, and consistency with the designer’s intentions. Depending on
what constitutes the design, there have been different approaches to
this problem which have led to different kinds of specific geomet-
ric and computational questions. Mostly these questions involve
replacing smooth surfaces (possibly with an additional curve net-
work on them) by other structures like meshes with special prop-
erties. The guiding thought in all considerations is the efficient
manufacturing of the surface parts and their respective necessary
supporting/connecting elements. Both simple geometry and repeti-
tion of elements contribute to this goal of efficiency.

Figure 1: Architectural freeform designs based on circular arc
structures exhibit smooth skin, congruent node elements, and sim-
ple shapes of beams. In special cases like for the cyclidic CAS
shown here, they also admit offsets at constant distance.

Much work deals with decomposing a freeform surface design into
flat panels with straight beams between them. However, this pro-
cess of approximating a smooth surface by a polyhedral surface
inevitably shifts complexity to the nodes (vertices): In general no
two nodes are congruent and, which is worse, a typical node ex-
hibits torsion, i.e., is a truly spatial object whose manufacturing
is challenging (see Figure 2). It is possible to optimize nodes to
make them torsion-free, which simplifies production and enhances
the aesthetic appearance (cf. [Liu et al. 2006; Pottmann et al. 2007]
for quad meshes and [Schiftner et al. 2009] for hexagonal meshes).

Often the faceted appearance of planar panels is not intended, and
as a natural next step, rationalization with single-curved panels has
been proposed by [Pottmann et al. 2008]. This method leads to a
surface which is smooth in one direction, but non-smooth in the
other. Setting aside the cladding of surfaces by bendable panels
(e.g. made of wood and useful for interior design, cf. [Pottmann
et al. 2010]), the faithful reproduction of a smooth outer skin ne-
cessitates very costly manufacturing of double curved panels.

Figure 2: Node complexity. Man-
ufacturing the connecting element
(yellow) via plasma cutting requires
much effort if the node has ‘torsion’,
because of its truly spatial shape.

This task can be rendered feasible by employing repetitive ele-
ments which recently have become a focus of study: Eigensatz
et al. [2010] show how a given smooth surface with given panel
boundaries may be decomposed into panels whose production re-
quires as few costly molds as possible, such that all changes to the
original design are within prescribed tolerances. Thus not the pan-
els themselves are repeated, but the auxiliary elements needed for
their manufacturing. During this panel optimization the given curve
network remains unchanged. The design of curve networks is not
addressed by [Eigensatz et al. 2010].

Both [Singh and Schaefer 2010] and [Fu et al. 2010] derive struc-
tures which aim at repetitive (i.e., congruent) panels. These panels

  
Figure 14: CAS which is radius-repetitive along flow lines (blue).

details of this optimization procedure we refer to [Pottmann et al.
2010]). The value κ0 has been chosen interactively such that we get
a suitable result. Note that in this special example the value κacross

n

is not only constant along flow lines, but constant for the entire
surface. The level sets of φ then yield one family of curves which is
needed for initializing CAS optimization. Other desired curvature
properties lead to similar optimization procedures (cf. Figure 14).

If necessary the second family can also be found as level sets of a
function ψ: The condition of constant intersection angle α reads
〈∇φ,∇ψ〉 = cos α · ‖∇φ‖ · ‖∇ψ‖. For the example in Figure 13,
however, the ‘transverse’ family has been found as orthogonal tra-
jectories of the first family which amounts to solving a first order
ODE. It would be possible to use ODEs to obtain curves with the
above-mentioned curvature properties, but this is rather unstable.

Computational issues: Optimization. Once initialization is
done, we must incorporate the desired radius constraints into our
optimization. Suppose all edges contained in some set E1 ⊆ E are
to have the same radius r1, and similarly for edge sets E2, . . . , Ek.
We introduce the inverse radii as new variables and augment our
target functional by

frad =
Xk

i=1

X
�
uv∈Ei

“ 1

ri
− 2

‖auv × (u − v)‖
‖auv‖ · ‖u − v‖2

”2

.

It is easy to see that the expression in brackets vanishes if and only
if the edge �

uv has radius ri.

Application: CNC machining. Covering a freeform surface by
circular arcs of constant radius is highly relevant for 5-axis CNC
machining of such surfaces as the arcs directly correspond to the
position of a flat-endmill. This application geometrically amounts
to finding a transverse-repetitive CAS, with a few additional con-
siderations specific to milling. We do not go into details.

4 Cyclidic structures

Dupin cyclides. The Dupin cyclides are an interesting class of
surfaces which have sufficiently many degrees of freedom to make
them useful for geometric design. This class is generated by ap-
plying Möbius transformations to tori (cf. Figure 15), and includes
the cylinders and right circular cones. By definition, it also in-
cludes the limit cases of spheres and planes. Introduced to geomet-
ric modeling by [Martin et al. 1986] and studied in many papers,
they have recently occurred in a discrete differential geometry con-
text: [Bobenko and Huhnen-Venedey 2011] show how a circular
quad mesh may be converted into a smooth surface consisting of
cyclide patches. That paper also contains proofs of the following
facts about cyclides (part of which are well known), and which are
relevant for our purposes.

Figure 15: Dupin cyclides. Three different shapes of Dupin cy-
clides which by applying a Möbius transform can be mapped to a
torus, a cylinder, or a cone. Left: The normals along a line of cur-
vature lie in a right circular cone (two cones are shown in red).

(a) The rectangular network of principal curvature lines consists
of circles (illustrated in Figure 15).

(b) The normals along such a principal circle constitute a right
circular cone, including the limit cases of cylinder and plane
(see Figure 15).

(c) The vertices of a principal quadrilateral, whose edges are
principal circles, possess a circumcircle (see Figure 16).

(d) A quadrilateral with circular edges is a principal quadrilateral
of a cyclide, if and only if edges intersect orthogonally and
each edge is symmetric in the sense of Definition 5.

(e) For each boundary edge of a cyclidic principal patch there is
a right circular cone which is tangent to the patch along that
edge (see Figure 20).

u

v

�
uv

auv
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Figure 16: A cyclidic patch. The
vertices have a circumcircle, and
all normal vectors are symmetric
w.r.t. reflections: nu = ρuv(nv).

Cyclidic CAS. Properties (b) and (e) above imply that the union
of two cyclidic principal patches with a common boundary arc and
common normal vectors in its endpoints actually is a single smooth
surface. Together with Property (d), this shows the following:

PROPOSITION 7. A quadrilateral CAS with an edge angle of 90
degrees and symmetric edges is converted into a smooth surface
by filling each face with its corresponding principal cyclidic patch.
Moreover, the vertices of this CAS constitute a circular mesh.

A freeform design whose skin is modelled as a cyclidic CAS pos-
sesses nicely shaped associated support elements: see Section 2.4
for the right circular cones orthogonal to the surface along edges,
and Figure 11 for a construction detail based on this fact.

Figure 17: Cyclidic
CAS which follows
the principal curva-
ture lines of a sur-
face Φ. Optimiza-
tion has been ini-
tialized from a cir-
cular mesh which
approximates Φ.

Figure 2.20  Circular arch structures. Left: A freeform surface is approximated by a double-layered circular arch structure (CAS) with 
congruent nodes. The network is arranged along the principal curvature directions. Right: A radius-repetitive CAS is possible along 
flow lines of constant curvature (Bo et al. 2011).
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Smooth Offsets
A great potential of smooth segmentations lies in the simplification of multi-layered structures: Any smooth 
network has a defined offset geometry. If all offset-edges are oriented normal to the surface, the nodes 
inevitably are torsion-free.

In their paper on curved support structures, Tang et al. (2016) investigate the potential of a continuously 
curved beam layout from developable strips positioned either tangential or orthogonal to a given surface. 
Based on the three curvatures of a surface-curve tg, kg and kn (Section 1.1.3), Tang et al. analyse the 
developable properties of principal curvature lines, geodesic curves and asymptotic curves. Only principal 
curvature lines enable developable strips where rulings remain orthogonal to the guiding curve. Geodesic 
curves and asymptotic curves allow for straight development as tangential or orthogonal strips. However, 
their rulings are likely to incline, hindering the modelling process. This behaviour is described as a “mutual 
exclusivity of ‘good’ properties”, as straight developments lead to “bad” rulings, and vice versa. 
Tang implements further parametric constraints, e.g., the modelling of developable strips along curves of 
constant normal curvature, which result in a circular development.6 C. TANG, M. KILIAN, P. BO, J. WALLNER, H. POTTMANN

Figure 5. Strips with different kinds of optimality properties. Left: Eiffel tower pavil-
ions (Moatti et Rivière architects, engineering by RFR). The top-down beams have a
rectangular cross-section and are thus modeled as a union of four developable strips
– two orthogonal to the glass surface Φ, two tangential to them. The guiding curves
are principal for Φ, implying optimal rulings. Image courtesy RFR. Right: A minimal
surface with two families of developable strips guided by curves with κn = 0, implying
straight development. Rulings are not optimal, but far from bad. Further, transverse
strips intersect not along rulings.

Mutual exclusivity of “good” properties. The beneficial properties of strips which
are mentioned in the proposition unfortunately are mutually exclusive. For devel-
opables orthogonal to a reference surface Φ, optimal rulings are impossible if we
are to have a straight development (principal curves are never asymptotic except
in the special case of Φ being developable). Conversely, a straight development
might imply bad rulings, if asymptotic curves happen to be geodesic (this could
happen if Φ is ruled but not developable).
Developables tangential to Φ with optimal rulings rarely have straight develop-

ment (only if Φ is one of Monge’s surfaces moulures, principal curves are geodesics).
Straight developments might lead to bad rulings if accidentally we choose a geo-
desic which is asymptotic (that can happen if Φ is ruled).
The reader is advised that the previous paragraphs heavily draw from knowledge

of the manifold interesting properties of curves in surfaces which are discussed in
older textbooks like (Blaschke, 1921).

The loss of design freedom. If one insists on optimal rulings (orthogonal to guiding
curves) then the only possibility is that the guiding curves are principal, which are
uniquely determined by the reference surface Φ. If Φ is already known, there is no
design freedom left. This dilemma had to be solved for the Eiffel tower pavilions,
see (Schiftner et al., 2012).
A similar dilemma occurs if we want to construct a family of developable strips

orthogonal to the reference surface which have straight development. We are stuck
with using the asymptotic curves which are uniquely determined by Φ.
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Figure 8. Strips which follow guiding curves. The top left image shows curves on
a reference surface Φ with a constant nonzero value of κn. Developables guided by
these curves (middle row) have circular development. Unfortunately the rulings of these
developables are in several places rather bad (the strips are interrupted there). Our
constraint solver finds a sequence of strips which, as far as they can, stay orthogonal to
Φ and close to the guiding curves (bottom row). The setup of surfaces in this procedure
automatically ensures good behaviour of rulings, but entails changes in the geometry.
Nevertheless the development of a sample strip is still rather circular (top, right).

An arrangement of developable strips is defined by additional constraints like
common intersection of strips (this corresponds to linear equations involving con-
trol points), and smooth transition of strips (more linear equations involving con-
trol points). For example, the six developable strips in Figure 7 (top row) which
appear to intersect in 9 rulings are actually 24 individual strips with common
boundary rulings which join smoothly.

Constraint solving. (Tang et al., 2016) show how to solve the system of con-
straints quickly, by linearizing the constraints and solving the resulting linear
system (which at the same time is under-determined and has redundant equa-
tions) via regularization. The regularizer is a fairness energy, thus pushing the
solver towards “sensible” solutions of the system. We extended their interactive
modeling system for developable skins to the case of non-skin strip arrangements.

Figure 2.21  Developable strips on freeform surfaces: Left: A network of developable strips along asymptotic curves. The rulings of 
strips are not normal to the surface. Right: Strips along constant normal curvature lines result in unrollings with constant radius (Tang 
et al. 2016).

2.2.3 Conclusion
Geometric investigations focus mostly on discrete meshes. Repetitive faces or nodes can only be achieved 
if a rough surface or a restricted shape is accepted. Planar faces have been a major focus of research in 
architectural geometry. An alignment with the principal curvature directions produces most regular panels 
for quadrilateral and hexagonal networks. The combination of planar quads with equilateral edges has 
been one of the most succesfully used geometric rationalizations for reticulated gridshells.
Smooth segmentations, on the other hand, have only recently been studied in more detail. Here the focus 
lies on a simplification of faces either by creating repetitive or developable panelizations. Most recent 
publications look at the simplification of edges by either designing a constant curvature or using bendable, 
developable strips. This promising strategy will be investigated further in this thesis.
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2.3 Architectural Developments 

The development of curved grid structures in architecture is inseparable from the development of 
lightweight construction. Form-active structures enable a spatial load-transfer as a shell. This has been 
one of the main motivations to construct curved reticulated structures. However, there are other examples 
of curved building structures. Especially in modern architecture, freeform façades and curved grillages are 
a common feature. These structures display a variety of strategies both geometric and constructive to 
obtain repetitive elements and simplify the fabrication and assembly process.
The following section lists the most relevant examples of curved structural grids and façades. The 
references are sorted chronologically with regard to the leading planner or the most relevant building and 
give a short description of their repetitive qualities.

La Bourse De Commerce, in Paris, designed by F.J. Belanger (Architect) and F. Brunnet (Engineer), was the 
first transparent rib-cupola. Other key developments were the greenhouse at Kew Gardens (1845) and 
the Crystal Palace (1851) in London, as well as the Galleria Vittorio Emmanuele in Milan (1865), all of which 
use spherical calottes or cylinders with circular or straight beams arranged along the meridian and ring 
directions (Schober 2016).

      

Figure 2.22  Early examples of reticulated structures all rely on rotational or cylindrical geometries: (Left to right) La Bourse de 
Commerce, Paris (WM 2013). Greenhouse at Kew Gardens, London (Photo: Jonas Schikore 2018). The Crystal Palace, London (WM 
1851). Galeria Vittorio Emmanuele, Milan (WM 2014).

The early development of lightweight constructions started with the work of Johann W. Schwedler and 
Vladimir G. Shukhov in the second half of the 19th century. Their structures mark the beginning of load-
bearing gridshells creating a triangulated grid. Both engineers were largely influenced by the need for a 
simple fabrication and construction process.
Schwedlers reticulated copulas (first built at the Holzmarktstr. 28, Berlin, 1863) are constructed similarly to 
earlier cupolas along the meridian-curves and horizontal rings of a sphere taking advantage of multiple 
symmetry-axes. The primary, curved arched beams are connected with a polygonal ring structure and 
braced diagonally (Kurrer 2013).

12.4.2018 Das Fachwerk erobert die dritte Dimension: 150 Jahre Schwedler-Kuppel › momentum › Historie

https://momentum-magazin.de/de/150-jahre-schwedler-kuppel/ 3/7

seinem Kuppelsystem. Hier seien nur zwei Schwedler-Kuppeln erwähnt, die noch heute bewundert werden können: die
1863 entstandene Kuppel der Neuen Synagoge (Berlin-Mitte, Oranienburger Straße 28-30) und das 1875 fertiggestellte
Dach der städtischen Gasanstalt in der Fichtestraße in Berlin-Kreuzberg (Bild 3). Die letztgenannte Kuppel besitzt einen
Durchmesser von 54,9 m und einen Stich von 12,2 m: Dafür benötigte Schwedler nur 68 t Eisen, also 28,7 kg/m²! So
lassen diese „sonderbaren Gespinste aus Raum und Zeit“ (Walter Benjamin) das ferne Licht der Geschichte
aufscheinen.

Bild 3. Schwedlerkuppel über dem Gasbehälter der städtischen Gasanstalt in der Fichtestraße, Berlin-
Kreuzberg

In der Meisterschaft des strukturalen Komponierens von eisernen Tragwerken blieb Schwedler zu seinen Lebzeiten
unübertroffen. Wesentliches Moment dieses Kompositionsprozesses ist seine konstruktionsorientierte Baustatik, in
deren Mitte Schwedler statisch bestimmte Systeme stellt. In ihrem Buch „Vom Eisenbau zum Stahlbau“ überschrieb
Ines Prokop den Abschnitt über die Etablierungsphase der Baustatik und des Eisenbaus (1850-1875) – d.h. der
konstruktionsorientierten Baustatik – treffend mit „‘Statisch bestimmt‘ bestimmt das Tragwerk“. Schon in den frühen
1860er Jahren avancierte Schwedler zum Protagonist dieser Entwicklungsphase: Die Schwedler-Kuppel ist ein statisch

  

Figure 2.23  Schwedler Cupola at the Holzmarktstr. in Berlin (Kurrer and Lorenz 2009).
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Shukhov expanded the form vocabulary, but remained within well-defined rotational and translational 
geometries. His famous hyperbolic towers (1896) enable the use of repetitive, straight profiles along the 
ruling of rotational hyperboloids. In the Nigres Tower at the Oka (looking at the top 5th segment), Shukhov 
uses standardized 24.8 m long L-profiles (L 100 x 100 x 10), which are twisted by up to 4°/m (a total of 72° 
degrees) to adjust their orientation to each connection joint (Beckh 2012)18.
The parabolic gridshells in Vyksa (1897) are constructed from repetitive, diagonal arches, translated along 
a parabola-shaped truss frame. Similarly, to the Nigres tower, Shukhov implies a slight twist of profiles to 
accommodate a tangent connection at each joint (Beckh and Barthel 2009).

  

Figure 2.24  Grid structures by Vladimir Shukhov: Left: The hyperbolic Nigres Tower at the Oka (Photo: Matthias Beckh 2007). Right: 
The parabolic gridshell in Vyksa (WM 1897).

One of the most prominent historic examples of repetitive structures are the lamella roof systems from the 
1920s. Friedrich Zollinger and Hugo Junkers developed construction systems in timber and steel which 
were built all over the world. Both systems are based on a rhombic grid on a barrel vault and allow the use 
of standardized lamellas with repetitive joints (Tutsch et al. 2017).

  

Figure 2.25  Curved, modular lamella structures. Left: Zollinger Roof of the Marinaforum in Regensburg (Photo: Joram Tutsch 2018).  
Right: Steel lamella roof of the airplane hangar in Oberschleißheim by Hugo Junkers (Photo: Joram Tutsch 2018).

In 1922, Walter Bauersfeld developed the first geodesic dome (Section 1.4.3) as the substructure of the 
Zeiss-Planetarium in Jena. The dome is constructed from 4000 rods comprising of only 50 different 
lengths. All joints are constructed identically and take up the differences in kink and mesh angle through a 
circular, notched disc which clamps the groove at the end of each rod (Krausse 2011; Tornack 2012).

18 In his dissertation, Beckh (2012) simplifies the influence of torsion based on a homogeneous twist (72° / 24.8m = 2.9°/m). The 
torsion of rulings of rotational hyperboloids is not constant but increases at the “waist-line”. The maximal twist between two 
joints is (18° / 4.5m = 4.0 °/m).
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5 geodätische kuppel von walther bauersfeld
Die innovative Kraft der Kuppel des Zeiss-Planetariums in Jena von 1925 (Abb. 168) ist in der Literatur bekannt. 
Sie stellt nicht nur die erste geodätische Kuppel in der Architektur dar, sondern gleichzeitig eine der ersten 
Betonschalen. Adolf Meyer, langjähriger Mitarbeiter im Architekturbüro von Gropius schreibt über die Kuppelhaut 
von einem „Bild kristallischer Klarheit und Eindeutigkeit der Form [...] eine richtungslose Gleichwertigkeit [...] 
einer kosmischen Totalität“ und schliesst seine kurze Erläuterung folgendermaßen: „Auf dem Grunde des 
mathematisch-wissenschaftlichen Niederschlags seiner Philosophie beginnt auch die Kunst eine neue Deutung 
und Formung zu finden und in ihrer optischen Erscheinungswelt ein neues Weltbild darzustellen“160 Bauersfeld, 
von Beruf Optiker und Feinmechaniker bei der Firma Carl Zeiss entwickelt zur Darstellung des Sternenhimmels 
einen Kugelprojektor (Abb. 167) und aus der Konsequenz eine ebensolche Projektionswand: Die geodätische 
Kuppel. Es entsteht eine Netzwerkkuppel in Leichtbauweise, da das erste Versuchsobjekt auf dem Dach der 
Zeiss-Fabrik erstellt wird. Eisenstäbe mit einem Querschnitt von 80 x 20 mm und einer Länge von etwa 60 cm, 
die an ihren Enden eingekerbt sind, werden am Knotenpunkt durch runde Scheiben verbunden (Abb. 169). Dabei 
kann die Stabanzahl und ihr Neigungswinkel variieren, da nicht an jedem Knoten die gleiche Geometrie vorliegt. 
Die Kuppel besteht aus 4.000 Stäben mit 50 verschiedenen Längen und besitzt ein Eigengewicht von nur 9 
kg pro Quadratmeter.161 Für die Herstellung der Kuppelhaut sucht Bauersfeld Hilfe bei der Firma Dyckerhoff & 
Widmann AG, die in Deutschland Pionierarbeit auf dem Gebiet des Stahlbetonbaus leistet. Schließlich wird eine 
Betonmischung nach dem Torkret-Verfahren aufgespritzt, wozu eine bewegliche Holzschalung im Inneren der 
Kuppel notwendig ist und das Stabnetzwerk mit einem Drahtgeflecht versehen wird. Daraus resultiert die Schale 
mit einer Wandstärke von 6 cm.

160 Meyer, Adolf: Das Zeiss-Planetarium in Jena. Der Bau, in: Die Form, Berlin 1925/26, Heft 1, S. 17
161 Krausse, Joachim: Das Wunder von Jena. Das Zeiss-Planetarium von Walter Bauersfeld, in: ARCH+, Nr. 116, März 
1993, Aachen, S. 45

167 Instrument zur Projektion von Himmelskörpern, Quelle: Die Form, Berlin 1925/26, Heft 1
168 Das Zeiss-Planetarium in Jena während des Aufbringens der Betonschale, Quelle: Die Form, Berlin 1925/26, Heft 1
169 Bauersfeld, Walther; Schmidt, Otto: Knotenpunkt für ein Netzwerk aus Eisen, Ausschnitte aus der Patentschrift 
1 679 758, United States Patent Office, 06.11.1923, Quelle: http://depatisnet.dpma.de (US000001679758A_1)

Figure 2.26  Left: The geodesic dome of the Zeiss-Planetarium in Jena  (Krausse et al. 2011). Right: Patent by Bauersfeld and 
Schmidt showing the adjustable joint detail (Tornack 2012).

Max Mengeringhausen invented the component-based construction system, MERO, in the 1930s. 
Similarly in 1945, Konrad Wachsmann developed the so-called Mobilar Structure for transportable 
airplane hangars. Even though both techniques were initially designed for non-curved space trusses, the 
concept of a kit-of-parts was a key development for repetitive construction. Today Mero-TSK International 
and other companies offer a broad spectrum of standardized joint, bar and façade-elements for the 
construction of curved surface structures and façades (Weber 2012).

    

Figure 2.27  Component-based construction systems. Left: The MERO joint (Mengeringhausen 1975, p. 65). Middle: The mobilar structure 
by Konrad Wachsmann (Nerdinger 2013, p. 208). Right: Spaceframe of the Heydar Aliyev Centre in Baku by Zaha Hadid (Mero 2011).

Richard Buckminster Fuller conducted extensive geometric research on packing and division of spheres. 
He further developed the geodesic dome, introducing a variety of new construction techniques and 
patents, which have led him and this building-type to substantial fame. Fuller’s work includes the use of 
new materials, pneumatic and tensegrity structures, folding mechanisms and elastic constructions, and 
have thus influenced the development of space and shell structures until today (Krausse and Lichtenstein 
1999). His experimental construction of a bent, geodesic plywood dome in 1957 is one of the first examples 
of a geometry-based approach to utilize elastic bending to create curved structures (Lienhard 2014).

    

Figure 2.28  Buckminster Fuller developed various techniques to construct geodesic domes, and deliberately employed the elastic 
deformation of material to ease fabrication. Left: The United States Expo Pavilion 1967 (Krausse and Lichtenstein 1999, pp. 424-
425). Middle: Buckminster with his Dymaxion Car in front of his Fly’s Eye Dome (p. 379) Right: Plywood Dome (pp. 380-381).
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Félix Candela relied on hyperbolic paraboloids for his design of double-curved, reinforced concrete shells. 
This allowed him to simplify the formwork construction using only straight planks supported by straight 
beams. A further example of this geometry is the Philips Electronics Pavilion of the EXPO 1958 in 
Brussels by Le Corbusier and Iannis Xenakis. Unlike Candela’s poured-in-place method, Xenakis used 
concrete panels which were prefabricated from a simple sand mould, and held together by post-tensioned 
cables that followed the straight-line geometry of the hypars. Based on this construction process, the 
Phillips Pavilion can be regarded as one of the first examples of smooth panelization of a double-curved 
surface (Sijpkes 2012).

    

Figure 2.29  Hyperbolic paraboloids are used as formwork to create hyperbolic shells or panels. Left: Formwork of the Church 
„Iglesia de la Medalla de la Virgen Milagrosa“ by Félix Candela (Faber 1965, p. 94). Middle: Philips Electronics Pavilion at the Expo 
1958 (WM 1958) Right: Sand mould for the panels of the Philips Pavilion (Sijpkes 2012).

A central figure in the innovation of double-curved structures is Frei Otto, who investigated a vast number 
of natural form-finding and construction methods. His experiments with equilateral chain models have 
been discussed in Section 2.2. The equilateral quad-nets were realized both as tension-only cable 
networks, as well as compression-only gridshells:
The steel cable-net of the Olympic Stadium in Munich, 1972, was prefabricated as a uniform, quadratic 
net, and pulled into its double-curved geometry. The cables form a discrete, equilateral network with mesh 
size of 0.75 x 0.75 m. The varying mesh angle is taken up in the overlap joint at each cable intersection 
(Bach and Kullmann 1975; Harbeke 1972).

    

Figure 2.30  The cable net of the Olympic Stadium in Munich during construction in relaxed and tensioned state (Harbeke 1972, pp. 
129, 132), and after completion (Photo: ES 2018).

http://www.iannis-xenakis.org/
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Less noted but as important to the concept of repetitive structures is the façade paneling of the Munich 
stadium. The cable net is clad to a large extent with standardized, square, acryl-glass panels of 2.93 x 
2.93 m, which are bent to adjust to the appropriate double curvature creating a seemingly smooth, double-
curved façade. This repetition is achieved by accepting a varying gap in between panels.
This seam tolerance not only allowed the simplification of the geometry. It was also necessary to 
accommodate for the movement and deformation of the structure under varying loads. A flexible neoprene 
channel closes these gaps, and adapts to movement and tolerances. The roof panels were assembled 
with stacked seams, similar to a brick pattern. This created simpler joints and helped to adjust the layout 
of the square panels (Bach and Kullmann 1975; Harbeke 1972).

    

Figure 2.31  The Olympic stadium in Munich is covered with largely identical acryl-glass panels. During construction (Harbeke 1972, 
p. 136) and after completion (Photos: ES 2015).

The Multihalle in Mannheim, 1974, was the first so-called “strained” gridshell which utilized elastic 
deformation to create a double-curved lattice structure from straight wooden laths. The uniform lattice grid 
with 0.5 x 0.5 m edge length was assembled flat and subsequently pushed up into the desired geometry. 
This method creates a smooth quadrilateral network with constant edge length. The hinged joints adapt to 
the varying intersection angle (Happold and Liddell, 1975). The constructive details of the Multihalle in 
Mannheim will be further discussed in Section 2.4.

    

Figure 2.32  The Multihalle in Mannheim is constructed with a uniform timber lattice. Left: During construction (Barthel 2005, p. 287). 
Middle: Interior View (Photo: Rainer Barthel 2007). Right: View from above (Barthel 2005, pp. 284).

The timber gridshell of the Brinebath in Bad Dürrheim, 1987, was designed as a smooth quadrilateral 
network. The layout is designed to approximate the path the principal stress trajectories, creating meridian 
slope-lines and horizontal rings, most of which display a spatial form. The timber elements were 
prefabricated individually and assembled on site. The timber grid was braced with two diagonal layers of 
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laths to create a load-bearing gridshell.
The layout was chosen purely for its structural advantages. However, this segmentation generally results 
in perpendicular intersections which can be fabricated simply as notch connections (Wenzel et al. 1987).

            

Figure 2.33  Brinebath in Bad Dürrheim. Left: Network design (ES 2018 based on Wenzel et al. 1987). Middle: Construction Site 
(Linkwitz and Veenendaal 2014, p. 150). Right: Interior view (p. 142).

The Reticulated Dome in Neckarsulm, 1989, was designed as an equilateral, quadrilateral network. The 
dome of 25.2 m diameter and 16.5 m spherical-radius is constructed from 1.0 m long, curved edges and 
spherical panels. All edge beams are fabricated identically and follow a geodesic path from node to node 
on the sphere with a constant curvature radius of 16.5 m. Similarly, the spherical glass panels have a 
constant double curvature and could be produced with the same spherical mould. 
Schober differentiates the mesh angle (Maschenwinkel) measured between two adjacent edges, and the 
geodesic angle (Knickwinkel) which measures the deviation from a traversal node. Both angles are variable 
within this structure, but are taken up by the adaptable joints.
Two butt-straps are connected by a central bolt permitting a rotation of 90° - 65° to adjust the Maschenwinkel. 
The edge beams are connected via two bolts, one with a tight fit, the other with an elongated hole, to allow 
for the additional deviation of the Knickwinkel (Schober 2016).

    

Figure 2.34  Joint, interior and façade of the Reticulated Dome in Neckarsulm (SBP 1990).

The geometric contributions of Schlaich and Schober on translational meshes have been discussed in 
the previous section (Section 2.2.1). The House for Hippopotamus at the Berlin Zoo, 1997, is a built 
example of such a mesh. It was designed as two separate parabolic translational meshes which are 
connected with an anticlastic, non-uniform network. This central grid acts as a transition from one 
translational mesh to the other. The two domes are built entirely from 1.2 m long rods and planar glass 
panels (Schober 2002). The varying mesh and kink angles at each node were fabricated individually within 
the splice-connector joints (Stephan et al. 2004).
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H. Schober · Geometrie-Prinzipien für wirtschaftliche und effiziente Schalentragwerke

Bautechnik 79 (2002), Heft 1

als Erzeugende zwei Parabeln und
als Leitlinie zwei Parabeln mit
einer frei definierten Übergangs-
kurve gewählt (Bilder 22 und 23).

Die Beispiele zeigen, daß
Netzkuppeln in nahezu beliebi-
ger Form wirtschaftlich hergestellt
werden können, indem mit dem
Trick der Translationsfläche die
gesamte Kuppel aus einem gleich-
maschigen Netz mit ebenen Vier-
eckscheiben hergestellt wird, eine
in gestalterischer und wirtschaft-
licher Hinsicht optimale Lösung.

3.2  Bahnsteigüberdachung 
für den Lehrter Bahnhof 
in Berlin

Die gläserne Bahnsteigüberda-
chung für den Lehrter Bahnhof in
Berlin folgt im Grundriß streng
den Gleisen und weitet sich im
Westen beginnend von 44 m bis 
auf 66 m auf und verjüngt sich 
im Osten wieder auf 56 m. Mit 
dem in Bild 24 dargestellten korb-
bogenförmigen Querschnitt kann
das Dach optimal an das Licht-
raumprofil angepaßt werden. Das

Bild 22. Glaskuppel für die Flußpferde im Zoo Berlin als Translationsfläche mit ebenen Viereckmaschen
Fig. 22. Glass dome of the Hippo House at the Berlin Zoo as translational surface with plane quadrangular mesh

Bild 23. Glaskuppel für die Flußpferde im Zoo Berlin 
(Arch. J. Gribl, München)
Fig. 23. Glass dome of the Hippo House at the Berlin Zoo 
(Arch. J. Gribl, Munich)

Figure 2.35  Exterior view and geometry of the translational gridshell of the House for Hippopotamus, Berlin Zoo (Schober 2002).

Frank Gehry is a pioneer in digital design for architecture. His software company, Gehry Technologies, 
developed modelling tools for developable surfaces and geometry rationalization, simplifying the 
supporting structure and façade panelling of freeform surfaces. Gehry widely applied the use of single- 
curved, rectangular panels of glass and steel which can be bent to fit the building geometry. The Fondation 
Louis Vuitton in Paris specifically employed the use of identical flat panels of 1.5 x 0.4 m which were 
vacuum moulded into their individual curvature (Shelden 2002; Mathewson and Gehry 2007).

  

6. Rectangle Grammars 

 

 
A. Disney Concert Hall B. Experience Music Project 

 
 

C. Weatherhead D. Guggenheim Bilbao 

 
Figure IX-33: Surface patterns of rectangular sheets 

 

Construction assemblies of rectangular sheets represent a broad category of interest in 

Gehry projects.  Many projects have been clad with sheet elements of approximately 

rectangular elements. The Experience Music Museum, Guggenheim Bilbao, Disney Concert 

Hall and Weatherhead projects are examples.  Frequently, multiple cladding subsystems on 

a project have this property, including back panel and cladding elements, and possibly other 

elements as well (insulation, waterproof barrier, etc.). This section describes a materials 

simulation based grammar of rectangular sheet elements, their possible organizations and 

rationalization through variation of sheet sizes. 

 

323 

  

Figure 2.36  Gehrys designs use developable surfaces. Left: Walt Disney Concert Hall, Los Angeles (WM 2012). Middle: Weatherhead 
School of Management in Cleveland (Shelden 2002, p. 323). Right: Fondation Louis Vuitton in Paris (Photo: Fred Romero 2008). 

An example of both simplified geometry and façade construction is the canopy of the Strasbourg Train 
Station, 2006, designed by Duthilleul in cooperation with RFR engineering. The double-curved glass 
façade is designed as a toroidal form, producing cylindrical glass elements with only four different radii of 
curvature. Instead of using hot-bent panels, the curved glass elements were bent elastically and laminated 
to fix their form (Kassnel-Henneberg 2010; Januszkiewicz and Banachowicz 2016).

  

Figure 2.37  Strasbourg Train Station. The toroidal façade is constructed from cylindrical glass panels (SE 2006).
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The Kogod Courtyard Roof, 2007, in Washington DC is a freeform surface. Here, the quadrilateral panels 
are constructed as a scaled, discontinuous skin to allow for planarity. The steel structure, on the other 
hand, is optimized to create nearly torsion-free nodes. As a result, adjacent edges meet approximately in 
a common node axis, which is, however, not necessarily normal to the design surface (Jiang et al. 2013).

    

Figure 2.38  The Kogod Courtyard Roof in Washington DC. The façade is scaled to allow for planar panels (FP 2007).

The Yas Viceroy Hotel, 2009, in Abu Dhabi follows a similar strategy of “scaling” the façade and optimizing 
the node orientation. A subdivision routine creates nearly torsion-free joints. The node axes follow the 
rulings of developable strips orthogonal to the design surface (Wang et al. 2013; Pottmann et al. 2015).

m
old

surface

Figure 28: Cost-effective paneling: If curved pan-
els (red) have to be made, they should at least be
manufacturable from the same mold in order to save
costs. This principle can apply to custom double-
curved panels as well as to cylindrical panels.

Subproblem (iii) contains a version of set cover; it is there-
fore provably hard, and finding the optimum is out of reach for
today’s computing power. The method of [30] has been applied
to the paneling of the Arena Corinthians in Sao Paolo, cf. [87].

Figure 29: Combined combinatorial and numerical optimization of panelings.
The facade of the Arena Corinthians in Sao Paolo (2014, architect: Anı́bal
Coutinho) is approximated by as few panel types as possible to keep manufac-
turing cost small. The prescribed tolerances (6mm of panel divergence and 5cm
deviation from the reference surface) were achieved by 855 panels made with
61 different molds. The right hand figure shows the types of panels used (green:
planar panels; blue: cylindrical panels: other: double-curved panels). E.g. a set
of 296 cylindrical panels could be made from the same mold, cf. [87].

The segmentation task also has structural implications. For
example, the substructure is often aligned with the panel seams,
directly assigning a structural role to the segmentation geome-
try. Besides some work on quad mesh layout (§9), we are not
aware of any work in architecture that scientifically addresses
this link between segmentation and structural properties.

5.2. Real projects

Research on the architectural paneling problem is still rather
young, and there are only few instances of freeform surfaces
rationalised with curved panels. Cylindrical panels have been
used for the Louis Vuitton Foundation (Figures 1 and 11) and
the Eiffel Tower Pavilions (Figures 33 and 27) Similarly, the
Manta Glasshouse at the Laverstoke Mill in Hampshire by T.
Heatherwick (under construction) rationalises a double curved
freeform surface with cylindrical glass panels that even serve a
structural purpose.

Cost-optimized paneling, including mold reuse, was em-
ployed for the facade of the Arena Corinthians in Sao Paolo
(see Fig. 29 and [87]), the metal paneling of the 2012 Atoll
shopping centre by Formtexx, and the Middle East Centre at St.
Antony’s college in Oxford (under construction, by Zaha Hadid
architects).

5.3. Open problems and research directions

• Given a freeform design, simultaneously optimize the lay-
out of panel seams (maybe considering aspects of an aligned

substructure) and the panels to achieve control over the solu-
tion which provides the best tradeoff in terms of meeting the
design intent and the desired surface quality and staying within
budget.
• Even the simpler problem of decomposing a surface into

panels so that they fulfill important architectural constraints is
a hard task. Research in this direction is probably also related
to shape understanding on a larger scale and to shape segmen-
tation. Using the knowledge which is indirectly present in a
database of realized designs or directly generated models could
be a possible approach (inspired by the segmentation method of
Kalogerakis et al. [55]).
• For most non-flat panels (e.g., right circular cylinders) it

is not known how to best arrange them in order to achieve as
smooth as possible and aesthetically pleasing skins.

6. Geometric support structures

The term support structure can denote different things. In Sec-
tions 6.1 and 6.2 it denotes a technical term in geometry which
is more properly called torsion-free support structure. We re-
turn to the general meaning of the word in §6.3.

Figure 30: A geometric support structure (left, image by Evolute) is the ba-
sis of the outer skin built around the Yas island hotel, Abu Dhabi, designed
by Asymptote Architecture (construction and photo at right by Waagner-Biro
Stahlbau). The abstract support structure consists of an arrangement of quadri-
laterals along the edges of a mesh. The actual beams follow those quads and
intersect at nodes in a torsion-free way. The left hand image in particular shows
the node axes and, highlighted in color, a developable strip of planar quads
contained in the support structure.

6.1. Torsion-free support structures
Figure 30 illustrates this concept: We consider an arrangement
of quads along the edges of a mesh, such that all the quads in-
cident with a vertex do intersect in a common node axis. If we
let the beams of an actual steel structure follow these quads,
then they will not intersect in the unorganized manner of Fig-
ure 3. Rather they create an orderly “torsion-free” intersection
as shown by Figure 31, where the symmetry planes of beams
all pass through the common node axis. The list below shows a
few instances of torsion-free support structures.

• Torsion-free support structures derived from offset meshes.
We have already mentioned that two meshes might be at con-
stant distance from each other. The vertex-offsets and face-
offsets mentioned in §2.4 are special cases of a pair M,M′ of
meshes which have the same combinatorics, and which are po-
sitioned such that corresponding edges e, e′ of M,M′ are paral-
lel to each other. In this case, each pair e, e′ of edges spans a

11

  

Figure 2.39  The Yas Viceroy Hotel in Abu Dhabi. The façade structure is optimized for torsion-free nodes (Pottmann et al. 2015; 
SBP 2009).

A pragmatic way to create torsion-free edges and nodes is by enforcing a vertical beam layout, as was 
done at the Metrosol Parasol, 2011. The design surface is chopped vertically into a regular, quadrilateral 
1.5 x 1.5 m pattern in plan. In this case, any relation of beam- and surface-orientation is given up. The 
beams are fabricated as continuous, flat profiles with variable height. The nodes vary in height but have 
consistent vertical axes and congruent intersection angles in plan. This design method leads to substantial 
distortion of the network in areas of steep inclination. Here the vertical height of beams and nodes increases 
drastically (Schmid and Fischer 2010).

    

Figure 2.40  The Metrosol Parasol in Seville uses a vertical, orthogonal beam layout (MPA 2011).
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The smooth segmentation of the Centre Pompidou in Metz, 2010, by Shigeru Ban, was designed with 
the same method by vertically projecting a homogeneous (tri-hex) pattern onto a reference surface. The 
network shows extreme distortion in areas where the surface is steep. The orientation of edges and nodes, 
however, is aligned with the surface, and has a constant offset distance. The network is constructed from 
four interlaced layers of continuously curved timber beams. Similar to the Brinebath in Bad Dürrheim, all 
beams have a spatial geometry and needed to be prefabricated individually. The smooth segmentation 
allows for planar, traversal joints (Kockelkorn 2008).

    

Figure 2.41  The Centre Pompidou in Metz. The tri-hex network is constructed from individually curved timber elements (SBA 2010).
Right: The tri-hex network was projected onto the design surface (ES 2018 based on Kockelkorn 2008).

The smooth network of the Eiffel Tower Pavilions, 2014, is aligned towards the principal curvature 
directions enabling nearly torsion-free edges and developable faces. The curved mullions could thus be 
prefabricated from flat strips of steel. The façade was rationalized further and constructed with cylindrical 
panels, with only slight kinks and discontinuities at the vertical joints (Schiftner et al. 2013).

    

Figure 2.42  The Eiffel Tower Pavilion in Paris. The network follows lines of principal curvature. This simplifies the geometry of both 
steel structure and glass panels (MR 2014).

Conclusion
Historically, the shape of reticulated structures has been either cylindrical or spherical, with few exceptions 
of other traditional surfaces, such as rotational or translational geometries. In particular double-ruled 
surfaces (such as rotational hyperboloids or hyperbolic paraboloids) have been used to create double-
curved structures from straight profiles.
A drastic liberation of design shapes was initiated by Frei Otto and progressed with the development of 
computer-aided modelling tools. This sparked the development of various digital design and fabrication 
techniques.
Today, we can observe a diverse combination of discrete and smooth networks for load-bearing structures 
and façades. Additional to geometric rationalizations, adaptable construction techniques (using tolerances, 
hinges and deformation) open up further possibilities to simplify building parts.
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2.4 The Multihalle in Mannheim

The geometric advantageous of the Multihalle in Mannheim have been briefly discussed in Section 2.3. 
The following review takes a closer look at the assembly and construction details used in this strained 
timber gridshell. The construction method of the Asymptotic Gridshell, inspired by this paradigm, will be 
presented in Chapter 6.

Assembly
Frei Otto’s gridshells utilize elastic deformation to create a double-curved lattice structure from straight 
wooden laths. The lattice grid is assembled flat and held together by pinned joints. The combined flexibility 
of elastic laths and scissor joints allows this grid to take on virtually any shape within the permissible 
bending radii and node range (see Section 5.1.3 on smooth equilateral quad networks).
The structure is erected using multiple support “stamps”, which push the grid up and determine the 
desired double-curved shape. During this deformation process, the square grids are transformed into 
varying parallelograms. The final geometry is secured by tightening the joints, fixing the quadrilateral 
network along the support-edges, and bracing the diagrid with diagonal steel cables.

    

Figure 2.43  Construction process of the Multihalle in Mannheim. Left: The lattice grid is assembled flat (Glaeser 1978, pp. 59). 
Middle: The grid is erected with scaffolding „stamps“ (Glaeser 1978, pp. 60). Right: The facade is installed (Barthel 2005, p. 287).

Details
The elastic erection process called for slender laths and flexible joints. At the same time a high stiffness 
in-plane and out-of-plane was necessary to prevent buckling and deflections. It was achieved in-plane 
through the rigid supports and diagonal steel cable ties, and out-of-plane through the joint connections 
and additional shear blocks. 
The following three details – typical grid joint and ties, shear couplings, and supports – show commendable 
solutions for a strained gridshell.

Typical grid joints and ties. The 50 x 50 mm timber laths were connected with a central bolt allowing for 
an in-plane rotation during the erection process. To activate the additional stiffness of the double-layered 
grid, shear forces had to be transmitted at every node. This requirement was opposed by the need for a 
sliding joint (long hole) to accommodate the variation of edge length at the top and bottom layers, thus 
prohibiting the use of mechanical connectors. The shear stiffness was achieved by introducing high 
clamping forces using a spring and bolt, which created sufficient friction.
The rotational stiffness of the joints, as well as the diagonal stiffening effect of the PVC skin, proved to be 
too low to brace the structure. However, a significant in-plane stiffness was essential to the load-bearing 
behaviour. Consequently, a pair of 6 mm steel cables was installed at every sixth diagonal axis (at 4.5 m 
distance), and was fixed at every node to transmit the high tension forces (Burkhardt 1978, p. 112).
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Figure 2.44  Typical grid joint and diagonal cables of the timber gridshell (Burkhardt 1978, p. 112).

Shear couplings. Due to the high axial load in some areas of the grid, the out-of-plane shear stiffness 
needed to be increased. This was achieved by adding blocking pieces between the top and bottom laths. 
At each shear connection, two wedges were adjusted to the right offset and clamped with three bolts and 
springs to create the necessary friction (Burkhardt 1978, p. 114).

  

Figure 2.45  Detail of shear blocks connecting the top and bottom layers (Burkhardt 1978, p. 114).

Supports. The Multihalle in Mannheim displays multiple boundary situations, such as cable supports, 
walls and arches. At the lower horizontal supports, the timber lattice is simply bolted onto a curved plywood 
board, which in turn is held by individual brackets fabricated to the correct angle. The brackets experience 
a bending moment due to the eccentric connection and are bolted rigidly onto a horizontal concrete wall 
(Burkhardt 1978, p. 117).

                        

Figure 2.46  The horizontal supports are adjusted with individual brackets (Burkhardt 1978, p. 117).
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PART II 
REPETITIVE STRUCTURES
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3 Theoretical Framework

In order to classify and quantify repetition within double-curved networks, a novel theoretical framework 
is created which separately lists geometric parameters and constructive criteria. The framework is used in 
subsequent investigations to analyse and design repetitive structures.

- Section 3.1 describes the geometric parameters of networks. It is separated into smooth and 
discrete segmentations, and lists their parametric dependencies.

- Section 3.2 introduces constructive criteria which create identical building parts by diverging from, 
or adapting to, the geometric reference. We focus on deformation as a strategy to construct smooth 
segmentations, and list requirements for the correlation of curvature and deformation of beams.

- Section 3.3 discusses further criteria of repetition, such as precision, extent, choice or relevance of 
parameters in order to avoid misinterpretations.

- Finally, in Section 3.4 all strategies to attain repetitive parts are concluded.

Figure 3.1  Cable net of the German Pavilion, Expo1967 in Montreal during construction (Wilhelm and Otto 1985).
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3.1 Geometric Parameters

The segmentation of a surface results in three geometric entities: nodes, edges and faces. Each entity is 
defined by a combination of parameters. We distinguish between smooth and discrete segmentations 
(Section 1.3.1) as they lead to varying parameter sets. The parameters are described and illustrated for 
quadrilateral networks, as these are of predominant interest for this thesis. They can, however, be applied 
to any other network. If a parameter is kept constant throughout the structure, this parameter is fully 
repetitive.

The parameters examined in this thesis are selected to explain the geometric effects of repetition. Further 
parameters focusing on specific detail solutions, such as the thickness of a profile or the diameter of a 
joint, are not relevant for this comparison.

Multi-layered structures. The parameters aim to include the design of so-called multi-layered structures. 
In this case, the network is offset creating two layers of corresponding nodes, edges and faces. Each node 
in a multi-layered structure is represented by an axis connecting the top-node to the bottom-node. The 
edges become two-dimensional strips, or quads, connecting the top-edge with the bottom edge. Each 
face has a parallel offset face. If all nodes are torsion free this is called a geometric support structure.

Figure 3.2  The Kogod Courtyard in Washington DC representing a so-called geometric support structure (Photo: Maja Schling 
Martin 2018).

The following section first lists the parameters for smooth segmentations, then discrete segmentations. 
For each segmentation, the impact of multi-layered structures is explained separately. The two parameter 
sets are combined to give a complete overview of parameters for any hybrid, multi-layered network. 
Finally, the dependencies within the set of parameters will be presented.
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3.1.1 Parameters of Smooth Segmentations
Smooth segmentations are the closest network representation of a surface.

Nodes. The nodes are locally planar and can simply be described by their mesh angles wi measured 
between two adjacent edges. If all segmentation edges are continuous (quadrilateral and triangular 
networks), the nodes are also traversal and can be defined by one intersection angle i. The intersection 
angle is dependent on the network type (quadrilateral = 90°, triangular = 60°, hexagonal = 120°) and its 
distortion.

Edges. The edges are defined by their length and curvature:
The edge length l is measured along the edges from node to node. In a smooth, multi-layered network, 
the edge length at top and bottom vary depending on the normal curvature.
The curvature of the edges is differentiated into normal curvature kn, geodesic curvature kg, and 
geodesic torsion tg in relation to the orientation of the reference surface (Section 1.1.3).19

Naturally, the general curvature k and torsion t of a curve can be measured independently (Section 1.1.1). 
This curvature is relevant when using circular profiles (with no defined orientation) for construction.

Faces. The faces of a smooth network are shaped like any surface (Section 1.2) and cannot be described 
simply. We can compare their shape (by looking at surrounding edges and mesh angles) and Gaussian 
curvature K. Single curved faces can be compared through an isometric mapping (Section 2.1.1) if 
developable deformations (as defined in Section 3.2.3) are considered.

Offset. The offset distance o is simply measured between top and bottom at all entities. It is constant in 
a smooth segmentation (provided the offset distance is smaller than the minimal curvature radius of the 
surface). In a smooth, multi-layered network, the shape and curvature of the top and bottom face 
correspond with respect to the offset distance.
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Figure 3.3  Parameters of a smooth segmentation (ES 2018).

19  If the edge-orientation is not aligned with the surface, these curvatures may be measured around the local x, y and z orientation, 
as kx, ky and kz. In this thesis we focus on networks which consistently align edge and surface orientation.
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3.1.2 Parameters of Discrete Segmentations
In a discrete mesh, all curves become polylines, thus shifting the complexity to the nodes. The discretization 
naturally creates tangential discontinuities (Section 1.3.1) of both curves and faces.

Nodes. The angles at a node are measured differently in various publications. This description is based on 
Stephan et al. (2004) and Schober (2016), and aims to illustrate the dependencies between smooth and 
discrete segmentations. There are three node angles in a discrete segmentation which are directly related 
to the three curvatures of a respective smooth segmentation.20 They are measured in relation to the node 
axis and its corresponding tangent plane:

- The normal angle a measures the deviation of each edge from the tangent plane at the node. It is 
related to the normal curvature of the network.

- The geodesic angle b measures the deviation of each edge from a traversal node within the tangent 
plane. It is related to the geodesic curvature of the network.

- The torsion angle g measures the deviation of subsequent node axes within the normal plane of 
their connecting (straight) edge. It is related to the geodesic torsion of the network.
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Figure 3.4  The node angles a, b, g and w are measured in relation to the node axis and tangent plane in a discrete segmentation (ES 
2018).

Together with the initial intersection angle i there are four independent angles that illustrate the behaviour 
of a discrete node. However, the intersection angle i can only be measured in a traversal node (i.e., in 
smooth segmentations). We thus use the mesh angle w, measured between two adjacent edges, in our 
following parameter sets. It is dependent on a, b and i, and is the most common angle to describe a node 
arrangement.21

Stephan (2004) describes three angles necessary to define the fabrication of a joint: His Vertikalwinkel V 
and Verdrehwinkel W measure the same behaviour as the a and g. His Horizontalwinkel U combines the 
information of the intersection angle i and its geodesic deviation b. It simply measures the mesh angle 
between two adjacent edges as a projection onto the tangent plane at the node.
Schober (2016) describes the Vertikalwinkel, Verdrehwinkel and Maschenwinkel, equivalent to a , g and w, 
to define a joint. Additionally, in his description of the Reticulated Dome in Neckarsulm, he mentions the 
deviation from a traversal node as Knickwinkel, equivalent to b.

i b a g
U V W

w  

Table 3.1  Hierarchical diagram of node angles. The angles a, b, g  and w are selected for comparison (ES 2018).

20  We will thus name these angles after the curvature they are related to.
21  If a and b are zero, then w = i.
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Edges. The edges in a discrete mesh are defined as straight lines of length l. In a multi-layered structure, 
the edge-quads of a geometric support structure have a trapezoidal geometry. The edge lengths on top 
and bottom are related to the normal angle at the adjacent nodes.

Faces. The face shape in a discrete mesh can be deduced by the values of l and w of the surrounding 
edges and nodes. A common topic of investigation is their planarity, which is measured separately as the 
deviation of surrounding nodes from a plane. If P = 0, the face is planar.
Some publications additionally list the kink angle n which measures the tangential discontinuity between 
two adjacent faces. It is measured in the normal plane of the edge. This relation is, however, inscribed in 
the normal angle a, and will not be listed separately in this thesis.

Offset. The offset distances in a discrete mesh are variable for node-offset, edge-offset and face-offset, 
and need to be measured individually. The planarity of a face is inherited by the offset face.
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Figure 3.5  Parameters of a discrete segmentation (ES 2018).

3.1.3 Combined Parameters
Many built solutions combine characteristics of both smooth and discrete segmentations and can only be 
described with a combination of all parameters.
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Figure 3.6  All parameters of both smooth and discrete segmentation are combined in one set (ES 2018).
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This set of parameters will be used in the following investigations to analyse repetitive nodes, edges and 
faces. The parameters are listed in a standard table:

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

Table 3.2  Standard table of repetitive parameters (ES 2018).

Fairness
Some optimization tools introduce additional “fairness” parameters to favour meshes of smooth or 
homogeneous appearance. The mesh-optimizer Evolute for example, defines a parameter which minimizes 
the curvature of each polyline in a mesh (Hammerberg 2012). This creates a continuous progression of 
mesh edges and reduces the kinks between faces, a quality which is often preferred by designers. 
In the subsequent inductive study (Section 5.1), this continuity c – measured as the angle between 
subsequent edges – will be used to induce fairness. Additionally, the fairness will be assessed qualitatively 
based on specific criteria of the design network.

3.1.4 Terminology and Dependencies

Terminology
Certain terms used in geometric descriptions indicate specific parameter values:

- ‘Equilateral’ describes a constant edge length in a network.

- Nodes are described as ‘regular’, meaning a constant mesh angle w or ‘planar’, meaning a constant 
normal angle a of zero. 

- Continuous edges create ‘traversal nodes’ with the property:
 w1 = w3   and   w2 = w4  = 180°− w1 (for quadrilateral segmentation)
 w1 = w4    and   w2 = w5   and   w3 = w6  = 180°− w1− w2   (for triangular segmentations)

- ‘Torsion-free nodes’ describe the property of a constant zero torsion angle, g = 0.
 One way to identify/install this property are equal sums of opposite angles: 
 w1 + w3  = w2 + w4 (in a quadrilateral segmentation)

Dependencies of Smooth Segmentations
The majority of parameters in a multi-layered smooth segmentation are determined. If the offset is constant 
and all edges are continuous and oriented normal to the surface, the following relationships can be 
expected:

- All normal angles are zero: a = 0°
- All geodesic angles are zero: b = 0°
- All torsion angles are zero (i.e., the nodes are torsion-free): g = 0° 
- All mesh angles are traversal: i = w1 = w3   and   w2 = w4 = 180°− w1 = 180°− i.
- Node-, edge- and face-offset are identical: on = oe = of = o
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The curvature values kn and kg are derived by projecting the curvature vector of k onto the tangent-plane 
and the tangent-normal plane of the curve. Their relation is expressed as follows:

k = �kn
2 + kg

2 
 

(3.1) 

  
Dependencies of Discrete Segmentation
In a discrete segmentation, the edges are straight and do not lie within the surface. The edge orientation 
is usually defined as the vector sum of the normalized vectors of the adjacent nodes (Stephan et al. 2004, 
p. 564). The curvature and torsion of discrete edges is zero.

Dependency of Curvature and Node Angles
If we imagine a smooth network on a surface, and a discrete network connecting the same nodes with 
straight edges, then both networks follow the same layout:
Within the smooth segmentation, the curvature is continuously measurable along the edges, while within 
a discrete segmentation the curvature is concentrated at the nodes. The three curvatures and respective 
node angles are related. The dependencies can be described by the “formula for discrete curvature” 
(Pottmann et al. 2007a, p. 227).
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Figure 3.7  The same network can be modelled as smooth or discrete segmentation (ES 2018).

- The normal curvature kn is related to the normal angle ai with respect to the corresponding edge 
length:

kn ≈
2 sinαi

𝑙𝑙𝑙𝑙
 

 
(3.2) 

  - The geodesic curvature kg is related to the geodesic angle bi with respect to the corresponding edge 
length:

kg ≈
2 sinβi2

𝑙𝑙𝑙𝑙
 

 
(3.3) 

  
- The geodesic torsion tg is related to the torsion angle gi at the node with respect to the corresponding 

edge length:

τg ≈
γi
2𝑙𝑙𝑙𝑙

 
 

(3.4) 

  
These equations give an approximation of the average edge curvature at each node. They are dependent 
on the resolution of the network. A finer grid (with smaller edge length) will produce more accurate results. 
Calculating the average of two subsequent edge-lengths additionally increases the precision.
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3.2 Constructive Criteria

The review of architectural structures (Section 2.3) showed examples in which standardized parts are used 
for variable geometric situations. A hinged joint for example, can flexibly adjust to any angle within its 
rotation range. Such “constructive rationalizations” can be separated into tolerances (i.e., positional 
discontinuities (Section 1.3.1)) which deviate from the geometric segmentation, creating a discontinuous 
model, and adaptations, which deform or hinge a building part to fit the geometric situation (Schiftner et 
al. 2013). 
The constructive criteria are an important part of our analysis of repetition. A sufficient tolerance, 
deformation or hinge within the construction may validate a variable geometric parameter (Section 4.1).

3.2.1 Tolerances
Some degree of tolerance is incorporated in every construction to provide clearance between parts. This 
accounts for the movement of the structure or allows for variable precision in fabrication and assembly. 
These tolerances can be deliberately increased to reduce the variety of individual parts. While nodes and 
edges require more precise fabrication, tolerances are used extensively to allow for repetitive façade 
panels. Some façades use large elastic seams or even a separate substructure to enable a substantial 
tolerance and achieve repetitive or planar panels.

    

Figure 3.8  Tolerances in architectural construction. Left: Longholes at the outer laths of the Multihalle in Mannheim allow a variation 
in length (Burkhardt 1978). Middle: The panelling of the Olympic Stadium in Munich uses in-plane tolerances which are realized as 
elastic neoprene joints (Harbeke 1972). Right: The glass façade of the Kogod Courtyard is designed with out-of-plane tolerances to 
obtain planar panels (FP 2007).

Tolerances create a gap (or overlap) between building parts either in-plane, as illustrated by the Neoprene 
seams of the Olympic Stadium in Munich, or out-of-plane, as illustrated by the scaled glass façade of the 
Kogod courtyard.

Tolerances are considered in our analysis of repetition by allowing a variation of the specific length or 
shape parameter. Identifying the magnitude of a tolerance provides an important insight into the design 
and construction process of an existing structure. Often, further building parts are necessary to bridge the 
accrued gaps.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

tolerance tolerance

Table 3.3  Parametric impact of tolerances. Tolerances most commonly validate a variable geometry of face shape or edge length.
(ES 2018).
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3.2.2 Hinges
Hinges are used primarily to enable a specific structural behaviour without restraints and avoid undesired 
bending moments in beams. They are located at the nodes of a network and facilitate the rotation of edges 
around a given axis. They allow for an individual adjustment of joints to a variable node geometry.

567Stahlbau 73 (2004), Heft 8

den stufenlosen Anschluß von pris-
matischen Stäben wie z. B. Recht-
eckrohren. Dies ermöglicht die di-
rekte linienförmige Lagerung und
Befestigung von Eindeckungsele-
menten auf den Stäben des Ober-
gurts. Die Berechnung und Kon-
struktion dieser Knotenverbindung
ist ausführlich in [12] beschrieben.
In den vergangenen Jahren wurden
mit dieser Art der Stabwerksstruktur
mehrere Projekte mit komplexer
Geometrie oder mit Freiformflächen
erfolgreich realisiert. Die bekannte-
sten davon sind das Eden-Projekt in
England [10], die Stockholm Globe
Arena [8] oder das Arts Center in
Singapur [16]. 

4 Knotenverbindungen für einlagige
Stabwerke

Die wachsende Bedeutung einlagiger
Stabwerksstrukturen ist durch das ar-
chitektonische Streben nach transpa-
renten und filigranen Tragwerkskon-
struktionen bedingt. Knotenverbin-
dungen für einlagige Strukturen
können in die zwei grundlegenden
Kategorien Laschenknoten und Stirn-
flächenknoten unterteilt werden. Ein
erster Vergleich von Knotenverbin-
dungen für einlagige Strukturen
wurde von Klaus Fischer in [7] aufge-
zeigt. Im Folgenden werden die bis-
her in einlagigen Stabwerken bauprak-
tisch verwendeten Knotenverbindun-
gen beschrieben und miteinander
verglichen.

4.1 Laschenknoten

Diese Art der Knotenverbindung ist
durch folgende Eigenschaften charak-
terisiert:
– Die Kraftübertragung zwischen
Knoten und Stabanschluß erfolgt
mittels in Stablängsrichtung angeord-

neten Laschen. Die Laschen sind ent-
weder Einzelelemente oder sind in
den Stab bzw. Knoten integriert.
– Die Kräfte werden vorwiegend mit
Bolzen über Scher-Lochleibung über-
tragen bzw. alternativ über Form-
schluß oder eine Schweißverbindung.
Die Bolzen werden in der Regel vor-
gespannt.

Schlaich Bergermann & Partner,
Stuttgart, veröffentlichten 1988 in [17]
die Grundprinzipien einer Stabnetz-
schale mit einem Laschenknoten,
dessen erste Ausführung SBP-1 in den
Bildern 11 und 12 dargestellt ist.

Die Knotenverbindung besteht
hier aus zwei gekreuzten Flachble-
chen als Laschen, die mit einem zen-
tralen Schraubenbolzen verbunden
sind. Gleichzeitig wird mit diesem
Bolzen eine Seilklemme an der Kno-
tenunterseite befestigt. Die Stäbe sind
an der, der jeweiligen Lasche zuge-
wandten, Seite abgefräst und werden
mit zwei oder mehr Bolzen über
eine Scher-Lochleibungsverbindung
mit den Laschen verbunden.

Der zentrale Bolzen erlaubt eine
einfache Anpassung des Laschen-
kreuzes an die auftretenden Horizon-

talwinkel Ui zwischen den anschlie-
ßenden Stäben. 

Vertikalwinkel müssen über einen
Knick in den Laschen realisiert werden.
Eventuelle Verdrehwinkel in den Stä-
ben können nur bedingt über das Loch-
spiel ausgeglichen werden. Aufgrund
der kleinen Stabquerschnitte und nur
einer vorhandenen Scherebene ist die
Übertragbarkeit von Biegemomenten
sehr begrenzt. Diese Knotenverbindung
wurde bei mehreren Stabstrukturen auf
Freiformflächen erfolgreich eingesetzt,
so z. B. bei der Innenhofüberdachung
des Historischen Museums in Ham-
burg oder beim Schwimmbad in Neck-
arsulm [18], [19], [24].

Bild 13 zeigt die weiterentwik-
kelte Variante dieses Laschenknotens
SBP-2.

Hier werden nunmehr drei ge-
kreuzte Flachbleche verwendet und
mit dem zentralen Schraubenbolzen
verbunden. Die zwei äußeren La-
schen sind an die ösenförmig gefrä-
sten Stabenden mit mindestens zwei
Schrauben angeschlossen. Die innere
Lasche wird ebenfalls mit mindestens
zwei Schrauben an den gabelförmig
ausgefrästen Enden der beiden ande-
ren Stäbe befestigt. Die Einschränkun-
gen hinsichtlich der geometrischen
Winkel (Horizontal-, Vertikal- und
Verdrehwinkel) sind ähnlich wie bei
der Ausführung SBP-1. Aufgrund der
zwei Scherflächen ist die jedoch Mo-
mententragfähigkeit höher als beim
Knoten SBP-1. Diese Knotenverbin-
dung wurde z. B. für das Tonnendach
des Bahnhofs Berlin-Spandau vorge-
schlagen [21].

Die Helmut Fischer GmbH, Tal-
heim, publizierte 1999 die in Bild 14
abgebildete, weitere Variante eines
Laschenknotens HEFI-1 [5], [7].
Diese Knotenverbindung besteht aus
zwei flachen Scheiben mit einer um-
laufenden Nut und vier Bolzen-
löchern. Die Stabenden werden als
Doppelgehrung gefräst und sind mit
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Bild 10. MERO-Napfknoten 
Fig. 10. MERO Bowl Node Connector

Bild 11. Laschenknoten SBP-1
Fig. 11. Splice Connector SBP-1

Bild 13. Laschenknoten SBP-2
Fig. 13. Splice Connector SBP-2

Bild 12. Laschenknoten SBP-1
Fig. 12. Splice Connector SBP-1

Schubzapfen versehen. Diese werden
in die umlaufende Nut der Knoten-
bleche eingehakt und stellen die
Kraftübertragung sicher. Die Befesti-
gung der Stäbe erfolgt jeweils mit ei-
nem Bolzen je Stabende.

Die Horizontal-, Vertikal- und
Verdrehwinkel können innerhalb ge-
wisser Grenzen über die Geometrie der
Fräsung der Stabenden und der Kno-
tenbleche realisiert werden. Dieser La-
schenknoten wurde bei der Innenhofü-
berdachung Berlin Friedrichstraße Nr.
1991–1992 und beim Flußpferdhaus
im Zoo Berlin [9], [24] eingesetzt.

Eine andere Modifikation eines
Laschenknotens SBP-3 wurde von
Schlaich Bergermann & Partner 1996
beim Bau der DZ Bank in Berlin ent-
wickelt und eingesetzt [3], [24]. Das
Knotenteil besteht aus einer dicken
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Platte mit bis zu sechs Anschlußla-
schen, die in gefräste Gabelenden der
Stäbe eingepaßt sind. Die Stäbe sind
mit mindestens zwei Schrauben an
den Knotenlaschen über zwei Scher-
fugen befestigt. Die Anschlußwinkel
Ui,Vi und Wi können innerhalb eines
gewissen Bereichs durch die Geome-
trie der Fräsung der Knotenlaschen
aufgenommen werden.

Bild 17 zeigt eine weitere Ausfüh-
rung eines Laschenknotens POLO-1
mit vertikalen Laschen. Eine solche
Verbindung wurde von Polonyi &
Fink, Köln für die Vordächer am Köl-
ner Hauptbahnhof verwendet [28].  

Dieser Knoten hat einen zylin-
drischen oder prismatischen Kern, an
dem bis zu sechs vertikale Laschen
angeschweißt sind. An die Stabenden
wird eine vertikale Gabellasche an-
oder eingeschweißt. Die Stabverbin-
dung erfolgt mit zwei oder mehr
Schrauben über zwei Scherflächen.
Horizontal-, Vertikal- und Verdreh-
winkel können über die Geometrie
der Laschen aufgenommen werden.
Die vertikalen Laschen erlauben die
Übertragung größerer Biegemo-
mente. Ein vom Grundprinzip her
ähnlicher Knoten wurde auch von
Schlaich Bergermann & Partner für
die Eingangsüberdachung der Deut-
schen Bank in Berlin eingesetzt [2].

4.2 Stirnflächenknoten

Diese Art der Knotenverbindung weist
folgende grundlegende Merkmale auf: 
– Die Verbindungsfläche zwischen
Knoten und Stab verläuft senkrecht
zur Stablängsachse.
– Die Verbindung erfolgt vorwiegend
mittels Kopfplattenstoß mit vor-
gespannten Schraubenbolzen oder
Schweißung.

Bild 18 zeigt den von Schlaich
Bergermann & Partner entwickelten

Stirnflächenknoten SBP-4 für das In-
nenhofdach Schlüterhof im Deut-
schen Historischen Museum in Berlin
[24]. Das Knotenstück besteht aus
zwei kreuzförmigen Flachblechen, die
mit vier eingeschweißten Endplatten
verbunden sind. Die Stäbe sind an die
Kreuzbleche angeschweißt. Zur Mon-
tage können die Stäbe provisorisch
mit einem Bolzen in den Endplatten
fixiert werden.

Im Zwischenraum der beiden
Kreuzplatten ist eine Seilklemme
angeordnet, die mit vier Bolzen an
der oberen Platte befestigt ist. Hori-
zontalwinkel können nur während
der Fertigung der Kreuzplatten ein-
gestellt werden. Vertikalwinkel kön-
nen in gewissen Grenzen durch Frä-
sung der Knotenstirnseite aufgenom-
men werden. Stabverdrehwinkel
können nur sehr begrenzt aufgenom-
men werden. Durch den geschweiß-
ten Vollanschluß der Stäbe an den
Knoten können große Biegemo-
mente bis hin zur vollen Biegetrag-
fähigkeit des Stabes übertragen wer-
den.

Der in den Bildern 19 und 20
dargestellte geschweißte Stirnflä-
chenknoten WABI-1 wurde von der
Waagner-Biro AG, Wien, entworfen
und für die Überdachung des Innen-
hofes des Britischen Museums in
London eingesetzt [26], [27].

Bild 14. Laschenknoten HEFI-1
Fig. 14. Splice Connector HEFI-1

Bild 15. Laschenknoten SBP-3
Fig. 15. Splice Connector SBP-3

Bild 16. Laschenknoten SBP-3
Fig. 16. Splice Connector SBP-3

Bild 17. Laschenknoten POLO-1
Fig. 17. Splice Connector POLO-1

Bild 18. Stirnflächenknoten SBP-4
Fig. 18. End-Face Connector SBP-4

Bild 19. Stirnflächenknoten WABI-1
Fig. 19. End-Face Connector WABI-1

Schubzapfen versehen. Diese werden
in die umlaufende Nut der Knoten-
bleche eingehakt und stellen die
Kraftübertragung sicher. Die Befesti-
gung der Stäbe erfolgt jeweils mit ei-
nem Bolzen je Stabende.

Die Horizontal-, Vertikal- und
Verdrehwinkel können innerhalb ge-
wisser Grenzen über die Geometrie der
Fräsung der Stabenden und der Kno-
tenbleche realisiert werden. Dieser La-
schenknoten wurde bei der Innenhofü-
berdachung Berlin Friedrichstraße Nr.
1991–1992 und beim Flußpferdhaus
im Zoo Berlin [9], [24] eingesetzt.

Eine andere Modifikation eines
Laschenknotens SBP-3 wurde von
Schlaich Bergermann & Partner 1996
beim Bau der DZ Bank in Berlin ent-
wickelt und eingesetzt [3], [24]. Das
Knotenteil besteht aus einer dicken
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Platte mit bis zu sechs Anschlußla-
schen, die in gefräste Gabelenden der
Stäbe eingepaßt sind. Die Stäbe sind
mit mindestens zwei Schrauben an
den Knotenlaschen über zwei Scher-
fugen befestigt. Die Anschlußwinkel
Ui,Vi und Wi können innerhalb eines
gewissen Bereichs durch die Geome-
trie der Fräsung der Knotenlaschen
aufgenommen werden.

Bild 17 zeigt eine weitere Ausfüh-
rung eines Laschenknotens POLO-1
mit vertikalen Laschen. Eine solche
Verbindung wurde von Polonyi &
Fink, Köln für die Vordächer am Köl-
ner Hauptbahnhof verwendet [28].  

Dieser Knoten hat einen zylin-
drischen oder prismatischen Kern, an
dem bis zu sechs vertikale Laschen
angeschweißt sind. An die Stabenden
wird eine vertikale Gabellasche an-
oder eingeschweißt. Die Stabverbin-
dung erfolgt mit zwei oder mehr
Schrauben über zwei Scherflächen.
Horizontal-, Vertikal- und Verdreh-
winkel können über die Geometrie
der Laschen aufgenommen werden.
Die vertikalen Laschen erlauben die
Übertragung größerer Biegemo-
mente. Ein vom Grundprinzip her
ähnlicher Knoten wurde auch von
Schlaich Bergermann & Partner für
die Eingangsüberdachung der Deut-
schen Bank in Berlin eingesetzt [2].

4.2 Stirnflächenknoten

Diese Art der Knotenverbindung weist
folgende grundlegende Merkmale auf: 
– Die Verbindungsfläche zwischen
Knoten und Stab verläuft senkrecht
zur Stablängsachse.
– Die Verbindung erfolgt vorwiegend
mittels Kopfplattenstoß mit vor-
gespannten Schraubenbolzen oder
Schweißung.

Bild 18 zeigt den von Schlaich
Bergermann & Partner entwickelten

Stirnflächenknoten SBP-4 für das In-
nenhofdach Schlüterhof im Deut-
schen Historischen Museum in Berlin
[24]. Das Knotenstück besteht aus
zwei kreuzförmigen Flachblechen, die
mit vier eingeschweißten Endplatten
verbunden sind. Die Stäbe sind an die
Kreuzbleche angeschweißt. Zur Mon-
tage können die Stäbe provisorisch
mit einem Bolzen in den Endplatten
fixiert werden.

Im Zwischenraum der beiden
Kreuzplatten ist eine Seilklemme
angeordnet, die mit vier Bolzen an
der oberen Platte befestigt ist. Hori-
zontalwinkel können nur während
der Fertigung der Kreuzplatten ein-
gestellt werden. Vertikalwinkel kön-
nen in gewissen Grenzen durch Frä-
sung der Knotenstirnseite aufgenom-
men werden. Stabverdrehwinkel
können nur sehr begrenzt aufgenom-
men werden. Durch den geschweiß-
ten Vollanschluß der Stäbe an den
Knoten können große Biegemo-
mente bis hin zur vollen Biegetrag-
fähigkeit des Stabes übertragen wer-
den.

Der in den Bildern 19 und 20
dargestellte geschweißte Stirnflä-
chenknoten WABI-1 wurde von der
Waagner-Biro AG, Wien, entworfen
und für die Überdachung des Innen-
hofes des Britischen Museums in
London eingesetzt [26], [27].

Bild 14. Laschenknoten HEFI-1
Fig. 14. Splice Connector HEFI-1

Bild 15. Laschenknoten SBP-3
Fig. 15. Splice Connector SBP-3

Bild 16. Laschenknoten SBP-3
Fig. 16. Splice Connector SBP-3

Bild 17. Laschenknoten POLO-1
Fig. 17. Splice Connector POLO-1

Bild 18. Stirnflächenknoten SBP-4
Fig. 18. End-Face Connector SBP-4

Bild 19. Stirnflächenknoten WABI-1
Fig. 19. End-Face Connector WABI-1

Figure 3.9  Three hinged joints. Left: Laschenknoten SBP-2 offering an adjustment to the intersection angle i. Middle: Laschenknoten 
HEFI-1 with some tolerance of the geodesic angle b. Right: Laschenknoten POLO-1 with vertical buttstraps. This could be used to 
accommodate variable normal angles a (Stephan et al. 2004).

Hinges are considered in our analysis of repetition by allowing a variation of a specific angle parameter. 
The type and magnitude of angle give valuable insight into the specific detailing of this joint.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

hinge hinge hinge hinge

Table 3.4  Parametric impact of hinges. Hinges validate a variable geometry of node angles (ES 2018).

3.2.3 Deformation
‘Deformation’, in this context, refers to a planned elastic bending or twisting of a beam or panel, with the 
goal to simplify the construction process. Other deformations caused by self-weight or external loads are 
referred to as “deflections”.
Deformation is used for beams and façade panels to adjust to the desired curvature of edges or faces. It 
is considered in our analysis of repetition by allowing a variation of specific curvature parameters. The type 
and magnitude of curvature indicate how the building part is deformed. This information is decisive when 
choosing the appropriate profile and material. It will be discussed in more detail in Section 3.2.4.

    

Figure 3.10  Deformation in architectural construction. Left: Multihalle Mannheim. The timber laths are bent and twisted into the 
curved geometry (Photo: Rainer Barthel 2007). Middle: The ICD/ITKE Research Pavilion 2010. The timber lamellas are bent around 
their weak axis, normal to the design shape (ICD 2010). Right: IAC Headquarters, New York. The glass panels are warped on site into 
a curved geometry (Millard 2015).
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NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

deform. deform. deform. deform.

Table 3.5  Parametric impact of deformation. Deformation validates a variable geometry of curvature of edges or faces (ES 2018).

Geometric Differentiation
As the term ‘deformation’ describes any strain (compression or tension) of material it is necessary to give 
a more precise geometric differentiation in order to be able to model and compare deformed elements. 
For design and modelling purposes, we therefore distinguish between two kinds of deformation for one or 
two-dimensional objects (curves and surfaces).

Developable Deformation. Commonly, in geometric modelling, deformation is only considered if the 
slender panel or lamella is transformed into a developable geometry (Section 1.2.1). This ensures that the 
two-dimensional object does not undergo any geometric streching or shearing.
A deformation is thus called ‘developable’ if it follows an isometric mapping, as explained in Section 2.1.1. 
This means that the curve or surface may change its shape without changing its length (and area), angles 
or Gaussian curvature.

One-dimensional edges that are subject to developable deformation may be considered congruent if they 
have the same length. Similarly, a two-dimensional face or strip which is subject to developable deformation 
may change its shape, but maintain its edge length, area, proportion and Gaussian curvature. This is only 
possible for single-curved (K = 0) surfaces.
Double-curved surfaces cannot change their shape without changing their Gaussian curvature and are 
thus not considered for developable deformations. Similarly, a flat panel or lamella cannot be twisted or 
formed into a double-curved shape in any other way if only developable deformations are allowed.

Physically, developable deformations result in bending stress, depending on the curvature and the section 
modulus (WZ or WY) of the material. For slender lamellas or panels the latter can be derived simply by the 
thickness t and the elasticity E of the material. These mechanical implications will be discussed in the case 
study in Section 6.3.2.

Figure 3.11  Developable deformation. A flat panel or lamella can be bent around its long or short axis, or even warped diagonally, 
and maintin a developable geometry, i.e., not undergo change in length, angle or double curvature (ES 2018).

Non-developable Deformation. Any strain exceeding developable deformation is considered ‘non-
developable’. Such non-developable deformation thus allows a slight change of length within the panel or 
lamella. Two-dimensional objects such as faces or strips may, e.g., be twisted or buldged to subtly change 
their double curvature. The repetitive geometry of such elements needs to be analysed individually based 
on their shape, proportion and material properties.
Physically, non-developable deformations are expected to create additional stress due to strain which 
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cannot be derived simply from the material thickness. Again, these mechanical implications will be 
discussed on the basis of the case study in Section 6.3.2.

Figure 3.12  Non-developable deformation. If the panel/lamella is bent into a double-curved shape, such as an anticalstic or synclastic 
surface, the Gaussian curvature does not stay constant. Even twisting a lamella leads to double curvature and an elongation of fibers 
(ES 2018).

Deformation in Built Structures
When analysing built structures, the interpretation of a one or two-dimensional object becomes unclear as 
even the thinnest rod has a thickness. In our analysis of repetition, panels and lamellas are seen as two-
dimensional objects, circular or double-symmetrical rods are seen as one-dimensional objects. Their 
deformations are thus considered ‘developable’ if all requirements are fulfilled.

Finally, it must be said that any physical deformation is reliant on material properties and profile dimensions. 
When designing a repetitive structure with deformation, threshold values, such as maximal normal or 
shear stress, must be defined to limit the accepted bending radii or torsion.

3.2.4 Curvature and Deformation
To be able to correlate the curvature of curves on a surface (tg, kn and kg) with the structural deformation 
of beams (kx, ky and kz), we must clarify the geometric relationship of the geometric model and the built 
structure. 
The following three requirements have to be fulfilled:

- The beams must be curved continuously and follow the smooth design network.

- The profiles must be continuously oriented upright (along the normal vector) to align with the 
Darboux frame.

- The beams must be initially straight and bent elastically so that their deformation corresponds to 
their curvature.

If all requirements are satisfied, the profile orientation (defined by the x, y and z axes) corresponds to the 
Darboux frame (defined by the three vectors t, u and n) of the reference surface-curve. Similarly, the 
expected deformation kx, ky and kz of the structural profiles can be regarded equivalent to the geometric 
curvatures tg, kn and kg, of the surface curves.

𝐭𝐭𝐭𝐭 ≡  𝐱𝐱𝐱𝐱;            τg ≡  κx; 
𝐮𝐮𝐮𝐮 ≡  𝐲𝐲𝐲𝐲;           kn ≡  κy;   
𝐧𝐧𝐧𝐧 ≡  𝐳𝐳𝐳𝐳;           kg ≡  κz;  

 
(3.5) 
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Figure 3.13  Corresponding parameters of curvature and deformation (ES 2018). 

This relationship allows for a direct analysis of deformation via the curvature radius of the reference 
geometry. It is used in our analysis to classify the deformation of networks in Section 4.2, it is taken as a 
basis for the study of curvature-related networks in Section 5.4, and is implemented in the case study to 
deduce the residual stresses of bent lamellas in Section 6.3.2.
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3.3 Additional Criteria

Even though we have defined a set of geometric parameters and constructive criteria, there still remains a 
large potential for misinterpretation when classifying repetitive structures. The following section lists 
additional criteria to clarify and complete the author’s understanding of repetition.

Extent. The repetition of elements might not be enforced throughout the whole structure. We therefore 
distinguish between full repetition, which is only valid if all instances of a certain parameter are identical 
throughout the whole structure, and partial repetition. The quality of partial repetition can be quantified 
by the number of equivalence classes and the number of congruent elements in each class. If not stated 
otherwise, our studies focus on fully repetitive solutions.

Exeptions. Even if a parameter is fully repetitive, there are possible exceptions in a structure which call for 
individual fabrication. This is often the case along the boundaries of a network. Here the beams and 
panels are trimmed to fit the bespoke boundary and need to be fabricated individually. Another exception 
are singularities within a homogeneous pattern which create nodes of varying mesh angles. Such 
exceptions are regarded a side effect and have no influence on the parametric assessment.

Precision. Repetition is often approximated through optimization to achieve almost identical elements. 
The constructive tolerances, described in Section 3.2, are a driver for such an approximate search. This 
tolerance has a blurring, or softening effect on the solution spectrum of forms and segmentations. It is 
therefore crucial to specify the precision of measurements in any comparative analysis or design study.

Choice. The specific construction technique may alter the choice of parameters to compare in a structure. 
It might, e.g., be useful to keep a constant overall length of beams (see Shukhov’s hyperbolic towers), 
rather than comparing the specific distances between nodes. While this kind of parameter selection is 
valid and necessary, our subsequent investigations focus primarily on the parameters specified in Section 
3.1.

Relevance. Looking at specific built structures, it becomes apparent that not every parameter or entity 
listed in Section 3.1 might be relevant. For example, analysing an open cable network does not need any 
consideration of face shape. Even though a geometric assessment might be possible, it would be 
misleading and incomplete, as the constructive criteria cannot be judged. Therefore, we will only judge 
those elements that are present in an existing structure.

Eccentricities. The constructive use of eccentricities can be utilized to simplify joints and create repetition. 
The most prominent examples are reciprocal structures which allow for the use of identical rods, intersecting 
tangentially at variable angles and distances. This topic is rich from both a geometric, as well as structural, 
point of view. However, eccentricities are not a focus of this investigation.

Dimensioning. Even though an element might be geometrically repetitive, it may not be fabricated 
identically as the specific load-bearing behaviour might call for differently sized elements. Especially in the 
construction of gridshells, the stresses within the grid varies greatly and often leads to a varying 
dimensioning of the beams. This thesis is focused on the geometric properties of grid structures and does 
not evaluate the stress-related variation of elements.
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3.4 Strategies to Achieve Repetition

Based on the review of repetitive structures, in combination with the geometric and constructive parameters, 
the following strategies to obtain repetition have been observed:

Geometric Strategies
  In-plane Network Adjustment. The most obvious strategy to create repetition is to design and adjust 

the network of a surface. Network adjustment refers to the deliberate movement of edges or nodes within 
the uv-coordinates of the target surface (i.e., in-plane adjustment) without creating a discontinuous 
network. For instance, using equilateral edges successfully adjusts a network and creates repetition 
independently of the shape or other strategies.
In-plane adjustment, however, is limited in its possibilities to create repetition. One of the most successful 
methods of in-plane adjustment is the alignment of the network with the principal curvature directions.

  Out-of-plane Network Adjustment. In contrast to the in-plane adjustment, the out-of-plane adjustment 
refers to the deliberate movement of edges away from the target surface while keeping a continuous 
network. In case of discrete segmentation, this kind of adjustment may create a rough (i.e., non-smooth) 
surface. It is a powerful strategy and can create full repetition if a sufficient out-of-plane (proximity) 
tolerance is allowed.

in-plane adjustment

roughness
shape restriction

NETWORK ADJUSTMENT SEGMENTATION TOLERANCE

tolerance

in-plane tolerance out-of-plane tolerance

out-of-plane adjustment

shape adjustment

design

hinge

hinge

deformation
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Figure 3.14  Networks can be adjusted in-plane and out-of-plane. This strategy maintains a continuous smooth or polyhedral network 
(ES 2017).

  Shape Adjustment. Shape adjustment can be seen as an extreme out-of-plane adjustment with the 
requirement of maintaining a smooth surface. In built structures, this is the most prominent strategy to 
achieve repetition with varying impact on design freedom. While a sphere or cylinder are predefined 
shapes, a translational mesh or minimal surface leaves the designer with a shape spectrum to design 
within.
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Figure 3.15  Shape adjustments are the most common strategy to achieve repetition (ES 2017).

Shape adjustment may obtain element repetition for various reasons:

- A symmetrical shape creates repetition. In a spherical geometry, e.g., the Schwedler cupola, the 
point symmetry allows for a repetitive use of meridian curves and horizontal circles.  
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- A simplified curvature aids repetition. The constant Gaussian curvature of a sphere allows for a 
repetition of node angles, edge- and face-curvature. In single curved shapes, the additional 
advantage of isometric mapping applies, allowing the use of, e.g., equilateral triangles in a discrete 
segmentation, or repetitive elements exhibiting developable deformation in a smooth segmentation. 

- Traditional surfaces (Section 1.2.1) generally incorporate repetition within their surface definition. 
While ruled surfaces offer the use of straight, continuous edges, rotational and translational surfaces 
offer the use of planar quad faces if the network is aligned to the profile and path curves.

Constructive Strategies
The constructive criteria listed in Section 3.2 can also be understood as strategies to create repetition:

  Tolerances. In contrast to the network adjustments listed above, tolerances result in a discontinuous 
surface. Tolerances have been implemented both in geometric (Repetitive Moulds, Section 2.2.2) and 
practical investigations (the acrylic glass panels of the Olympic Stadium in Munich, Section 2.3). For the 
investigation of repetition, tolerances have a rather blurring effect, as they allow for geometrically imprecise 
solutions.
We can distinguish an in-plane tolerance, creating gaps or overlaps between tangent panels, or an out-
of-plane tolerance, which creates a scaled appearance.
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Figure 3.16  Tolerances cause a positional discontinuity of the network, either in-plane or out-of-plane (ES 2017).

  Hinges. Hinges are a constructive adaptation enabling repetitive parts for a variable geometry. They 
enable nodes to adapt to variable angles without creating a discontinuous segmentation. They are used in 
both discrete and smooth segmentations. 

  Deformation. Deformation is a constructive adaptation to enable edges and faces to adjust to a 
variable curvature without creating a discontinuous segmentation. They are used to adjust edges and 
faces in a smooth segmentation, or non-planar faces in a discrete segmentation.
We distinguish between developable deformation and non-developable deformation (Section 3.2.3).
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Figure 3.17  Hinges allow a simplification of joints. Deformation may create curved edges or faces (ES 2017).



64 Part II: Repetitive Structures



654  Analysis of Repetition

4 Analysis of Repetition

The theoretical framework formulated in Chapter 3 will be used in this chapter to analyse repetitive 
structures.
This analysis not only reveals repetitive parameters, but also draws a relationship between geometry and 
construction: Any parameter variation must be considered in the construction process, either by fabricating 
individual parts, or by utilizing tolerances, hinges or deformation during assembly. The analysis concludes 
by identifying applied strategies and thus gives insight into the design and planning process.
This analysis is applied to the projects of the literature review. A comparative overview illustrates which 
kind of repetition has been investigated so far – and how it was achieved.
Finally, as impulse for future investigations, all possible parameter combinations of smooth segmentations 
are deduced systematically.

- Section 4.1 introduces the general workflow to assess the geometric and constructive parameters 
of a given structure.

- In Section 4.2 this process is used to quantitatively examine three selected projects: The Multihalle 
in Mannheim, the Reticulated Dome in Neckarsulm and the Eiffel Tower Pavilions in Paris.

- Section 4.3 presents an overview of existing structures based on a qualitative analysis and discusses 
the use of strategies. 

- As an impulse for further investigations, a table of all possible repetitive, smooth structures is 
presented in Section 4.4.

Figure 4.1  Timber lattice of the Multihalle in Mannheim (Photo: Rainer Barthel 2007).
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4.1 Workflow

The analysis of repetition is separated into the following six steps:

1 Assessment of shape and segmentation
In a first step the shape and segmentation, as well as any specific geometric qualities, of the structure are 
classified. 

2 Analysis of geometric parameters
Based on the classification of surface and network, it is possible to identify the qualitative properties of the 
network geometry, and label each parameter as either repetitive, variable or irrelevant. A quantitative 
geometric analysis can even go further and define the precise values/spectrum of each geometric 
parameter.

3 Review of constructive criteria
Next, we identify tolerances, hinges or deformations used within the construction and attribute them to 
specific geometric parameters.

4 Superimposition of results 
By superimposing both geometric and constructive results, a complete analysis of the repetitive properties 
is created. Comparing each constructive criterion with its respective parameter values provides a 
conclusion on the detailing requirements of building parts.

5 Checking additional criteria
Any additional criteria of repetition are discussed, highlighting exceptions or particular properties of the 
specific project.

6 Insights and strategies
Finally, we summon all insights gained through the geometric and constructive analyses and identify 
strategies used to obtain repetitive parts. 

Qualitative and Quantitative Analysis
In Section 4.2, three selected projects are analysed quantitatively. In this case, the values of each instance 
of parameter are measured in a digital model of the structure. For this purpose, the network geometries 
were either obtained from the planner (Reticulated Dome in Neckarsulm: Geometry provided by Hans 
Schober, SBP; Eiffel Tower Pavilions: Geometry provided by Alexander Schiftner, Evolute GmbH), or 
remodelled based on the literature available (Multihalle in Mannheim). Unfortunately, the data available is 
not always complete and some personal judgement was required during the modelling process. 
A detailed survey of the existing structure could produce more precise measurements. This, however, is 
not the goal of this research.

In Section 4.3, an overview of repetitive structures is given based on the qualitative analysis. In this case, 
only the classification of surface and network, as well as the data provided in publications, are used in 
order to judge if parameters are variable or constant without giving precise measurements.
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4.2 Analysis of Selected Projects

In the following section three existing smooth networks – the Multihalle in Mannheim, the Reticulated 
Dome in Neckarsulm and the Eiffel Tower Pavilions in Paris – are used representatively for a quantitative 
parametric analysis.

4.2.1 Multihalle in Mannheim
The grid structure of the Multihalle in Mannheim was form-found through a uniform, quadrilateral hanging 
chain-model. The structure itself is constructed as a smooth network of elastically bent timber laths. The 
PCV-coated membrane façade is not considered in this analysis. A digital 3D model of the network was 
created, based on the information available. This approximate model is, however, not sufficiently accurate, 
to derive the parameter values for w, kn, kg and tg.

geodesic angle β3 intersection angle ι

Figure 4.2  Approximate network-model of the Multihalle in Mannheim (ES 2018).

Geometric Parameters
The funicular structure follows the typical parametric behaviour of a smooth network, resulting in a 
simplification of nodes and, in this case, repetitive edges. All other parameters, such as the intersection 
angle, curvature values and face-shape are variable. Due to the multi-layered structure, a varying length of 
the outer layers of laths was considered.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

variable 0° 0° 0° 0.2 m 0.75 m
± 3 cm variable variable variable 0.2 m - - -

Table 4.1  Repetitive and variable geometric parameters of the Multihalle in Mannheim (ES 2018).

Constructive Criteria
The multi-layered structure is constructed with long holes, allowing the outer laths to slide and adjust to 
the varying length (Figure 2.44, right). The joints are hinged around their z-axis (following the definition of 
Figure 3.13) allowing an adaptation to the varying intersection angles. The laths are constructed from 
slender, double-symmetric profiles allowing a deformation in all three axes to adapt to the varying curvature 
kn , kg and tg.
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NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

hinge - - - - -
tolerance deform. deform. deform. - - - -

Table 4.2  Constructive criteria of the Multihalle in Mannheim (ES 2018).

Superimposition
Superimposing the results of the geometric and constructive analyses shows that all parameters are either 
constant or validated though a constructive criterion. The main structural grid can thus be constructed 
with repetitive building parts. (With a sufficiently accurate model, the precise range of all parameters would 
be given, and thus create insight on the maximal rotation of hinges and the minimal bending radii of laths.)

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

hinge 0° 0° 0° 0.2 m 0.75 m
± 3 cm deform. deform. deform. 0.2 m - - -

Table 4.3  Superimposition of geometric and constructive parameters of the Multihalle in Mannheim (ES 2018).

Additional Criteria
Exceptions can be observed along all boundaries where varying trims and supports call for bespoke 
constructive solutions. The quadrilateral grid is assembled in two layers in which one family of laths passes 
the other tangentially. This creates an eccentricity of 5 cm. The 50 x 50 mm profiles are used homogeneously 
throughout the structures. To increase the load-bearing capacity, some areas use four layers of laths or 
shear blocks which connect the top and bottom layers.

Conclusion
Apart from the equilateral design, the simplistic detailing of this complex shape is heavily dependent on 
constructive strategies. The joints are hinged and the outer laths are equipped with long holes to allow for 
a flexible adjustment of geometric variations. The main driver of repetition is the use of elastic deformation 
during assembly. Due to the three varying curvature parameters, the laths must be constructed from 
double-symmetric profiles to allow a deformation around all profile axes. This limitation leads to necessary 
structural developments using additional layers and shear-blocks to stiffen this strained load-bearing grid.
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4.2.2 Reticulated Dome in Neckarsulm
The Reticulated Dome in Neckarsulm was designed as an equilateral (1.0 x 1.0 m), quadrilateral network 
on a spherical geometry. The edges are curved and follow the geodesic paths between nodes.

geodesic angle β3 intersection angle ι

Figure 4.3  The network of the Reticulated Dome in Neckarsulm (ES 2018, Geometry verified with Schober 2018).

Reviewing Geometric Criteria
The equilateral network causes a high variation of mesh angles. The spherical geometry allows for a 
constant curvature of faces and edges. The smooth segmentation simplifies the node angles such that a 
and g are zero. A peculiarity of this network is the varying geodesic angle, creating a discrete progression 
in-plane, and enabling a vanishing geodesic curvature of edges (Figure 4.4). It illustrates how node angle 
and edge curvature are interchangeable and may achieve the same curvature. This correspondence is 
decribed mathematically in Section 3.1.4. A similar effect is described in Section 5.1.3 for smooth 
hexagonal networks with constant edge length on a sphere.

geodesic angle β3 intersection angle ι

Figure 4.4  Close-up of the hinged joint at the Reticulated Dome in Neckarsulm. The intersection and geodesic angles are taken at 
seperate hinges (ES 2018).

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

48 - 132° 0° 0-3° 0° 4 cm 1.0 m 1/16.5 m 0 0 4 cm variable spherical
r =16.5 m -

Table 4.4  Repetitive and variable geometric parameters of the Reticulated Dome in Neckarsulm (ES 2018).
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Reviewing Constructive Criteria
The grid structure is assembled from standardized curved edges with rectangular steel profiles of 60 x 40 
mm. The traversal splice connectors are all identical and adjust to a varying intersection angle via their 
z-axis (following the definition of Figure 3.13). Furthermore, the edges are connected through one fixed 
and one long hole and allow for an additional varying geodesic connection angle. The façade panels have 
a varying shape, but constant spherical curvature.

    

Figure 4.5  Building parts and assembly of the Reticulated Grid in Neckarsulm (Schober 2016).

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

hinge - hinge - - - - - - - - - -

Table 4.5  Constructive criteria of the Reticulated Dome in Neckarsulm (ES 2018).

Superimposition 
Superimposing the results of the geometric and constructive analyses reveals a full repetition of all parts. 
Furthermore, the table gives a precise measurement of the angle variation at the joints. While the mesh 
angles call for a substantial hinge of up to 42°, the geodesic angle was solved simply with a larger hole 
with up to 3° variance.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

48 - 132°
hinge 0° 0-3°

hinge 0° 4 cm 1.0 m 1/16.5 m 0 0 4 cm variable spherical
r =16.5 m -

Table 4.6  Superimposition of geometric and constructive parameters of the Reticulated Dome in Neckarsulm (ES 2018).

Additional Criteria
Exceptions of repetition appear along all boundaries where varying trims and supports call for bespoke 
constructive solutions. The structure is covered with spherical glass panels, which could be fabricated 
with the same mould but had to be cut individually to fit the variable outline shape. The network is laid out 
symmetrically creating four similar quadrants.

Conclusion
The gridshell in Neckarsulm achieves a high level of repetition through its restricted spherical shape, 
equilateral network and hinged joints. The edges are laid out along geodesic paths resulting in a vanishing 
geodesic curvature. They are thus only curved along their constant normal curvature. The varying 
intersection angle and geodesic angle are taken up separately within each joint. 
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4.2.3 The Eiffel Tower Pavilions
The surface and network of the Eiffel Tower Pavilions form a smooth, quadrilateral segmentation which is 
aligned roughly with the principal curvature directions, simplifying the fabrication of glass panels and 
mullions.

geodesic angle β3 intersection angle ι

Figure 4.6  Network of the Eiffel Tower Pavilions in Paris (ES 2018, Geometry by Evolute 2011).

Reviewing Geometric Criteria
The vertical steel beams are continuous and create traversal nodes with no variation in normal, geodesic 
or torsion angles. All edges display both normal and geodesic curvature. The alignment with the principal 
curvature directions results in a low geodesic torsion, a prerequisite for developable edges and faces. A 
constant, orthogonal intersection angle (which is usually a property of principal curvature networks) was 
not pursued in this design.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

70 - 104° 0° 0° 0° c 0.7- 2.6 m 0 - 1/7 m 0 - 1/6 m 0 -1/24 m c variable develop. -

Table 4.7  Repetitive and variable geometric parameters of the Eiffel Tower Pavilions (ES 2018).

Reviewing Constructive Criteria
By considering a slight tangential and positional discontinuity along the mullions, the faces could be 
rationalized further to be constructed from only cylindrical panels. All other geometric variations are 
fabricated individually to fit. 

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K/P of

- - - - - - - - - - - tolerance -

Table 4.8  Constructive criteria of the Eiffel Tower Pavilions (ES 2018).

Superimposition
Superimposing the results of the geometric and constructive analyses reveals a high parametric variance. 
All structural members and façade panels were fabricated individually. Nonetheless, the network 
optimization greatly simplified the fabrication of vertical mullions. Each box section was cut from flat metal 
strips which were bent and welded to take on their three-dimensional shape. Similarly, the cylindrical 
shape of glass panels significantly lowered their fabrication costs.
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NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

70 - 104° 0° 0° 0° c 0.7- 2.6 m 0 - 1/7 m 0 - 1/6 m 0 -1/24 m c variable cylindrical
tolerance -

Table 4.9  Superimposition of geometric and constructive parameters of the Eiffel Tower Pavilions (ES 2018).

Additional Criteria
The quadrilateral network is trimmed along all boundaries creating some triangular panels. The design 
surface is symmetrical along their central axis allowing for a repetition of panels on either side.

Conclusion
The Eiffel Tower Pavilions are an example of post-rationalization (Schiftner et al. 2013) of a freeform 
surface. The façade geometry was optimized to facilitate the use of cylindrical panels and developable 
edges within the permissible tolerances. This method results in a comparatively low geodesic torsion. All 
other parameters are variable and call for an individual fabrication of building parts.
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4.3 Overview of Repetitive Structures

In the following section two overviews of repetitive structures are presented. The first table illustrates 
existing structures and compares their repetitive qualities and strategies. The second table gives an 
impulse for future investigations by deducing all possible parametric combinations for a subset of smooth 
parameters.

4.3.1 Existing Projects
The existing projects presented in the literature review (Chapter 2) were analysed qualitatively. Table 4.10 
gives an overview of their parameter repetition and strategies used, and thus illustrates a more general 
behaviour of repetitive structures. 

The projects are separated into theoretical and built examples, and further sorted by segmentation and 
shape. The parameters of each project are labelled as ‘x’ (variable), ‘c’ (constant), ‘0’ (vanishing) or ‘–’ (not 
relevant), without specifying precise values (Table 4.11). In some cases, abbreviations are used to clarify a 
specific geometric quality. Each value is also colour-coded to indicate the specific strategy used to achieve 
repetition.

Analysis
The table illustrates parameters and strategies used in repetitive structures. In the following, we highlight 
some general principles that become apparent through this chart:

Geometric investigations are merely a first step towards creating repetitive parts. This is visualized by the 
reduced use of strategies in the upper section of Table 4.10. Even if some parameters remain variable, only 
construction planning will determine if these parameters need to be fabricated individually or if they can 
be validated through tolerances, hinges or deformation.
Built structures on the other hand, display a more complete analysis. If the planning documentation shows 
enough detail, we can assess the geometric and constructive criteria, and thus judge the complexity of 
fabrication.

It is noteworthy that constructive strategies can be implied within geometric investigations: The publications 
on Shape Proxies (Eigensatz et al. 2010), e.g., implement  tolerances in the planning process. Similarly, 
the investigations on developable strips by Tang et al. (2016) suggest a use of developable deformation for 
the construction process. 

Network Adjustment. Choosing a discrete segmentation naturally eliminates the curvature of edges and 
may create planar faces. Smooth segmentations, on the other hand, simplify the node angles, and create 
a constant offset value. Consequently, a clustered parameter repetition can be observed in the respective 
groups.

Hybrid segmentations (e.g., the Reticulated Dome in Neckarsulm) combine properties of discrete and 
smooth segmentation. Here, the distribution of repetitive parameters and related strategies is more varied.
It is common in discrete geometric optimizations to allow minimal out-of-plane adjustments to achieve, for 
example, torsion-free nodes or planar faces, as was done for the investigations on conical, edge-offset 
and circular meshes. This is less common for smooth segmentations which are foremost created on a 
reference surface. The publication on “Circular Arch Structures” is an exception. Here the edge curves 
were optimized to create congruent nodes and circular arches, but allow a deviation from the reference 
surface.
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Authors Geometric investigations NODE EDGE FACE

w a b g on l kn kg tg oe S K of

Huard et al. 2015 Voxel Mesh polyhedral

d
is

cr
et

e

c c c 0 c c - - - c c P c

Huard et al. 2015 Lobel Mesh developable c x x x x c - - - x c P c

Jiang et al. 2014 Hexagonal Dual developable x x c 0 c x - - - x x x x

Schober 2016 Translational Mesh translational x x c c x c - - - x x P x

Singh, Schaefer 2010 Equivalence Classes free pa x x x x pa - - - x pa P x

Troche 2008 Planar Hexagons free x x x x x x - - - x x P c

Pottmann et al. 2007b Conical Mesh free x x x 0 c x - - - x x P x

Pottmann et al. 2007b Edge Offset Mesh free x x x 0 x x - - - c x P x

Pottmann et al. 2007b Circular Mesh free x x x 0 x x - - - x x P c

Tang et al. 2016 Geodesic Developable Strips free

sm
o

o
th

t 0 0 0 c x x 0 x c x x c

Tang et al. 2016 Principal Curvature Dev. Strips free c 0 0 0 c x x x 0 c x x c

Tang et al. 2016 Asymptotic Developable Strips free t 0 0 0 c x 0 x x c x x c

Bo et al. 2011 Circular Arch Structures free c 0 0 0 c x pa - c - -

Eigensatz et al. 2010 Shape Proxies free - - - - - - - - - - proxies c

Schling (see Section 5.2) Smooth, Rectangular Panelistion free - - - - - - - - - - c x c

Designer Architectural developments NODE EDGE FACE

w a b g on l kn kg tg oe S K of

Hugo Junkers Junkers Lamella Roof cylindrical

d
is

cr
et

e

c c c c c c - - - c c P c

Friedrich Zollinger Zollinger Lamella Roof cylindrical c c c c c c - - - c c P -

Strozyk 2011 Wooden Textiles polyhedral c x x x - c - - - - c P c

Walter Bauersfeld Geodesic Dome spherical pa pa pa pa c pa - - - c pa P c

Jörg Gribl, SBP House for Hippopotamus, Berlin translational ? ? ? c x c - - - x x P x

Otto, Behnisch, Schlaich Cable Net, Munich free x x x x - c - - - - x - -

Foster + Partners Kogod Courtyard free ? ? ? ? ? x - - - x x P x

Asymptote, SBP Yas Viceroy Hotel free ? ? ? 0 c x - - - x x P x

Johann Schwedler Schwedler Cupola spherical

hy
b

ri
d

pa pa pa 0 c pa c 0 0 c pa c -

Kohlmeier + Bechler Reticulated Dome in Neckarsulm spherical x 0 x 0 c c c 0 0 c x c c

Agence Moatti-Rivière Eiffel Tower Pavilions free c pa 0 0 c x x x 0 c x 0 c

Buckminster Fuller Plywood Dome platonic solid

sm
o

o
th

c 0 0 0 c c c 0 0 c c 0 c

Frank Gehry Fondation Louis Vuitton developable c 0 0 0 c c x 0 0 c c 0 c

Duthilleul Strasbourg Train Station toroidal c 0 0 0 c pa x 0 0 pa c 0 c

Vladimir Shukhov Hyperbolic Towers HP-surface t 0 0 0 c pa 0 0 x c x x c

Vladimir Shukhov Vyksa Gridshells parabolic t 0 0 0 c pa c 0 x c x x c

Schling (see Chapter 6) Asymptotic Gridshell minimal c 0 0 0 c x 0 x x c x x c

Frei Otto Multihalle in Mannheim funicular t 0 0 0 c c x x x c x x c

Jürgen Mayer Metrosol Parasol free t 0 0 0 x x vertical x x x x

Geier+Geier Brinebath, Bad Dürhheim free pa 0 0 0 c x x x x c x x c

Shigeru Ban Centre Pompidou, Metz free x 0 0 0 c x x x x c x x c

Otto, Behnisch, Schlaich Olympic Stadium, Façade free - - - - - - - - - - c x c

Table 4.10  Qualitative parametric analysis of the examples listed in Chapter 2 (ES 2018).
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Creating a rough surface is used exclusively with discrete segmentations. The two examples - Voxel Mesh 
and Wooden Textiles - show how this strategy can either lead to full geometric repetition or be validated 
by hinged connections in a built prototype.

Shape Adjustment. The restriction of shapes is the prevalent strategy used in built structures. Predefining 
a shape is most successful with cylinders, spheres and platonic solids, and is often sufficient with no need 
for other strategies (e.g., Junker’s lamella roof). Using a shape spectrum, on the other hand, leaves more 
design freedom and is often used in combination with constructive strategies, such as hinges or deformation 
(e.g., House for Hippopotamus at the Berlin Zoo).

Constructive Adaptation. As expected, the constructive strategy of hinges is only used with respect to 
the angular parameters of nodes. They can be found in both discrete and smooth segmentations, and also 
in combination with deformation.
Deformation, on the other hand, is only used with respect to curvature parameters of edges and faces. The 
Multihalle in Mannheim, the Gridshell in Vyksa, and the Hyperbolic Towers, bend or twist linear beams to 
obtain the curved geometry. The edges are interpreted here as one-dimensional elements, and are thus 
listed as developable deformations.
The Plywood Dome by Buckminster Fuller uses slender panels which are elastically deformed within a 
single-curved geometry. The Eiffel Tower Pavilions, the Fondation Louis Vuitton and the Strasbourg Train 
Station harness similar geometric rules of developabilty to simplifying the production process. However, 
the panels are prefabricated, which is why the strategies appear as ‘individual fabrication’.
There are three examples – the acrylic glass panels of the Olympic Stadium in Munich, the study on 
smooth, rectangular panelization (presented in Section 5.2) and the Asymptotic Gridshell (presented in 
Chapter 6) – which deliberately deform flat elements into a double-curved geometry. These examples are 
highlighted as non-developable deformations.

Constructive Tolerances. The use of tolerances create ambiguous geometric parameters, resulting in a 
mostly undefined analysis. However, their potential to achieve repetition is high. For this reason, tolerances 
have been implemented in both theoretical and practical examples.

Individual Fabrication. Modern designs, such as the Brinebath in Bad Dürrheim and the Centre Pompidou 
in Metz, create smooth segmentation by individually fabricating each curved beam. This strategy is 
supported by the increasing possibilities of digital fabrication. Nonetheless, the construction process can 
be made more efficient by optimizing even a single parameter. This is common for façade-rationalizations, 
as in the Fondation Louis Vuitton and the Strasbourg Train Station. By creating developable face geometries, 
the glass panels can be fabricated without individual moulds. 
Another trend is looking at the simplification of edge curvature. This was done at the Eiffel Tower Pavilions. 
By minimizing the geodesic torsion of edges, the mullions can be fabricated from planar strips of metal.

Geometric strategies Constructive strategies Parameters

in-plane adjustment tolerance x = variable

out-of-plane adjustment hinge c = constant

rough surface developable deformation - = not relevant

predefined shape non-developable deformation ? = unknown

shape spectrum not relevant t = traversal node

individual fabrication P = planar face

Table 4.11  Legend for Table 4.10 (ES 2018). pa = partial repetition
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Further Potentials
This overview of repetitive structures naturally poses the question: Which other combination of strategies 
have already been realized and what further applications are worth investigating?
It gives rise to a multitude of further research questions, such as:

- Can extreme out-of-plane tolerance be used to simplify smooth segmentation?
- Can deformation be applied to nodes? Can hinges be applied to edges?
- What are the potentials of deformation and tolerance for the construction of double-curved building 

envelopes?
- How can limited curvature parameters benefit the construction of strained gridshells?

Some of these questions are part of future research, others are addressed in the following chapter.

4.4 Deduction of Possibilities

The theoretical framework can also be used to systematically deduce all possible solutions for repetitive 
structures. Starting with a fully repetitive system, such as a platonic solid, we can “loosen” one parameter 
at a time and investigate the possible geometric freedom. Such systematic deduction is easier said than 
done. Often, the parameters of edges, nodes and faces are interdependent, and only lead to design 
freedom if released simultaneously. Furthermore, the possible combinatorics of 13 parameters, would 
require 8192 separate investigations, many of which have no valuable outcome. 

To tackle this problem, we propose a focus on subsets of parameters. 
In Table 4.12 we only look at the immediate edge and node parameters for a smooth segmentation without 
considering offset and face geometry. This leaves us with five parameters: The intersection angle, the 
edge length, and the three curvature parameters. Based on this reduced number of parameters, we can 
create a chart for repetitive, smooth segmentations with only 32 possible combinations. Of course, this 
reduced chart does not describe all the geometric effects, but it renders the possibility to assign initial 
solutions and, subsequently, investigate the behaviour of further parameters.

We have added into this chart all solutions which are discussed in this thesis. Some of these solutions 
might only be one of many options. Others might need to be refined more accurately. This conjecture 
should be understood as an impulse for future investigations.
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NODE EDGE FACE Smooth networks

w a b g on l kn kg tg oe S K of

c - - - - c c c c - - - -

Rhombic network on a cylinder 
(Zollinger) (Section 2.3) 
Platonic solids projected onto their 
circumsphere (Section 5.3.6)

x - - - - c c c c - - - -
Geodesic Chebyshev net on a sphere 
(Reticulated Dome, Neckarsulm, 
Section 4.2.2)

c - - - - x c c c - - - -

c - - - - c x c c - - - -

c - - - - c c x c - - - -

c - - - - c c c x - - - -

x - - - - x c c c - - - -
Geodesic network on a sphere 
(Section 5.4.2)

x - - - - c x c c - - - -

x - - - - c c x c - - - -
Asymptotic curves on a pseudosphere 
(Section 5.4.2)

x - - - - c c c x - - - -

c - - - - x x c c - - - -

c - - - - x c x c - - - -
Meridian curves and parallel circles on a 
sphere (Schwedler Cupola) (Section 2.3)

c - - - - x c c x - - - -

c - - - - c x x c - - - -

c - - - - c x c x - - - -
Regular, smooth network on a 
developable surface (Section 5.1.3)

c - - - - c c x x - - - -

x - - - - x x c c - - - -

x - - - - x c x c - - - -
Curved network in the plane 
(Section 5.4.2)

x - - - - x c c x - - - -
Network of rulings on a hyperbolic parabo-
loid or rotational hyperboloid (Hyperbolic 
Towers of Shukhov) (Section 2.3)

x - - - - c x x c - - - -

x - - - - c x c x - - - -

x - - - - c c x x - - - -

c - - - - x x x c - - - -
Principal curvature networks on 
freefrom surfaces (Section 5.4.2)

c - - - - x x c x - - - -

c - - - - x c x x - - - -
Constant normal curvature network on a 
CMC surface (Section 5.5.7)

c - - - - c x x x - - - -

x - - - - x x x c - - - -
Principal curvature networks on 
freefrom surfaces (Section 5.4.2)

x - - - - x x c x - - - -
Network of geodesic curves on a 
freeform surface (Section 5.4.2)

x - - - - x c x x - - - -
Asymptotic network on an anticlastic 
surface (Section 5.4.2)

x - - - - c x x x - - - -
Smooth Chebyshev net on a freeform 
surface (Section 5.1.3)

c - - - - x x x x - - - -
Principal curvature network, gradient 
network, principal stress network 
(Section 1.4.4)

x - - - - x x x x - - - -
Any smooth network on a freeform 
surface

Table 4.12  Overview of all possible geometric parameter combinations for smooth segmentation, based on a limited set of parameters 
disregarding offset and face geometry (ES 2018).
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5 Studies on Repetition

This chapter presents five constitutive studies which investigate selected sets of parameters to explore the 
morphological behaviour of repetitive networks. The studies gradually focus on smooth segmentations 
and specifically investigate the use of deformation and its effect on design freedom.

There are three methods used in the investigations:
The first two studies (Section 5.1 and Section 5.2) use an inductive approach to generate network samples 
and analyse their geometric behaviour. Section 5.3 uses a method of research by design, focusing on 
aspects of construction and aesthetics. Finally, Section 5.4 and Section 5.5 use a deductive approach to 
define geometric dependencies of curvature and develop a novel design method.

- Section 5.1 investigates the morphology of triangular, quadrilateral and hexagonal networks for both 
discrete and smooth segmentation. 

- Section 5.2 investigates a smooth panelization with repetitive, rectangular faces focusing on the 
effects of deformation and tolerance.

- Section 5.3  investigates the experimental design of repetitive structures through physical prototypes.

- Section 5.4 deduces an overview of smooth networks, drawing a relationship between their 
parameters of curvature and the elastic behaviour of beams. One particular curve type, asymptotic 
curves, are chosen for further investigation as they show promising characteristics for the design 
and construction of strained gridshells.

- In Section 5.5, a novel design method is developed using asymptotic curve networks on minimal 
surfaces. The geometrical requirements of surface, network and edge-strips are defined and 
implemented to illustrate the design spectrum of this repetitive structure.

Figure 5.1  Experimental design by Eleonora Velluto. Modular gridshell during construction (Photo: ES 2016).
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5.1 Inductive Study of Network Morphology

This inductive experiment digitally investigates the morphology of networks by testing their ability to adjust 
to various shapes under specific parameter constraints. We deliberately choose a small subset of 
parameters (l, w and P) to enable a comparison of discrete and smooth segmentations of quadrilateral, 
triangular and hexagonal networks.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

Table 5.1  Table of active parameters for the inductive study of network morphology (ES 2018).

We discuss the digital workflow in Section 5.1.1 and subsequently examine discrete (Section 5.1.2) and 
smooth (Section 5.1.3) networks. The final Section 5.1.4 gives a comparison of both examinations and 
draws a conclusion on general geometric principles of repetitive networks.

5.1.1 Digital workflow
Each network is first modelled in plane as regular uniform tessellation. Subsequently, the network is pulled 
onto a predefined surface while a selection of parameters are held constant. Once the simulation is 
complete, the individual parameters, as well as the proximity to the surface are measured. If the selected 
parameters have remained constant and the mesh has sufficiently adapted the predefined shape, the 
sample is approved as valid. If the shape and parameters did not converge, the sample is declared invalid.  
Valid and invalid samples are recorded, as they both give valuable insights into the morphological behaviour 
of the network.

Networks
The networks are first modelled as a flat, uniform grid of approximately 10 x 10 m in size, based on a 
common circumcircle of radius 0.71 m.22 The following networks were used:

- Square quadrilateral network of 10 x 10 units with edge length l = 1 m
- Equilateral triangular network of 15 x 9 units with edge length l = 1.22 m
- Regular hexagonal network of 7 x 9 units with edge length l = 0.71 m

Control Parameters
For each network, several parameters can be measured and controlled independently. When comparing 
the parameters, any value within the given tolerance is considered repetitive.

- Edge length l is measured along the edge.
- Mesh angle w is measured between adjacent edges. 
- Planarity P indicates the maximal distance of vertices to a common face plane.
- Proximity d indicates the distance of each node to a set target surface. 
- Continuity c indicates the deviation of continuous edges from a straight line. 
- This parameter is used as a soft criterion in discrete segmentations to foster fair solutions. It is also 

used for smooth segmentation to induce continuous curves.

22  Even though the study is independent of scale, the model uses meters as its base unit.
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Target Surface
There are eight generic shapes which are used as target surfaces for the network samples:

- a general cylinder
- a tangential surface, as an example of a developable surface
- a sphere with a radius of 6 m
- an anticlastic, saddle shape which is modelled as an Enneper minimal surface (degree 2)
- a conoid, as an example of a ruled surface
- a translational surface
- a rotational surface
- a freeform surface

Solutions
All results are colour-coded to indicate their success:

 - Blue represents a geometric solution which satisfied the predefined goals.
 - Green represents a solution which satisfies all predefined goals, but displays a varying curvature of 

the edges. This can be interpreted as a developable deformation of one-dimensional elements, as 
defined in Section 3.2.3.

 - Red represents a solution (either blue or green) which satisfies the predefined goals, but does not 
satisfy general expectations of network fairness (see below).

 - Grey represents a trial sample which did not satisfy the predefined goals.

Behaviour and Limitations
Multiobjective Optimization. The transformation is computed in Rhino, Grashopper with the Plugin 
Kangaroo2 (Piker 2013), an interactive physics/constraint solver. It is based on a particle spring solver  
which iteratively optimizes the geometry of a given network to find the best fitting solution for multiple 
goals.
It must be said that this kind of non-linear optimization describes a non-convex objective function. It is 
thus highly dependent on the initialization and may miss the global minimizer. Furthermore, the final 
solution varies depending on the weighting of each objective, the arrangement and orientation of network 
and shape, as well as the duration of the optimization process. Even re-computing the exact same settings 
does not necessarily create the identical numerical result. 
However, this software is well suited to experimentally investigate form and structure. It illustrates the 
general geometric behaviour of repetitive nets and produces valuable results which can be sufficiently 
reproduced.

Fairness. There are some samples which fulfil all parametric requirements but cannot be used as  a 
representative solution. This is because their general ‘fairness’ is not sufficient. This is caused, e.g., by a 
wrinkled network, or S-curved edges between nodes.
To prevent these effects, some soft criteria are included that control the network fairness. This is done by 
setting an additional low weighted objective for constant edge length, continuity or mesh angle. If sufficient 
fairness cannot be achieved, the sample is colored red. The following criteria are used as an indication of 
insufficient fairness:

- non-continuous edges: 
  · wrinkled edges in a discrete network
  · s-shaped edges in a smooth network

- overlapping or collapsed edges
- irregular non-convex polygons
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Alignment. The alignment of network and surface has a decisive influence on the quality and success of 
the solutions. Especially in respect to planarity (for discrete segmentations) and repetitive nodes (for 
smooth segmentations), a close alignment to the principal curvature directions is a key feature. 
The networks are generally modelled in alignment with profile and path curves of the target surface, and 
thus have a general alignment with the principal curvature directions.
In some cases of the hexagonal samples, a rotation of the alignment by 90 degrees was tested during the 
experiment to compare the quality of solutions.

Topology. The networks investigated in this experiment are modelled homogeneously without singularities. 
This topology cannot change during optimization.

Accuracy. The accuracy of the calculation is limited by the calculation time, the software environment and 
the solver. The tolerance for all length and angular requirements was set to ± 0.1% of the target value.

Curvature. The curvature of smooth segmentation is modelled discretely by subdividing every edge into 
four sub-segments. This subdivision has proven to be sufficient in accuracy while maintaining an efficient 
workflow.

5.1.2 Discrete Segmentations
The first part of this study investigates discrete segmentations.
The following parameter combinations are investigated:

- “Face” enforces congruent faces, based on a constant l, w and P. 
- “Planarity” enforces only P.
- “Planarity + Edge” enforces P and l.
- “Edge” enforces only l.
- “Node” enforces only w.
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Node
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Edge + Node
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ω = 120.0°

Edge
l = 1.22

Node
ω = 60.0°

Edge + Node
l = 1.22
ω = 60.0°

Equilateral
P = 0.00
l = 1.22
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Planarity
P = 0.00

developable spherical ruled translational rotational freeform anticlastic

cylindrical developable spherical ruled translational rotational freeform anticlastic
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cylindrical developable spherical ruled translational rotational freeform anticlastic

cylindrical developable spherical ruled translational rotational freeform anticlastic

cylindrical developable spherical ruled translational rotational freeform anticlastic

Figure 5.2  Parameters measured at the discrete quadrilateral, triangular and hexagonal networks (ES 2018).

Quads
Discrete quadrilateral networks (Figure 5.3) are versatile and may be adjusted in edge length or intersection 
angle to fit the enforced repetitive requirements.

Face. Enforcing congruent, square faces is only possible on a general cylinder or a plane. For all other 
shapes, the sample only approximates the geometry. Depending on how much proximity is enforced, the 
networks may stray from a cylindrical shape. In the case of the sphere and the anticlastic surface, this 
results in light folds which allow a closer representation of the target surface.

Planarity. The samples of planar quad meshes tend to align with the principal curvature (PC) directions of 
the surface. For the cylindrical network this results in a simple parallel assembly. The developable surface 
triggers a fan-shaped alignment along its rulings. On a sphere the PC-directions are not defined. Here the 
network approximates the great circles. The solution for the conoid clearly displays the nature of the 
principal directions – first curved, then straight – illustrating the gradient from double to almost single 
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curvature. Both translational and rotational surfaces trigger a clean alignment with their generating profile 
curves. For the rotational surface this creates a strong variation of edge length. A similar behaviour applies 
to the anticlastic surface.
Even though the solver succeeded in finding a planar solution for the freeform surface, its curvature is too 
extreme for this grid size (a contraction was avoided by fairness criteria). As a result, overlapping and 
collapsed edges, wrinkled borders, and non-convex quads corrupt the fairness of this network. In particular, 
there are two symmetrical locations in which the network overlaps. Here, a singularity would have greatly 
benefited the layout.

Planarity + Edge. Restricting the planarity and edge length results in translational meshes. This applies to 
the cylinder, the translational and the anticlastic surfaces. For the latter (which is, strickly speaking, not a 
translational surface) this is a lucky by-product of its symmetrical geometry and may be the result of the 
small tolerances of this study. All other shapes cannot find valid solutions. In the case of the sphere, the 
failed sample displays a great resemblance to the successful edge-enforced sample below, with the only 
difference that the outermost corners are not capable of wrapping around the sphere. 
The invalid freeform sample shows an interesting effect: The quads collapse and create artificial singularities 
with higher valence at the symmetrical locations mentioned above under Planarity.

Edge. Equilateral, quadrilateral networks can assume virtually any shape. This adaptation distorts the 
network and creates acute intersection angles especially on shapes with high curvature. This is the case 
for the sphere and the anticlastic surface where the mesh angles reach their extreme values in the corners. 
Again, the freeform shape, with its extreme curvature, creates a wrinkled mesh with discontinuous edges 
along the borders.

Node. A constant mesh angle of 90° results in planar, square panels. A respective network is only possible 
on a plane or a cylinder where the single curvature can be adopted along parallel folds. Nonetheless, the 
solver attempts to achieve a constant mesh angle by contracting the samples, exposing them to less 
curvature. 
A side effect of optimizing for constant node angle is planarity which is unintentionally achieved for the 
samples on the spherical and anticlastic surface. Similar to the Planarity set, a general alignment with the 
principal curvature directions can be observed.

Triangles 
Discrete triangles (Figure 5.4) create the most rigid network. Only two groups of triangular networks are 
tested. The combinations Face, Edge, Node and Planarity + Edge can all be considered in the same set 
as they all result in rigid, equilateral triangles. Only the Planarity set allows for variable edge length and is 
thus studied separately.

Equilateral Triangles. Equilateral triangles can only assume developable surfaces, such as the cylinder 
and the tangential surface. This behaviour is in line with the insights of the literature review (see Section 
2.2.1, Lobel Meshes). Any other shape triggers kinks and folds similar to the reference project “Wooden 
Textiles” (Strozyk 2011), and thus does not produce valid solutions. The sample for the ruled surface has 
a comparatively smooth appearance. This is owed to its low double curvature.

Planarity. Triangles are planar by definition. As a consequence, any triangular network, even if projected 
straight onto a double-curved surfaces inevitably creates planar faces, but does not allow for other 
parameter repetition. For this setup, the edge length was dampened to create homogeneous and fair 
meshes.
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Hexagons
Discrete hexagonal networks (Figure 5.5) are flexible. If no fairness objectives are applied to ensure a 
homogeneous layout, the networks easily distort beyond recognition. This flexibility also enables a great 
variety of patterns.

Face. Enforcing regular hexagonal faces is only possible in plane as there are no continuous edges acting 
as folds. Consequently, the samples only approximate the target surfaces. In contrast to the behaviour of 
the respective quads, the hexagonal samples tend to adapt their geometry by creating a homogeneous, 
almost spherical geometry.

Planarity. Similar to planar quads, planar hexagons are strongly influenced by the principal curvature 
direction of a surface. In addition, positive and negative Gaussian curvature induce convex, honeycomb-
like or non-convex, mostly bowtie-shaped hexagons. This behaviour is well illustrated in this experiment.
For single curved shapes, the hexagons form straight edges aligned with the rulings of the surface, thus 
creating a brick pattern. For a cylinder this pattern is parallel and regular. For a tangential surface, the 
pattern fans out along the rulings, causing a variation in edge length.
The spherical and anticlastic shapes enable the most homogeneous convex and non-convex patterns 
(Section 2.2.1). The convex hexagons on the sphere decrease in size towards the boundaries. Inversely, 
on the anticlastic surface, the bow-tie-shaped hexagons increase in size towards the boundaries. 
For the ruled, translational and rotational surfaces, the pattern cleanly depicts the surface curvature 
morphing from honeycomb to bow-tie shapes. The intermediate areas are most complex, causing an 
elongation or collapse of edges. The outer corners of the ruled surface sample display a chaotic pattern. 
This is also the case for the freeform surface which displays the most extreme variation of curvature. In 
both cases, a finer grid would help to achieve a more homogeneous layout.

Planarity + Edge. Combining planarity and length restriction is only possible on a cylindrical surface 
where a parallel layout is feasible. In all other cases, the rigid edge length prohibits a smooth adjustment 
to the surface curvature making planar hexagons impossible. This effect is best illustrated on the anticlastic 
surface where the edges start overlapping to accommodate the non-convex kink.

Edge. Equilateral, hexagonal networks assume all tested shapes with a smooth, homogeneous appearance. 
Nonetheless, the double curvature distorts the network. This behaviour is best illustrated by the spherical 
and anticlastic sample creating condensed, or rather elongated hexagons around their perimeters.

Node. Enforcing a constant angle of 120° between the edges of a hexagonal network inevitably leads to a 
planar layout. In contrast to triangular and quadrilateral layouts, the hexagons have no continuous edges 
which would act as folds to allow a developable (for triangular) or at least cylindrical (for quadrilateral) 
geometry. However, our experiment found a cylindrical solution with a reduced mesh angle. The mesh 
depicted in Figure 5.5 (bottom, left) has a constant length of 0.71 m and a constant mesh angle of 119.87°.
Optimizing for constant mesh angles on any double-curved surface leads to partly heavy distortion of the 
edge length. 
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5.1.3 Smooth Segmentations
The second part of this study investigates smooth segmentations. In this case, the parameter P (Planarity) 
is not investigated. However, some solutions enable a constant edge curvature k23. The following three 
sets of parameters are investigated:

- “Edge” enforces a constant edge length l.
- “Edge + Node” enforces a constant edge length l and mesh angle w.
- “Node” enforces a constant mesh angle w.

The curvature of networks is modelled through a subdivision of each edge into four segments. The edge 
length is measured along these segments. The mesh angle are measured between the adjacent segments 
at the nodes. A general continuity of curves is ensured through the continuity c (Section 5.1.1) to model a 
realistic representation of a smooth continuous network.
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Figure 5.6  Parameters measured at the smooth quadrilateral, triangular and hexagonal networks (ES 2018).

Fisher-net Effect
Smooth segmentations may adjust to any shape by creating S-curved edges to compensate the variable 
node distance. This fisher-net effect can be found in quadrilateral, triangular and hexagonal networks. 
Even though this effect produces geometrically valid solutions, it is interpreted here as having insufficient 
fairness. Nonetheless, the distribution of S-curves beautifully illustrates the effects of double curvature.
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Figure 5.7  Close-up illustration of the fisher-net effect caused by enforcing constant edge length and mesh angle in smooth 
segmentations (ES 2018).

Quads
The morphology of smooth quadrilateral networks (Figure 5.8) nicely illustrates the reciprocal relationship 
of edge length and mesh angle. If one is constant, the other must become variable in order to accommodate 
the distortion of double curvature. Nonetheless, virtually every smooth sample in our experiment produces 
a geometrically valid solution due to the possibility of creating S-curved edges. 

Edge. The behaviour of smooth equilateral quads is virtually identical to the corresponding discrete 
investigation. The network adjusts to the curvature through a rotation of mesh angles. This effect is most 
pronounced at the spherical and anticlastic surfaces. A fair network solution was obtained on the freeform 
surface, but the edges are curved strongly in order to adjust to the double-curved surface.

23  A further differentiation of curvatures (kg, kn, tg) will be implemented in Section 5.4.
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Edge + Node. While in a discrete segmentation (Section 5.1.2), the combination of constant edge length 
and mesh angle created congruent faces and required a planar or cylindrical arrangement, smooth 
segmentations adjust to any shape by creating S-curved edges between the nodes. The fisher-net effect 
appears at the outer regions of each sample and is most pronounced at the spherical and anticlastic target 
surfaces.

Node. Enforcing a constant node angle of 90° within a smooth quadrilateral segmentation is successful in 
all samples but the freeform surface. This sample did not converge due to the abstract modelling process 
with four discrete sub-segments. The morphology of networks is similar to the corresponding discrete 
investigation. An alignment with the principal curvature directions is noticeable, in particular for the 
rotational and anticlastic samples.

Triangles
Smooth triangular networks (Figure 5.9) are similarly restrictive as their discrete siblings. The rigidity of 
triangular networks results in S-curved edges on any shape other than developable surfaces. This effect 
is most pronounced when restricting the edge length, but also appears subtly when the mesh angle is 
restricted. Two samples of the freeform surface did not converge. Again, this behaviour is related to the 
modelling process with four discrete sub-segments which impedes a constant node angle for highly 
curved edges.

Hexagons
Smooth hexagonal segmentations (Figure 5.10) have a similar solution spectrum to quadrilateral networks. 
Both constant edges and congruent nodes lead to fair solutions. Only the combination of both results in a 
subtle fisher-net effect. Again, this illustrates the reciprocal effect of distortion which is either accommodated 
by the edge length or the mesh angle.

Edge. The behaviour of smooth equilateral hexagons is virtually identical to the corresponding discrete 
investigation. Adapting the equilateral hexagons to a double curvature causes distortion. This behaviour is 
best illustrated by the spherical and anticlastic samples, creating elongated hexagons around their 
perimeters.

Constant Curvature. The spherical hexagonal mesh is the only smooth sample which displays a constant 
curvature k on all edges, and is thus marked in blue. Because the edges of the hexagonal network are not 
continuous, i.e., no traversal nodes are enforced, each edge may individually align with the geodesic path 
between adjacent nodes. On a surface with constant Gaussian curvature (the sphere) this leads to a 
constant curvature k. A similar effect is possible with equilateral, quadrilateral networks or triangular 
networks if the continuity of edges was not enforced (Section 4.2.2).

Edge + Node. The existing S-curved edges are almost invisible for the Edge + Node parameter combination. 
The subtlety of this effect asks whether, through some amount of tolerance, a smooth hexagonal network 
with equilateral edges and congruent nodes could be constructed, defining the shape solely through its 
edge curvature. A similar solution was achieved for a spherical hexagonal structure within the experimental 
studies (Section 5.3.4).

Node. For the samples with constant mesh angle, the morphology of smooth hexagons also shows great 
similarities to its discrete pendant. The repetitive nodes are achieved only through an extreme adjustment of 
edge length. Especially for the translational and rotational surfaces, the enforced mesh angle seems to create a 
stretching of the network in regions of low double curvature. So far, we cannot pinpoint the cause for this effect.
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5.1.4 Conclusion
The inductive study illustrates the morphological behaviour of triangular, quadrilateral and hexagonal 
networks for both discrete and smooth segmentations. Even though the samples do not allow a full 
analysis of all parameters, the various geometrical effects, such as distortion, fairness and alignment, are 
fundamental to repetitive structures and will continuously occur in further studies.

Networks
The choice of network strongly influences the possible solutions space for repetitive structures. Triangular 
networks are the most rigid network, offering no repetitive solutions for double-curved shapes other than 
planarity of faces. However, if a full repetition of faces is intended, triangular segmentations show the 
highest degree of flexibility due to their triple orientation of folds, and may form any developable shape.
Discrete quadrilateral and hexagonal networks generally allow constant edge length or planar faces on any 
surface. Quadrilateral networks have the additional possibility to create translational meshes, combining 
equilateral edges and planarity.
Smooth segmentations may create a regular network (of equilateral edges and congruent nodes) on any 
developable surface. This is in line with the concept of an isometric mapping (Section 2.1.1). All double-
curved samples illustrate a reciprocal behaviour of edge length and mesh angle. If both parameters are 
kept constant, a fisher-net effect will occur. 

Alignment
The alignment with principal curvature directions is most promising for both planar networks and networks 
with constant mesh angle. Ultimately, aligning a network to the surface curvature will trigger the formation 
of singularities, i.e., a local change of topology. This possibility was not investigated in this study. It would, 
however, offer further advantages for planar faces and congruent nodes.

Curvature
Considering the curvature of edges as a flexible geometric parameter allows for the adjustment of any 
network to any shape. However, combining constant edge length and constant mesh angle creates 
geometrically indeterminate solutions. The samples then display an S-curved shape of edges, which 
impedes the fairness and would most probably complicate both construction and façade solutions.
Only smooth segmentations allow for congruent nodes. Quadrilateral and hexagonal patterns may achieve 
this quality on any freeform surface. For triangular networks this option is limited to developable surfaces. 
In this experiment, only one solution was created which allows for a constant curvature k of all edges. This 
quality was achieved through a geodesic layout of edges on a sphere.

Fairness and Proximity
The perception of fairness is subjective. Fairness was used in this investigation as a qualitative indication 
of distortion or irregularities. Similarly, the importance of proximity to a target surface is questionable. 
Many “failed” discrete samples have a high aesthetic quality. The deliberate investigation of “non-fair” 
networks without a reference surface presents a versatile and promising field of future investigation. This 
could be applied to smooth segmentations embracing a fisher-net effect or an undulating surface, or 
discrete segmentations looking at the design of rough polyhedral meshes, or a combination of both.
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Distortion and Gaussian Image
Pulling a regular network onto a double-curved shape creates distortion. For equilateral networks, this is 
expressed by a high variation of mesh angles. Conversely, enforcing a constant mesh angle results in a 
high variation of edge length. Keeping both mesh angle and edge-length constant results in a geometrically 
indeterminate solution, which is expressed by local “buckling” of edges into an S-shape. This is called 
the fisher-net effect.
These effects are most pronounced along the outskirts of the networks. The greatest distortion has been 
observed on the spherical, rotational, freeform and anticlastic surfaces.24 The intensity of distortions is 
dependent on the size of the network and the curvature of the target surface.

Such dependencies are well known. The Gaussian curvature itself is nothing but a measurement of the 
local area distortion between Gaussian image and surface, K = AGaussian Image / ASurface.
The total curvature of a geodesic triangle on a doubly curved surface, e.g., equals the deviation of the sum 
of its angles from π. A similar correlation is true for Chebyshev nets, where the interior angles of a patch is 
related to its total Gaussian curvature via the formula of Hazzidakis (Section 2.2.1).
We conjecture a general correlation of the distortion of a repetitive network (without singularities) with its 
Gaussian image. We are searching for a value which would indicate the distortion that is to be expected 
within a repetitive network.

To draw a comparison, we measure the maximum deviation of intersection angles of each smooth, 
quadrilateral, equilateral network, and analyse its Gaussian map. Next to the total curvature (TC) and the 
absolute total curvature (ATC), the area of the silhouette of the Gaussian image is measured (i.e., the area 
of the unit sphere that is touched by the Gaussian image). We call this value the Gaussian footprint (GF). 
It resembles the two-dimensional range of surface orientation.
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Figure 5.11  Analysis of the Gaussian image of eight equilateral networks. TC = total curvature, ATC = absolute total curvature, GF = 
Gaussian footprint (ES 2018).

When comparing the values of curvature and deviation angle, we come to the conclusion that the total 
curvature is not related to this distortion of networks. The freeform surface, e.g., has zero total curvature, 
but causes deviations of w. Similarly, the absolute Gaussian curvature seems to not correspond, as it is 
extreme for an undulating surface, such as the freeform sample, but causes comparatively little change in 
mesh angles.
The Gaussian footprint is more informative as its values roughly correspond to the measured effects of 
angular variation. A more thorough mathematical investigation of this behaviour is a topic for future 
research.
24  The distortion was measured by comparing the variation of node angles in an equilateral network.
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5.2 Inductive Study on Smooth, Rectangular Panelization

This study investigates the use of deformations combined with in-plane tolerances to achieve a smooth 
layout of standardized panels on double-curved surfaces. It is focused solely on the geometry of faces.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

Table 5.2  Table of active parameters for the inductive study on smooth, rectangular panelization. The repetitive face-shape is 
achieved through tolerances; the varying curvature is created by ‘non-developable deformations’ (ES 2018).

The research was conducted in 2016 in collaboration with Philipp Eversmann, André Ihde and Christian 
Louter. The project investigated double-curved façades, which are clad with elastically-formed, 
standardized 1.0 x 2.0 m glass panels. It was published at the IASS 2016 Conference in Tokyo (Eversmann 
et al. 2016b).
The first part of the paper (which is not presented here) focuses on simulating the bending process of  
4 mm heat-strengthened glass (HSG). The panels are forced onto a predefined geometry along all four 
edges while aiming to adhere to a maximum design stress. Through digital and physical experiments, 
Eversmann and Ihdé define a minimum principal curvature radius of 8.6 m, permissible for the deformation 
of 4 mm HSG panels. This value was used in the subsequent geometric study (presented here) to investigate 
the morphological aspects of this construction method. 
The peculiarity of this experiment is the deliberate investigation of ‘non-developable deformations’ (Section 
3.2.3), which allow the deformation of a flat face into a double-curved shape.
It would seem logical that a flat panel of glass, after bending, would remain a developable (singly-curved) 
surface. However, the process of bending glass onto curved support frames creates additional elastic 
strain which allows some deviation from single into double curvature. 

Figure 5.12  Prototype (5 x 4 m) of a double-curved glass façade consisting of 10 rectangular (and initially flat) HSG panels (1.0 x 2.0 
m, 4 mm thick) (Eversmann et al. 2016a).

Section 5.2.1 first defines a digital workflow based on abstract assumptions of the panel geometry which 
ensure an efficient modelling process. This method is used in Section 5.2.2 to test the behaviour of 
repetitive layouts in respect to surface curvature, and highlights the effects on seam tolerances. Finally  
Section 5.2.3 discusses the design implications and proposes an optimization method for freeform 
surfaces.
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5.2.1 Digital Workflow

Assumptions
To investigate the layout of elastically bent panels on a double-curved surface, it is necessary to efficiently 
simulate and compare their geometry. Consequently, an abstract modelling process was set up based on 
the following assumptions:

- The panels will approximate the shape of the target surface provided that the minimal bending 
radius of 8.6 m is adhered to.

- As the glass panels are aligned tangentially to the target surface, any straight lines on the initially flat 
panels will be bent along geodesic curves on the target geometry.

- The perimeter and diagonal length of panels will remain constant within the given tolerance.25

Assuming that the perimeter and diagonal measurements of panels will remain constant throughout the 
deformation process, and that the panel will adapt to the target surface, establishes enough information 
to model their theoretical curved layout without simulating the actual bending process.

3D Modelling
For each panel, four points are projected onto a surface and connected with six geodesic curves (four of 
which create the perimeter quad, and the other two create the diagonals) to determine the panel size and 
proportion. These points are iteratively repositioned on the surface until all curves fulfil the predefined 
length requirements (Figure 5.13). The resulting geodesic quad represents the outline of the bent glass 
panel.

concave bulging effect

geodesic curves

convex bulging effect

geodesic curves

Hypar, Rmin = 20.0 m
Layout: 5 x 10 panels
Seam Variance, d =  3.2 cm
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Seam Variance, d = 13.3 cm
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Layout: 5 x 10 panels
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quadrilateral grid

projected grid
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geodesic curves with
defined edge length
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seam along long edge seam along short edge stepping effectstepping effect

Figure 5.13  Modelling process: A quadrilateral point grid is projected onto the target surface. The projected grid is then adjusted to 
fulfil the expected geodesic-length requirements. Additionally, a seam is simulated by modelling each corner of every panel seperately. 
The resulting four points at each intersection can move independently (ES 2016).

Using this method, any quadrilateral point grid on a surface can be manipulated to represent a potential 
layout by adjusting the geodesic distance of any point to its eight neighbours (to the expected values of 
1.0 m and 2.0 m resp. for the perimeter dimensions, as well as 2.236 m (the square root of 5) for their 
diagonal dimensions).
For any developable surface, such as cylinders or cones, this process yields a homogeneous, seamless 
grid of equidistant panels. However, in the case of a double-curved surface, it is impossible for all panels 
to maintain their edge lengths and proportion, and simultaneously create a seamless layout.
To solve this limitation, a flexible seam is introduced between the panels. The seam is implemented by 
creating four points at every intersection in a façade grid; each point represents the corner of one of the 

25 It is evident that the length requirements cannot remain constant during a transformation from single into double curvature, as   
this does not qualify as an isometric mapping as defined in Section 2.1.1. However, in this experiment, the curvature is limited 
to a principal curvature radius of 8.6 m. As a consequence, the length-variance remains within the tolerance of 0.1%. The 
simulated, curved geometry of bent panels represents the closest and most realistic fit of the original panel-geometry. The 
miniscule change in length may be attributed to non-developable deformation (Section 3.2.3).
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adjacent panels. These four points can move independently to allow the edges to fulfil the predefined 
geodesic lengths.

Behaviour and Limitations
Multiobjective Optimization. The digital model is controlled by a particle spring system, Kangaroo 2. The 
optimization process solves for multiple objectives, such as curve length and surface proximity. The 
outcome may vary depending on the weighting of each objective, the arrangement and orientation of 
network and shape, as well as the duration of the optimization process. Even re-computing the exact 
same settings does not necessarily create the identical result. However, the geometric behaviour is well 
depicted in this process, and is reproducible.

Simplifications. The geometric study implements an abstract model based on simplified assumptions. 
This enables the simulation of large panel layouts, but does not consider all physical effects of such a 
complex bending procedure. The permissible normal and shear stress within the glass are simply expressed 
as a minimal principal curvature radius. 

Alignment. The alignment of the network has a decisive influence on the quality of the layout. All samples 
in this study are generally aligned with the surface’s uv-directions of the target surface. In the case of the 
“hypar”-surfaces this layout is in line with the principal curvature directions.

Accuracy. The accuracy of the calculation is limited by the calculation time, the software environment and 
the solver. The tolerance for all length requirements was set to ± 0.1% of the target length. 

5.2.2 Morphological Behaviour
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Figure 5.14  Smooth, rectangular panels on a sphere (bottom row) and a hyperbolic paraboloid (Hypar) (top row). Each panel has a 
standard format of 1 x 2 m. The seam variance increases with the greater layout extent (left column) and smaller curvature radii (right 
column). Anticlastic curvature causes a concave seam (top row). Synclastic curvature produces a convex seam (bottom row) (ES 
2016).
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Curvature, Layout and Seams
The digital workflow is first applied to a sphere and a hyperbolic paraboloid (Hypar) (Figure 5.14) – two 
surfaces with homogeneous positive and negative Gaussian curvature. Any curvature-related effect on the 
layout are displayed most extremely on these two shapes (as was clarified in the first inductive study, 
Section 5.1). First, we generate a curved panel layout and then we measure the difference in width between 
the smallest and largest seams. This value is called the seam variance d. 

The progression and size of seams throughout the grid is dependent on the curvature, the extent of the 
layout and the proportion of panels (Figure 5.20). On synclastic surfaces, the seams follow a convex, 
banana-like shape. Anticlastic surfaces produce concave, hour-glass-shaped seams. A greater Gaussian 
curvature of the target surface induces larger seams in the panelization. Similarly, the layout-extent has an 
increasing effect on the seams. Rectangular panels generally display wider seams along their long edge.

These characteristics do not come as a surprise. They result from the discrepancy of the surface area 
when mapping a flat pattern onto a double-curved surface (Section 1.4.1). The varying seam-size can be 
explained mathematically with the help of the Jacobi equation of geodesic curves (Pottmann et al. 2010, 
p. 3). 
The example given in Figure 5.14 illustrates the potential of such a repetitive smooth panelization: A glazed 
spherical shell of 10 x 10 m with a curvature radius of 20.0 m can be covered using only one single, 
rectangular glass format if a variance of only 41 mm along the seam is tolerated.

Bulging Effect
The edges of each panel form a geodesic curve along the surface. The panel grid, however, may deviate 
from a geodesic curve as shown in Figure 5.15. Because of this deviation, succeeding glass-edges do not 
follow a continuous curve. When aiming the view along the seams, we notice the panel edges “bulging” 
from node to node, creating a cloud-like or serrated edge. In our example, this effect is most pronounced 
along the boundary (up to 20 mm) and vanishes towards the centre.
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Figure 5.15  Spherical and hyperbolic layout with minimal principal curvature radius 8.6 m. Shown are the resulting patterns of our 
panel-fitting routine (black) and geodesics connecting the corner vertices (blue). When deviating from a geodesic curve, the glass 
edges do not follow a continuous curve. They “bulge” individually from node to node creating a tolerance of up to 20 mm (ES 2016).

Stepping Effect
The tolerance inside the seams can be shifted to only one direction. This property can be useful when 
designing with a linear substructure. It is achieved by enforcing collinear edges in the other direction, but 
triggers a stepping effect between panel rows. Figure 5.16 shows two panelizations of the same target 
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surface with seams oriented in opposite directions. The collinear edges are shifted creating a brick-like 
pattern. This effect originates from the change in length of each surface strip and is dependent on the 
variation of curvature in this area.
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Figure 5.16  Freeform surface with uni-directional seams. This can trigger a stepping effect transversal to the wider seam (ES 2016).

5.2.3 Freeform Design
To design an appropriate surface for use with bent, rectangular panels, the critical principal curvature 
radius of 8.6 m has to be respected. This requirement is implemented by analysing the surface throughout 
its design until no radius violation is detected. 
It is our goal to design a freeform surface which displays a high curvature, but a minimal seam variance. 
Since positive and negative Gaussian curvature have opposing effects on the progression of the seams, 
we conjecture that distributing positive and negative curvature evenly across a freeform surface would 
result in smaller seams. The two manual designs (Figure 5.17) confirm this assumption.
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Figure 5.17  Two manually designed freeform surfaces with 5 x 10 panels: Left: Straight boundaries with local bump, Rmin = 8.7 m, d 
= 23 mm. Right: Four alternating hills and valleys, Rmin = 8.7 m, d = 18 mm (ES 2016).

Surface Optimization
To find a surface shape that maximizes curvature and minimizes seam tolerance, a simple optimization 
routine is installed using Rhino, Grasshopper and the standard evolutionary solver Galapagos (Rutton 
2010): A large set of sample surfaces is generated with 5 x 5 control points by randomly varying the 
z-coordinates of each point. Each sample surface is analysed via a dense point-grid (50 x 50) which is 
aligned with the rows and columns of the potential panel layout. The following three simple indicators are 
measured at every point and multiplied within a fitness function:

- kSUM is the absolute sum of all principal curvature radii. This value acts as an indicator for the inverse, 
absolute total curvature of the surface. 

- kPEN is the number of penalties given for any curvature radius below a set value (in this case 8.6 m). 
This value ensures that the final surface is appropriate for the use of the specific material.

- lRANGE is the difference between the longest and the shortest curve along each direction of the panel 
layout. This value ensures that each row/column of panels is similar in length, thus minimizing the 
necessary seam variance. In a sense, it resembles the total curvature of the design surface.
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Fitness:  F = kSUM * (1+ kPEN) * lRANGE

This fitness F is evaluated for each surface sample. Eventually a solution with minimal value F is found26. 
Such a surface has a comparatively high absolute total curvature (within the bounds of the minimal principal 
curvature radius) and a balanced distribution of surface area. It is optimal for the implementation of curved,  
rectangular panels, as it results in small seam variations.
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Figure 5.18  Optimized freeform surface: The algorithm maximizes the surface curvature without violating the minimal principal 
curvature radius and minimizes the differences of surface length measured along the panel grid. This results in low variation of seams: 
Layout: 11 x 22 panels, Rmin = 8.61 m, d = 4.9 cm (ES 2016).

26 More background on the computational process of Galapagos can be found at Rutton (2010).
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5.2.4 Conclusion
The combination of tolerances and deformation allows for a smooth panelization of double-curved surfaces 
with repetitive panels. The possible shape spectrum is dependent on the maximal seam and minimal 
curvature radius permissible. These factors need to be set by the designer in accordance to the specific 
construction technique and choice of material.

Seams
The seams take up the natural distortion caused by double curvature.  The seam variance is dependent on 
the curvature and extent of the network. In the case of synclastic curvature, the largest seams are found 
at the centre of a layout. In the case of anticlastic curvature, the seams increase along the boundaries.
Furthermore, a misalignment of seams with geodesic curves leads to a serrated progression of face edges. 
The implementation of uni-directional seams causes a shift of panels into a brick-like pattern.

Design
The design-surfaces can be optimized for low seam variance and high absolute total curvature by aiming 
for a constant length for all rows and columns of panels. This optimization process favours undulating 
surfaces with alternating positive and negative Gaussian curvature.
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Figure 5.19  Analysis of the Gaussian image of five panelization layouts. TC = total curvature, ATC = absolute total curvature, GF = 
Gaussian footprint (ES 2018).

Distortion
Similar to the comparison of equilateral nets in Section 5.1, we conjecture a correlation of the effects of 
distortion with the Gaussian image. Therefore, we measured the seam variance d and compared it to the 
total curvature (TC), the absolute total curvature (ATC), as well as the Gaussian footprint (GF) (our own 
measurement of the spectrum of surface orientation, see Section 5.1.4).
Both spherical and hypar surfaces create high values for TC, ATC and GF, but also large seam variance. 
The three freeform examples, on the other hand, create small but folded Gaussian images, with a low total 
curvature, and comparatively high absolute total curvature. 

The Gaussian footprint seems to be the best indicator to predict the intensity of distortion, as its value 
roughly correlates with the seam variance. A more thorough investigation of this behaviour is a promising 
topic for future research.
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5.3 Experimental Design Studies

Over the course of three years from 2014 - 2016, an annual design studio, Experimental Structures, was 
conducted at the Chair of Structural Design, TUM, to creatively investigate the use of repetitive parts in the 
design of double-curved structures. Parts of this study have been published as a technical report in the 
Bautechnik magazine (Schling et al. 2014) and at the AAG 2016 in Zurich (Schling and Hitrec 2016). 

After an introduction of the course assignment in Section 5.3.1, we present six projects from Section 5.3.2 
- Section 5.3.7 which display various constructive applications of deformation. Each project is analysed 
parametrically to highlight similarities to earlier studies.
Section 5.3.8 will list observations concerning this parametric behaviour and discuss the importance of 
distortion for the network shape and construction.
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Figure 5.20  Overview of projects realized in the course of the design studio “Experimental Structures” (Photos: Matthias Kestel 
2014 and 2015, Magdalena Jooß 2016).

1 Eleonora Velluto: Modular Gridshell 2 Damiano Tosti: Hypar Gridshell 3 Rongguang Na: Reciprocal Gridshell 4 Pablo Mollina: 

Geodesic Gridshell 5 Denis Hitrec: Asymptotic Gridshell 6 Anna Bosco: Developable Pentagon Gridshell 7 Huilian Tang, Bingyu Xu: 

Folding Origami 8 Katrin Fleischer, Corinna Wiest: Deployable Dome 9 Jose Maria Arribas, Donald Ottoerson: Curved Folding 

10 Jeremy Copley, Nick Franz: Snap Through Triangles 11 Alessandro Corso, Lukas Kaufmann: Curved Scissors 12 Yang Yu, German 

Rueda: Movable Tensegrity 13 Sebastian Huth: Bending Tensegrity 14 Miroslava Denina: Folding Vault 15 Michal Markusek: Cubic 

Surface 16 David Walsh; Bending Strips 17 Quirin Mühlbauer: Hexagonal Bending 18 Vitaly Entin: Conic Gridshell
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5.3.1 Course Assignment
The design studio was set up to encourage a “bottom-up” design approach – starting with fabrication and 
finishing with a design shape – with the goal of investigating form as an emergent property of repetitive 
construction.
In contrast to common assignments for architects, the students received no list of requirements in respect 
to site, use or functionality. The design task only required the students to design and build a curved 
structure from repetitive modules with a span of 2 x 2 m.

The design process was divided into three phases: 

- a research phase, looking at geometric and structural techniques to fabricate modules 

- a modular design phase, in which a single unit was developed and analysed for its geometrical and 
structural properties

- an assembly phase, in which the repetitive modules were joined to create a curved surface structure

This process satisfied two goals:

- Pedagogically, the studio was directed to engage students in parametric thinking on a physical 
level. Through iterative developments of physical prototype and active analysis of their parameters, 
the students developed an understanding of the dependencies of a repetitive module and its related 
agglomerative surface geometry.

- Scientifically, this studio followed the principle of research by design to generate a multitude of 
creative solutions to a research question. These experimental designs show a broad spectrum of 
techniques, shapes and structures and thus illustrate the various possibilities to design curvature 
with repetition.

The students aimed to achieve a symbiosis of fabrication, form and structure, with a strong emphasis on 
aesthetic design. Their work is thus presented based on these four criteria. 
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5.3.2 Bending Strips

Module
David Walsh investigated the behaviour of elastic strips. He connected two identical, rectangular plastic 
sheets on all four corners, and subsequently pulled together the short edges with a cable. As a result, the 
strips bulge outward creating a smooth, rhombic comb.
By placing the cable eccentrically at the upper edge, a distortion in two directions is obtained: The strips 
twist, opening the top, and creating a funnel shape in section. Simultaneously, the strips bend downwards, 
creating a bow-shape in elevation.
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Figure 5.21  Development of an elastically deformed base module from planar, rectangular strips (ES 2018).

Assembly and Shape
To assemble this module, long, uniform strips of polysterol were first placed in parallel and connected 
alternatingly to their left and right neighbour. Then, two families of cables were prestressed in the 
longitudinal and lateral directions and then tightened at each intersection to ensure a homogeneous 
waving motion. The bow-shape at each module creates a concave curvature in the longitudinal direction. 
At the same time, the funnel-shape creates an opposing, convex curvature in the lateral direction. 
Consequently, an overall, anticlastic, saddle shape emerges.

Figure 5.22  Completed structure, Bending Strips, by David Walsh. The assembly of modules creates a self-supporting sculpture 
with a negatively curved shape (Photo: Matthias Kestel 2014).
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Structure and Aesthetics
The sculpture was assembled from 20 strips of 2 m long and 8 cm high lamellas connected every 28 cm. 
The lamellas create a curved grillage that is supported vertically and horizontally to aid the load-bearing 
behaviour of an arch. However, the structure is soft and susceptible to deflections due to the low bending 
radii, slender lamellas, open boundaries, and point supports.

The smooth anticlastic shape creates a calm and inviting space. The waving motion of lamellas has a 
natural and pleasant appearance. The slender strips allow for high transparency at a direct view and 
opacity at an inclined view, and cast an intricate pattern of shadows.

Figure 5.23  Detail of the structure, Bending Strips. Steel cables on top and bottom induce the deformation and fix the overall shape 
(Photo: Matthias Kestel 2014).

Analysis
The strips are oriented normal to the design surface which impedes a curvature in the normal direction. 
The rhombic arrangement can be interpreted as a diagonal pattern, in which each diagonal is waving in 
and out of an asymptotic path. Naturally, this arrangement can only be shaped into an anticlastic form (see 
Section 5.4). The lamella segments are all fabricated equally and the lamellas meet tangentially at every 
intersection.
The morphological behaviour shows similarities to a smooth quadrilateral network on an anticlastic surface 
with constant edge length and constant mesh angle (see Section 5.1.3, Figure 5.8):

- The strips are naturally shaped in S-curves. This arrangement adjusts to the varying node-to-node 
distance through a fisher-net effect.

- Due to the negative curvature a gradual distortion of the pattern occurs. The outer units contract 
and widen to account for the surplus in surface area.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

0° 0° 0° 0° c c 0° deform. deform. c - - -

Table 5.3  Qualitative parametric assessment of the structure, Bending Strips. The strips are interpreted as edges, meeting tangentially 
at each node (ES 2018).
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5.3.3 Cubic Surface

Design Process
Michal Markusek used a 10 x 10 x 10 cm cube as a base module with the goal of constructing a double-
curved surface. This posed the challenge to design a variable gap between modules. A standard distance 
of 2 cm between units was defined which limited the possible inclination angle of two adjacent cubes and 
thus determined the maximum curvature of the whole sculpture.
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 c
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Figure 5.24  Modules of the structure, Cubic Surface. It is assembled from prefabricated, repetitive Vierendeel cubes (Photo: ES 2014).

Markusek designed a double-curved surface with a central hill and two symmetrical valleys on either side. 
He generated a point grid on this surface which originates at the central apex and reticulates in steps of 
12 cm first in the longitudinal, and then in the lateral direction. The grid points mark the centre of each 
cube which are then positioned normal to the design surface. The tolerance allows each cube to incline 
without colliding with its neighbours. Once the exact position of each cube is defined, the position of 
adjacent corners is measured to determine the geometry of ring connectors on top and bottom.

Figure 5.25  Digital design model of the Cubic Surface. The cubes are laid out on a double-curved design surface (ES 2014).
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Figure 5.26  Detail of repetitive cubes and individual connection rings (Photo: Matthias Kestel 2014).

Connectors
The connection rings are subject to the four geometric effects, all caused by the distortion of the network:

- The ring-edges vary in length due to the convex or concave shape at top and bottom.
- The rings are bent in order to take up the normal angle between cubes.
- The double-curved surface results in a shift of the cubes (similar to the stepping effect described in 

Section 5.2.2) and creates a sheared geometry of the connection rings.
- Due to geodesic torsion, subsequent cubes are rotated, causing an out-of-plane misalignment of 

adjacent corners.
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Figure 5.27  Geometric effects of cube connectors. The rings adjust to the distance, angle, shear, and torsion (ES 2015).

Pattern
The extent of this distorted system is limited as the shift between cubes steadily increases from the centre 
outward, ultimately prohibiting a feasible connection between units. The connector rings were unrolled as 
2D geometry and cut out with a CNC-mill. The cutting pattern reveals another geometric characteristic:
The unrolled connectors create a nearly seamless tessellation, in which the corner angles of four adjacent 
rings add up to 360°.
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Figure 5.28  Cutting pattern of the cube connectors (Left: bottom layer, Right: top layer). The convex and concave regions of the 
design surface influence the size of the rings. The shifting of adjacent cubes is most pronounced at the outskirts, especially at the 
corners of the top layer (ES 2016 based on Michal Markusek 2015).
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Structure and Aesthetics
The final sculpture was assembled from 17 x 9 cubes, made of 3 mm plywood, and 352 polysterol rings 
(1.5 mm), which were bent and folded to bridge the gap and connect to each of the four corners of the 
adjacent cubes. This curved Vierendeel grillage carries its weight via bending and only needs to be 
supported vertically.

The contrast between rigid cubes and flexible connectors is graphically emphasized by the change in 
material. It illustrates the impact of double curvature on an orthogonal grid. The repetitive Vierendeel cubes 
create a graphical depth.

Figure 5.29  Completed structure, Cubic Surface, by Michal Markusek. The cubes form a rigid girder (Photo: Matthias Kestel 2014).

Analysis
Cubic Surface is an example of a repetitive tiling with tolerance, similar to the inductive study on smooth 
panelization (see Section 5.2):
In this case, the tolerance is used in a multi-layered structure. The concave/convex orientation of curvature 
has a major influence on the size of the gaps at top and bottom. The hierarchical layout of the underlying 
point grid in longitudinal and lateral directions results in a stepping effect causing the cubes to shift 
towards a brick-like pattern. While the middle rows are well aligned with the principal curvature direction, 
the outer rows display geodesic torsion causing an out-of-plane misalignment of adjacent edges.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

variable deform. variable deform. c - - - - - tolerance c / P c

Table 5.4  Qualitative parametric assessment of the structure, Cubic Surface. The cubes are interpreted as faces of a quadrilateral 
network and the rings are interpreted as nodes (ES 2018).
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5.3.4 Hexagonal Bending
How can a curved network be formed naturally by its internal stress? Quirin Mühlbauer used a simple 2D 
concept to develop a 3D structure: When rigidly connecting a series of bent elements in one row with fixed 
supports, the internal stress naturally pushes the assembly upward.
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Figure 5.30  Two-dimensional concept of the modular elastic design. The moduls are deformed, connected rigidly, and held at 
horizontal supports. Consequently, the internal stress creates an upwards movement (ES 2016 based on Quirin Mühlbauer 2015).

This logic can be applied to an elastically bent hexagonal structure, creating restraint stresses in the 
centre, and a ring of tension along the border. The structure consequently curves upwards to release 
stress and creates a shallow dome shape.
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Figure 5.31  Module, joint and assembly of the structure, Hexagonal Bending (ES 2016 based on Quirin Mühlbauer 2015) (Photo: ES 2015).

Design Development
Mühlbauer developed a star-shaped module based on a hexagonal grid. Three concentric arms branch 
out to create six connection points. Each point is rigidly interlocked with two further modules. These 
orthogonal joints enforce an equal distance between all connection points. Consequently, the longer open 
edges bend into a bowl shape. The assembly creates an equilateral honeycomb system of three-legged 
blossom-shaped modules connected rigidly on top and bent softly on the bottom.

Figure 5.32  Close-up of the interlocked and bent modules (Photo: ES 2015).
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Figure 5.33  Looking up at the structure, Hexagonal Bending, by Quirin Mühlbauer. The smooth hexagonal modules are overlaid by 
a clean triangular grid of tension-ties (Photo: ES 2015).

Structure and Aesthetics
This sculpture was exhibited at the IASS27 Conference 2015 in Amsterdam. The setup consisted of 61 
congruent modules cut from 4 mm Forex foam-board which formed a hexagon with five units along each 
side.
It is remarkable that despite the fully repetitive construction with congruent joints, the sculpture naturally 
assumes a double-curved dome shape. By adding a set of hexagonal cables to the bottom layer, the 
structural height of the assembly is activated, creating sufficient stiffness to carry its self-weight over an 
approximate span of 4 m.

The point symmetry of each connection and the smooth curvature of each module create an optical 
illusion similar to a graphic of M.C. Escher. The flow of light along the reflective, clean plastic surface adds 
further quality to this seemingly floating structure. The linear and straight cable-net acts as a regulative 
layer, like a coordinate system, marking the axis of symmetry.

Analysis
The sculpture follows the principles of a smooth hexagonal network with constant edge length and 
constant mesh angle on a spherical target surface as described in Section 5.1.3. The overall curved 
geometry is achieved by a gradual distortion of the polygons, which results in a S-shape of the edges 
along the outer rows of the assembly. Just like in the inductive study, this effect is very subtle due to the 
low Gaussian curvature.

NODE EDGE FACE
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120° c 0° 0° c c deform. deform. deform. - tolerance deform. c

Table 5.5  Qualitative parametric assessment of the structure, Hexagonal Bending. The modules are interpreted as both edges and 
faces of a hexagonal network (ES 2018).

27 International Association for Shell and Spatial Structures
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5.3.5 Modular Gridshell
The Modular Gridshell by Eleonora Velluto was inspired by the strained timber gridshells of Frei Otto 
(Section 2.4). Similar to Frei Otto’s chain models, Velluto relaxed a uniform quadrilateral grid to design a 
funicular shape with equilateral edges. Velluto used a grid of 18 x 9 units and introduced six supports to 
create two cupolas with a common arch.
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Figure 5.34  Funicular design process and module geometry of the Modular Gridshell (ES 2017 based on Eleonora Velluto 2016).

Module
Velluto’s goal was to construct this gridshell not from continuous laths with diagonal bracing, but to use 
identical flat modules, which fulfil both structural functions: transmitting the compression of self-weight, 
and bracing the system against asymmetric loads. This was achieved by designing a leaf-shaped unit with 
two kinds of connections.
The primary connection is located on a central axis on both ends of the leaf, resembling the hinge point of 
the equilateral network. The secondary connection is located on a set radius around the primary nodes, 
and is emphasized through four arms. This secondary connection allows a coupling of adjacent modules 
for variable intersection angles (from 45° to 135° degrees) to lock the node rotation and create shear 
stiffness. 

Assembly
The primary joint is inserted first to create a uniform, flat, hinged grid of 9 x 9 units. This network is then 
hung from four supports to naturally fall into a funicular shape. In the course of this transformation process, 
the joints rotate to adjust to the double curvature. Once the desired shape is obtained, the secondary 
connections are inserted, fixing the geometry and creating a stiff shell.
This process is repeated for the second part of the structure. Finally, both shells are inverted and joined, 
creating a tall, double dome on six supports.

    

Figure 5.35  Construction process of the Modular Gridshell. The modules are connected to form a uniform, planar, hinged network. 
After the net is hung, each joint is fixed with two additional ties (Photos: ES 2016).
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Figure 5.36  Completed structure, Modular Gridshell, by Eleonora Velluto. Left: Final image of the inverted hanging shape. Right: 
View up inside the funicular dome (Photos: Magdalena Jooß 2016).

Structure and Aesthetics
Simplicity and efficiency are the virtues of this design project. The 162 identical cardboard-units of 1 mm 
thickness create a shell with comparatively high stiffness. Only the slender supports with little double 
curvature were strengthened with a second layer of modules to prevent buckling.

The voids between the leaves gradually alter their shape from an almost perfect circle in the apex to an 
elongated ellipse towards the supports. This intricate pattern s both the geometrically and structural 
properties of this shell, and simultaneously adds an architectural quality and orientation.

Analysis
The network follows a smooth, geodesic, equilateral, quadrilateral network on a synclastic surface (Section 
5.1.3) with similar geometric properties to the Reticulated Dome in Neckarsulm (Section 4.2.2). In this 
case, the surface is not spherical, but follows the physical laws of a funicular shape. The modules are 
deformed into varying normal curvature, but follow geodesic paths. The geodesic curvature itself is taken 
up at the nodes through a small geodesic angle in-plane. Additionally, the modules are slightly twisted, an 
almost invisible occurrence, taken up within the “waistline” of each leaf.

NODE EDGE FACE
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hinge 0 hinge 0° - c deform. 0 deform. - - - -

Table 5.6  Qualitative parametric assessment of the structure, Modular Gridshell. The modules are interpreted as edges of a quad 
network (ES 2018).
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5.3.6 Curved Folding
Donald Otterson and Jose Maria Arribas investigated the geometric principles of curved folding. Their 
basic module is derived from a set of simple model studies.

Geometric Principles
A straight fold produces a flat surface on either side (A). A curved fold creates a concave cone at its inside, 
and a convex cone on its outside (B). This principle can be repeated along one strip. By alternating the 
orientation of the curved fold, the resulting single curved surface also alternates its orientation from 
concave to convex or vice versa (C, D). Expanding this method to hexagonal modules creates consistent 
concave or convex boundaries surrounding a single curved triangle (E, F). This module has the potential 
to be designed parametrically and tile a curved surface.
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Figure 5.37  Principles of curved folding for a single, double and triple fold (ES 2015).

Geometric Deduction of the Module 
The design objective for Otterson and Arribas was not to create individual modules for a freeform surface, 
but to use the principle of platonic solids to create a repetitive module for a spherical structure. We can 
deduce the shape and folds of this unit using two parallel illustrations (Figure 5.38 - Figure 5.40):

- Left: the 3D graphic of platonic solid projected onto its circumsphere
- Right: the 2D plan of the unrolled sheet-geometry for curved folding

The method is explained using a cube: It is defined by the Schläfli diagram {4,3}, where 4 signifies the 
number of verticies/edges of each square, and 3 is the number of polygons (squares) meeting at each 
node.
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Figure 5.38  Geometric deduction of the node. Using the Schläfli diagram to generate a 2D node for a curved folding pattern (ES 2015).

The information of one projected corner is mapped onto the plane, thus creating a regular intersection of 
three edges at a constant angle of 120° and constant edge length a. Each square has four corners which 
means that this planar node needs to be drawn four times, creating two thirds of a hexagon. This incomplete 
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hexagon is the unrolled representation of one square projected onto the sphere. We deliberately choose a 
half-edge as the position for the cut (labelled in red).
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Figure 5.39  Geometric deduction of the polygon. Mapping the spherical quad onto the plane creates 240° of a regular hexagon (ES 2015).

To be able to fold this shape into the tangential spherical geometry, a circular fold is introduced around the 
centre of the hexagon. This fold initiates the convex outer cone (tangential to the sphere at the projected 
edge) and a concave inner cone (directed to the centre of the sphere). To avoid bending the sheet into very 
small radii, the inner cone is truncated along an offset to the initial circular fold.
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Figure 5.40  Geometric deduction of the creases. The 2D pattern is used as a layout for the curved-folding structure. The circular 
creases lie in offsets, tangent to the hexagon. A quadrilateral, conical module can be formed which approximates the sphere (ES 2015).

Platonic Solids
This principle, based solely on the two values of the Schläfli diagram, can be applied to any platonic solid. 
By multiplying the module by the number of faces, a continuous unrolled pattern for curved folded 
structures is obtained. This method was verified with simple paper models for each platonic solid.
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Figure 5.41  Curved-folding paper models and patterns based on the platonic solids. A) tetrahedron, B) cube, C) octahedron, D) 
dodecahedron, E) icosahedron (ES 2015).
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Structure and Aesthetics
The pattern of the icosahedron was finally implemented at a larger scale by connecting six double-
pentagons (adjusting the base module to the available fabrication area of the laser cutter) to form a 
spherical structure with 1.5 m diameter from 1 mm curved-folded translucent plastic sheets. 

The modular structure can be interpreted as a 20-sided icosahedron of triangle-incircles or as a 12-sided 
dodecahedron of pentagon-stars. The overlapping tangential joints are only visible at second glance. The 
inner cones not only add aesthetic value to the three-dimensional pattern, they also establish a structural 
depth and create resilience along the curved folds.
The surface of the pentagons is not mathematically defined. Here, five cones (originating from the 
surrounding circular folds) merge creating an almost flat shape that is not strictly developable. This behavior 
can be attributed to slight non-developable deformations.
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Figure 5.42  Spherical curved-folding structure based on an icosahedron (Photo: Matthias Kestel 2015).

Analysis
The full repetition of segments and joints is owed to the platonic solid underlying the geometry of this 
sculpture. Each module is deformed from a flat sheet material with predefined, curved folds. The curved 
sculpture is a compound developable surface approximating a sphere.

NODE EDGE FACE
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c c
deform. 0° 0° - c c

deform. 0 0 - - - -

Table 5.7  Qualitative parametric assessment of the structure, Curved Folding. The pentagonal modules can be interpreted as nodes 
or edges (ES 2018).
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5.3.7 Asymptotic Grid
The ongoing research on smooth segmentation (Section 5.4) was incorporated in the design proposal by 
Denis Hitrec. In his design for a temporary pavilion, Hitrec first implemented asymptotic curves on a 
minimal surface. He thus took advantage of the beneficial geometric properties to design a lamella 
structure with straight unrollings and repetitive, orthogonal nodes. His project was published together with 
the research and physical models of the author at the AAG28 2016 Conference in Zurich (Schling and 
Hitrec 2016).

Surface Design
Hitrec’s design shape is based on the periodic minimal surface called Schwarz D. This surface is defined 
by six edges of a cube. This basic cell can be repeatedly copied and rotated to form an infinitely periodic 
surface. By clipping this repetitive surface with an inclined block, Hitrec defined the shape for his 
experimental structure.

Network Design
Hitrec used this trimmed minimal surface to generate a quadrilateral network of asymptotic curves. 
Because of the use of a periodic surface, the corresponding asymptotic network benefits equally from a 
high level of repetition. The complete network can be described by the sixth part of the initial cubic cell. In 
this case, the geometry of only five curve segments holds the information of the complete periodic grid.
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Figure 5.43  Design implementation of the Asymptotic Grid using a Schwarz D periodic minimal surface (Illustrations: Denis Hitrec 
2016).

Fabrication and Assembly
The 3D information was translated into simple 2D drawings by marking the node-to-node distance onto 
straight strips of beech veneer. Hitrec laser cut the strips with repetitive notches which allowed him to 
interlock them orthogonally. The planar timber boundaries were fabricated separately and combined to 
create a rigid frame, inside which the lamellas were installed.

      

Figure 5.44  Construction process of the Asymptotic Grid. The timber strips are laser cut straight and assembled within a rigid frame 
(Photos: Denis Hitrec 2016).

28  Advances in Architectural Geometry
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Structure and Aesthetics
The timber structure of 2.4 x 1.3 x 1 m has an average mesh size of 8 x 8 cm and a strip height of 24 mm. 
Even though there is no diagonal bracing, the grid is surprisingly rigid and extremely light. The rigid timber 
frame supports the grid along the boundaries, allowing for cantilevers at the corners and edges.
Despite the high level of repetition, the pavilion displays a complex and sculptural shape, creating distinct 
spaces like an archway and a semi-enclosed courtyard. The asymptotic network varies in density and 
curvature, and thus becomes an important part of the design. The strong timber frame emphasizes both 
the visual and structural boundary of the structure.

Figure 5.45  Completed structure of the Asymptotic Grid, by Denis Hitrec. The structure is built from straight strips with exclusively 
orthogonal nodes (Photo: Denis Hitrec 2016).

Analysis
The network follows an asymptotic path of vanishing normal curvature. Each lamella can thus be unrolled 
into a straight strip. Furthermore, all lamellas meet at 90° degrees. Apart from these geometric properties 
typical for asymptotic curves on minimal surfaces, the design additionally benefits from a periodic reference 
surface, creating multiple (invisible) axes of symmetry. The complete grid (with the exception of the 
boundary trims) consist of only five unique strip segments.

NODE EDGE FACE
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90° 0° 0° 0° 24 mm variable 0° deform. deform. 24 mm - - -

Table 5.8  Parametric assessment of the structure, Asymptotic Grid. The table reveals a high quality of geometric repetition (ES 
2018).
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5.3.8 Observations
This experimental design approach stands in contrast to the theoretical studies presented in Section 5.1 
and Section 5.2. It illustrates the broad spectrum of constructive solutions beyond the abstract geometric 
networks. Nonetheless, each structure can be analysed and compared using the theoretical framework. 
After the analysis, we will discuss aspects of distortion and its impact on design and construction.

 A  B  C  D  E  F

Figure 5.46  Overview of the six projects presented (Photos: Matthias Kestel 2014, Magdalena Jooß 2016, Denis Hitrec 2016)

NODE EDGE FACE
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A Bending
Strips 0° 0° 0° 0° c c 0° deform. deform. c - - -

B Cubic
Surface variable deform. variable deform. c - - - - - tolerance c / P c

C Hexagonal
Bending 120° c 0° 0° c c deform. deform. deform. - tolerance deform. c

D Modular
Gridshell hinge 0 hinge 0° - c deform. 0 deform. - - - -

E Curved
Folding c c

deform. 0° 0° - c c
deform. 0 0 - - - -

F Asymptotic
Grid 90° 0° 0° 0° c variable 0° deform. deform. c - - -

Table 5.9  Overview of the parametric assessment of the six experimental structures (ES 2018).

Parametric Analysis
Table 5.9 illustrates the geometric and constructive behaviour of all six projects. Listed below are some 
insights of this parametric analysis:

- Projects A, C, D and E all realize a double-curved structure with identical parts. However, A and C 
use an additional set of cables with individual lengths to fix the structure. Projects B and F rely on 
fabricating individual joints/edge-lengths. 

- There is a striking parametric similarity between structures A and F, with the only difference that F 
did not enforce a constant edge length. Both structures combine the use of straight strips, normal 
to the surface to construct a smooth anticlastic network. This construction technique follows the 
geometric behaviour (and parametric signature) of asymptotic curves (see Section 5.5). While in A 
this behaviour was stumbled upon experimentally, F deliberately implemented this design method 
in a systematic process.

- All projects use deformation to achieve repetition. In particular, project C relies heavily on deformation 
to adjust both edges and faces.

- There are three projects, A, C and E, in which both variables w and l are constant. Such a constellation 
immediately causes suspicion as it stands in conflict with the principles of a distorted network 
(Section 5.1.4). A repetition of both edge length and mesh angle (on a doubly curved surface) is only 
possible if the node-to-node distance is artificially adjusted through an S-shaped deformation of 
edges (A and C) - or if the network is based on a platonic solid (E).



120  Part II: Repetitive Structures

Distortion
The study on network morphology (Section 5.1) has shown that a double-curved network (without 
singularities) inevitably displays distortion, which comes into effect either through variable edge lengths, 
or variable mesh angles. This distortion is not merely a morphological occurrence, it is an essential part of 
the network. It determines the geometry and is crucial to create a rigid structure. The question arises: If the 
structure is fully repetitive, how is the distortion incorporated? And how is the curved shape determined?

- In project A, the distortion is created only by a deformation of the individual modules. This 
deformation can clearly be associated with adjustment of node-to-node distance, creating S-curved 
edges, while the node angles stay constant. Such a network is considered geometrically 
indetermined and leads to a comparatively soft structure. The shape in A is only determined by a 
secondary network of the cables. These ties vary in length controlling the individual deformation of 
modules.

- Project B uses tolerances to accommodate distortion. They are taken up within the connection 
rings between modules. The individual joints simultaneously determine the shape of the structure 
by fixing the variable distance between faces.

- Similar to A, the distortion in C is solely created by a deformation of edges into S-curves. This 
geometrically indetermined network only permits a shallow curvature and results in a soft structure. 
The dome shape of C is initiated by an equilibrium of stress in respect to self-weight and residual 
stresses of deformation. Similar to A, a secondary network of cables is necessary stabilize the 
structure. 

- In D, the distortion is realized by adjustable hinged joints. This method allows for a greater design 
freedom and may realize a high double curvature. Furthermore, it offers the possibility to fix the 
desired shape by locking each joint in its final position.

- The segmentation of E follows the regular tessellation of a platonic solid, enabling a full repetition of 
all elements without distortion. The spherical shape is determined through the topology of its 
network.

- Project F is based on an asymptotic curve network which follows the surface curvature and naturally 
creates singularities limiting distortions. The remaining distortion is incorporated into the design by 
the individual fabrication of edge lengths. However, the nodes are constructed with a slight 
tolerance and allow for rotation. The rigid frame is thus necessary to determine the shape.

A fundamental insight from these observations is the advantage of incorporating distortion into the design 
to enable a well-defined shape and a rigid structural system. This is achieved by creating either individual 
edge length or individual intersection angles, and can be aided by designing with singularities.
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5.4 Deductive Study on Curvature and Deformation of Networks

The following section investigates smooth networks with repetitive curvature parameters. By systematically 
examining all parametric combinations of kn, kg and tg, specific shapes and network types are deduced 
which allow for a construction with slender lamellas.
Parts of this study were published in the magazine DETAILstructure in April 2017 (Schling and Barthel 
2017).

NODE EDGE FACE
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Table 5.10  Table of active parameters for the study on curvature and deformation of networks (ES 2018).

This study was inspired by the Multihalle in Mannheim. This strained gridshell fulfils the requirements 
defined in Section 3.2.4, so that the deformation of laths kx, ky and kz, can be considered equivalent to the 
network curvatures tg, kn and kg.
In this example, all three curvatures are variable. Consequently, the laths had to be deformed around all 
three profile axes. This demanded the use of slender, double-symmetric profiles. Understanding this direct 
dependency of curvature and deformation led to the following research question:

- If one or two of the curvatures tg, kn or kg are avoided (i.e., kept at a constant value of zero), how 
does this effect the progression of a curve, the topology and shape of networks, and the choice of 
profile?
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Figure 5.47  Diagram showing the aligned parameters of curvature and deformation (ES 2018).

We will first discuss the behaviour of each curvature parameter in Section 5.4.1, and subsequently present 
six curvature networks depending on vanishing parameter values in Section 5.4.2. We focus on the 
properties of asymptotic curves and list two more parametric simplifications (equilateral edges and 
orthogonal nodes) in Section 5.4.3. 

5.4.1 Curvature Parameters
To better understand the morphology of smooth networks, the distinct properties of each curvature 
parameter and their influence on the respective curve are observed.

Normal curvature kn is dependent on the surface curvature and curve direction. It is calculated in respect 
to the tangent direction of the curve measured as its deviation m from the principal curvature directions:

kn = k1(cosμ)2 + k2(sinμ)2 
 

(5.1) 

  On synclastic surfaces where k1 and k2 are positive the normal curvature is never zero.
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Geodesic torsion tg resembles the twist of a curve and has no influence on the deviation from a straight 
line. The torsion is unfavourable for developable strips as it leads to an incline of rulings. Similar to kn, the 
geodesic torsion is dependent on the principal curvatures and the direction of the curve.

τg =  
1
2

 (k2 −  k1) sin2μ 
 

(5.2) 

  On a sphere where k1 and k2 are equal, the geodesic torsion is always zero.

Geodesic curvature kg is independent of the Gaussian curvature and describes the deviation from a 
straight path within the two-dimensional surface. There is, thus, no mathematical equation relating kg to 
the surface-curvature.

5.4.2 Curvature Networks
The properties of curvature can be used to deduce networks with vanishing curvature parameters. For 
each network, we also describe the quality of developable strips (based on the behaviour of their rulings), 
which can be modelled either tangentially or orthogonal to the reference surface along each curve. To 
illustrate these qualities, physical models were built using thin strips of material that are twisted and bent 
only around their weak axis.

Networks with Only Geodesic Curvature
Curves which display no geodesic torsion or normal curvature have a constant direction of their z-axis. 
They are planar and permit no curvature of the reference surface. A related network is restricted to a planar 
surface.
Along these curves, we can model developable strips orthogonal to the surface which have parallel rulings 
and can be unrolled straight.
Such a network can be built as a planar grillage with curved beams. It can be assembled from straight 
upright lamellas which are solely bent around their weak axis (z).

  

Figure 5.48  Model of a planar curved grillage. The network displays only geodesic curvature. The lamellas are only bent around their 
local z-axis (Photos: ES 2018).

Networks with Only Geodesic Torsion
Geodesic torsion alone does not cause a curve to change direction. Curves which display no geodesic or 
normal curvature have a constant direction of the x-axis. They are straight. A network of straight curves 
only exists in the plane or on doubly ruled surfaces, such as a hyperbolic paraboloid or a rotational 
hyperboloid.
Such curves are not developable as their rulings are parallel to the curve tangent making a geometric 
modelling of developable strips impossible.
Such a network can be constructed from straight beams. Due to the continuous torsion, circular profiles 
are favourable as they do not need to adjust their orientation to the surface. If slender strips of material are 
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used, the normal orientation must be enforced by twisting the strips around their x-axis, as was done in 
the physical example.

  

Figure 5.49  Model of hyperbolic paraboloid. The network displays only geodesic torsion. The lamellas are only twisted around their 
local x-axis (Photos: ES 2018).

Networks with Only Normal Curvature
Curves which display no geodesic torsion or geodesic curvature have a constant direction of the y-axis. 
These curves are planar and follow the surface curvature. A network of continuous curves is formed by the 
great circles (geodesic curves) on a sphere.
The rulings of an orthogonal developable strip are oriented normal to the surface which allows clean 
modelling and circular unrolling. If the strip is oriented tangential to the sphere, the rulings are parallel. The 
strip can then be unrolled straight.
The respective physical model was constructed from elastically-bent, straight lamellas which lie tangentially 
to each other. 

  

Figure 5.50  Model of geodesics on a sphere. The network displays only normal curvature. The lamellas are only bent around their 
local y-axis (Photos: Magdalena Jooß 2016).

Networks with No Geodesic Curvature
Geodesic curves have a constant vanishing geodesic curvature. They follow the shortest path between 
two points on any surface. A geodesic curve is defined by either selecting two points on the surface, or by 
selecting one point and defining an initial curve direction. A common example for geodesic curves are 
straight paper strips rolled onto a surface. The paper will inevitably follow a straight path (never turning left 
or right) along the given surface direction. This property results in limited freedom when designing a 
geodesic network. Even though the start and end of any curve can be controlled, the path progression 
cannot be manipulated. On a surface of alternating curvature, geodesic curve networks show large 
variations in density, scattering on synclastic regions and concentrating on anticlastic regions.
Just like the paper strips, tangential developable strips along geodesic curves can be unrolled straight. 
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The quality of rulings is dependent on the proportion of normal curvature and geodesic torsion.
A structure along geodesic curves can be assembled from flat lamellas. Their tangential orientation 
however, has little resistance to external loads and buckles easily.

  

Figure 5.51  Model of geodesic curves on a freeform surface. The network displays no geodesic curvature. The lamellas are not bent 
around their local z-axis (Photos: ES 2016).

Networks with No Geodesic Torsion
Principal curvature (PC) lines have the property of a constant vanishing geodesic torsion. They are 
tangent to the “magnetic field” of principal curvature directions (Section 1.1.3) creating a quadrilateral 
network with orthogonal nodes.
A PC line is generated using a digital routine which identifies the PC direction at each subsequent point 
and iteratively follows this path. The designer cannot influence the direction or progression of the curve. In 
the case of an umbilical (planar or spherical) surface point, where is constant in all directions, the PC 
network inevitably exhibits a singularity with a higher or lower valence. The quality of the overall network 
is dependent on the surface curvature. A homogeneous curvature results in a homogeneous curve layout.
Due to the vanishing torsion, PC-networks have very good qualities for both tangential and orthogonal 
developable strips. The rulings always stand normal to the curve. The unrolled strip however, remains 
curved in plane. A tangential strip will be curved along the geodesic curvature – an unrolled orthogonal 
strip displays the normal curvature of its surface curve.

A structure following a PC network can be built from planar strips which are bent around their weak axis 
and meet perpendicularly at each node. The predetermined network layout with its varying density and 
singularities can be of high aesthetic quality. However, a limited design freedom has to be accepted.

  

Figure 5.52  Model of principal curvature lines on a freeform surface. The network displays no geodesic torsion. The lamellas are not 
twisted around their local x-axis (Photos: ES 2016).
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Networks with No Normal Curvature
Asymptotic curves define the path along a constant vanishing normal curvature. This path only exists 
on anticlastic regions of a surface. Similar to the PC lines, asymptotic curves are tangent to a magnetic 
field of asymptotic directions (Section 1.1.3) and create a quadrilateral network.
Like PC lines, they can only be generated iteratively by analysing the surface curvature at every point. A 
designer cannot influence the direction nor progression of asymptotic curves. In the case of an umbilical 
(planar) surface point where kn is constant in all directions, the asymptotic network creates a singularity 
with a higher valence of 6.29

Developable strips that are oriented orthogonal to the surface can be unrolled straight. The quality of 
rulings is dependent on the proportion of normal curvature and geodesic torsion.

A lamella structure following asymptotic curves combines the benefits of straight unrolling and orthogonal 
orientation. It can be assembled from flat lamellas which are bent (and twisted) only around their weak 
axis. The orientation of lamellas normal to the surface is beneficial for the structural behaviour because it 
can transmit external loads via bending.

  

Figure 5.53  Model of an asymptotic network on an anticlastic surface. The network displays no normal curvature. The lamellas are 
not bent around their local y-axis (Photos: ES 2016).

5.4.3 Asymptotic Networks
Both geodesic curves and principal curvature lines have been successfully used in architectural projects. 
However, there have been virtually no applications of asymptotic curves for load-bearing structures.30 This 
is surprising as asymptotic curves form the only network which combines the benefits of straight unrolling 
and normal orientation to the surface, thus enabling a simple fabrication and good structural performance.
In the following section, we will focus on asymptotic networks and show two additional potentials for 
creating repetitive parameters, namely, equilateral edges or congruent nodes.

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

Table 5.11  Table of extended parameters for the study on asymptotic networks (ES 2018).

29  There are few exceptions. If a surface is point-symmetric around its singularity, it may exhibit a higher, even valence.
30  The rulings of a hyperbolic paraboloid are a special case of asymptotic curves and have been used in architectural design. 
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Asymptotic Networks with Equilateral Edges
Asymptotic networks with equilateral edges exist on surfaces with constant negative Gaussian 
curvature and have a constant geodesic torsion (Wunderlich 1951).
To build a physical model of such a network, we simply created a uniform grid of lamellas which are hinged 
at every joint and oriented upright. This grillage can be deformed into any negatively curved network with 
the above properties.

  

Figure 5.54  Inductive physical model of an equilateral asymptotic network (Photos: ES 2018).

To confirm this behaviour, the same physical modelling process was simulated using an FE-modelling 
environment (Figure 5.55, left). A more common workflow was tested by using a known surface of constant 
negative curvature, the pseudosphere (Section 1.2.3), and generating an equilateral asymptotic network 
on it (Figure 5.55, right). Both digital models display the given parametric properties.
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Figure 5.55  Equilateral asymptotic networks. Left: FEM-simulation, deforming a flat girder into an asymptotic grid (Jonas Schikore 
2018). Right: Parametric design model on a pseudoshpere (ES 2018).

One particular feature should be mentioned: Equilateral asymptotic networks never display singularities. 
This is a natural consequence of the constant negative Gaussian curvature of their reference surface. A 
closer investigation of equilateral asymptotic networks will be part of further research.

Asymptotic Networks with Orthogonal Nodes
Asymptotic networks with a constant intersection angle of 90° exist on surfaces with constant vanishing 
mean Gaussian curvature, i.e., minimal surfaces. This behaviour is well illustrated by the curvature graph 
(Section 1.2.2). The equilibrium of normal curvature determines a regular interval between extreme values 
and zero-crossings. 
A method to model, design and construct asymptotic networks on minimal surfaces will be investigated in 
the following Section 5.5 and Chapter 6.
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Figure 5.56  Model of an asymptotic network with congruent nodes. The curvature graph of a minimal surface illustrates the regular 
behaviour of asymptotic directions (Photos: ES 2018).

5.4.4 Conclusion
This study illustrates the dependencies of curvature and deformation. It presents possibilities to simplify 
the construction of double-curved structures by consciously choosing the surface and network depending 
on the three curvatures of the network, tg, kn and kg. 
Avoiding two curvatures leads to a restriction of shapes, either to the plane (if kn and tg are zero), the 
sphere (if kg and tg are zero) or a double ruled surfaces (if kn and kg are zero).
Avoiding only one type of curvature allows the segmention of any freeform surface, but leads to a restriction 
of networks to either geodesic curves (if kg is zero), principal curvature lines (if tg is zero) or asymptotic 
curves (on anticlastic surfaces) (if kn is zero).
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Figure 5.57  Overview of smooth networks with constant zero curvature values (ES 2018).

A closer investigation of asymptotic networks presents two additional parametric simplifications, both 
resulting in a further restriction of the design surface: Equilateral asymptotic networks form surfaces of 
constant negative Gaussian curvature - asymptotic networks with orthogonal nodes live on surfaces of 
constant vanishing mean curvature, i.e. minimal surfaces.
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5.5 Design Method for Asymptotic Networks on Minimal Surfaces

In the prior study on curvature and deformation of networks (Section 5.4) we introduced asymptotic curve 
networks and their potential to be constructed from straight lamellas oriented normal to the design surface. 
In this section we investigate the design process of such smooth repetitive networks.
For this purpose, a novel design method is developed which combines the use of minimal surfaces with 
asymptotic curves to create a network with the additional advantage of repetitive orthogonal nodes. Such 
a design allows for an elastic assembly of lamellas via their weak axis, and a local transfer of normal loads 
via their strong axis. Furthermore, the lamellas form a double-curved network, enabling an efficient global 
load transfer as a shell structure.

The following section is based on the publication “Designing Grid Structures Using Asymptotic Curve 
Networks” which was published in September 2017 at the Design Modelling Symposium in Paris (Schling 
et al. 2017a). 

NODE EDGE FACE

w / i a b g on l kn kg tg oe S K of

90° 0° 0° 0° c variable 0° deform. deform. c - - -

Table 5.12  Parametric signature of asymptotic networks on minimal surfaces (ES 2018).

The method of designing asymptotic networks with orthogonal nodes can be divided into five phases, 
which will be addressed in subsequent sections:

Section 5.5.1 presents the surface design which is focused on a fast and intuitive workflow.
Section 5.5.2 presents the form-finding workflow and measures for testing its accuracy.
Section 5.5.3 presents an algorithm to draw asymptotic curves on NURBS surfaces.
Section 5.5.4 discusses the challenge of designing a homogeneous network.
Finally, Section 5.5.5 explains the geometry of developable and twisted strips. 
This design method is tested in Section 5.5.6 to illustrate the design spectrum of surfaces and networks.
Section 5.5.7 presents a generalization of this method which was published independently.
Finally, Section 5.5.8 gives a short conclusion of the previous insights.

5.5.1 Surface Design
A minimal surface is the surface of minimal area between any given boundaries. In nature, such shapes 
result from an equilibrium of homogeneous tension, e.g., in a soap film (Section 1.2.3). Such shapes can 
only be designed by adjusting the boundary edges. For a designer this property is unfamiliar. It takes some 
experience to understand the geometric behaviour and control such surfaces.
In the initial design phase, a fast and intuitive modelling method is key. The goal is to define the boundary 
conditions and get instant feedback on the resulting design surface. 
The minimal surface can either be approximated through physical models using elastic textiles or soap 
films, or modelled digitally with fast numeric methods.
More insights on minimal surface shapes and their effects on the asymptotic network are presented in 
Section 5.5.6.
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5.5.2 Form Finding
Once the boundary curves are defined, the accurate form is generated digitally by either minimizing the 
area of a mesh, or finding the shape of equilibrium of tension.
Various tools are capable of performing such optimization on meshes with varying degrees of precision 
and speed (Surface Evolver, Kangaroo-SoapFilm, Millipede, etc.) (Brakke 1992).
The Rhino-plugin TeDa (Chair of Structural Analysis, TUM) provides a tool to model minimal surfaces as 
NURBS based on so-called isotropic pre-stress fields (Philipp et al. 2016).
Both methods, mesh and NURBS, produce sufficiently accurate results if a proper resolution and calculation 
time is taken into account.

Enneper Surface
Certain minimal surfaces can be modelled via their mathematical definition. This is especially helpful as a 
reference when testing the accuracy of other tools. We extensively used the parametric representation of 
an Enneper surface (Figure 5.58) as a comparison to determine the accuracy of other tools (Pottmann et 
al. 2007a, p. 650):

x(u, v) = 6 u2 v − 2v3 − 6v 
y(u, v) = 6 u v2 − 2u3 − 6u 

z(u, v) = −12 u v 
 

(5.3) 

  
This parametric definition does not only produce mathematically accurate minimal surfaces. The u and 
v-values also follow the asymptotic directions and can simply be interpolated to draw accurate asymptotic 
curves (Section 5.5.3). Furthermore, the resulting network is isothermal31, a quality which was also used to 
test the network design routine (Section 5.5.4).

Accuracy
Measuring the total area of competing minimal surface representations is an effective way to compare 
their overall accuracy. To identify regions of insufficient quality, we analyse the mean curvature and its 
deviation from zero, or draw asymptotic curves and check the intersection angle. The latter is the decisive 
requirement for our design method.

5.5.3 Asymptotic Curves
Asymptotic curves cannot be drawn by hand. They require a precise analysis of the reference surface in 
order to iteratively find the path of vanishing normal curvature.
We developed a custom VBScript for Grasshopper/Rhino to trace asymptotic curves on any anticlastic 
NURBS-surface based on a routine by Rutton and Gregson (2016).
The values and directions of the principal curvatures (k1, k2) are retrieved at each point of the surface along 
this curve. With this information, we calculate the normal curvature kn for any deviation angle m from the 
principal curvature direction.

kn(μ) = k1(cosμ)2 + k2(sinμ)2 
 

(5.4) 

  
To find the asymptotic direction, the normal curvature must be zero, kn = 0.
Solving for m results in:

μ = 2π − 2 tan−1�
2�k2 (k2 −  k1) +  k1 − 2 k2

k1
 

 
(5.5) 

  
31 A principal curvature network is isothermal if the cells are square in an infinitely fine discretization. Similarly, this asymptotic 

network has a quality of nearly square cells.
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By iteratively measuring m at each subsequent point and walking along this path, we can draw an asymptotic 
curve on any anticlastic surface. The algorithm uses the Runge-Kutta method (Weisstein 2018a) to 
average out inaccuracies due to step size. On minimal surfaces, the deviation angle m is always 45° (due 
to the bisecting property of asymptotic curves and principal curvature lines). 
This computational routine only works on NURBS surfaces. In the case of a mesh, we use EvoluteTools – 
specifically the command , ExtractCurvatureLines, to find the discrete asymptotic curves.

Accuracy
Both EvoluteTools and the VB-Script were checked for accuracy by comparing their results with the 
asymptotic network on an Enneper minimal surface. Depending on the high quality of the mesh or NURBS 
surface and a low step size of the asymptotic-curve-algorithm, a sufficient accuracy was achieved to plan 
and construct an orthogonal asymptotic grid from straight lamellas.

Properties
It is crucial for a designer to understand the behaviour of asymptotic curves and its dependency on the 
Gaussian curvature of the surface. The path of asymptotic curves is determined. The designer can merely 
pick a starting point on an anticlastic surface from which two asymptotic paths will originate. The 
progression of these paths can best be explained along their remaining curvature parameters: 

Geodesic Curvature. The geodesic curvature kg of asymptotic curves on minimal surfaces is reciprocal 
to the Gaussian curvature. The higher the Gaussian curvature, the straighter the curves become. When 
approaching a singularity (a planar point of no Gaussian curvature) the asymptotic curves tend to spread 
and swerve, increasing the geodesic curvature. Unfortunately, we have not found a mathematical equation 
describing this relationship.

Geodesic Torsion. The geodesic torsion tg of an asymptotic curve correlates directly with the Gaussian 
curvature. The relationship is determined by the formula (Tang et al. 2016b):

τg =  
1
2

 (k2 −  k1)  ∙ sin2μ ,

where    k1 =  − k2        and    μ =  45°          thus     τg = k1 

 
(5.6) 

  

On a minimal surface, k1 and k2 are equal opposites, and m is 45°. The geodesic torsion tg is thus equal to 
the absolute value of either principal curvature.

With higher Gaussian curvature, more torsion and less geodesic curvature are to be expected.

5.5.4 Network Design
Drawing asymptotic curves on a surface does not necessarily create a homogeneous network. The 
opposite is the case. Even if the designer picks a regular interval to initiate the asymptotic-curve-routine, 
the resulting curves (drawn in two directions) will display a heterogeneous pattern unsuitable for architectural 
design.
To ensure a regular spacing of network curves, we take advantage of the bisecting property between 
asymptotic curves and principal curvature lines. By alternately drawing each curve and using their 
intersections as a new starting point, we can create a network with nearly square cells (Sechelmann et al. 
2013). This is owed to the fact that minimal surfaces are isothermic, i.e., allow for this highly regular 
segmentation.



1315  Studies on Repetition

With this method we can ensure a homogeneous layout which is not only beneficial for aesthetic reasons, 
but also improves the structural efficiency of the grid.

Combining both networks, asymptotic curves and principal curvature lines, additionally allows the grid to 
benefit from both their geometric properties simultaneously for substructure and façade. Subsequently, 
we can implement efficient façade solutions using tangential developable strips or even planar quads 
(Pottmann et al. 2007, p.680).

      

Figure 5.58  Design process on an Enneper surface. Left: Principal curvature lines. Middle: Isothermal web of principal curvature 
lines and asymptotic curves. Right: Strip model of the asymptotic network with diagonal bracing (Illustration: Denis Hitrec 2017).

Automated Modelling
Implementing this method manually is labour intensive and prone to inaccuracies. There are few routines 
available which allow for an automated approximation of an isothermal segmentation. We used an existing 
toolset (Rhino-Grasshopper, Milliped) to reparametrize a mesh and create a quasi-isothermic network 
along the principal curvature lines. This network is used as the basis for a subsequent generation of the 
bisecting asymptotic curve network.

Layout and Singularities
The network layout is dependent on the surface curvature. Isothermal networks tend to densify in regions 
of high Gaussian curvature and spread out in the areas of low Gaussian curvature. This results in the 
largest cells surrounding the planar singularities.
The singularities are a decisive factor in the grid layout. Their location not only has consequences on the 
structural and aesthetic quality of the network, it also determines the possible grid size. If all singularities 
are to be designed identically, e.g., with radial curves, the spacing of the network has to obey a regular 
interval between them. This logic was used to design the network of the Asymptotic Gridshell (Section 
6.1).

5.5.5 Strip Geometry
In the final modelling phase, we construct the strip-surfaces along the asymptotic paths. The strips can 
either be modelled as truly developable surfaces, or as twisted strips normal to the design surface.

Developable Strips
A developable, i.e., singly-curved surface-strip is defined by its rulings. If this strip is orthogonal to a 
reference surface and follows a surface-curve, its rulings are enveloped by the planes that contain the 
normal vector n and tangent vector t of the Darboux frame (Figure 5.59, left). The vector of these rulings r 
is dependent on the ratio of geodesic curvature and geodesic torsion. It is calculated via the equation: 
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𝐫𝐫𝐫𝐫 =  kg𝐧𝐧𝐧𝐧+  τg𝐭𝐭𝐭𝐭  
 

(5.7) 

  
For asymptotic curves (where kn  = 0), kg is equivalent to k and can simply be measured via the osculating 
circle.

k = �kn
2 + kg

2           if  kn =  0             then  k =  kg 
 

(5.8) 

  
To calculate the geodesic torsion, we use Equation 5.6 (Section 5.5.4):  tg =  k1

The rulings are not necessarily perpendicular to the surface. As a consequence, intersecting two 
developable strips commonly results in a curved intersection (Figure 5.59, middle). Even more, in the case 
of high Gaussian curvature, the rulings incline dramatically and become parallel to the tangent vector, 
which makes modelling and construction of a developable strip impossible.
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Figure 5.59  Asymptotic strip geometry. Left: A developable strip along an asymptotic curve, orthogonal to the surface, is defined by 
rulings r, which are generally not parallel to the normal vector n. Middle: This results in curved intersections of developable strips. 
Right: In our method, the strips are defined by the normal vectors n to ensure straight intersections. Consequently, they are not truly 
developable, but twisted (ES 2018).

Twisted Strips
We thus propose to model the strip geometry along the normal vectors which allows for straight intersections 
and a well-defined ruled surface (Figure 5.59, right). As a consequence, some twisting of the lamellas 
needs to be considered during construction. The stresses caused by this twist will be examined in Section 
6.3.2. This deviation from a truly developable strip is essential to realizing a simplified construction.

Strip Layout
For an elastic assembly the strips can be fabricated flat. The node-to-node distance, measured along the 
asymptotic curves, is the only variable information needed to produce fabrication drawings. The distances 
are marked along a rectangle of the desired width. The 3D modelling of strips is only used for visualization.

5.5.6 Design Spectrum
This novel design method was implemented for various minimal surfaces to illustrate the behaviour of the 
asymptotic network and its singularities (Figure 5.60). This study also shows the wide range of possible 
shapes that can be designed from minimal surfaces. 
A minimal surface can be defined by one (A, B), two (C), or multiple (D) closed boundary-curves, with direct 
impact on the topology and complexity of the surface. Symmetrical properties can be used to create 
repetitive (C) and periodic (E) minimal surfaces. Asymptotic curve networks benefit greatly from symmetry, 
both aesthetically and in construction. The Gaussian curvature of the design surface directly influences the 
geodesic torsion of asymptotic curves, the density of the network and the position of singularities. A well-
balanced Gaussian curvature produces a more homogeneous network and thus eases construction.
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Figure 5.60  Overview of asymptotic strip networks on minimal surfaces. A) One polygonal boundary creating a saddle-shaped 
network with singularities located at the boundaries. B) One spatial boundary-curve creating a surface with three high and three low 
points and a network with central singularity. C) Two curves creating a rotational repetitive network with regular singularities along the 
planar boundary. D) Multiple boundaries creating a freely designed minimal surface with four high points. E) Variation of a singly-
periodic “Sherk’s Two Minimal Surface”, with six interlinking boundaries (Illustration: Denis Hitrec 2017).

Examples shown in Figure 5.60 display how varying boundary conditions influence the surface and 
asymptotic network. Boundary-curves may consist of straight lines (A), planar curves (D), or spatial curves 
(B). This does not only have an effect on the later construction of the edge. Straight lines usually adapt well 
to the built environment, but are likely to attract singularities (A). Spatial boundaries provide more freedom 
to design, but increase complexity. A well-integrated boundary can be achieved by modelling a larger 
surface and “cookie-cutting” the desired shape. 
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5.5.7 Generalization
Asymptotic networks on minimal surfaces can be understood as a subset of a more general network 
theory. If the normal curvature of curves must not necessarily be 0, but any constant value, the shape 
spectrum is expanded to any surface with constant mean curvature. 
Such a surface and network follow the simple and intuitive relationship:

Hsurface =  kn,network = constant 
 

(5.9) 

  
This behaviour is well illustrated by the curvature graph of a CMC surface (Figure 5.61).
Constant normal curvature networks are always bisecting the principal curvature lines. The developable 
strips are not necessarily straight, but have circular unrollings with r = 1/kn. A computational workflow of 
these networks, including a new discretization as quadrilateral meshes with spherical vertex stars was 
published in collaboration with Martin Kilian, Hui Wang, Jonas Schikore and Helmut Pottmann at the AAG 
2018 Conference (Schling et al. 2018).
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Figure 5.61  Constant normal curvature network on a constant mean curvature surface. Left: Network on a so-called Ocean reference 
surface (Schling et al. 2018). Right: Diagrammatic curvature graph of a constant mean curvature surface with indicated network 
directions (ES 2018).

5.5.8 Conclusion
Asymptotic curves on minimal surfaces allow for a high level of repetition simplifying the fabrication and 
construction process. The structure can be assembled from straight lamellas and identical joints. 
Designing such a geometrically optimized structure is heavily dependent on digital tools to enable 
modelling an accurate minimal surface, drawing accurate asymptotic curves and generating a homogeneous 
network layout. Similarly, the design freedom is restricted by the natural formation of the surface, the 
predetermined path of asymptotic curves, and the location of singularities. Despite these restrictions, 
there is a large design spectrum available to adjust to architectural requirements. We will present a case 
study, the Asymptotic Gridshell (Chapter 6), which illustrates such a bespoke design solution. 
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6 The Asymptotic Gridshell

The method presented in Section 5.5 was used to design and construct a large-scale architectural 
structure, the Asymptotic Gridshell. It was completed in October 2017 for the opening of the Structural 
Membranes Conference and was used as a venue for the 150th anniversary of the Technical University of 
Munich in 2018. 

Implementing this geometric method in an architectural context called for consideration of all architectural 
requirements beyond pure geometry, such as site, functionality, safety, construction and load-bearing 
behaviour. This holistic planning process added numerous insights and is used here as a case study to 
illustrate the implications of a repetitive design using deformation.

Figure 6.1  The Asymptotic Gridshell was constructed in October 2017 at the TUM (Photo: ES 2018).

Section 6.1 presents the design process based on the design method developed in Section 5.5. A minimal 
surface is adjusted to the building site (Section 6.1.1) and carefully refined to create a beneficial shape for 
a load-bearing gridshell (Section 6.1.2). Subsequently, the curve network is designed by adjusting surface 
curvature, singularity alignment and density (Section 6.1.3). 

Section 6.2 presents the construction development of this strained gridshell based on the Multihalle in 
Mannheim. The use of elastic deformation on a large-scale structure calls for a strategy to ensure stiffness 
and stability (Section 6.2.1). The construction of two prototypes (one in timber and one in steel) further 
helped to develop an efficient erection process (Section 6.2.2 and Section 6.2.3). The development of joint 
details reflects these complex requirements (Section 6.2.4). 
Finally, the fabrication and assembly process of the Asymptotic Gridshell is presented (Section 6.2.5). 

The load-bearing behaviour is presented in Section 6.3. The structural behaviour is interpreted both locally 
and globally, showing the effects of a grillage and a gridshell (Section 6.3.1). The normal and shear stresses 
are calculated in dependency of the geometric network curvature (Section 6.3.2).
An FE-analysis was conducted for construction and approval planning. Its documentation would exceed 
the research focus of this dissertation. Its content will thus be published separately.

Figure 6.2  Underneath the Asymptotic Gridshell (Photo: Martin Ley 2018)
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Project Team
The project was designed at the Chair of Structural Design, Prof. Dr.-Ing. Rainer Barthel. The research was 
conducted by Eike Schling (project management) with support of Denis Hitrec (design and modelling) and 
Jonas Schikore (structural analysis).

The student team during the construction process included Beatrix Huff, Denis Hitrec, Andrea Schmidt, 
Viktor Späth, Miquel Lloret Garcia and Maximilian Gemsjäger.

The pavillion was constructed in collaboration with the Brandl Steel Construction Company in Eitensheim 
and the Technisches Zentrum of the TUM, foremost Matthias Müller, the TUM metalsmith.

Financial support was granted by the Department of Architecture and the Architectural Research Incubator 
/ARI of the TUM, the Dr. Marschall Foundation, as well as the Leonhard-Lorenz-Foundation.

The author’s personal involvement included the complete research and planning process from concept 
design to construction documents, project management, as well as the installation, supervision and 
logistics on site.
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6.1 Design

The design process of the Asymptotic Gridshell closely followed the method described in Section 5.5. This 
section focuses on the findings which are specific to this case study.

In Section Section 6.1.1, the architectural requirements of the site are listed. Section 6.1.2 will present all 
aspects of the surface design that exceed the purely geometrical parameters. Section 6.1.3 will address 
challenges of the network design and its refinement.

6.1.1 Site Requirements
The Asymptotic Gridshell is located at the central campus of the TUM. The building site itself is a west-
facing semi-courtyard of approx. 18 x 28 m situated north of the main entrance hall. 
This courtyard is designed as a green space for leisure. The landscape of bushes and trees is embedded 
in elevated islands bound by curved steel rims. Three of these islands create various pathways which 
connect the two entrances in the northeast and south. Three wide steps bridge the difference in height of 
approx. 1 m between the courtyard and the main campus.
  
The design goal was to create an architectural sculpture which matches the scale and form-language of 
the courtyard, and allows free movement throughout the site. The supports should align with the existing 
landscape, and the grid structure should incorporate the central island and tree. These complex 
requirements provided the opportunity to prove the flexibility of this novel design method.
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Figure 6.3  The site requirements called for a well-adjusted design surface encompassing a central tree (ES 2017) (Photo: Felix Noe 
2017).

6.1.2 Surface Design
The surface design is separated into a concept, and form-finding phase.

During the concept phase, the surface was designed by adjusting only the boundary curves using a fast 
digital routine to approximate a minimal surface. The real-time manipulation of the shape was key in 
producing a multitude of design variations, and assessing their visual impact, functionality, support layout 
and surface area (as a direct indicator of the construction cost).
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Figure 6.4  Design iterations and early sketch of the Asymptotic Gridshell (ES 2017).

A key objective of the concept phase was to find a shape that would benefit the efficient shell-like load-
transfer. We deliberately aimed for qualities of a funicular form, such as sufficient double curvature, arch-
shaped edges, and well-distributed supports. 
While the digital algorithm implemented only the geometric requirement of constant mean curvature, these 
structural goals were subject to the experience and intuition of the designer.
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Figure 6.5  The design shape is derived from a catenoid which is adjusted to fit the site requirements (ES 2017).

The final design shape is derived from a catenoid – the minimal surface between two circles. By manipulating 
the position and shape of the two boundary circles, we designed an intricate, mussel-shaped surface with 
high double curvature and arched-shaped boundaries. Cutting this shape with the horizontal plane 
generated three curved support lines which nestle well into the site. The catenoidal topology creates a 
circular oculus around a central island and tree, and opens two archways which allow visitors to move 
freely throughout the courtyard.

Once the design and boundary curves were defined, the surface was determined more accurately as a 
mesh and a NURBS surface (Section 5.5.2). This process was closely linked to the network design and 
was conducted repeatedly with small adjustments until the surface curvature and network layout satisfied 
all aesthetic and structural requirements (defined in Section 6.3.2).

6.1.3 Network Design
The network was first designed as an isothermal network of principal curvature lines and later bisected by 
asymptotic curves at every node. This does not only produce a homogeneous, almost square cell layout. 
As mentioned in Section 5.5.4, aligning the diagonals with the principal curvature direction creates 
advantages for future façade solutions with single curved or planar quadrilateral panels.

The network layout is directly dependent on the curvature of the surface. A high Gaussian curvature 
increases the density and torsion of the lamella structure and might prohibit a smooth construction 
process. Planar surface points, on the other hand, create singularities within the network, and thus have a 
large impact on the layout and stability of the grid. Both factors were carefully adjusted by controlling the 
progression of boundary curves, re-computing the surface and testing the new network layout.
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Figure 6.6  Refinement of surface and network. Left: Two 3D prints testing the network density. Right: Diagram illustrating the 
alignment of singularities along a common principal curvature line (ES 2018).

In the case of the Asymptotic Gridshell, there are two singularities on opposite sides, east and west of the 
oculus. To benefit the aesthetic and structural properties of the grid, both singularities are designed 
identically as traversal nodes connecting six continuous edges. This requirement demanded that the 
network aligns with both singularities. For this reason, both singularities were arranged on the same 
principal curvature line. The network density was determined by a subdivision of this connecting axis 
(Figure 6.6, right).

Design Proposal
The final design surface has a circular topology which is the remainder of the catenoid that it is derived 
from. This property results in an upended shape, flipping the surface from inside to outside. Due to this 
characteristic, the pavilion was named INSIDE\OUT in media publications.

Figure 6.7  Visualization of the final design of the Asymptotic Gridshell (Illustration: Denis Hitrec 2017).
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6.2 Construction

The repetitive parameters of asymptotic networks on minimal surfaces allow for identical, planar and 
orthogonal grid joints. The grid can be constructed from straight lamellas, oriented normal to the design 
surface. They are bent and twisted during construction to account for the geodesic curvature and geodesic 
torsion of the design network. This large, elastic deformation limits the possible thickness and height of 
the lamellas (Section 6.3.2). 
All joints in the structural grid are identical and orthogonal. To activate the load-bearing behaviour of a 
gridshell, the quadrilateral grid must be able to transmit shear loads in-plane. The grid is thus braced with 
diagonal steel cables.
The detailing and construction process was informed by the practical solutions of the Multihalle in 
Mannheim (Section 2.4). 

Section 6.2.1 discusses a strategy to allow deformation and create stiffness. Section 6.2.2 and Section 
6.2.3 present the two prototypes (timber and steel) to test the assembly process. Section 6.2.4 focuses on 
the developments of joints for the typical grid intersection, singularities, edges, seams and supports. 
Finally, Section 6.2.5, will present the manufacturing of lamellas, the prefabrication of segments and the 
assembly process on site.
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Figure 6.8  Axonometry of the Asymptotic Gridshell (Illustration: Denis Hitrec 2017).

6.2.1 Deformation and Stiffness
Using the elastic behaviour of a material to construct a curved geometry will always raise the question of 
deflections and stability under self-weight and external loads. Controlling this by increasing the bending 
stiffness is not an option if the elements are to be bent elastically into a significantly curved geometry. 
Lienhard (2014, p. 141) calls this discrepancy a “paradoxon that underlies all bending-active structures”.

The two opposing requirements – elastic deformation and stiffness – can be resolved within the construction 
by introducing two parallel layers of beams. Each layer is sufficiently slender to be bent and twisted 
elastically into its target geometry. Once the final geometry is installed, the two layers are coupled with 
shear blocks in regular intervals to increase the overall stiffness.
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This strategy was realized in the Asymptotic Gridshell by installing two slender lamella-profiles of 100 x 1.5 
mm each at 25 mm distance. They are coupled naturally at every joint within the dense grid. Additionally, 
the two layers can be connected with shear couplings in regions close to the supports where normal 
stresses (due to self-weight) naturally increase. The load-bearing behaviour of this combined profile is 
dependent on the distance of the two layers, as well as the interval and size of couplings.

Figure 6.9  View from underneath the pavilion showing the lamellas and cables, as well as a diagonal seam (Photo: Felix Noe 2017).

6.2.2 Timber Prototype
This construction method was first tested on a timber prototype. The two asymptotic families of curves 
were constructed on separate levels (one on top, and one below) using continuous lamellas of 4 mm 
poplar plywood. The upper and lower level are connected with a square stud of 15 x 15 mm and 80 mm 
length, enforcing the orthogonal intersection angle. 
This rigid connection could only be fitted once all elements were curved in their final spatial geometry. 
Consequently, each lamella had to be deformed and installed individually between rigid edge beams of 20 
mm plywood. The height of these planar, curved beams was determined by their (partly steep) intersection 
angle with the lamellas, creating a dominant arch-shaped frame. Finally, each pair of lamellas was 
connected with additional blocks between the joints to increase the overall stiffness. The timber prototype 
was not yet equipped with diagonal cables and thus carries its self-weight as a curved girder.

  

Figure 6.10  Timber prototype. The lamellas are constructed on separate levels allowing for continuous, uninterrupted profiles. The 
lamellas were individually fitted between the rigid edge beams and later connected by shear blocks (Photos: Denis Hitrec 2016).
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6.2.3 Steel Prototype
The second prototype was built from 1.5 mm strips of steel. Here, the two asymptotic families of lamellas 
are assembled flush on one level. Therefore, the lamellas were prepared with a perpendicular double slot 
at every joint. The slots define the precise location of intersections and establish a scissor hinge with a 
stable rotation around the z-axis. This detail allows us to first assemble all the lamellas into a flat grillage 
and afterwards induce the desired shape through a global deformation.

Figure 6.11  Assembly process of the steel prototype showing the elastic transformation from flat to curved geometry (Photos: ES 
2016).

For this purpose, the grillage was placed on a cross-shaped support and was “eased down” and “pushed 
up” simultaneously (Quinn and Gengnagel 2014). During this deformation process, a pair of orthogonal 
washers were tightened with one bolt at every node, enforcing the 90-degree intersection angle, thus 
determining the final geometry.
Once the shape was defined, the edges are fitted by attaching bespoke steel strips on top and bottom. 
This edge-beam is not aligned with the asymptotic grid and thus forms rigid triangles which fasten the final 
geometry and generate stiffness. Again, no diagonal cables were attached, as the grillage was sufficiently 
stiff to carry its own weight.

Figure 6.12  Steel prototype. The lamellas are doubled and coupled to allow for low bending radii and high stiffness (Photo: Tobias 
Bahne 2016).

6.2.4 Joint Development
The construction joints were consistently developed throughout the design process. They were partly built 
as prototypical joints at a 1:1 scale and later tested within the two prototypes. This helped to assess the 
aesthetic and practical quality of each solution.
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Typical Grid Joint
The typical grid joint is planar and orthogonal with no geometric variation. Nonetheless, the construction 
process, diagonal bracing and future façade attachment created multiple requirements which were 
subsequently included in the detailing solutions.

A variety of joints were developed which vary in continuity and number of lamellas, separation of levels and 
positioning of the diagonal cables (Figure 6.13):
The first three proposals (A, B, C) suggested the use of single lamellas to be either welded on site (A), 
bolted individually (at slight eccentricity) (B), or secured with a bespoke connector and two parallel bolts 
(C). The use of two parallel lamellas allows for a central connector (D, E). Joint B proposes the use of 
individual lamella-segments which are folded and bolted at every joint, while joints A, C, D and E realize 
continuous elements, either by interlocking lamellas through slots (A, C, E) or by arranging them on 
separate levels (D). 
The diagonal bracing can be installed within the slotted lamellas (C) or fixed separately at the top or 
bottom (E).
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Figure 6.13  Six proposals for the typical grid joint (ES 2018).

The final joint (E) was first tested in the steel prototype and subsequently chosen for the Asymptotic 
Gridshell. It is constructed from two layers of lamellas in each direction, interlacing on the same level 
through perpendicular slots. The slots are double as wide as the thickness of lamellas to allow a rotation 
of up to 60° during assembly. The lamellas are locked by two star-shaped washers on top and bottom. 
Another cross-shaped clamp fixes the diagonal cables and keeps them from sliding off. A single carriage 
bolt and nut are used to fix the lamella and cable connections. 

    

Figure 6.14  Fabrication and assembly of the typical grid joint (E) (Photos: Felix Noe 2017).
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This construction created the following advantages:

- The slotted connection of lamellas generates a scissor joint 
during construction – a prerequisite to enable the global 
deformation of segments without scaffolding.

- The star-shaped washers allow a fixture of the 90° 
intersection and restrict the tolerance of the 3 mm wide 
connection slots after assembly.

- The single carriage bolt allows a fast assembly. The square 
neck on the underside is held by the square opening of the 
washer. Thus only one nut per joint must be tightened.

- The central connection axis is beneficial for the structural 
connection of double lamellas as well as the double bracing. 

- The two parallel lamellas allow the insertion of shear blocks 
to couple and stiffen the beams. This ensures sufficient 
rigidity to transmit additional bending and normal stress.

- The joint arrangement results in a minimalistic appearance 
hiding all connecting elements between lamellas. The central 
bolt, as well as the folded washer and clamp display the 
structural and functional purpose with minimal effort.

A disadvantage of this construction is the weakening of the lamellas 
at the joints. On the one hand, this called for special attention 
during assembly as the lamellas are likely to kink if handled 
incorrectly. On the other hand, the elastic bending results in a 
higher curvature and higher bending stress in these areas and 
promotes buckling. 

Figure 6.15  Explosion of the final grid joint (E) (ES 2018).

Singularity Joint
The only exception to the typical grid joint appears at the singularities. Here, six pairs of lamellas meet in 
a regular hexagonal star. Similarly to the rectangular joints, it is interlaced with slots and fixed by a central 
carriage bolt. This joint was constructed separately and connected with the lamellas on site. 

Seam Connection
The lamellas are fabricated in segments of maximally 4 m in length. They are combined on site by 
overlapping the lamella-ends between two joints and fixing them with 6 screws. The pavilion was 
constructed from nine segments, the seams between those segments run diagonally or parallel to the grid. 
They are almost invisible in the final structure (Figure 6.9).
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Figure 6.16  Left: Hexagonal joint for singularities. Right: Seam connecting prefabricated segments (Photos: ES 2018).

Edge Profiles and Joints
The edges are fitted with curved lamellas at top and bottom, running tangential to the design surface. 
These edge-lamellas do not follow an optimized path of reduced curvature. They are laser cut individually 
and later bent and twisted into the required geometry.
The gird-lamellas and cables are connected to these edge profiles. Each pair of lamellas is coupled with a 
square tube and fixed to the edge-lamellas via a central bolt. The cable loops around a thimble and is 
secured with a wide washer on top of a carriage bolt. The offset between edge-lamellas is kept constant 
through a cylindrical tube. 

Shear Coupling
The two parallel lamellas are coupled at every grid joint to increase their combined in-plane stiffness. Due 
to the high axial load in some areas, these compound beams experience additional bending stress. To 
prevent buckling their bending stiffness needed to be increased. For this purpose, a shear block was 
planned to be constructed from square tubes (25 x 25 mm) creating an additional coupling of the lamellas 
between each grid joint. This method turned out to be inefficient for two reasons:

- The tubes were not wide enough to be fixed with multiple screws and could not sufficiently transmit 
shear forces.

- The curved lamellas tend to buckle between joints. This buckling behaviour is similar to the deflected 
shape of the well -known Euler Buckling Mode 2. In this case, the shear connection at the central 
position is ineffective as there is no shear stress at this location. 

As a consequence, the square tubes were replaced by wider timber elements to restrict the buckling of 
lamellas at the most crucial locations.

    

Figure 6.17  Left: Edge connections of lamellas and steel cables. Middle: Coupling of lamellas. Right: Each lamella is labeled 
individually (Photos: ES 2018).
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Supports
The horizontal supports are fabricated individually following the incline and curvature of the grid. The 
horizontal edge beam is supported in regular intervals by individual brackets taking up the variable incline. 
The brackets are welded onto a base plate which is curved in the horizontal plane. To prevent the structure 
from lifting up due to strong winds, the supports were equipped with a 100 mm high border and loaded 
with gravel, adding approximately 5 kN of weight at every support.

    

Figure 6.18  The supports are fabricated individually and filled with gravel to reach the necessary weight against tilting and lifting 
(Photos: ES 2017).

6.2.5 Construction Process
The Asymptotic Gridshell was constructed in approximately six weeks. 
In the first two weeks the stainless steel lamellas were laser cut, labelled and transported to site. Additionally, 
the star-shaped washers for the typical grid joints had to be cut and folded. During the third and fourth 
week, nine individually curved segments were prefabricated off site. The final weeks, five and six, were 
needed to assemble these segments on site, fasten the seam connections, attach the supports and fit the 
diagonal cables.

Production of Parts
All lamellas are fabricated as flat and straight strips. The edge length of the digital design model are simply 
marked along the rectangular strips.
The lamellas of the Asymptotic Gridshell were laser cut from rectangular 4 x 2 m steel panels. The 
rectangular geometry allowed for minimal offcuts and easy transport. The fabrication of washers and 
clamps was incorporated in the same laser cutting procedure, offering a cost-efficient production of all 
parts.
The edge-lamellas and supports had to be fabricated individually. The edges were modelled in 3D, unrolled 
into a flat geometry, and laser cut at the same thickness and width (1.5 x 100 mm) of the standard lamellas. 
The supports were fabricated separately from 6 mm steel plates. The diagonal steel cables, looping from 
edge to edge, were tailored to fit the precise length at the top of the lamella construction.

    

Figure 6.19  Prefabrication: The straight lamellas are interlocked by hand into flat segments. The segments are then transformed 
elastically into their designed shape. This erection process follows a compliant mechanism without the need for scaffolding. Nine of 
these segments were prefabricated individually off site (Photos: ES 2017, Felix Noe 2017, Andrea Schmidt 2017).
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Prefabrication
The pavilion was assembled from nine individual segments. The prefabrication process takes advantage 
of the elastic erection process which was tested with the steel prototype (Section 6.2.3).
The lamellas were slotted together by hand to form a flat grillage (Figure 6.19). In this state, the lamellas 
display no geodesic torsion. The intersection angles are not yet constant. The joints are flexible and allow 
for a scissor movement around their z-axis. 
Each planar lamella grillage was placed on a cross-shaped support and then deformed into the desired 
shape. Unlike other elastic grids (such as the Multihalle in Mannheim) this grillage cannot assume any 
shape. Instead, its deformation follows a predefined movement. The design shape is determined by 
enforcing a constant node angle of 90 degrees. 
This defined kinetic behaviour is called a compliant mechanism (Howell 2002). It enables an elastic 
erection process without formwork.32 The geometrical behaviour has been studied and published in 
(Schling et al. 2018). Its detailed mechanical implications will be part of future research.

Assembly
The segments were installed on site in a “top to bottom” process. The two highest segments were first 
connected on the ground and then hoisted up onto temporary supports. This strategy allowed the 
construction team to work from the ground and limited the risk of falling. It also lowered the positional 
tolerances, as all subsequent segments could simply be positioned and attached to the higher central 
pieces.
After the lamella grid and edges were completed, the supports were attached at each horizontal edge. As 
a last step, the steel cables were laced at every second diagonal gridline and tightened manually. Only 
after all cables had been fixed at each node, the supporting scaffolding was slowly released. 

The built structure proved to be surprisingly accurate in shape, given that its form is determined to a large 
degree by the individual deformation of lamellas. The location of supports matched the previously surveyed 
footprint with a tolerance of only ± 30 mm.

    

Figure 6.20  Assembly: The prefabricated segments of up to 400 kg are positioned with a crane, temporarily supported, and bolted 
together by hand. To activate the structural behaviour of a gridshell, the completed grid is braced diagonally and fixed at supports in 
the vertical and horizontal directions (Photos: Andrea Schmidt 2017).

32 Naturally, the compliant mechanism is subject to gravity and other external loads and needs to be verified by selective 
measurements.
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The Completed Pavilion
The Asymptotic Gridshell is the first architectural structure that utilizes the geometric potentials of an 
asymptotic network on a minimal surface. The gridshell spans 9 x 12 m and covers an area of approximately 
90 m². Its surface weight is approximately 18 kg/m², a total of 1.6 tons. 
The steel structure has become an integral part of the Munich campus. The slender lamellas create a 
gradient shadow with virtually full transparency at a straight view and an almost opaque appearance at an 
inclined view.

Figure 6.21  View from the Immatrikulationshalle towards the Asymptotic Gridshell (Photo: Martin Ley 2018).

 

Figure 6.22  View underneath the Asymptotic Gridshell (Photo: Martin Ley 2018).
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6.3 Load-Bearing Behaviour

Ensuring the structural integrity was a critical driver for the design and construction development. In the 
following section, two approaches are presented which were used to investigate the load-bearing behaviour 
of this strained gridshell.

Section 6.3.1 gives a qualitative evaluation of the load-bearing behaviour. The structure is interpreted as 
both a grillage and a gridshell, considering local and global effects.

Section 6.3.2 investigates the correlation of curvature and deformation. The curvature values of the design-
network are used to predict the stresses inside the lamellas due to bending and torsion. The results were 
used to define minimal curvature radii and maximal twisting, and thus inform the design process. 

FE-Analysis
During the planning process, the structural grid was simulated in a Finite Element (FE) environment by 
Jonas Schikore (Schling et al. 2017b). For this purpose, Schikore developed a novel workflow to incorporate 
residual stress due to the erection process in the FE-analysis by translating the individual curvature of 
lamellas into strain loads.
This model was used to calculate deflections and support reactions due to residual stress, self-weight, 
wind and man loads. The calculations showed that the self-weight of the structure has marginal effects on 
the stress distribution, which is determined mainly by the residual stress of the erection process. The 
model verified the stability of the pavilion and was used to obtain planning approval. 
The documentation and discussion of the FE-analysis is not part of this thesis. 

6.3.1 Qualitative Structural Behaviour
We observed a hybrid load-bearing behaviour of two competing systems: a grillage and a gridshell. The 
profiles are oriented normal to the surface. Due to the bending stiffness in their strong axis, the grid is able 
to act as a beam grillage. This bending-stiffness is needed to account for the local planarity of asymptotic 
networks (due to their vanishing normal curvature) and to stabilize open edges.
At the same time, the strips form a double-curved grid. Bracing this quadrilateral network with diagonal 
cables and creating fixed supports (in vertical and horizontal directions) activates the form-active behaviour 
of a gridshell.
Which of the two mechanisms dominates is dependent on the overall shape, supports and loading. The 
Asymptotic Gridshell was designed with high double curvature and arch-shaped boundaries to promote a 
shell-like behaviour for gravity load cases.

The elastic erection process results in residual stresses inside the curved and twisted grid elements. Due 
to the low profile thickness, the initial bending moments stay low and have minor effects on the global 
behaviour. However, compression of these curved elements increases the bending moment in their weak 
axis. The strategy of doubling and coupling lamellas is therefore essential to control local buckling. The 
buckling behaviour is dependent on the grid size as well as the offset distance and coupling interval of 
parallel lamellas, and was adjusted individually during the construction process.

Generally, principal stress trajectories of a shell constitute the optimal orientation for compression and 
tension elements in a respective grid structure. The novel design method chooses to follow a geometrically 
optimized orientation along the asymptotic directions, taking into account an increase of stresses.
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6.3.2 Curvature and Deformation
During the early design phases, it was necessary to predict the normal and shear stress caused by the 
deformation of lamellas, and deduce minimal bending radii and maximal torsion for the design.

In order to correlate the design curvature of a network with the deformation of its building parts, we have 
defined three requirements (Section 3.2.4) that need to be fulfilled in the built structure.

- The beams must be curved continuously and follow the smooth design network.
- The profiles must be continuously oriented upright (along the normal vector) to align with the 

Darboux frame.
- The beams must be initially straight and bent elastically so that their deformation corresponds to 

their curvature.

The Asymptotic Gridshell satisfies all three requirements. The continuous and straight lamellas were bent 
elastically and held upright (normal to the reference surface) at every scissor joint. Therefore, the profile 
orientation x, y and z can be considered equivalent to the three vectors t, u and n, and the expected 
deformation kx, ky and kz of the structural element can be regarded equal to the geometric curvatures tg, 
kn and kg of the surface curves (Section 3.2.4).
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Figure 6.23  Diagram showing the aligned parameters of curvature and deformation (ES 2018).

Based on this relationship, each curvature can be analysed and used to predict respective stresses due to 
deformation.

- Due to geodesic curvature, the lamellas are bent around their z-axis. We use the classical beam 
theory, Euler-Bernoulli, to calculate the normal stress due to bending. 

- Due to geodesic torsion, the lamellas are twisted around their local x-axis. Since the cross-section 
is warp-free, the shear stress is calculated with the Saint-Venant Theory.

- Additionally, the large twist of up to 65°/m causes an elongation/compression of the outermost/
central fibres within the lamellas. The normal stress is calculated using the theory of so-called Helix 
Torsion (Lumpe and Gensichen 2014).

When choosing the profile height and thickness, the section modulus is adjusted to the maximum bending 
and twist in order to keep deformation elastic.
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Analysis of Normal Stress due to Bending
We can express the relationship between the curvature kg and the bending moment Mz of the lamellas 
based on the bending stiffness E·Iz using the Euler-Bernoulli model.33

kg =  κz = 1
r

= Mz
E∙Iz

 [mm−1]  
 

(6.1) 

  This relationship is used to calculate the minimum bending radius rmin for lamellas. 

rmin =
E ∙ Iz

Mz,max
=

E ∙ Iz
σy,k ∙ Wz

 =
E ∙ t
σy,k ∙ 2

 [mm] 

 

(where   Iz = t3h
12

   and   Wz = t2h
6

 ) 

 
(6.2) 

  
The equation shows that only the lamella’s thickness t is relevant to determine the minimal bending radius. 
This calculation was used throughout the design process to check for plausibility of curvature and profiles.

Implementation. We determined the minimum bending radius rmin for structural steel lamellas with 
Equation 6.2 using the following specifications: t = 1.5 mm, sy,k = 235 N/mm², E = 210000 N/mm²

rmin =
210000 N

mm2 ∙ 1.5 mm

235 N
mm2 ∙ 2

= 670 mm 
 

(6.3) 

  
The structure was designed with a minimum bending radius of approx. rmin = 1060 mm. This corresponds 
to a max. normal stress due to bending of 148.6 N/mm² (or a material utilization of 63%).

Analysis of Shear Stress due to Torsion
We can express the relationship between the geodesic torsion tg and the torsional moment MT around the 
x-axis of warp-free profiles based on the Saint-Venant torsional rigidity G·IT, where G is the shear modulus 
(indicating the shear rigidity of the material), and IT is the torsional constant (indicating the geometry of the 
rectangular profile). The twist kx is described geometrically in radians as the angle of rotation q per length 
l along the lamella.

τg = κx =
MT

G ∙ IT
 �radm � (6.4) 

  If the maximum allowable shear stress ty,k of the material is known, the maximal twist kx,max can be deduced:

τg,max = κx,max = MT,max
G∙IT

 = τy,k∙WT

G∙IT
= τy,k

G∙t
 �rad

m
�  

 

(where   IT = t3h
3

   and   WT = t2h
3

 ) 

 
(6.5) 

  Again, only the lamella’s thickness is relevant to determine the maximum elastic twist.

33 E is the Young’s modulus (indicating the material elasticity), and Iz is the second moment of area with respect to the z-axis 
(indicating the geometry of the rectangular profile with respect to thickness t and height h). The curvature is described 
geometrically by the reciprocal value of the bending radius r.
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Implementation. We determined the maximum twist kx,max with Equation 6.5 for a structural steel lamella 
of 1 m length using the following specifications: t = 1.5 mm, ty,k = 136 N/mm²,  G = 81000 N/mm²

τg,max = κx,max =
136 N

mm² 

81000 N
mm2∙1.5 mm

∙  1000 mm
m = 1.12 radm ≈ 64 °/m  

 
(6.6) 

  
The pavilion structure was designed to fully utilize the elastic range due to twisting. This was necessary to 
allow for the high double curvature of this gridshell. 
Following Equation 5.6 (Section 5.5.3), tg = k1 , the surface was designed with a maximum principal 
curvature of 1.12 m-1, which equates to a curvature radius of 0.89 m and a Gaussian curvature of 1.25 m-2.

Analysis of Normal Stress due to Torsion
Calculating normal stress due to extreme torsion is not common. We will first present a purely geometrical 
explanation of this effect, and subsequently introduce the mechanical theory.

The geodesic torsion of the design network causes a change in length within the geometry of strips. This 
non-developable deformation (Section 3.2.3) was planned to allow for a simplification of nodes and a well-
defined geometry of strips (Section 5.5.5).
The difference in length Dl within a twisted strip is simply calculated by comparing helix-length lhelix  and its 
original length l. The helix-length is linearly dependent on the geodesic torsion tg and the radius r = h/2. 

∆l(r) = ��τg ∗ l ∗ r�2 +  l2   −  l   
 

(6.7) 

  

lhelix

∆l = lhelix - l  

l

h

τg * l * r

lhelix

l
τg * r

τg * lr

σH,max

σH,min

cε = εH,min
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Figure 6.24  Helix length. The difference in perimeter-length between a twisted and straight strip is dependent on the torsion and the 
height of the strip (ES 2018).

This simple geometric dependency is used in the so-called theory of Helix Torsion (Lumpe and Gensichen 
2014, pp. 118–124). The theory provides an equation to calculate strain and normal stress34 due to extreme 
twisting. In this case, the difference in length is distributed between outer and inner fibres to create an 
equilibrium of normal stress throughout the cross-section.

   εH =   12 (r κx)2 + cε;      with     cε =  − 12  ip
2 κx2 

 
(6.8) 

  
The strain eH is distributed along a parabola which is naturally shifted such that its sum (and the sum of 
normal stresses) at each section are zero. This shift is represented by ce. The maximum normal stress sH,max 

occurs at the outermost fibers and the minimal stress sH,min occurs at the centre of the profile.

34  The strain and normal stress related to Helix Torsion will be labelled as eH and sH.
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σH,max =  1
2
 E �1

4
 h2 −  ip2�  κx² 

 
 

σH,min = − 1
2
 E ip2 κx² 

(6.9) 

  

In the case of slender lamellas, where height is much greater than their thickness, h >> t, we can consider 
ip ≈ iy = 1/√12·h, and simplify the equations:

σH,max ≈  1
12  h

2 κx2  ∙ E  = − 2 ∙ σH,min  � N
mm2� 

 
and 

 
εH,max  ≈  1

12  h
2 κx2  = −  2 ∙ εH,min � N

mm2� 

(6.10) 

  
The profile thickness is thus eliminated from the equation so that only the lamella height h is relevant to 
determine the maximum normal stress.

Implementation. We determined the maximum and minimum strain and normal stress caused by torsion 
using Equation 6.10, based on a maximum twist of 64°/m (= 1.12 rad/m), for a structural steel lamella of 
100 mm height.

εH,min = − 1
24

  (100 mm)2  �0.00112 1
mm

�
2

= −0.000523  
 

εH,max = − 2 ∙  εmin  = 0.001045          
 

σH,min =  εH,min  ∙  E =   − 109.76 N
mm2  

 
σH,max = εH,max  ∙  E =  219.52 N

mm2  

(6.11) 

 

The maximal normal stress due to torsion almost reaches the permissible stress of sy,k = 235 N/mm². 
Additionally, a contraction of the lamellas by up to 0.52 mm/m is expected at their most twisted part. This 
change in length was not considered in the fabrication planning.

The normal stresses due to bending and torsion were not superimposed as their occurrence is reciprocal. 
If the geodesic curvature is high, the geodesic torsion vanishes and vice versa (Section 5.5.3).
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Conclusion

This thesis investigates double-curved grid structures with constant geometric parameters. 
For this purpose, a holistic theory of repetitive structures was established considering both geometric and 
constructive criteria. This theory was used to analyse existing structures, investigate the morphology of 
repetitive networks, and develop a novel method to design and construct strained gridshells.

Results and Insights

The thesis is arranged in three parts and six chapters:

Part I State of the Art
Chapter 1 presents the fundamental theories of geometry relevant for this thesis: The parameters of 
curvature, classification of surfaces, segmentation and network topology are discussed. We highlight 
analytical tools, such as the ‘normal curvature graph’ or the Gaussian image, and illustrate the effect of 
singularities.

In Chapter 2, the review of relevant publications in geometry and architecture shows that a repetitive 
construction is not necessarily based on a repetitive network geometry. Many built examples rely on 
tolerances, hinges or deformation to adapt identical building parts to variable geometric situations. We 
focus on the construction of the Multihalle in Mannheim, looking at detailing solutions of this elastically-
formed gridshell.

Part II Repetitive Structures
In Chapter 3, a theoretical framework for repetitive structures is established using both geometric and 
constructive criteria.
The separate analysis of smooth and discrete segmentations has proven especially insightful: Comparing 
their parameter-sets allows the definition of dependencies between the three parameters of curvature of 
an edge (kn, kg, tg) in a smooth network, and three respective angles (a, b, g) at the nodes of a discrete 
network. Combining both sets establishes a complete table of parameters which can be used to 
geometrically compare even hybrid networks.
We distinguish tolerances, hinges and deformation as constructive criteria to achieve repetition. Our focus 
is set on deformation which creates a curved structure from straight or flat building parts. We separate its 
geometric behaviour into ‘developable deformations’, causing a change in curvature without a change of 
length or proportion (for one or two-dimensional objects), and ‘non-developable deformations’, which 
cause additional elongation or compression and may transform a flat element into a double-curved shape.
Finally, we define the requirements under which the curvature of edges can be regarded equivalent to the 
deformation of beams.

In Chapter 4, the theoretical framework is implemented to analyse existing structures. 
The workflow is demonstrated in three examples – The Multihalle in Mannheim, the Reticulated Dome in 
Neckarsulm and the Eiffel Tower Pavilions in Paris. The quantitative analysis of parameter values not only 
allows for an identification of repetitive parts, but also gives insights into the detailing of joints or bending 
radii of beams based on their parametric range of angles and curvature. Furthermore, we can identify 
geometric and constructive strategies which affect both the design and construction process.

Figure 6.25  Night view of the Asymptotic Gridshell (Photo: Felix Noe 2017).
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The projects presented in the literature review are analysed qualitatively to create an overview of theoretical 
and practical, smooth and discrete networks. This table allows a broader understanding of common trends 
and strategies used in repetitive structures.
Finally, a second table systematically deduces all possible parameter combinations of smooth 
segmentations. It illustrates the potentials for repetitive design and gives incentives for future research.

Chapter 5 investigates the morphology and design of repetitive networks within five consecutive studies:
- The first study (Section 5.1) uses an inductive approach to simulate regular networks which are 

pulled onto various shapes under constant parameter constraints. The experiment illustrates the 
morphological behaviour of triangular, quadrilateral and hexagonal networks, detects principles of 
form and distortion, and allows a comparison of discrete and smooth networks.

o Triangular nets show a geometrical rigidity. Their repetitive solutions are restricted to 
developable shapes. In contrast, quadrilateral and hexagonal networks are versatile and 
adjust their layout to various parameter constraints. An alignment with the principal 
curvature direction is a successful strategy to achieve repetitive solutions.

o We observe a drastic increase of geometrically valid solutions if the curvature (i.e., 
deformation) of edges is permitted. However, this flexibility is attained through the 
occurrence of fisher-net effects, causing a “non-fair” S-curved shape of edges. 

o We conclude that a great potential for repetitive structures lies in the deliberate design of 
structures which do not fulfil fairness or proximity requirements, creating S-curved edges 
or undulating / folded surfaces. 

o Finally, we conjecture that there is a correlation between the distortion of a repetitive 
network (without singularities) and the footprint-area of its Gaussian image.

- The second inductive study (Section 5.2) investigates the use of tolerances and deformation to 
create double-curved façades from standardized rectangular panels. It examines the design 
workflow of appropriate surfaces and layouts that are limited by minimal curvature radii and aim for 
minimal seam tolerance. This investigation comes to the following conclusions:

o With sufficient tolerance, any shape can be constructed from repetitive parts.
o Non-developable deformations may, to some degree, enable the construction of smooth 

double-curved skins from flat panels.
o We describe the general behaviour of seam tolerance, where synclastic regions create 

convex seams and anticlastic regions create concave seams. Furthermore, if the network 
is not aligned with geodesic curves, the panel edges show a serrated progression. 
Enforcing minimal seams along a row of panels causes a stepping effect which shifts 
adjacent rows into a brick pattern.

o Again, we conjecture a correlation of the effects of distortion (in this case the seam 
variance) with the footprint-area of its Gaussian image.

 
- In our experimental studies (Section 5.3), we follow a research-by-design approach using physical 

prototypes. We present six designs which all use deformation to create double-curved structures 
from repetitive parts. The subsequent analysis of parameters reveals hidden similarities between 
structures and illustrates the specific use of deformation. In a final observation, we discuss aspects 
of distortion and come to the following conclusions:

o The distortion of a network is not merely a side-effect of curvature, but a crucial factor to 
design and build double curvature. Designing a network which accommodates distortion 
(through the topology of a network, the variation of angles or adjustment of edge lengths), 
allows for a well-defined geometry, and aids an efficient self-supporting structure.
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- The deductive study (Section 5.4) investigates the dependency of curvature and network, and their 
potentials for strained grid structures. It reveals the close relationship between the curvatures of 
surface curves and the shapes and networks which derive from them.

 Combining repetitive curvature parameters with an elastic construction process additionally offers 
the use of developable or straight strips of material to construct a curved network of beams. 
Especially promising are asymptotic curves which are able to combine the benefits of straight 
unrolling and an upright orientation of lamellas. A closer investigation of asymptotic networks reveals 
two parametric simplifications:

o Equilateral asymptotic networks live on surfaces of constant negative Gaussian curvature.
o Asymptotic networks with orthogonal nodes live on surfaces with constant vanishing 

mean Gaussian curvature (i.e., minimal surfaces).

- Our final study (Section 5.5) takes advantage of the geometric properties of asymptotic networks on 
minimal surfaces to develop a novel design method. We develop a workflow of designing minimal 
surfaces, finding the paths of asymptotic curves and creating a homogeneous network bisecting 
principal curvature directions. 

 We choose to deviate from a truly developable geometry of strips in order to obtain identical 
intersections and a well-defined, ruled geometry of strips throughout the structure. As a consequence, 
some twisting of beams, i.e., non-developable deformations, have to be considered in the 
construction planning.

 Finally, we illustrate the design spectrum of this novel method and discuss how the boundaries 
effect the surface, network and singularities.

Part II Case Study
In Chapter 6 we implement the novel design method developed in Section 5.5 and present the planning 
and construction process of an architectural case study, the Asymptotic Gridshell. The project development 
reveals a multitude of practical and theoretical insights on the design process, the construction, fabrication 
and assembly, as well as the load-bearing behaviour:

- In Section 6.1, we discuss the design process of surface and network. Fulfilling the architectural 
requirements related to site, functionality and structure is naturally more complex, if the design 
spectrum is restricted to minimal surfaces and asymptotic networks. In particular, the conception of 
a beneficial structural form and network to foster the load-bearing behaviour of a gridshell demanded 
much experience during this phase.

- Section 6.2 presents the planning, testing and execution of construction. The asymptotic network 
allows for a simple construction from straight lamellas and orthogonal nodes. To ensure sufficient 
stiffness a strategy of doubling and coupling lamellas was implemented. This also facilitated an 
efficient grid-joint with a central connection axis. A novel erection process was developed along two 
prototypes, one in timber and one in steel. The lamella grid with scissor joints create a so-called 
compliant mechanism which allows a defined elastic deformation without the need for formwork.

- Finally, the load-bearing behaviour is investigated in Section 6.3 in three separate approaches:
o The qualitative evaluation observes a hybrid structural behaviour of both a grillage and a 

gridshell which is dependent on the shape and support of the structure. The deliberate 
use of deformation calls for constructive measures to control the buckling of lamellas 
around their week axis. Finally, the asymptotic directions do not align with the principal 
stress trajectories of a shell and thus constitute an increase of stress in the grid structure.
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o The correlation of curvature and deformation was used to calculate the permissible 
bending radii and torsion of lamellas, and ensure an elastic behaviour of beams during 
construction. A special focus was set on the twisting of lamellas. Next to shear stress,  
which are calculated using the Saint-Venant-Theory, this non-developable deformation 
causes an elongation of the outer fibres and compression of the inner fibres within the 
lamellas. This results in normal stresses related to the lamella height, which can be 
calculated based on the theory of Helix Torsion (Lumpe and Gensichen, 2014).

Final Reflections

This thesis combines the knowledge of differential geometry, architecture and structural engineering, and 
establishes a parametric framework that takes into account both geometric and constructive criteria. This 
approach allows us to design and build double-curved structures with repetitive parameters.

We systematically investigate the morphology of repetitive networks and uncover dependencies of shape 
and structure: For example, we correlate the node angles in a mesh to the curvature of edge in a respective 
smooth segmentation, and define requirements to equate the curvature of a network to the deformation of 
its beams. We study the behaviour of triangular, quadrilateral and hexagonal nets and create an overview 
of repetitive, discrete and smooth solutions. One important insight is that the effects of distortion, such as 
rough meshes or S-curved edges, appear only if both mesh angle and edge length are restricted.

The results not only illustrate the spectrum of repetitive design. They bridge the gap between mathematics 
and engineering and discover novel design solutions, which purposefully apply elastic deformation to 
simplify the fabrication and assembly process. We focus on the use of straight, bendable strips to construct 
strained lamella gridshells and demonstrate the mathematical background and physical application of 
such designs. Finally, the insights are tested and verified in an architectural structure, the Asymptotic 
Gridshell. The development of a construction technique and assembly process demonstrate the bandwidth 
of this research.

Throughout this endeavour we have developed analytical tools, such as the curvature graph to visualize 
curvature or the Gaussian footprint to detect distortion. Furthermore, we have deduced equations that 
relate the parameters of curvature to the structural bending and torsion of edges and thus allow an 
informed design process.

This dissertation is not the final result of our research. Rather it is part of the process and should be used 
as a driver for further investigations. 
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Future Research

Throughout the thesis we have encountered multiple domains that call for further investigation. These 
domains can be separated into purely geometric observations related to the theoretical framework of 
repetitive structures, structural aspects which investigate the load-bearing behaviour of strained gridshells, 
and further construction development of our case study.

Geometrical Investigations on Repetitive Structures
- The thorough examination of physical surfaces and their potential to carry repetitive structures is a 

promising field of future research. Some further steps in this direction have already been addressed 
in our publication on constant mean curvature surfaces (Schling et al. 2018). Another promising field 
are equilateral, asymptotic networks on surfaces of constant negative Gaussian curvature.

- The theoretical framework can be used to systematically deduce further parameter combinations 
for repetitive structures. This research includes not only smooth and discrete, but also hybrid and 
offset segmentations, offering a vast field of research. The various combination of strategies to 
achieve repetition could be investigated in a similar way to produce novel design solutions. 
Furthermore, the deliberate design of “non-fair” networks or polyhedral surfaces, offers great 
potential for future repetitive designs.

- The analysis of repetitive parameters proved to be very insightful in the investigation of existing 
structures. This workflow could be used in the analysis of historic structures and help to understand 
the design and construction process.

- Furthermore, we suggest a mathematical study of the dependency of distortion of networks and 
their Gaussian footprint.

- Finally, the investigation of eccentricities and their impact on repetitive structure was left open in this 
thesis and deserves further investigation.

Structural and Interdisciplinary Investigations
- The structural analysis of repetitive structures seems to reveal global principles to do with the 

network morphology. A sensitivity analysis of smooth and discrete, triangular, quadrilateral and 
hexagonal networks would give further insights.

- Using the curvature parameters to deduce the residual stress of strained structures has not only 
proven efficient for the structural analysis. This workflow can also be used for form finding and the 
simulation of deformation processes.

- Similarly, the investigation of compliant mechanisms within lamella grids holds great potential for 
future interdisciplinary research. We have already encountered a close overlap of mathematics and 
engineering in the behaviour of elastically-bent lamellas grids (Schling et al. 2018).

- Another interdisciplinary task is the optimization of surfaces for both geometric requirements (such 
as a minimal surface) and structural performance (like a funicular form), offering to create a new 
hybrid class of design shapes.

Construction Development
Apart from both geometric and structural domains, we aim to further develop the construction technique 
of strained lamella gridshells looking at the following aspects:

- Façade solution using planar quadrilateral panels, developable strips or membranes
- Investigation of materials and related construction details
- Constructive solutions and digital fabrication for permanent, large-span constructions
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Abbreviations

The following abbreviations are used to shorten the sources of institutions and architecture offices.

AB   Archive Boston
AJN   Atelier Jean Nouvel
AWA   Auer + Weber Architects
FA   Fuksas Architects
FP   Foster + Partners Architects
GA   Grimshaw Architects
ICD   Institute for Computational Design and Construction
MBA   Mario Bellini Architects
MPA   J. Mayer H. and Partner Architects
MR   Moatti Rivière Architecture et Scénographie
NA   Nesbits Auctions
NP   Ney + Partners Architects
SBP   Schlaich Bergermann Partner
SE   Seele GmbH
WM   Wikimedia

Additionally, an abbreviation is used to label illustrations and photos by the author:
ES   Eike Schling
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