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Schalen sind auf nattirliche Weise schén und effizient, weil die flieBende
und doppelt gekrimmte Form Lasten ohne Biegung, nur in der Flache, also
nur Gber Zug- und Druckkréfte fortleiten kann. Sie brauchen daher
bedeutend weniger Material als biegebeanspruchte, ebene Tragwerke,
beispielsweise Trdger oder Platten.

Es besteht aber ein Gegensatz zwischen gilnstigem Tragverhalten und
schwieriger, da doppelt gekrimmter Herstellung. Die Ldsung dieses
Gegensatzes ist eine wichtige Voraussetzung fiir den erfolgreichen
Schalenbau.

Hans Schober, 2016

Shells are naturally beautiful and efficient. Their continuous, doubly curved
shape is able to carry loads without bending, by only using tension and
compression forces within the surface. Because of this behaviour, shells
need substantially less material than flat structures, such as beams or
plates, which require bending.

There is, however, a contradiction between the beneficial load-bearing
behaviour and the highly complex fabrication of doubly curved structures.
Resolving this contradiction is an important requirement to successfully
construct shells.

Hans Schober, 2016



Zusammenfassung

Die vorliegende Arbeit untersucht zweifach gekrimmte Gitterstrukturen,
mit dem Ziel deren Herstellung zu vereinfachen. Daflir werden Netzwerke
mit konstanten geometrischen Parametern beschrieben, und die damit
verbundenen Mdéglichkeiten flr Entwurf und Konstruktion erarbeitet.

Es wird eine ganzheitliche Theorie ,Repetitiver Strukturen® unter
Bertcksichtigung geometrischer und konstruktiver Kriterien vorgelegt, die
es ermoglicht die Verwendung gleicher Bauteile anhand einzelner Parameter
zu untersuchen. Auf diese Weise werden Zusammenhénge von Form und
Struktur aufgedeckt und eine neue Methode fir den Entwurf und die
Konstruktion elastisch geformter Gitterschalen entwickelt.

Die Arbeit verbindet Theorien der Differentialgeometrie mit Erfahrungen aus
Architektur und Bauingenieurwesen und schafft dadurch neue Erkenntnisse
fur den modernen Schalenbau.

Auf der Grundlage eines kurzen Uberblicks zum Stand der Forschung
werden die theoretischen Rahmenbedingungen zur Analyse und Gestaltung
Repetitiver Strukturen geschaffen. Diese werden zunachst auf bestehende
Konstruktionen angewendet. Hieraus wird eine Ubersicht tiber bestehende
und zukinftige Md&glichkeiten der Parameterwiederholung abgeleitet. Die
Wechselwirkungen zwischen Flache, Netzwerk und Parametern werden
durch induktiven Studien dargestellt. Anhand experimenteller Entwrfe
wirddanndie elastische Verformung von Bauteilen als Konstruktionsstrategie
untersucht.

In einer deduktiven Studie werden die Krimmungseigenschaften von
Gitterstrukturen in direkte Beziehung mit der elastischen Verformung der
Gitterstdbe gebracht. Auf Basis dieser Abhangigkeiten wird eine
Entwurfsmethode entwickelt, die sich die Eigenschaften asymptotischer
Kurven auf Minimalflachen zunutze macht. Diese Methode ermdglicht eine
Konstruktion zweifach gekrimmter Gitter mit geraden Lamellen und
rechtwinkligen Knoten.

SchlieBlich wird die Theorie in einem architektonischen Projekt angewendet:
Anhand des Forschungspavillons ,,Asymptotic Gridshell“ werden die
Herausforderungen und Potentiale repetitiver Strukturen fir den
Planungsprozess, das Tragverhalten und den Bauablauf einer elastisch
geformten Gitterschale aufgezeigt.



Abstract

This thesis investigates doubly curved grid structures with the goal to
simplify their fabrication. For this purpose, we examine networks with
constant geometric parameters, and describe their potentials for design
and construction.

A holistic theory of “repetitive structures” is established, which takes into
account both geometric and constructive criteria. This allows us to
investigate individual parameters in order to create identical building parts.
The theory is used to uncover principles of form and structure, and develop
a novel method to design and construct elastically formed gridshells.

The work combines theories from differential geometry with knowledge
from architecture and structural engineering and thus gains new insights for
modern shell design.

Based on a review of scientific publications and built examples, a theoretical
framework is created to analyse and design repetitive structures. First, we
apply this theory to existing structures, and generate an overview of current
and future possibilities of parameter repetition. Next, we investigate the
interdependence between surface, network and parameters within inductive
studies. Through the prototypical design and fabrication of experimental
structures, we examine the elastic deformation of building parts as a
constructive strategy to achieve repetition.

In a deductive study, the parameters of curvature are related to the
deformation behaviour of individual beams. Based on this dependency, a
design method is developed, which utilizes the properties of asymptotic
curves on a minimal surface. This method provides the geometric condition
to construct a doubly curved grid from exclusively straight lamellas and
orthogonal nodes.

Finally, the method is implemented in an architectural case study:

The practical challenges and advantages of repetitive structures are
experienced through the planning process, the construction progress, and
the load-bearing behaviour of the “Asymptotic Gridshell”.
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Nomenclature

Geometric
k,  Maximum principal curvature [m™']
k, Minimum principal curvature [m™]

K Gaussian curvature: K =k, - k, [m?]
H  Mean curvature: H = (k, + k,) /2 [m™]

>

Area of a face [m?]
Qualitative shape of a face

w

Planarity of a mesh face [m]

Length of an edge [m]

Continuity of a curve [°]

Proximity of a network to a target surface [m]

Seam variance measuring the tolerance between panels [m]

o O O — T

Curvature of a spatial curve [m™]

Torsion of a spatial curve [m™]

Geodesic torsion of a surface curve [m™]
Normal curvature of a surface curve [m]
Geodesic curvature of a surface curve [m]
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Orientation vector of an edge curve
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®

Tangent vector of a curve

Normal vector of a surface
Sideways vector of a surface curve
Vector of a surface ruling

o Mesh angle at a node [°]
! Intersection angle at a node [°]

o Normal angle at a node [°]
Geodesic angle at a node []
Torsional angle at a node [°]

u  Angle of deviation from the principal curvature direction [°]

Offset distance of two parallel surfaces [m]
Node offset [m]
Edge offset [m]
Face offset [m]

()

O O O O
p=}
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Mechanic

t Thickness of a profile [mm]
Height of a profile [mm]
Mass density [g/cm?]

x  Longitudinal orientation of a beam
y  Lateral orientation of a beam
z  Vertical orientation of a beam

k_ Curvature (twist) due to torsion around the x-axis [m]
k,  Curvature due to bending of a beam around the y-axis [m™]
k_ Curvature due to bending of a beam around the z-axis [m]

0  Angle of rotation of a twisted beam [rad]

M. Torsional moment around the x-axis [Nmm]
M Bending moment around the y-axis [Nmm]
M_ Bending moment around the z-axis [Nmm]

I Torsional constant [mm?]
I Moment of inertia with respect to the y-axis [mm?]
I Moment of inertia with respect to the z-axis [mm?]

i Polar radius of gyration [mm?]

Section modulus of torsion [mm?]
Section modulus with respect to the y-axis [mm?]
Section modulus with respect to the z-axis [mm3]

E  Young’s modulus [N/mm?2]
G  Shear modulus [N/mm?]

f Yield strength [N/mm?]
Normal yield stress: o, = fy - 1.0 [N/mm?]
1, Shearyield stress: ©  =f -3 [N/mm?

Strain due to Helix Torsion
c.  Shift of the parabolic distribution of normal stress due to Helix Torsion






Introduction

Objective

Throughout the history of architecture, the use of repetitive building parts has been a key goal to simplify
fabrication, ease construction, and save costs and time. This may be achieved by laying identical bricks
or using identical ball joints, dividing a sphere into congruent triangles or rationalizing a curved facade to
only use planar glass panels. In any case, using repetitive parts inevitably effects the overall shape or
layout of a structure.

There is a multitude of scientific studies and built examples which achieve repetition within double-curved
structures. In geometry the term “repetitive” is used to describe congruent elements, such as nodes,
edges or faces, within a network, while an architectural structure aims at identical building parts. These
two perceptions do not always coincide: In practice, adjustable joints, tolerances or deformation allow the
use of repetitive parts, even for a geometrically non-repetitive element.

The following work combines insights from mathematics and engineering to create a holistic theory of
“repetitive structures” considering both the geometric and constructive parameters. This theory does not
only offer an analysis of existing structures and a definition of strategies to achieve repetition. It is also
used to systematically investigate the morphology of repetitive networks, define parametric relationships,
identify fundamental principles of form and deduce parameter combinations for future designs.

A great potential lies in the use of elastic deformation to achieve a curved geometry from flat and straight
building parts. The curvature of surface-curves is analysed and superimposed with the three axes of
bending of load-bearing beams. In consequence, specific shapes and networks are identified which allow
for a simplified construction of elastically formed grids. This strategy is used to develop a new design
method for strained gridshells using asymptotic curves on a minimal surface.

The design and construction of a prototypical structure, the Asymptotic Gridshell, presents insights into
the planning, fabrication and construction process, and its load-bearing behaviour.

Motivation

With the technological advances in both 3D modelling and fabrication, it is possible to design and construct
any arbitrary shape or structure. Any surface can be subdivided into unique parts, which are then individually
manufactured, labelled and assembled.

The question arises: Why bother rationalizing a form or network?

Understanding the complexity of a spatial network not only offers simplification of the construction with
substantial cost savings. Foremost, it gives the architect the control over their designs: It opens up a
spectrum of solutions to choose from, rather than capitulate to the most advanced fabrication tool. Being
aware of the dependencies of shape, segmentation and building part lets us decide what rationalizations
are most effective, which topology might be beneficial, and which tool to use for fabrication.

Moreover, combining geometric expertise with the experience in material behaviour helps us find new
fabrication-aware' designs to create a symbiosis of form and support structure.

Figure 1 Structural grid of the Asymptotic Gridshell (Photo: Felix Noe 2017).

1 The term “fabrication-aware design” is used to describe computational design methods which take into account the fabrication
and construction of a structure. This might entail a simple rationalization of the geometry, or the implementation of specific
requirements for manufacturing techniques in the design process (Pottmann 2013).

Introduction 1



Methodology and Tools

Methodology

There are three methods used in this thesis to investigate repetition in grid structures:

A deductive approach can be described as a “top-down” process: The theories of differential geometry
are used to deduce geometric properties and then applied to design shapes and segmentations with
repetitive parameters.

An inductive approach takes the inverse “bottom-up” route: The enforced repetition of specific parameters
within a network, triggers a specific behaviour or shape adjustment, which is then documented and
classified. The inductive approach is a “naive” process, and may not display all possible solutions.
However, it intuitively illustrates the morphology of repetitive grids and has the potential of uncovering new
solutions and dependencies.

Finally, the concept of research by design? is used to investigate repetitive structures. This approach relies
on physical prototypes to design structures, combining all aspects of geometry, structure, fabrication and
aesthetics.

Tools

The thesis heavily relies on both digital and physical modelling to investigate the behaviour of repetitive
grids.

The digital tools include simple 2D and 3D modelling software, parametric applications and algorithmic
scripting. They are used to create a digital representation of networks, model dependencies to rapidly alter
a given geometry, and develop new tools that implement scientific insights. Next to these geometric
applications, we conduct digital simulations and optimizations to investigate the morphological behaviour
of networks under parameter constraints. Finally, FEM-software was used to analyse the load-bearing
behaviour of a prototype structure.

Physical models not only allow us to investigate geometric features, but to - hands on - experience the
construction process, the load-bearing behaviour and aesthetic qualities. They are used throughout our
studies to verify theoretical findings and trigger further research questions.

2 The term “Research by design” was coined at the Faculty of Architecture in Delft (van Ouwerkerk 2001) referring to the general
concept of producing new knowledge through the act of designing, and has been actively implemented as a tool to investigate
scientific questions. A working group under the research committee of the EAAE1 has produced a rather cumbersome definition
of this concept in 2011 (Hauberg 2012):

- Research by design is any kind of inquiry in which design is a substantial part of the research process.

- In research by design, the architectural design process forms a pathway through which new insights, knowledge, practices
or products come into being.

- Research by design generates critical inquiry through design work that may include realized projects, proposals, possible
realities or alternatives.

- Research by design produces forms of output and discourse proper to disciplinary practice, verbal and non-verbal, that
make it discussable, accessible and useful to peers and others.

- Research by design is validated through peer review by panels of experts who collectively cover the range of disciplinary
competencies addressed by the work.

In this thesis, our preliminary motivation to use research by design, is to uncover further design solutions beyond the inducible
or deducible results.



Structure

This thesis is written for the designer - architect or engineer - who is responsible for the geometry of a
curved building structure. The work is situated in the cross-field of architecture, engineering and
mathematics, with a strong focus on geometry.

The work is divided into three parts:

Part I: ‘State of the Art’ presents fundamental theories of geometry (Chapter 1), and gives a short
overview of the most relevant geometric publications and architectural structures that investigate
repetition (Chapter 2).

Part II: ‘Repetitive Structures’ develops a theoretical framework of geometric and constructive
parameters for repetitive structures, and defines fundamental geometric dependencies (Chapter 3).
This framework is not only used to analyse existing constructions. It draws conclusions on common
strategies and sets an impulse for further investigations (Chapter 4).

Chapter 5 presents five independent but constitutive studies which investigate selected sets of
parameters to explore the morphological behaviour of repetitive networks. These studies first
compare smooth and discrete structures (Section 5.7), investigate tolerances and deformation for
smooth, rectangular panelizations (Section 5.2), create prototypical modular designs (Section 5.3),
deduce principle relationships of curvature and deformation of networks (Section 5.4), and finally
develop a novel design method for strained gridshells (Section 5.5).

Part lll: ‘Case Study’ (Chapter 6) implements the novel method in the planning and construction
process of a prototypical pavilion, the Asymptotic Gridshell, giving important insights into the design
process, construction development and its load-bearing behaviour

Publications

Parts of this thesis are based on research which has already been published in peer reviewed papers or
technical reports, and has been conducted in cooperation with co-authors.

Some studies of Chapter 5 are also found in:

Eversmann, Philipp; Schling, Eike; lhde, André; Louter, Christian (2016): Low Cost Double Curvature. Geometrical and
Structural Potentials of Rectangular, Cold-bent Glass Construction. In K. Kawaguchi, M. Ohsaki, T. Takeuchi (Eds.):
Proceedings of the IASS Annual Symposium 2016. Tokyo

Schling, Eike; Barthel, Rainer (2017): Experimentelle Studien zur Konstruktion zweifach gekrimmter Gitterstrukturen.
Experimental studies on the construction of doubly curved structures: Fachwissen. In Detail structure (01), pp. 52-56.
Schling, Eike; Barthel, Rainer; Tutsch, Joram (2014): Freie Form - experimentelle Tragstruktur. In Bautechnik 91 (12), pp. 859-
868.

Schling, Eike; Hitrec, Denis; Barthel, Rainer (2017a): Designing Grid Structures using Asymptotic Curve Networks. In Klaas
de Rycke et al. (Eds.): Humanizing Digital Reality. Design Modelling Symposium Paris 2017. Singapore: Springer Singapore,
pp. 125-140.

Chapter 6 contains further work from:

Schling, Eike; Hitrec, Denis; Schikore, Jonas; Barthel, Rainer (2017b): Design and Construction of the Asymptotic Pavilion.
In K.-U. Bletzinger, Eugenio Onate, B. Kroplin (Eds.): VIII International Conference on Textile Composites and Inflatable
Structures. STRUCTURAL MEMBRANES 2017. pp. 178-189.

Schling, Eike; Kilian, Martin; Wang, Hui; Schikore, Jonas; Pottmann, Helmut (2018): Design and Construction of Curved Support
Structures with Repetitive Parameters. In Lars Hesselgren, Karl-Gunnar Olsson, Axel Kilian, Samar Malek, Olga Sorkine-
Hornung, Chris Williams (Eds.): AAG 2018. Advances in Architectural Geometry. Wien: Klein Publishing, pp. 140-165.
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PART |

STATE OF THE ART
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1 Geometric Fundamentals

Designing freeform architectural structures commonly follows a similar workflow. The overall shape is
defined by a design surface. The surface is subdivided into smaller segments suitable for fabrication and
construction. This segmentation results in a network of faces, edges and nodes. The repetitive nature of
these elements is dependent on the curvature of the initial surface, as well as the properties and topology
of the network.

- Section 1.1 outlines the definitions of curvature based on curves and surfaces.
- Section 1.2 gives an overview of the classification of surfaces and their properties.

- Section 1.3 introduces the different types of segmentation and presents the geometric and
architectural properties of common networks.

- Section 1.4 introduces network topology, its relationship to curvature and its potential to create
repetition.

This fundamental knowledge of geometry is well described in literature on descriptive and differential
geometry. The following chapter primarily refers to the educational book, Architectural Geometry
(Pottmann et al. 2007a). Any further sources will be cited in situ.

Figure 1.1 Principal curvature lines on an ellipsoid (ES 2018).

1 Geometric Fundamentals 5



1.1 Curvature

Curves and surfaces can be described as one or two-dimensional, smooth?® arrays of points. Curvature
describes the deviation of these continuous geometric elements from a straight or flat state.

1.1.1 Curvature of a Space Curve

A curve is a one-dimensional object. At each point a tangent vector t and normal plane define its local
direction. The local curvature of a curve is measured at the osculating circle at each point. The curvature
k is the inversion of the curvature radius r, k = 1/r.

The torsion t describes the rotation of the osculating plane* about the tangent vector®.
If kK and t are constant, the curve describes a circle, helix or, if k = 0, a straight line. A planar curve displays
no torsion, t = 0.

Figure 1.2 Curvature of a curve. A curve is a one-dimensional, smooth array of points. At each point, the direction is defined by a
tangent vector and normal plane. The local curvature is the inverse of the radius of the osculating circle (ES 2016 based on Pottmann
et al. 2007a, p. 227).

1.1.2 Curvature of a Surface

A surface is a two-dimensional object. At each point the normal vector n and tangent plane define its local
orientation. The local curvature of a surface is calculated at each point individually:

The surface is intersected with the planes through the normal vector. The curvature of the resulting section
curve (at that point) is called the normal curvature k . There are infinitely many planes (and thus section
curves) radial to this normal vector. The two section curves with the highest and lowest normal curvature
determine the two principal curvatures k, and k,. They are always perpendicular to each other and
indicate the two principal curvature directions. From these two principal curvatures, the Gaussian curvature
(K =k, - k,) and the mean curvature (H = (k, + k,) / 2) are calculated.

Figure 1.3 Curvature of a surface. A surface is a two-dimensional smooth array of points. At each point, the orientation is defined by
the normal vector and tangent plane. The curvature of a surface is calculated from the two principal curvature radii at this point (ES
2016 based on Pottmann et al. 2007a, p. 215).

3 without kinks or folds

4 The osculating circle is a tangent circle which best approximates the curve progression at a particular point. It is derived from a
limit refinement of three consecutive points. The osculating circle spans the osculating plane, which is tangent to the curve at
that same point.

5 The normal plane and the osculating plane intersect along the principal normal of the curve which is the direction of the
curvature radius. The normal vector to the osculating plane is called the binormal. The three vectors — curve-tangent, principal
normal and binormal — define a coordinate system which is called the Frenet frame. The rotation of this frame around the tangent
vector determines the torsion t of the space curve.

6 Part |: State of the Art



The Gaussian curvature K is commonly used to describe the shape and magnitude of surface curvature.
If the two principal curvature radii centers lie on the same side of the surface, their product is positive. This
is called an elliptical surface point (Figure 1.4) with positive (synclastic) Gaussian curvature, as can be seen
on an egg or a sphere.

If the two principal curvature radii centers lie on opposite sides of the surface, their product is negative.
This is called a hyperbolic surface point (Figure 1.5) with negative (anticlastic) Gaussian curvature, as
illustrated by the shape of a horse’s saddle.

If one of the two principal curvatures are zero, their product is also zero. This is called a parabolic surface
point (Figure 1.6). Such single curvature can be seen on a cylinder or cone.

The mean curvature H indicates the balance of curvature. If the two principal curvature radii have the
same absolute value, but opposite orientation, the mean curvature is zero (Figure 1.7). Surfaces with a
constant mean curvature of zero are called minimal surfaces (Section 1.2.3).

To illustrate the curvature behaviour at a surface point, we trace the values of normal curvature k_ in
relation to the rotation of section curves (Figure 1.4 - Figure 1.7). This curvature graph has two extremes,
k, and k,, which indicate the principal curvature directions, and two, one or none zero-crossings, which
indicate the asymptotic directions.

Scenario. The asymptotic directions can be illustrated by the following scenario: Imagine a ruler standing
upright on the saddle of a horse, touching it at one point. When rotating the ruler around this point, it will
hit the saddle at two specific directions where the normal curvature is zero. These are the asymptotic
direction. Repeating the same exercise on a synclastic surface, like a balloon, will not find a contact-
direction. The ruler can be freely rotated, as the normal curvature is never zero.

A

k1 \T/
kn 0 k2

0° 90° 180°

v

Figure 1.4 Synclastic curvature. Left: An elliptical surface point indicates positive curvature (ES 2018 based on Pottmann et al.
2007a, p. 243). Right: If k _is never zero, there are no asymptotic directions (ES 2018).
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Figure 1.5 Anticlastic curvature. Left: A hyperbolic surface point indicates negative curvature (ES 2018 based on Pottmann et al.

2007a, p. 243). Right: The curvature graph illustrates the symmetrical occurrence of asymptotic directions in respect to the principal
curvature directions (ES 2018).
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Figure 1.6 Single curvature. Left: A parabolic surface point indicates single curvature. One of the principal curvatures is zero (ES
2018 based on Pottmann et al. 2007a, p. 243). Right: The curvature graph illustrates the coincidence of principal curvature and
asymptotic directions (ES 2018).
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Figure 1.7 Mean curvature of zero. Left: A hyperbolic surface point of k, =k, (ES 2018). Right: The curvature graph illustrates the
regularity/bisecting nature of principal curvature directions and asymptotic directions on a minimal surface (ES 2018).

These two types of directions can be imagined like a magnet field across a surface, indicating the directions
of extreme and vanishing normal curvature. The normal curvature of any other direction can be calculated
from k, and k, as a function of the deviation angle p from the principal curvature direction.

kn(1) = ky(cos p)? + ky(sin p)? (1.1

The directions of vanishing normal curvature (k= 0) are called the asymptotic directions. The asymptotic
directions can be determined by cutting the surface with its tangent plane. They are the tangent directions
of the section curves at that point.

There are two asymptotic directions at any hyperbolic surface point. They lie in symmetry about the
principal curvature directions (Figure 1.5). At an elliptical surface point, the tangent plane does not intersect
with the surface, and the normal curvature is never zero. There are thus no asymptotic directions (Figure
1.4). At a parabolic surface point the two asymptotic directions fall together with the principal curvature
direction at k= 0 (Figure 1.6). If the mean curvature of a surface is zero, the asymptotic directions bisect
the principal curvature directions (u = 45°) and are perpendicular to each other (Figure 1.7).

1.1.8 Curvature of Curves on a Surface

When analysing a curve on a surface, the information of direction (of the curve) and orientation (of the
surface) are combined. In this case, the “Darboux frame” (Strubecker 1969), can be constructed from the
normal vector n, tangent vector t and their cross product, the sideways vector u.

The rotation about all three vectors of the Darboux frame can be measured. These three specific curvatures
are called geodesic curvature kg (around n), geodesic torsion t (around t) and normal curvature k_
(around u). The curvature radii of kg and k_ can simply be derived from the curvature k, by projecting its
curvature-vector into the tangent, or tangent-normal plane.

Kk = ,knz +kg2 (1.2)

8 Part |: State of the Art



Figure 1.8 Curvatures of a curve on a surface. The curvature is measured separately for all three axes of the Darboux frame. They
are called the geodesic torsion (around t), the geodesic curvature (around n) and the normal curvature (around u) (ES 2016).

Scenario. The three curvatures of a curve on a surface can be illustrated by using the following scenario:
Imagine a car driving through a landscape of rolling hills. Where the road changes its incline - going up or
down - the driver experiences normal curvature. If the road changes direction - turning right or left - the
driver experiences geodesic curvature. If the road changes its lateral inclination and banks to the side, the
car tilts due to geodesic torsion.

1.1.4 Total Curvature and Gaussian Image

The total curvature of a planar curve is defined mathematically as the integral of curvature along the
curve. This value can be determined graphically by mapping each point of this curve onto a unit-circle.
This image is generated through the unitized normal vectors of the surface drawn from a common origin.®
If the normal vector at the start and endpoint are equal, the total curvature is either 0 (for a meandering
curve) or 2-rt (for a circular curve). For any closed planar curve (without self-intersection) the total curvature
is 21 .

total curvature \ps’ p2
p’
[0
P2
[oF

Figure 1.9 The total curvature of a planar curve can be expressed graphically by the unit circle (ES 2018 based on Pottmann et al.
2007a, p. 494).

The total curvature of a surface is determined in a similar way using the normal vector at each surface
point to map an image of the surface onto a unit-sphere. This representation is called the Gaussian
image. The signed area of the Gaussian image equals the total curvature. This value can be derived solely
from its boundaries.

Surfaces which exhibit both positive and negative Gaussian curvature generate a self-intersecting
Gaussian image with positive and negative regions overlapping. The total curvature is calculated from the
difference of the areas created by the self-intersecting boundary.

6 If the curve changes from positive to negative curvature, the respective parts of the unit-circle are drawn twice by subsequent
curve-vectors. These parts are labelled with a positive sign (in the direction of rotation) and negative sign (in the opposite
direction), thus cancelling each other out in the calculation of total curvature.

1 Geometric Fundamentals 9



If the normal vector is constant along the boundaries of a surface, the total curvature is zero, because the
boundary collapses to a point on the unit-sphere. Any closed surface has a total curvature of a multiple’

of 4r, the surface area of the unit sphere.
The total absolute curvature is the absolute sum of positive and negative Gaussian curvature. It is

determined by adding the absolute values of all areas of the Gaussian image.
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Total curvature: - 0.29%
Absolute total curvature: 0.29n

Total curvature: 0.30x — 0.37x =—-0.07x
Absolute total curvature: 0.67n

Total curvature: 0.45%

Absolute total curvature: 0.45n
Figure 1.10 The Gaussian image is a representation of the curvature of a surface created by a spherical mapping. The difference

between positive and negative area of the Gaussian image indicates the total curvature. Overlapping boundaries signify a change

from positive to negative curvature (ES 2018 based on Pottmann et al. 2007a, p. 495).

Scenario. The Gaussian image of a surface can be imagined like a bedsheet, whose size is not dependent
on the area, but the curvature of the surface. Surface-regions which have the same orientation are folded
on top of each other. Here the positive and negative curvature cancel each other out. The total curvature
is the difference of positive and negative curvature which can be imagined as the two sides of the folded
sheet. In this scenario, the total absolute curvature is the complete area of the unfolded bed-sheet.

A sphere has a total curvature of 4x, a torus on the other hand creates a so called “handle”, doubling the total curvature to 8x.

7
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1.2 Surfaces

The following section gives a short overview of surfaces based on the categorizations of Pottmann and
Barthel (Pottmann et al. 2007a; Barthel 2015) in traditional, freeform and physical surfaces/shape
optimizations. Apart from these continuously curved surfaces, a final section introduces the notion of
polyhedral surfaces as an independent type.

1.2.1 Traditional Surfaces

Traditional surfaces (Figure 1.12, left) are classified by how they are constructed geometrically. The three
primary families are ruled, translational and rotational surfaces.

The construction of traditional surfaces is based on kinematic operations. They are defined by a profile
curve moving along a smooth path. In the case of ruled surfaces this profile curve is a straight line (the
ruling) moving along two individual path curves. A translational surface is described by the parallel
movement of one profile curve (the generatrix) along one path curve (the directrix). Finally, a rotational
surface is generated by rotating a profile curve about a central axis, resulting in a family of radial meridian
curves and an orthogonal family of parallel circles.

Further traditional surfaces are a pipe surface, described by the movement of a circle perpendicular to a
path curve, or a helical surface described by the transformation of a profile curve along a helical path.
There are combinations and subsets of these categories. A hyperbolic paraboloid e.g., can be described
as a double-ruled surface or a translational surface of parabolas. Similarly, a one-sheet rotational
hyperboloid is both a double-ruled and a rotational surface.

A subset of the family of ruled surfaces are developable surfaces. They hold the additional geometric
property that along any ruling the surface has the same tangential plane. This is true if all rulings are
parallel, such as in a cylindrical surface; if all rulings pass through the same point (the apex), such as in a
cone or central extrusion; or if all rulings are tangent to a fixed space curve. Such rulings describe a so-
called tangent surface.

Developable surfaces are single-curved, i.e., have constant vanishing Gaussian curvature. They are of
special importance to this research as they can be unrolled (i.e., developed or mapped isometrically) into
the plane without stretching or shearing like a piece of paper. This makes developable design surfaces
most receptive to repetitive patterns. Developable geometries of building parts, like panels or lamellas, are
favourable for construction.

Figure 1.11 Developable surfaces are either cylindrical, conical or tangential surfaces (ES 2018 based on Pottmann et al. 2007a, p.
535).

1 Geometric Fundamentals 11
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1.2.2 Freeform Surfaces
Digital freeform surfaces (Figure 1.12, middle) are defined via control points. They can assume virtually any
smooth shape and can be manipulated locally within a confined region — a powerful tool for designers.
A freeform surface is generated by an algorithm, which approximates a two-dimensional array of control
points. The three common types, Bezier surfaces, B-spline surfaces (B stands for “Basis”) and NURBS
surfaces (Nonuniform rational B-spline curves), are based on the homonymous digital freeform curves.
They have increasing control mechanisms:
- Bezier surfaces are constructed via a repeated linear interpolation of control points, invented by
Paul De Casteljau in 1959. Changing a control point has a global effect on the shape.
- B-spline surfaces consist of several Bezier-segments of the same degree and thus allow a local
shape control within each segment.
- NURBS surfaces have the additional control of “weights” at each control point. The designer is able
to pull or release the curve/surface at any control point individually.

Figure 1.13 Digital surfaces are defined by a quadrilateral network of control points with open or closed topology (ES 2018 based
on Pottmann et al. 2007a, p. 361).

1.2.3 Physical Surfaces

Physical surfaces (Figure 1.12, right) represent a state of equilibrium under given loads or boundary
conditions. They are derived from a natural formation process and thus show a high aesthetic quality.
Digital modelling of physical surfaces is achieved through an optimization process, in which either their
mechanical or geometrical properties are approximated. Their particular curvature-behaviour makes them
susceptible for segmentations with repetitive elements. The most relevant types for subsequent research
are minimal surfaces. Other examples are funicular forms, pneumatic (constant mean curvature) surfaces,
surfaces with constant negative Gaussian curvature, or hydrostatic shapes.

A minimal surface is the surface of minimal area between any given boundaries. Minimal surfaces have a
mean curvature of zero. They can be found in nature in the shape of soap films. Their form is found digitally
in an iterative process by minimizing the area of a surface or finding the shape of equilibrium of tension.
Some minimal surfaces can be derived from mathematical definitions, such as: the plane (for any planar
boundary curve), the catenoid (the rotational surface of a catenary curve), or the Enneper surface.

Figure 1.14 Left / Middle: Soap films naturally form a minimal surfaces. Such shapes are used in tensile structures like the Institute
for Lightweight Structures in Stuttgart (Glaeser 1978). Right: All points on a minimal surface have a mean curvature of zero and follow
a symmetric pattern on the curvature graph (ES 2018).

1 Geometric Fundamentals 13



A funicular form is the inverted hanging shape of a given net under a defined set of loads and supports.
For a single line or thread under self-weight, this results in a catenary and, when inverted, resembles the
thrust line of a double-hinged arch. This shape can be determined graphically through the theory of graphic
statics. This method can be extended for three-dimensional structures enabling an intuitive load-based
design of compression-only shell structures (Block 2009).
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Figure 1.15 Left: A funicular form is an inverted hanging shape, such as the chain models of the Multihalle in Mannheim (Barthel
2005). Right: A funicular network can be found digitally within a physical simulation (ES 2018).

Surfaces with constant mean curvature (CMC) are the mathematical representation of inflated
membranes, such as a soap bubble or pneus (from isotropic material). Their curvature behaviour
corresponds to the equilibrium shape caused by a pressure difference (Lobaton and Salamon 2007). The
simplest CMC surface is a sphere, where H = 1/r. Minimal surfaces are a subset of CMC surfaces, in which
the pressure difference is zero, resulting in a constant mean curvature of zero.

k1 + k2 = constant
kn=H

N

k1

180°

Figure 1.16 A constant mean curvature (CMC) surface is the mathematical representation of inflated structures. Left: Soap bubbles
(Schaur and Bach 1977, p. 91). Middle: The pneumatic facade of the National Aquatics Center in Beijing (AB 2008). Right: All points
on a CMC surface have the same mean curvature, and thus follow a symmetrical pattern on the curvature graph (ES 2018).

A pseudosphere is one example of a surface with constant negative Gaussian curvature. The term is
used specifically to refer to a tractricoid, the rotational surface of the path of pulling an object under the
influence of friction.® Pseudospheres are isometric to the hyperbolic plane and display an exponential
increase of surface area towards their boundaries. This quality is used e.g., in the design of acoustic
horns/speakers.

8  Atractrix is the path of movement of an object which is pulled under the influence of friction. It is created when pulling the object
in the horizontal plane by a string of constant length along a straight line perpendicular to its initial position. Rotating this curve
around the direction of the pulling force creates the pseudospherical surface called “tractricoid” (Weisstein 2018b).
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k1 x k2 = constant

Figure 1.17 Left: A pseudosphere is a surface of constant negative Gaussian curvature (ES 2018). Middle: Such shapes are used e.g.
in the design of acoustic horns (NA 2015). Right: All points on such a surface follow a pattern on the curvature graph symmetrical to
the function of zero mean curvature (ES 2018).

1.2.4 Polyhedral Surfaces

A smooth surface may be approximated by a discrete mesh (Section 1.3.7). The proximity of this mesh to
the reference surface may vary greatly, and allow for independent geometric qualities. Examples of such
independent polyhedral surfaces are voxel, lobel or honeycomb meshes (Section 2.2.1).

Assigning these meshes to a smooth surface class might be misleading. They are thus classified separately
as polyhedral surfaces.
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Figure 1.18 Examples of polyhedral surfaces (ES 2018).
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1.3 Segmentation

For the purpose of construction, the design surface is usually divided into smaller segments. This
segmentation results in three entities which directly inform the geometry of building parts: The faces,
which become the facade panels; the edges, which become structural beams, mullions or transoms; and
the nodes, at which the beams are joined. The particular geometry of each element is related to the surface
curvature, the type of segmentation and the quality of the network.

1.3.1 Classification

A smooth shape can simply be subdivided by drawing a network of curves on the surface. This smooth
segmentation creates curved faces and edges, both coinciding with the surface geometry. The nodes are
locally planar and traversal®, connecting continuously smooth curves. This segmentation is used scarcely
in building construction as the fabrication of double-curved panels and curved beams are a rare and costly
feature.

The most common strategy to segment a curved building envelope is to approximate the smooth edges
with straight lines from node to node. This discrete segmentation only touches the surface at the nodes.
A discretization naturally creates tangential discontinuities'® at both the edges and faces.

Even though discretization greatly simplifies the geometry of faces and edges, it shifts the complexity to
the nodes. “In general no two nodes are congruent and, which is worse, a typical node exhibits torsion,
i.e., is a truly spatial object whose manufacturing is challenging” (Bo et al. 2011).

There are hybrid solutions of smooth and discrete segmentations allowing for some curvature of edges
or faces, but discretizing other parts. A common method is to create a curved segmentation of edges in
one direction and a discretized segmentation in the other. These “semi-discrete segmentations” result in
a series of ruled surfaces strips (Pottmann et al. 2008). Another method is to create curved but non-
continous edges between nodes (Section 4.2.2).

smooth segmentation (semi-discrete) hybrid segmentation discrete segmentation
planar, traversal nodes single-traversal nodes spatial nodes
curved edges linear / curved edges linear edges
double-curved faces single / double-curved faces planar / twisted faces

Figure 1.19 Classification of discrete, hybrid and smooth segmentation (ES 2016).

9  Nodes are called “traversal” if opposite edges are tangent to each other, i.e., edges run continuously smooth through the node.
10 Schiftner et al. (2013) differentiate between “discontinuity in position”, meaning a gap or overlap within a network, and
“discontinuity in tangency”, describing a kink between curves or a fold between surfaces.
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1.3.2 Networks

Networks are defined by the type of pattern used in a segmentation. Choosing the network (triangular,
quadrilateral, hexagonal or others) not only influences the overall appearance, it also effects the stability
of the structure, and the shape and complexity of faces and nodes. This section gives an introduction of
the most common architectural networks and highlights their geometric and architectural properties.

The most common networks in architecture are based on the three planar regular tesselations:
triangles, quadrilaterals and hexagons. Each polygon in these regular tessellations has an incircle touching
all edges, and a circumcircle touching all nodes of the polygon.
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Figure 1.20 Overview of triangular, quadrilateral and hexagonal networks showing valence, mesh angles and density (ES 2016).

Triangular networks {3,6}"" are often used in discrete segmentations as they naturally create a rigid
structure with planar faces. They consist of three families of continuous edge-curves and are dual™ to a
hexagonal network. Triangular networks are dense (ratio edge/area = 3.22)'%, and result in a high node
complexity with six edges meeting at every joint. Moreover, triangular panels are less favourable for
fabrication, as their cutting process creates more waste material.
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Figure 1.21 Triangular networks. Left: Botanical Garden in Shanghai (AWA 2010). Right: King’s Cross Station in London (Photo:
Jonas Schikore 2018).

Hexagonal networks {6,3} are dual to triangular networks. They are the least dense (ratio edge/area =
1.32) and are unstable in a hinged assembly. They have three edge directions meeting at each node
without creating continuous curves. It is possible to create hexagonal discretization with flat panels,
however, for anticlastic surface regions, this results in non-convex panel shapes (Figure 1.22, right).

11 Regular tessellations may be labelled with the Schl&fli symbol {p,q}, in which p describes the number of vertices (or edges) of
the regular polygon and q the number of polygons meeting at each node. The latter is also called the valence.

12 Connecting the face midpoints of a tessellation creates another “dual” tessellation.

13 For the purpose of comparing network density, the edge length within a periodic patch of a network is divided by the area of this
patch.
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Figure 1.22 Hexagonal networks. Left: Eden Project in Cornwall (GA 2001). The geodesic dome consists of a hexagonal and a tri-hex
network together forming a space frame. Right: Landesgartenschau Exhibition Hall in Schwébisch Gm(ind (ICD 2014). The hexagonal
shell consists of convex and non-convex timber plates.

Quadrilateral networks {4,4} are often preferred in architectural design. They consist of two families of
continuous edge curves, are dual to themselves, and have a density ratio of 2.00. Quadrilateral networks
are unstable in a hinged assembly, which is commonly restricted by diagonal cables. It is possible to
create a discretization with planar quads along conjugate curves. Additionally, quadrilateral panels offer an
efficient fabrication with few offcuts.

Figure 1.23 Quadrilateral networks. Left: Multihalle Mannheim, 1972 by Frei Otto (Photo: Rainer Barthel 2007). Right: House for
Hippopotamus at the Berlin Zoo (SBP 1996).

Apart from these common networks, there is a large variety of hybrid patterns, which combine several
types of polygons, like the tri-hex pattern used for the Centre Pompidou in Metz, the Islamic pattern of the
Abu Dhabi Louvre, or the triangle-quad mesh of the Islamic Art Exhibition in the Louvre in Paris, and
bespoke patterns with irregular combinatorics, like the Dutch National Maritime Museum in Amsterdam.
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Figure 1.24 Hybrid and bespoke networks. A) Hybrid, tri-hex pattern of the timber gridshell, Centre Pompidou in Metz (SBA 2010).
B) Hybrid pattern of regular triangles, squares and octagons as roof shading for the Louvre Abu Dhabi (AJN 2017). C) Bespoke pattern
of the courtyard gridshell, Dutch National Maritime Museum in Amsterdam (NP 2011). D) Hybrid triangular and quadrilateral tiling of

the courtyard roof, Islamic art exhibition in the Louvre in Paris (MBA 2012).
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1.4 Network Topology

The network topology describes the way that faces and edges are connected. Creating nodes with higher
or lower valence helps to adjust a network to the surface curvature and thus prevent distortion. The
following section explains the relationship between network angles and curvature, introduces the
manipulation of valences as an initiator of curvature, and presents singularities as a design feature and
their potential for repetitive structures using the examples of platonic solids, geodesic domes and smooth
freeform networks.

1.4.1 Discrete Curvature

Any planar tessellation has the property of a constant angle-sum of 360° at each node.™ If this sum is
decreased, the polygons form a vertex-pyramid which is a discrete representation of synclastic curvature.
This reduction of the angle-sum is equivalent to a reduction of area from the vertex outward, as ed by the
gap which appears when unfolding the same polygons into the plane. If the sum of angles is increased
beyond 360°, the surplus of area causes the polygons to fold up and down into a saddle shape resembling

an anticlastic curvature.

synclastic flat anticlastic

O
O

320° 360° 400°
Figure 1.25 The sum of mesh angles is an indicator of discrete curvature (ES 2018 based on Pottmann et al. 2007a, p. 81).

Instead of changing the mesh angles of polygons, we can introduce nodes with irregular valence to create
curvature. Reducing the valence of a quadrilateral node from 4 to 3 (i.e., subtracting one square from a
regular quadrilateral node) reduces the angle sum to 270° and creates a vertex pyramid representing
synclastic curvature. Adding two squares to this node increases the valence to six, and the angle sum to
540° degrees, and thus represents anticlastic curvature.
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Figure 1.26 The sum of mesh angles can also be changed by reducing or increasing the valence at a node (ES 2017).

14 This logic is not reversible. A tiling of equilateral triangles with a constant angle sum of 360° may form a roughly folded polyhedral
surface or a smooth mesh approximating single curvature. Similarly, a quadrilateral network with constant angle sum 360° may
result in a cylindrical mesh. This behaviour is owed to the straight continuous folds that appear in regular triangular and
quadrilateral segmentations, making these planar tilings the only geometrically unstable arrangement.
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1.4.2 Platonic Solids

If a reduction of valence is applied systematically to a regular tessellation, the vertex-pyramids form a
platonic solid: Subtracting one triangle at each vertex of a triangular tessellation {3,6} creates an
icosahedron {3,5}. It consists of 20 equilateral triangles meeting with a valence of 5 at every node. The
same logic of valence-reduction can be applied two more times to form an octahedron {3,4} and a
tetrahedron {3,3}. Similarly, a quad-network {4,4} may form a cube {4,3} if one square is deducted at every
node. An assembly of three pentagons per node creates a dodecahedron {5,3}.

These five platonic solids are the closest discrete representation of a double-curved surface (a sphere) that
achieve complete geometric repetition, i.e., consist of only congruent faces, edges and nodes.

Tetrahedron Octahedron Cube Icosahedron Dodecahedron
{3,3} {3,4} {4,3} {3,5} {5,3}
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Figure 1.27 The platonic solids are derived from regular patterns by consistently reducing their valence. Their combinatorics are
defined by the Schléfli diagram (ES 2018 based on Pottmann et al. 2007a, p. 82).
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1.4.3 Geodesic Sphere

The geodesic sphere is derived from an icosahedron: Each triangle is subdivided and projected to the
circumsphere of the platonic solid. With this method it is possible to achieve a better approximation of the
spherical geometry, while only introducing a limited number of individual triangles. This method was used
by Walter Bauersfeld and Richard Buckminster Fuller to construct their famous geodesic domes (Section
2.3). The network is a triangular {3,6} pattern in which 12 nodes show a reduced valence of 5. They are
called singularities and are located at the vertices of the initial icosahedron.
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Figure 1.28 Modelling process of a geodesic sphere. The subdivision of an icosahedron and subsequent projection onto its
circumsphere creates a partially repetitive double-curved tiling. A subdivision into 4 and 9 triangles both result in only two unique
faces. A further subdivision into 16 triangles creates 5 unique faces (ES 2018 based on Pottmann et al. 2007a, p. 98).
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1.4.4 Singularities

Singularities are the key to realizing a homogeneous network on a double-curved surface. On a synclastic
surface this results in a reduction of the valence, on an anticlastic surface, the valence is increased. This
topological behaviour of curved meshes not only plays an important role in the optimization of networks,
it is also a fundamental part of curvature analysis (visible in the behaviour of principal curvature networks)
and can be observed in nature in the forming process of chemicals and crystals.
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Figure 1.29 Singularities often occur in curved structures: Left: Principal curvature lines on an ellipsoid (ES 2018). Middle: A carbon
molecule (Buckminsterfullerene), named after Buckminster Fuller (WM 2004). Right: Singularities of valence 8 within a triangular
network at the New Milan Trade Fair (FA 2005).

To illustrate the effect of singularities, we modelled an equilateral quad network on a sphere. Due to the
double curvature, the network is distorted to the extent that edges start to overlap.

A comparable segmentation with four symmetrical singularities (but no equilateral edges), creates a
homogeneous network with little distortion. This is because the topology of the underlying mesh better
approximates the shape of the sphere.

Figure 1.30 A comparison of two networks with (right) and without (left) singularities. The topology of the network with singularities
better approximates the shape of the sphere, and thus creates less distortion (ES 2018).
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2 Literature Review

The following chapter is divided into three sections which present the constitutive research phases of this
thesis:

- Section 2.1 focuses on the terminology and perception of repetition in geometry and architecture. A
fundamental insight of this review was the varying perception of repetitive structures in theory and
practice.

- The subsequent review of repetitive structures is therefore separated into geometric investigations
(Section 2.2) and architectural developments (Section 2.3). It resembles the foundation for the
theoretical framework (Chapter 3) and the subsequent analysis (Chapter 4).

- Finally, the constructive properties of one particular reference, the Multihalle in Mannheim, are

described in Section 2.4. They are the primary reference for the development of the novel construction
method presented in Section 6.2.

Figure 2.1 Repetitive circular panels covering the Selfridges building in Birmingham (WM 2010).
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2.1 Terminology and Perception

The following section first reviews common terms used to describe repetitive structures. Thereafter, two
publications are compared to clarify the perception of repetitive structures from a geometric and
constructive standpoint.

2.1.1 Terminology

The term ‘repetitive’ is often used interchangeably with the architectural term ‘modular’, as well as the
geometric terms ‘congruent’ and ‘isometric’. The following section will define each term and discuss its
relevance to this research.

Repetitive. The term repetition is derived from Latin ‘repetere’, meaning ‘to repeat or to demand back’.
The act of repeating is focused on a reproduction, copy, or replica of the initial entity, and does not imply
a transformation or manipulation. A repetitive element is understood as having the identical shape and size
throughout its use.

Modular. The meaning of the term ‘module’ has evolved throughout history: Vitruv introduced the term
‘modulus’ in his Book IV on the rhythmic design of the Parthenon. The module was used as the common
denominator of all building parts which defines the subdivisions and proportions of the Doric temple.
During the industrialization of the 19™ century, the module became the product of a series-production. In
the 1950s, Konrad Wachsmann and Richard Buckminister Fuller developed architectural building-systems
for space structures made from identical modular parts (Ludwig and Cook 1998).

“In our digital age, CAD/CAM-Planning and fabrication technologies enable a more differentiated notion of
the module” (Agkathidis 2009). The module is moving away from identical components towards a
“parametric and associative diagram” (Tessmann 2009).

Today, a module is not necessarily considered identical in scale nor in shape. It merely describes an
architype, from steel-joint to cubic housing-cell, which can be modified in each iteration. It is therefore not
synonymous with our understanding of a repetitive part.

Figure 2.2 The modular housing complex, Habitat 67, in Montreal (WM 2006).

Congruent. The term ‘congruent’ is derived from the Latin ‘congruere’, meaning ‘to correspond, to
coincide’. It is used synonymously with the word ‘identical’, meaning that two elements have the same
shape and size. Two elements are congruent if they can be mapped onto each other by applying a
congruence transformation or ‘isometry’, such as rotation or translation. Apart from this direct congruence,
an opposite congruence can also be achieved by reflecting an element which preserves the length and
angles, but flips the orientation. The term ‘congruent’ is used in this thesis to describe a repetitive
parameter.
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7

Figure 2.3 Congruence. The two triangles are oppositely congruent, having the same shape and size, but alternating orientations (ES
2018 based on Pottmann et al. 2007a, p. 141).

Isometric. The term ‘isometry’ describes a congruence transformation which maps two congruent
elements onto each other. An ‘isometric mapping’ extends this notion of congruence: It is the transformation
of a point, curve or pattern from one surface to another, preserving length, angles and Gaussian curvature.
This means that an isometric mapping is only possible between two surfaces of equal Gaussian curvature.
This is the case for all single curved (developable) surfaces which can be mapped isometrically onto the
plane.

Isometric mapping corresponds to our definition of ‘developable deformation’, which allow a geometric
comparison of elastically bent edges or faces (defined in Section 3.2.3).

Figure 2.4 [sometric mapping. A developable surface S is isometric to its unrolled planar image S’. This means that the length,
angles, area and Gaussian curvature are preserved (ES 2018 based on Pottmann et al. 2007a, p. 496).
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2.1.2 Perception

Repetition is addressed in geometric and constructive publications, meaning both congruent geometric
entities and identical building parts. This might cause confusion when labelling a structure as ‘repetitive’.
The following section looks at two exemplary sources, a review on Architectural Geometry (Pottmann et
al. 2015), and a description of the construction of the Reticulated Dome in Neckarsulm (Schober 2016),
which illustrate the perception of repetitive elements in theory and practice. At the same time, the
publications introduce important criteria for the analysis and classification of repetition.

Geometry

The review on architectural geometry adresses repetition as an autonomous topic of geometric research.
Pottmann et al. (2015) introduce important strategies and categories of repetition and give a short overview
of structures which achieve repetitive elements with respect to nodes, edges and faces.

Within discrete meshes, Pottmann et al. (2015) differentiate between “structures aiming at smoothness”
and “non-smooth structures”. The latter is seen as a strategy to achieve repetition: “Element repetition for
meshes is probably best achieved if one thinks of non-smoothness as a design element and intentionally
plays with the rough surface, or with no surface at all” (p. 158).

“Real projects involving repetition” are introduced as a separate section claiming that: “In practice the
problem of introducing repetition is circumvented rather than solved by not using true freeform structures
at all” (p. 158).

Tolerances are seen as a driver for repetition. They are especially relevant for the panelization of a structure
rather than the structural grid itself. For smooth double-curved skins, the reuse of moulds is mentioned as
a hidden repetivity; “...hidden repetitive geometry is obviously highly relevant. Unfortunately, it is very
difficult to detect in general” (p. 153).

Gridshell construction

In his book on form, topology and structure of shells, Schober (2070) describes the principles of the
Netzkuppel as an equilateral, quadrilateral network with freely rotating joints to form any freeform network
with constant edge length. Subsequently, the construction of the Reticulated Dome in Neckarsulm is
explained as follows: “The entire cupola, despite its double-curvature, consists of only identical parts: one
type of butt-strap, one type of edge beam, and one type of cable clamp” (p. 42).

The project is constructed from identical parts despite variable geometric parameters (joint angles). While
the repetition of edge beams is owed to the repetitive geometry of the Reticulated Dome (Netzkuppel), the
repetition of joints is achieved through an adaptable hinged construction detail.

Conclusion

The articles introduce several fundamental criteria of repetition, such as the separation of faces, edges
and nodes, the differentiation between theory and practice, and the understanding of distinct strategies to
achieve repetition. They pose the challenge that repetition is partly hard to detect, but propose no method
to uncover or quantify it.

In all listed examples repetition is understood with respect to elements, not parameters. The repetition of
building parts, however, is not necessarily consistent with that of geometric entities.

To enable a holistic analysis and design of repetitive structures, a differentiation of geometric parameters
and constructive criteria will be introduced in Chapter 3.

Consequently, the remaining literature review examines both geometric and architectural developments.
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2.2 Geometric Investigations

In geometric publications, the term ‘repetition’ is understood as the instalment of identical faces, equilateral
edges or congruent nodes, while the investigation of planar faces or torsion-free nodes is considered a
simplification rather than a repetition. Nonetheless, all methods are considered in this literature review if
they lead to a repetition of geometric parameters.

The section is separated into discrete and smooth segmentations. The examples are roughly sorted by
their geometric entity (face, edge and node) or strategy to achieve this repetition.

2.2.1 Discrete Segmentation

Repetitive faces

A common method in computational design is to transform an existing mesh, and optimize it to achieve a
high number of identical faces based on a set tolerance. During this process, other geometric properties,
such as surface proximity, edge continuity or alignment might be taken into account. By weighting the
different optimization goals, the designer can choose how important repetition should be in influencing the
overall appearance. The result is a compromise which best fulfils all requirements.

Such an optimization may result in a preferably low number of unique elements called “equivalence
classes” (Singh and Schaefer 2010). Enforcing a reduced number of unique faces has a direct effect on
the smoothness and curvature of the resulting mesh. This is well illustrated in the investigation on K-Set
tilable surfaces (Fu et al. 2010).

Figure 2.5 K-Set tilable surfaces. Optimizing a mesh with the goal of reducing the number of unique mesh faces automatically
creates a rough surface (Fu et al. 2010).
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Tiling an arbitrary shape with a limited number of unique tiles may only be achieved if a rough surface is
accepted. Taking this concept to the extreme and generating a full repetition of all entities, one obtains a
coarse mesh, as illustrated by a Lego model (Lipson 2002). Such a discretization is called a voxel mesh.
Restricting each face, edge and node to a fixed building block not only results in a rough representation
with considerable deviation from the reference surface, but it also restricts the orientation of panels in
space. The shape is approximated solely by local changes in the mesh topology.

Huard et al. (2015) developed a method to rationalize a surface based on such regular space filling
polyhedra, also called voxels. The method finds the intersection of a target surface with a three-dimensional
“foam” of voxels and picks the closest faces in each polyhedra to create one continuous polyhedral
surface with identical panels.

Figure 2.6 Voxel meshes create polyhedral surfaces with just one repetitive face. Left: Lego model approximating a Catalan minimal
surface (Lipson 2002). Middle and Right: Two voxel meshes approximating the same freeform surface at different resolutions using
only equilateral triangles (Huard et al. 2015).

A more flexible concept of a rough, polyhedral surface is illustrated by a crumpled piece of tiled cloth as
was created by the designer Lisa Strozyk in the shape of wooden textiles (Strozyk 2011). A double-curved
shape can be approximated by creating deep folds which account for the change in surface area. This
approach creates a full repetition of faces (and thus edges), while accepting a varying kink between each
face. The example shown in Figure 2.7 approximates a semi-sphere creating a rough polyhedral mesh.

Figure 2.7 Equilateral triangular meshes can be used to create either rough and “crumpled” polyhedral surfaces (Strozyk 2011) or
discrete segmentations of developable surfaces (Huard et al. 2015).

Such a network of repetitive triangular faces may also assume a smooth curved shape. However, its
shape spectrum is restricted to single curved surfaces. French architect Alain Lobel presented a large
number of meshes, called Lobel Frames, which are built entirely from equilateral triangles (Lobel 2005). By
introducing singularities, Lobel creates convex curved shapes with kinks and folds, all of which approximate
piecewise developable surfaces. A computational method to model these shapes was presented by Huard
et al. (2015) illustrating both a rough and smooth tesselation with equilateral triangles.
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In their article on Triangle-Based Point-Folding Structures, Zimmer et al. (2072) rely on standardized
pyramidal moulds to produce the panels for a triangulated freeform surface. The same strategy was used
for the ArboSkin fagcade mock-up in Stuttgart (Kéhler-Hammer 2013).

The double-curved triangulated fagade is built from identical pyramidal moulds which are cut individually
to fit the varying triangular faces.

Figure 2.8 Repetitive moulds: Triangle-Based Point-Folding Structure by (Zimmer et al. 2012) and the ArboSkin Fagade mock-up
(Kohler-Hammer 2013) both rely on standardized pyramidal moulds to produce panels for a triangulated freeform surface.

Planar Faces

A less restrictive, but desirable goal is to create planar faces as they have decisive advantages for the
fabrication of panels. While discrete triangles always have planar faces, hexagons and quads require
systematic rationalization to achieve this property.

It is possible to tile any surface with planar hexagons. However, the Gaussian curvature has an effect on
the hexagonal shapes. Positive Gaussian curvature creates convex, honeycomb-like hexagons, while
negative Gaussian curvature produces non-convex hexagons (Jiang et al. 2015).

The design of a hexagonal mesh is usually achieved by means of duality to a triangular mesh (Pottmann
et al. 2015): Troche (2008), for example, uses the nodes of a dual triangular tessellation to intersect a set
of planes and thus create a hexagon tiling with planar faces. Another method is triangulating the Gaussian
image of the surface and mapping this image back to obtain a planar hexagonal mesh (Aimegaard et al.
2007).

Both approaches have limited control over the location of the final nodes. They are mostly successful if the
initial triangular mesh is aligned with the principal curvature directions. This way, they exhibit the least
amount of geodesic torsion, thus creating regular intersection edges, and naturally implementing
singularities.

Figure 2.9 A planar hexagonal network on a freeform surface displays convex hexagons in areas of positive Gaussian curvature and
non-convex hexagons in areas of negative Gaussian curvature (Pottmann et al. 2007b).
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There is a large number of publications investigating planar quad (PQ) meshes and their geometric
properties, computation and optimization in combination with other properties, such as rectangular panels
or torsion-free nodes.

PQ meshes are geometrically defined as the discrete representation of conjugate curve networks (Sauer
1970). A network is conjugate if the two families of curves are related such that the tangent vectors of one
family form the rulings of a developable surface at the intersections with a curve of the other family. For
more background we refer to Pottmann et al. (2007a, pp. 680-684).

Any surface has an infinite number of conjugate curve networks and thus infinite solutions for a planar
quad mesh. However, the closer this network is oriented to the principal curvature directions, the more
rectangular the faces become. Conjugate curve networks are formed, e.g., by the meridian curves and
circles of a rotational surface (which are at the same time the principal curvature directions) or the profile
and path curves of a translational surface.'®

— family B

Figure 2.10 Planar quad meshes. Left: lllustration of a conjugate curve network with tangent vectors as rulings of a developable strip
(Pottmann et al. 2007a, p. 680). Right: An example of a PQ mesh which is designed towards the principal curvature directions
(Pottmann et al. 2007a, p. 683).

Translational meshes are modelled from a profile and a rail-polyline. Each profile-polyline is copied
parallel to each vertex of the rail-polyline, creating a quadrilateral network with planar parallelograms.
Similarly, rotating a polyline about a central axis and connecting the vertices with polygonal circles creates
a rotational mesh with planar trapezoids. Schober (2016) used polylines with equilateral edges to design
reticulated shells. He devised more shape variations by linearly scaling and rotating the profile curves,
stretching the profile curve from a central focus point or scaling the whole mesh in one, two or three
dimensions. These variations are called ‘Scale-Trans-Surface’ and preserve the geometric property of
planar faces but not necessarily of equilateral edges.

Figure 2.11 Translational mesh and Scale-Trans-Surfaces. Deforming a translational mesh by scaling it in 3D, 2D or 1D, preserves
the property of planar faces (Schober 2016, p. 138).

15 The profile and path curves of a translational surface do not necessarily align with the principal curvature directions. The
resulting PQ mesh may thus display extreme oblique angles.
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Equilateral Edges

In differential geometry, equilateral, quadrilateral networks are called Chebyshev nets, named after the
Russian mathematician who first described them in 1878 (Chebyshev 1878).

Naturally, equilateral edges are closely related to repetitive faces (as described above). If all faces are
regular, all edges are of equal length as well. A constant edge length is also a property of the translational
meshes.

An equilateral, quadrilateral net can assume any curved shape through the individual rotation of mesh
angles. The initially square faces become rhombuses and thus account for the change in surface area
(Section 1.4.1). Such a quad mesh does not necessarily have planar faces.

The Institute for Lightweight structures (IL) has conducted a series of experiments on the geometry of “the
uniform mesh net with square meshes” to create prestressed or funicular structures (Hennicke 1974). A
variety of chain-models with triangular, quadrilateral, hexagonal, hybrid and non-uniform mesh formats
was tested. Only equilateral triangles do not allow for the tolerance in mesh angle. Hence, their shape
spectrum is restricted to single curved surfaces or results in discontinuous, slagging edges (Figure 2.12,
left). Quadrilateral and hexagonal equilateral nets, however, can be transformed into a broad spectrum of
synclastic and anticlastic shapes. They are only limited by the maximum rotation of the mesh angles (Bach
and Kullmann 1975).

Figure 2.12 Triangular, hexagonal and quadrilateral chain models with equilateral edges (Hennicke 1974, pp. 43, 45, 85).

A more recent publication by Garg et al. (2014) looks at a computational approach to adapt Chebyshev
nets to complex freeform surfaces to create wire mesh designs.
The research uses the formula of Hazzidakis (7879),

3

K(u,v)dA = 21 — o; 2.1)
) D

i=0

which states that the total curvature of a rectangular patch D of a Chebyshev net is equal to 2r minus the
sum of its four interior angles o.. In other words, if the total curvature of a surface is larger then 2n (the
curvature of a semisphere), it is impossible to cover this patch with an aligned Chebyshev net without self
intersection of the interior angles (compare Figure 1.10 and Figure 1.30).

Figure 2.13 Wire mesh designs made from interwoven material (Garg et al. 2014).
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Repetitive Nodes

There are a few methods which achieve a constant mesh angle while accepting a varying kink between
faces, such as the Lobel meshes presented above.

Connecting the centre point of each triangle in such a network creates a dual, hexagonal network with
regular angles of 120° between the “honeycomb walls” (Jiang et al. 2014)."® Furthermore, all node axes
are oriented normal to the surface. This quality is especially useful with respect to multi-layered structures.
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Figure 2.14 Left: Discrete network from equilateral triangles. Middle/Right: Connecting the centre point of each triangle creates a
dual, hexagonal mesh with constant mesh angle, measured in-plane (Jiang et al. 2014).

Node Angles

In their publication on reticulated structures on freeform surfaces, Stephan et al. (2004) systematically
explain the geometric parameters and related detailing of steel joints in a discrete segmentation. Their
definitions are used as a basis of the parametric definitions for discrete segmentations in Section 3.7.
Three angles are differentiated — horizontal, vertical and twisting — which define the geometry of any steel
node in relation to its centre axis.

W1

Figure 2.15 Definition of three node angles U, V and W defining the horizontal and vertical arrangement, and twist at a joint (ES 2018
based on Stephan et al. 2004).

The horizontal angle (Horizontalwinkel) U, is measured between two adjacent edges projected onto the
tangent plane. Stephan describes a general dependency of U, to the choice of network (hexagonal,
quadrilateral or triangular).

The vertical angle (Vertikalwinkel) V. is measured between each edge and the node axis. Stephan mentions
a general dependency of V, with the normal curvature of the surface.

The twisting angle (Verdrehwinkel) W, is measured between the orientation axis of an edge and the plane
created by the node axis and the edge. Again, Stephan conjectures a general dependency with the surface
curvature.

16 This angle is not equivalent to the mesh angle measured between edges, but equates to its value in projection to the tangent
plane. This angle is called the Horizontalwinkel by Stephan et al. (2004).
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Offset Meshes

Creating a mesh offset is not trivial. Two meshes are offset if they are parallel and at constant distance to
each other. The offset distance can be measured in between nodes, edges or faces. For triangular meshes,
creating an offset mesh is not possible without changing the connectivity of the mesh."”

A common goal for quadrilateral and hexagonal meshes is to create a torsion-free, geometric support
structure, meaning an arrangement of planar quads connecting the edges of top and bottom offset
meshes, such that the edge-quads at a node intersect at a common node axis (Pottmann et al. 2007b).

For quadrilateral meshes, differential geometry offers three respective solutions of torsion-free support
structures. Circular, conical and edge-offset meshes. They all create planar faces and respectively have a
constant node, face and edge distance. They are aligned to the principal curvature direction.

- In a circular mesh each face is inscribed in a circumcircle through every corner. Circular meshes
may assume any shape and allow a constant node-offset.

- In a conical mesh all faces at one node are tangent to a cone of revolution around the node axis.
They may assume any shape and allow a constant face-offset.

- An edge offset mesh (EO mesh) is best found via its Gaussian image. Here, each face possesses
a tangent incircle and all edges at one node are tangent to a cone of revolution around the node
axis. This type of mesh, however, is limited to so-called L-isothermic surfaces.

Figure 2.16 Diagrams showing the requirements of a circular mesh (left) (Pottmann and Wallner 2008), a conical mesh (middle) (Liu
et al. 2006) and the Gaussian image of an edge offset mesh (right) (Pottmann et al. 2007b).

17 Few exceptions, such as spherical meshes or platonic solids, allow a constant offset of triangular meshes.
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2.2.2 Smooth Segmentation
The main advantage of smooth segmentation is the simplification of nodes. As all edges and faces are
curved, they meet tangentially without any kinks or folds and create planar, traversal nodes.

Smooth Repetitive Moulds

The greatest challenge when constructing smooth segmentations is the fabrication of curved faces.
Eigensatz et al. (2070) investigate the possibility to classify the faces of a freeform-segmentation into a
limited number of “shape proxies”, such as plane, cylinder, paraboloid, torus or “cubic” (meaning freely
formed). Each face is first assigned to one of these generic moulds. Afterwards, the best fitting shape is
created by individual alignment. By tolerating a slight kink angle between panels, as well as a divergence
of the panel-edges and faces from the reference surface, a substantial rationalization can be achieved.
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Figure 2.17 Smooth repetitive moulds. Terminology and variables used in the algorithm by Eigensatz et al. (2010) determining
repetitive moulds for the smooth panelization of freefrom surfaces.

Developable Faces and Edges

A developable building skin can be attained by using a semi-discrete segmentation. The geometric
principles are directly related to PQ meshes (Section 2.2.1). A linear arrangement of planar quads is nothing
else than the discrete representation of a developable strip.

If a discrete, conjugate curve network is subdivided infinitely fine along one direction, it yields a smooth
array of developable strips. This method is well documented (Liu et al. 2006, Pottmann et al. 2008) and
has been implemented in the design of the Eiffel Tower Pavilions, which are constructed with single-
curved panels following the principal curvature directions (Eigensatz and Schiftner 2011).

Figure 2.18 Developable surface strips. Left: A discrete planar quadrilateral strip is refined to approximate a developable strip (Liu
et al. 2006). Right: The Eiffel Tower Pavilions are an example of such a semi-discrete segmentation (Eigensatz and Schiftner 2011).

For the additional simplification of having straight developments, Pottmann et al. (2010) propose a
panelization along geodesic curves. To obtain a semi-discrete segmentation from nearly geodesic strips
with constant width, the reference surface is partitioned separately allowing each pattern to better adjust
to the principal curvature directions.
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Geodesic curves may also be used to create grid structures from developable strips with straight unrollings.
It is, however, difficult to create homogeneous networks from geodesic curves. A hexagonal pattern, e.g.,
is only possible on surfaces with constant Gaussian curvature.

Figure 2.19 Geodesic patterns on freeform surfaces. Left: A freeform surface is partitioned and then covered in geodesic strips with
roughly constant width. Right: A freeform surface is segmented with a smooth tri-hex network approximating geodesic curves
(Pottmann et al. 2010).

Circular Arch Structures (CAS)

Disregarding the shape of panels, Bo et al. (2011) propose to optimize smooth quadrilateral and hexagonal
networks to obtain circular edges and congruent nodes. First, the network is approximated with a discrete
mesh. The edges are then computed as individual arcs meeting tangentially at every node. The result is a
good approximation of a smooth network via basket arches. To additionally create radius-repetitive arches,
Bo et al. propose a network along flow lines of constant curvature k. If the CAS network is aligned to the
principal curvature directions, this method allows for congruent, torsion-free nodes in a multi-layered
structure.

The cladding of such a CAS network can only be achieved if some kinks are tolerated: “... there is in
general no curvature-continuous surface which contains a given CAS if vertex valences are 4 or higher.
This is because the curvatures of the arcs adjacent to a vertex do not match” (Bo et al. 2011).
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Figure 2.20 Circular arch structures. Left: A freeform surface is approximated by a double-layered circular arch structure (CAS) with
congruent nodes. The network is arranged along the principal curvature directions. Right: A radius-repetitive CAS is possible along
flow lines of constant curvature (Bo et al. 2011).
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Smooth Offsets

A great potential of smooth segmentations lies in the simplification of multi-layered structures: Any smooth
network has a defined offset geometry. If all offset-edges are oriented normal to the surface, the nodes
inevitably are torsion-free.

In their paper on curved support structures, Tang et al. (2016) investigate the potential of a continuously
curved beam layout from developable strips positioned either tangential or orthogonal to a given surface.
Based on the three curvatures of a surface-curve Ty kg and k_(Section 1.1.3), Tang et al. analyse the
developable properties of principal curvature lines, geodesic curves and asymptotic curves. Only principal
curvature lines enable developable strips where rulings remain orthogonal to the guiding curve. Geodesic
curves and asymptotic curves allow for straight development as tangential or orthogonal strips. However,
their rulings are likely to incline, hindering the modelling process. This behaviour is described as a “mutual
exclusivity of ‘good’ properties”, as straight developments lead to “bad” rulings, and vice versa.

Tang implements further parametric constraints, e.g., the modelling of developable strips along curves of
constant normal curvature, which result in a circular development.

Figure 2.21 Developable strips on freeform surfaces: Left: A network of developable strips along asymptotic curves. The rulings of
strips are not normal to the surface. Right: Strips along constant normal curvature lines result in unrollings with constant radius (Tang
et al. 2016).

2.2.3 Conclusion

Geometric investigations focus mostly on discrete meshes. Repetitive faces or nodes can only be achieved
if a rough surface or a restricted shape is accepted. Planar faces have been a major focus of research in
architectural geometry. An alignment with the principal curvature directions produces most regular panels
for quadrilateral and hexagonal networks. The combination of planar quads with equilateral edges has
been one of the most succesfully used geometric rationalizations for reticulated gridshells.

Smooth segmentations, on the other hand, have only recently been studied in more detail. Here the focus
lies on a simplification of faces either by creating repetitive or developable panelizations. Most recent
publications look at the simplification of edges by either designing a constant curvature or using bendable,
developable strips. This promising strategy will be investigated further in this thesis.
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2.3 Architectural Developments

The development of curved grid structures in architecture is inseparable from the development of
lightweight construction. Form-active structures enable a spatial load-transfer as a shell. This has been
one of the main motivations to construct curved reticulated structures. However, there are other examples
of curved building structures. Especially in modern architecture, freeform fagades and curved grillages are
a common feature. These structures display a variety of strategies both geometric and constructive to
obtain repetitive elements and simplify the fabrication and assembly process.

The following section lists the most relevant examples of curved structural grids and facades. The
references are sorted chronologically with regard to the leading planner or the most relevant building and
give a short description of their repetitive qualities.

La Bourse De Commerce, in Paris, designed by F.J. Belanger (Architect) and F. Brunnet (Engineer), was the
first transparent rib-cupola. Other key developments were the greenhouse at Kew Gardens (1845) and
the Crystal Palace (1851) in London, as well as the Galleria Vittorio Emmanuele in Milan (1865), all of which
use spherical calottes or cylinders with circular or straight beams arranged along the meridian and ring
directions (Schober 2016).

Figure 2.22 Early examples of reticulated structures all rely on rotational or cylindrical geometries: (Left to right) La Bourse de
Commerce, Paris (WM 2013). Greenhouse at Kew Gardens, London (Photo: Jonas Schikore 2018). The Crystal Palace, London (WM
1851). Galeria Vittorio Emmanuele, Milan (WM 2014).

The early development of lightweight constructions started with the work of Johann W. Schwedler and
Vladimir G. Shukhov in the second half of the 19th century. Their structures mark the beginning of load-
bearing gridshells creating a triangulated grid. Both engineers were largely influenced by the need for a
simple fabrication and construction process.

Schwedlers reticulated copulas (first built at the Holzmarktstr. 28, Berlin, 1863) are constructed similarly to
earlier cupolas along the meridian-curves and horizontal rings of a sphere taking advantage of multiple
symmetry-axes. The primary, curved arched beams are connected with a polygonal ring structure and
braced diagonally (Kurrer 2013).

or i in der in Berlin (erbaut 1875).
Kuppeldurehmesser 54,9 m. Eisengewicht 68t = 25, kg/m.

Figure 2.23 Schwedler Cupola at the Holzmarktstr. in Berlin (Kurrer and Lorenz 2009).
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Shukhov expanded the form vocabulary, but remained within well-defined rotational and translational
geometries. His famous hyperbolic towers (1896) enable the use of repetitive, straight profiles along the
ruling of rotational hyperboloids. In the Nigres Tower at the Oka (looking at the top 5" segment), Shukhov
uses standardized 24.8 m long L-profiles (L 100 x 100 x 10), which are twisted by up to 4°/m (a total of 72°
degrees) to adjust their orientation to each connection joint (Beckh 2012)'8.

The parabolic gridshells in Vyksa (1897) are constructed from repetitive, diagonal arches, translated along
a parabola-shaped truss frame. Similarly, to the Nigres tower, Shukhov implies a slight twist of profiles to
accommodate a tangent connection at each joint (Beckh and Barthel 2009).

Figure 2.24 Grid structures by Viadimir Shukhov: Left: The hyperbolic Nigres Tower at the Oka (Photo: Matthias Beckh 2007). Right:
The parabolic gridshell in Vyksa (WM 1897).

One of the most prominent historic examples of repetitive structures are the lamella roof systems from the
1920s. Friedrich Zollinger and Hugo Junkers developed construction systems in timber and steel which
were built all over the world. Both systems are based on a rhombic grid on a barrel vault and allow the use
of standardized lamellas with repetitive joints (Tutsch et al. 2017).

Figure 2.25 Curved, modular lamella structures. Left: Zollinger Roof of the Marinaforum in Regensburg (Photo: Joram Tutsch 2018).
Right: Steel lamella roof of the airplane hangar in OberschleiBheim by Hugo Junkers (Photo: Joram Tutsch 2018).

In 1922, Walter Bauersfeld developed the first geodesic dome (Section 1.4.3) as the substructure of the
Zeiss-Planetarium in Jena. The dome is constructed from 4000 rods comprising of only 50 different
lengths. All joints are constructed identically and take up the differences in kink and mesh angle through a
circular, notched disc which clamps the groove at the end of each rod (Krausse 2011; Tornack 2012).

18 In his dissertation, Beckh (2072) simplifies the influence of torsion based on a homogeneous twist (72° / 24.8m = 2.9°/m). The
torsion of rulings of rotational hyperboloids is not constant but increases at the “waist-line”. The maximal twist between two
joints is (18° / 4.5m = 4.0 °/m).
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Figure 2.26 Left: The geodesic dome of the Zeiss-Planetarium in Jena (Krausse et al. 2011). Right: Patent by Bauersfeld and
Schmidt showing the adjustable joint detail (Tornack 2012).

Max Mengeringhausen invented the component-based construction system, MERO, in the 1930s.
Similarly in 1945, Konrad Wachsmann developed the so-called Mobilar Structure for transportable
airplane hangars. Even though both techniques were initially designed for non-curved space trusses, the
concept of a kit-of-parts was a key development for repetitive construction. Today Mero-TSK International
and other companies offer a broad spectrum of standardized joint, bar and facade-elements for the
construction of curved surface structures and facades (Weber 2012).

Figure 2.27 Component-based construction systems. Left: The MERO joint (Mengeringhausen 1975, p. 65). Middle: The mobilar structure
by Konrad Wachsmann (Nerdinger 2013, p. 208). Right: Spaceframe of the Heydar Aliyev Centre in Baku by Zaha Hadid (Mero 2011).

Richard Buckminster Fuller conducted extensive geometric research on packing and division of spheres.
He further developed the geodesic dome, introducing a variety of new construction techniques and
patents, which have led him and this building-type to substantial fame. Fuller’s work includes the use of
new materials, pneumatic and tensegrity structures, folding mechanisms and elastic constructions, and
have thus influenced the development of space and shell structures until today (Krausse and Lichtenstein
1999). His experimental construction of a bent, geodesic plywood dome in 1957 is one of the first examples
of a geometry-based approach to utilize elastic bending to create curved structures (Lienhard 2014).

Figure 2.28 Buckminster Fuller developed various techniques to construct geodesic domes, and deliberately employed the elastic
deformation of material to ease fabrication. Left: The United States Expo Pavilion 1967 (Krausse and Lichtenstein 1999, pp. 424-
425). Middle: Buckminster with his Dymaxion Car in front of his Fly’s Eye Dome (p. 379) Right: Plywood Dome (pp. 380-381).
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Félix Candela relied on hyperbolic paraboloids for his design of double-curved, reinforced concrete shells.
This allowed him to simplify the formwork construction using only straight planks supported by straight
beams. A further example of this geometry is the Philips Electronics Pavilion of the EXPO 1958 in
Brussels by Le Corbusier and lannis Xenakis. Unlike Candela’s poured-in-place method, Xenakis used
concrete panels which were prefabricated from a simple sand mould, and held together by post-tensioned
cables that followed the straight-line geometry of the hypars. Based on this construction process, the
Phillips Pavilion can be regarded as one of the first examples of smooth panelization of a double-curved
surface (Sijpkes 2012).

Figure 2.29 Hyperbolic paraboloids are used as formwork to create hyperbolic shells or panels. Left: Formwork of the Church
wlglesia de la Medalla de la Virgen Milagrosa*® by Félix Candela (Faber 1965, p. 94). Middle: Philips Electronics Pavilion at the Expo
1958 (WM 1958) Right: Sand mould for the panels of the Philips Pavilion (Sijpkes 2012).

A central figure in the innovation of double-curved structures is Frei Otto, who investigated a vast number
of natural form-finding and construction methods. His experiments with equilateral chain models have
been discussed in Section 2.2. The equilateral quad-nets were realized both as tension-only cable
networks, as well as compression-only gridshells:

The steel cable-net of the Olympic Stadium in Munich, 1972, was prefabricated as a uniform, quadratic
net, and pulled into its double-curved geometry. The cables form a discrete, equilateral network with mesh
size of 0.75 x 0.75 m. The varying mesh angle is taken up in the overlap joint at each cable intersection
(Bach and Kullmann 1975; Harbeke 1972).

Figure 2.30 The cable net of the Olympic Stadium in Munich during construction in relaxed and tensioned state (Harbeke 1972, pp.
129, 132), and after completion (Photo: ES 2018).
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Less noted but as important to the concept of repetitive structures is the facade paneling of the Munich
stadium. The cable net is clad to a large extent with standardized, square, acryl-glass panels of 2.93 x
2.93 m, which are bent to adjust to the appropriate double curvature creating a seemingly smooth, double-
curved facade. This repetition is achieved by accepting a varying gap in between panels.

This seam tolerance not only allowed the simplification of the geometry. It was also necessary to
accommodate for the movement and deformation of the structure under varying loads. A flexible neoprene
channel closes these gaps, and adapts to movement and tolerances. The roof panels were assembled
with stacked seams, similar to a brick pattern. This created simpler joints and helped to adjust the layout
of the square panels (Bach and Kullmann 1975; Harbeke 1972).

Figure 2.31 The Olympic stadium in Munich is covered with largely identical acryl-glass panels. During construction (Harbeke 1972,
p. 136) and after completion (Photos: ES 2015).

The Multihalle in Mannheim, 1974, was the first so-called “strained” gridshell which utilized elastic
deformation to create a double-curved lattice structure from straight wooden laths. The uniform lattice grid
with 0.5 x 0.5 m edge length was assembled flat and subsequently pushed up into the desired geometry.
This method creates a smooth quadrilateral network with constant edge length. The hinged joints adapt to
the varying intersection angle (Happold and Liddell, 1975). The constructive details of the Multihalle in
Mannheim will be further discussed in Section 2.4.

Figure 2.32 The Multihalle in Mannheim is constructed with a uniform timber lattice. Left: During construction (Barthel 2005, p. 287).
Middle: Interior View (Photo: Rainer Barthel 2007). Right: View from above (Barthel 2005, pp. 284).

The timber gridshell of the Brinebath in Bad Diirrheim, 1987, was designed as a smooth quadrilateral
network. The layout is designed to approximate the path the principal stress trajectories, creating meridian
slope-lines and horizontal rings, most of which display a spatial form. The timber elements were
prefabricated individually and assembled on site. The timber grid was braced with two diagonal layers of
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laths to create a load-bearing gridshell.
The layout was chosen purely for its structural advantages. However, this segmentation generally results
in perpendicular intersections which can be fabricated simply as notch connections (Wenzel et al. 1987).

Figure 2.33 Brinebath in Bad Dirrheim. Left: Network design (ES 2018 based on Wenzel et al. 1987). Middle: Construction Site
(Linkwitz and Veenendaal 2014, p. 150). Right: Interior view (p. 142).

The Reticulated Dome in Neckarsulm, 1989, was designed as an equilateral, quadrilateral network. The
dome of 25.2 m diameter and 16.5 m spherical-radius is constructed from 1.0 m long, curved edges and
spherical panels. All edge beams are fabricated identically and follow a geodesic path from node to node
on the sphere with a constant curvature radius of 16.5 m. Similarly, the spherical glass panels have a
constant double curvature and could be produced with the same spherical mould.

Schober differentiates the mesh angle (Maschenwinkel) measured between two adjacent edges, and the
geodesic angle (Knickwinkel) which measures the deviation from a traversal node. Both angles are variable
within this structure, but are taken up by the adaptable joints.

Two butt-straps are connected by a central bolt permitting a rotation of 90° - 65° to adjust the Maschenwinkel.
The edge beams are connected via two bolts, one with a tight fit, the other with an elongated hole, to allow
for the additional deviation of the Knickwinkel (Schober 2016).

Figure 2.34 Joint, interior and facade of the Reticulated Dome in Neckarsulm (SBP 1990).

The geometric contributions of Schlaich and Schober on translational meshes have been discussed in
the previous section (Section 2.2.7). The House for Hippopotamus at the Berlin Zoo, 1997, is a built
example of such a mesh. It was designed as two separate parabolic translational meshes which are
connected with an anticlastic, non-uniform network. This central grid acts as a transition from one
translational mesh to the other. The two domes are built entirely from 1.2 m long rods and planar glass
panels (Schober 2002). The varying mesh and kink angles at each node were fabricated individually within
the splice-connector joints (Stephan et al. 2004).
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Figure 2.35 Exterior view and geometry of the translational gridshell of the House for Hippopotamus, Berlin Zoo (Schober 2002).

Frank Gehry is a pioneer in digital design for architecture. His software company, Gehry Technologies,
developed modelling tools for developable surfaces and geometry rationalization, simplifying the
supporting structure and facade panelling of freeform surfaces. Gehry widely applied the use of single-
curved, rectangular panels of glass and steel which can be bent to fit the building geometry. The Fondation
Louis Vuitton in Paris specifically employed the use of identical flat panels of 1.5 x 0.4 m which were
vacuum moulded into their individual curvature (Shelden 2002; Mathewson and Gehry 2007).

Figure 2.36 Gehrys designs use developable surfaces. Left: Walt Disney Concert Hall, Los Angeles (WM 2012). Middle: Weatherhead
School of Management in Cleveland (Shelden 2002, p. 323). Right: Fondation Louis Vuitton in Paris (Photo: Fred Romero 2008).

An example of both simplified geometry and facade construction is the canopy of the Strasbourg Train
Station, 2006, designed by Duthilleul in cooperation with RFR engineering. The double-curved glass
facade is designed as a toroidal form, producing cylindrical glass elements with only four different radii of
curvature. Instead of using hot-bent panels, the curved glass elements were bent elastically and laminated
to fix their form (Kassnel-Henneberg 2010; Januszkiewicz and Banachowicz 2016).

Figure 2.37 Strasbourg Train Station. The toroidal facade is constructed from cylindrical glass panels (SE 2006).
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The Kogod Courtyard Roof, 2007, in Washington DC is a freeform surface. Here, the quadrilateral panels
are constructed as a scaled, discontinuous skin to allow for planarity. The steel structure, on the other
hand, is optimized to create nearly torsion-free nodes. As a result, adjacent edges meet approximately in
a common node axis, which is, however, not necessarily normal to the design surface (Jiang et al. 2013).

Figure 2.38 The Kogod Courtyard Roof in Washington DC. The facade is scaled to allow for planar panels (FP 2007).

The Yas Viceroy Hotel, 2009, in Abu Dhabi follows a similar strategy of “scaling” the fagade and optimizing
the node orientation. A subdivision routine creates nearly torsion-free joints. The node axes follow the
rulings of developable strips orthogonal to the design surface (Wang et al. 2013; Pottmann et al. 2015).

Figure 2.39 The Yas Viceroy Hotel in Abu Dhabi. The facade structure is optimized for torsion-free nodes (Pottmann et al. 2015;
SBP 2009).

A pragmatic way to create torsion-free edges and nodes is by enforcing a vertical beam layout, as was
done at the Metrosol Parasol, 2011. The design surface is chopped vertically into a regular, quadrilateral
1.5 x 1.5 m pattern in plan. In this case, any relation of beam- and surface-orientation is given up. The
beams are fabricated as continuous, flat profiles with variable height. The nodes vary in height but have
consistent vertical axes and congruent intersection angles in plan. This design method leads to substantial
distortion of the network in areas of steep inclination. Here the vertical height of beams and nodes increases
drastically (Schmid and Fischer 2010).

Figure 2.40 The Metrosol Parasol in Seville uses a vertical, orthogonal beam layout (MPA 2011).
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The smooth segmentation of the Centre Pompidou in Metz, 2010, by Shigeru Ban, was designed with
the same method by vertically projecting a homogeneous (tri-hex) pattern onto a reference surface. The
network shows extreme distortion in areas where the surface is steep. The orientation of edges and nodes,
however, is aligned with the surface, and has a constant offset distance. The network is constructed from
four interlaced layers of continuously curved timber beams. Similar to the Brinebath in Bad Durrheim, all
beams have a spatial geometry and needed to be prefabricated individually. The smooth segmentation
allows for planar, traversal joints (Kockelkorn 2008).

Figure 2.41 The Centre Pompidou in Metz. The tri-hex network is constructed from individually curved timber elements (SBA 2010).
Right: The tri-hex network was projected onto the design surface (ES 2018 based on Kockelkorn 2008).

The smooth network of the Eiffel Tower Pavilions, 2014, is aligned towards the principal curvature
directions enabling nearly torsion-free edges and developable faces. The curved mullions could thus be
prefabricated from flat strips of steel. The facade was rationalized further and constructed with cylindrical
panels, with only slight kinks and discontinuities at the vertical joints (Schiftner et al. 2013).

Figure 2.42 The Eiffel Tower Pavilion in Paris. The network follows lines of principal curvature. This simplifies the geometry of both
steel structure and glass panels (MR 2014).

Conclusion

Historically, the shape of reticulated structures has been either cylindrical or spherical, with few exceptions
of other traditional surfaces, such as rotational or translational geometries. In particular double-ruled
surfaces (such as rotational hyperboloids or hyperbolic paraboloids) have been used to create double-
curved structures from straight profiles.

A drastic liberation of design shapes was initiated by Frei Otto and progressed with the development of
computer-aided modelling tools. This sparked the development of various digital design and fabrication
techniques.

Today, we can observe a diverse combination of discrete and smooth networks for load-bearing structures
and fagades. Additional to geometric rationalizations, adaptable construction techniques (using tolerances,
hinges and deformation) open up further possibilities to simplify building parts.
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2.4 The Multihalle in Mannheim

The geometric advantageous of the Multihalle in Mannheim have been briefly discussed in Section 2.3.
The following review takes a closer look at the assembly and construction details used in this strained
timber gridshell. The construction method of the Asymptotic Gridshell, inspired by this paradigm, will be
presented in Chapter 6.

Assembly

Frei Otto’s gridshells utilize elastic deformation to create a double-curved lattice structure from straight
wooden laths. The lattice grid is assembled flat and held together by pinned joints. The combined flexibility
of elastic laths and scissor joints allows this grid to take on virtually any shape within the permissible
bending radii and node range (see Section 5.1.3 on smooth equilateral quad networks).

The structure is erected using multiple support “stamps”, which push the grid up and determine the
desired double-curved shape. During this deformation process, the square grids are transformed into
varying parallelograms. The final geometry is secured by tightening the joints, fixing the quadrilateral
network along the support-edges, and bracing the diagrid with diagonal steel cables.

Figure 2.43 Construction process of the Multihalle in Mannheim. Left: The lattice grid is assembled flat (Glaeser 1978, pp. 59).
Middle: The grid is erected with scaffolding ,,stamps*“ (Glaeser 1978, pp. 60). Right: The facade is installed (Barthel 2005, p. 287).

Details

The elastic erection process called for slender laths and flexible joints. At the same time a high stiffness
in-plane and out-of-plane was necessary to prevent buckling and deflections. It was achieved in-plane
through the rigid supports and diagonal steel cable ties, and out-of-plane through the joint connections
and additional shear blocks.

The following three details — typical grid joint and ties, shear couplings, and supports —show commendable
solutions for a strained gridshell.

Typical grid joints and ties. The 50 x 50 mm timber laths were connected with a central bolt allowing for
an in-plane rotation during the erection process. To activate the additional stiffness of the double-layered
grid, shear forces had to be transmitted at every node. This requirement was opposed by the need for a
sliding joint (long hole) to accommodate the variation of edge length at the top and bottom layers, thus
prohibiting the use of mechanical connectors. The shear stiffness was achieved by introducing high
clamping forces using a spring and bolt, which created sufficient friction.

The rotational stiffness of the joints, as well as the diagonal stiffening effect of the PVC skin, proved to be
too low to brace the structure. However, a significant in-plane stiffness was essential to the load-bearing
behaviour. Consequently, a pair of 6 mm steel cables was installed at every sixth diagonal axis (at 4.5 m
distance), and was fixed at every node to transmit the high tension forces (Burkhardt 1978, p. 112).
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Figure 2.44 Typical grid joint and diagonal cables of the timber gridshell (Burkhardt 1978, p. 112).

Shear couplings. Due to the high axial load in some areas of the grid, the out-of-plane shear stiffness
needed to be increased. This was achieved by adding blocking pieces between the top and bottom laths.
At each shear connection, two wedges were adjusted to the right offset and clamped with three bolts and
springs to create the necessary friction (Burkhardt 1978, p. 114).

folding wedge blocking pieces
Sperrstuck, Klappkeil

8 mm dia. bolts with spring washers

as standard node connection

8 mm @ Bolzen mit Feder und Scheibe
als feste Knotenverbindung

Figure 2.45 Detail of shear blocks connecting the top and bottom layers (Burkhardt 1978, p. 114).

Supports. The Multihalle in Mannheim displays multiple boundary situations, such as cable supports,
walls and arches. At the lower horizontal supports, the timber lattice is simply bolted onto a curved plywood
board, which in turn is held by individual brackets fabricated to the correct angle. The brackets experience
a bending moment due to the eccentric connection and are bolted rigidly onto a horizontal concrete wall
(Burkhardt 1978, p. 117).

50mmx50mm laths
of latticeshell
50mmx50mm Latten
der Gitterschale

plywood edge board
Sperrholz Randbrett

special 16 mm dia. bolts for
connecting plywood edge
board to steel bracket
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System-Punkt
system point

10 mm dia. bolts connecting
lattice to edge board
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Figure 2.46 The horizontal supports are adjusted with individual brackets (Burkhardt 1978, p. 117).
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3 Theoretical Framework

In order to classify and quantify repetition within double-curved networks, a novel theoretical framework
is created which separately lists geometric parameters and constructive criteria. The framework is used in
subsequent investigations to analyse and design repetitive structures.

- Section 3.1 describes the geometric parameters of networks. It is separated into smooth and
discrete segmentations, and lists their parametric dependencies.

- Section 3.2 introduces constructive criteria which create identical building parts by diverging from,
or adapting to, the geometric reference. We focus on deformation as a strategy to construct smooth

segmentations, and list requirements for the correlation of curvature and deformation of beams.

- Section 3.3 discusses further criteria of repetition, such as precision, extent, choice or relevance of
parameters in order to avoid misinterpretations.

- Finally, in Section 3.4 all strategies to attain repetitive parts are concluded.

Figure 3.1 Cable net of the German Pavilion, Expo1967 in Montreal during construction (Wilhelm and Otto 1985).
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3.1 Geometric Parameters

The segmentation of a surface results in three geometric entities: nodes, edges and faces. Each entity is
defined by a combination of parameters. We distinguish between smooth and discrete segmentations
(Section 1.3.1) as they lead to varying parameter sets. The parameters are described and illustrated for
quadrilateral networks, as these are of predominant interest for this thesis. They can, however, be applied
to any other network. If a parameter is kept constant throughout the structure, this parameter is fully
repetitive.

The parameters examined in this thesis are selected to explain the geometric effects of repetition. Further
parameters focusing on specific detail solutions, such as the thickness of a profile or the diameter of a
joint, are not relevant for this comparison.

Multi-layered structures. The parameters aim to include the design of so-called multi-layered structures.
In this case, the network is offset creating two layers of corresponding nodes, edges and faces. Each node
in a multi-layered structure is represented by an axis connecting the top-node to the bottom-node. The
edges become two-dimensional strips, or quads, connecting the top-edge with the bottom edge. Each
face has a parallel offset face. If all nodes are torsion free this is called a geometric support structure.

Figure 3.2 The Kogod Courtyard in Washington DC representing a so-called geometric support structure (Photo: Maja Schling
Martin 2018).

The following section first lists the parameters for smooth segmentations, then discrete segmentations.
For each segmentation, the impact of multi-layered structures is explained separately. The two parameter
sets are combined to give a complete overview of parameters for any hybrid, multi-layered network.
Finally, the dependencies within the set of parameters will be presented.

50 Part II: Repetitive Structures



3.1.1 Parameters of Smooth Segmentations
Smooth segmentations are the closest network representation of a surface.

Nodes. The nodes are locally planar and can simply be described by their mesh angles o measured
between two adjacent edges. If all segmentation edges are continuous (quadrilateral and triangular
networks), the nodes are also traversal and can be defined by one intersection angle 1. The intersection
angle is dependent on the network type (quadrilateral = 90°, triangular = 60°, hexagonal = 120°) and its
distortion.

Edges. The edges are defined by their length and curvature:

The edge length / is measured along the edges from node to node. In a smooth, multi-layered network,
the edge length at top and bottom vary depending on the normal curvature.

The curvature of the edges is differentiated into normal curvature k , geodesic curvature kg, and
geodesic torsion T, in relation to the orientation of the reference surface (Section 1.1.3).1°

Naturally, the general curvature k and torsion t of a curve can be measured independently (Section 1.1.17).
This curvature is relevant when using circular profiles (with no defined orientation) for construction.

Faces. The faces of a smooth network are shaped like any surface (Section 1.2) and cannot be described
simply. We can compare their shape (by looking at surrounding edges and mesh angles) and Gaussian
curvature K. Single curved faces can be compared through an isometric mapping (Section 2.1.17) if
developable deformations (as defined in Section 3.2.3) are considered.

Offset. The offset distance o is simply measured between top and bottom at all entities. It is constant in
a smooth segmentation (provided the offset distance is smaller than the minimal curvature radius of the
surface). In a smooth, multi-layered network, the shape and curvature of the top and bottom face
correspond with respect to the offset distance.

NODE EDGE FACE
ks 62 ]
To Q0
ko
(0]
[e]
® intersection angle [ edge length S face shape

K Gaussian curvature
o offset

kn normal curvature
kg geodesic curvature
1g geodesic torsion T torsion

Ik curvature

Figure 3.3 Parameters of a smooth segmentation (ES 2018).

19 If the edge-orientation is not aligned with the surface, these curvatures may be measured around the local x, y and z orientation,
ask, ky and k,. In this thesis we focus on networks which consistently align edge and surface orientation.
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3.1.2 Parameters of Discrete Segmentations
In a discrete mesh, all curves become polylines, thus shifting the complexity to the nodes. The discretization
naturally creates tangential discontinuities (Section 1.3.7) of both curves and faces.

Nodes. The angles at a node are measured differently in various publications. This description is based on
Stephan et al. (2004) and Schober (2016), and aims to illustrate the dependencies between smooth and
discrete segmentations. There are three node angles in a discrete segmentation which are directly related
to the three curvatures of a respective smooth segmentation.?® They are measured in relation to the node
axis and its corresponding tangent plane:

- The normal angle o measures the deviation of each edge from the tangent plane at the node. It is
related to the normal curvature of the network.

- The geodesic angle 3 measures the deviation of each edge from a traversal node within the tangent
plane. It is related to the geodesic curvature of the network.

- The torsion angle y measures the deviation of subsequent node axes within the normal plane of
their connecting (straight) edge. It is related to the geodesic torsion of the network.

Figure 3.4 The node angles o, B, y and » are measured in relation to the node axis and tangent plane in a discrete segmentation (ES
2018).

Together with the initial intersection angle 1 there are four independent angles that illustrate the behaviour
of a discrete node. However, the intersection angle 1 can only be measured in a traversal node (i.e., in
smooth segmentations). We thus use the mesh angle ®, measured between two adjacent edges, in our
following parameter sets. It is dependent on «, p and 1, and is the most common angle to describe a node
arrangement.?!

Stephan (2004) describes three angles necessary to define the fabrication of a joint: His Vertikalwinkel V
and Verdrehwinkel W measure the same behaviour as the o and y. His Horizontalwinkel U combines the
information of the intersection angle 1 and its geodesic deviation B. It simply measures the mesh angle
between two adjacent edges as a projection onto the tangent plane at the node.

Schober (2016) describes the Vertikalwinkel, Verdrehwinkel and Maschenwinkel, equivalent to o, y and o,
to define a joint. Additionally, in his description of the Reticulated Dome in Neckarsulm, he mentions the
deviation from a traversal node as Knickwinkel, equivalent to .

®

Table 3.1 Hierarchical diagram of node angles. The angles o, B,y and o are selected for comparison (ES 2018).

20 We will thus name these angles after the curvature they are related to.
21 If a.and B are zero, then  =1.
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Edges. The edges in a discrete mesh are defined as straight lines of length /. In a multi-layered structure,
the edge-quads of a geometric support structure have a trapezoidal geometry. The edge lengths on top
and bottom are related to the normal angle at the adjacent nodes.

Faces. The face shape in a discrete mesh can be deduced by the values of / and » of the surrounding
edges and nodes. A common topic of investigation is their planarity, which is measured separately as the
deviation of surrounding nodes from a plane. If P = 0, the face is planar.

Some publications additionally list the kink angle v which measures the tangential discontinuity between
two adjacent faces. It is measured in the normal plane of the edge. This relation is, however, inscribed in
the normal angle a, and will not be listed separately in this thesis.

Offset. The offset distances in a discrete mesh are variable for node-offset, edge-offset and face-offset,
and need to be measured individually. The planarity of a face is inherited by the offset face.

NODE EDGE FACE

®i mesh angle ! edge length S face shape
ai normal angle 0e edge offset P planarity
Bi geodesic angle or face offset

yi torsion angle
on node offset

Figure 3.5 Parameters of a discrete segmentation (ES 2018).

3.1.8 Combined Parameters
Many built solutions combine characteristics of both smooth and discrete segmentations and can only be
described with a combination of all parameters.

NODE EDGE
ks 62 !
Tg Q
Oe Kn

®i mesh angle ! edge length S face shape
ai nhormal angle kn normal curvature Ik i K Gaussian curvature
Bi geodesic angle kg geodesic curvature curvature P planarity
yi torsion angle 1g geodesic torsion 1 torsion
on node offset 0Oe edge offset ot face offset

Figure 3.6 All parameters of both smooth and discrete segmentation are combined in one set (ES 2018).
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This set of parameters will be used in the following investigations to analyse repetitive nodes, edges and
faces. The parameters are listed in a standard table:

NODE EDGE FACE
o | o | B | v | o o ok | ok | 5 | o s | kP | o

n

Table 3.2 Standard table of repetitive parameters (ES 2018).

Fairness

Some optimization tools introduce additional “fairness” parameters to favour meshes of smooth or
homogeneous appearance. The mesh-optimizer Evolute for example, defines a parameter which minimizes
the curvature of each polyline in a mesh (Hammerberg 2012). This creates a continuous progression of
mesh edges and reduces the kinks between faces, a quality which is often preferred by designers.

In the subsequent inductive study (Section 5.17), this continuity ¢ — measured as the angle between
subsequent edges — will be used to induce fairness. Additionally, the fairness will be assessed qualitatively
based on specific criteria of the design network.

3.1.4 Terminology and Dependencies

Terminology
Certain terms used in geometric descriptions indicate specific parameter values:

- ‘Equilateral’ describes a constant edge length in a network.

- Nodes are described as ‘regular’, meaning a constant mesh angle o or ‘planar’, meaning a constant
normal angle o of zero.

- Continuous edges create ‘traversal nodes’ with the property:
o, =0, and o,=on, =180°- o, (for quadrilateral segmentation)
o, =0, and o,=0, and o,=o, =180°- o~ o, (for triangular segmentations)

‘Torsion-free nodes’ describe the property of a constant zero torsion angle, y = 0.
One way to identify/install this property are equal sums of opposite angles:
o, + 0, =0, + o, (inaquadrilateral segmentation)

Dependencies of Smooth Segmentations

The majority of parameters in a multi-layered smooth segmentation are determined. If the offset is constant
and all edges are continuous and oriented normal to the surface, the following relationships can be
expected:

- All normal angles are zero: a = 0°

- All geodesic angles are zero: § = 0°

- All torsion angles are zero (i.e., the nodes are torsion-free): y = 0°

- All mesh angles are traversal: 1 = w, =, and ,=w,=180°-w, =180°-1.
- Node-, edge- and face-offset are identical: o, =0, = 0,= 0
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The curvature values k_and kg are derived by projecting the curvature vector of k onto the tangent-plane
and the tangent-normal plane of the curve. Their relation is expressed as follows:

K = ’knz +kg2 (3.1)

Dependencies of Discrete Segmentation

In a discrete segmentation, the edges are straight and do not lie within the surface. The edge orientation
is usually defined as the vector sum of the normalized vectors of the adjacent nodes (Stephan et al. 2004,
p. 564). The curvature and torsion of discrete edges is zero.

Dependency of Curvature and Node Angles

If we imagine a smooth network on a surface, and a discrete network connecting the same nodes with
straight edges, then both networks follow the same layout:

Within the smooth segmentation, the curvature is continuously measurable along the edges, while within
a discrete segmentation the curvature is concentrated at the nodes. The three curvatures and respective
node angles are related. The dependencies can be described by the “formula for discrete curvature”
(Pottmann et al. 2007a, p. 227).

Tg 0

Figure 3.7 The same network can be modelled as smooth or discrete segmentation (ES 2018).

- The normal curvature k is related to the normal angle o, with respect to the corresponding edge
length:

2 sinqy
n ~ l

3.2)

- The geodesic curvature kg is related to the geodesic angle B, with respect to the corresponding edge
length:
inBi
L 2 sin 5 (3.3)
8 l

- The geodesic torsion Ty is related to the torsion angle y, at the node with respect to the corresponding
edge length:

Ty & — (3.4)

These equations give an approximation of the average edge curvature at each node. They are dependent
on the resolution of the network. A finer grid (with smaller edge length) will produce more accurate results.
Calculating the average of two subsequent edge-lengths additionally increases the precision.
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3.2 Constructive Criteria

The review of architectural structures (Section 2.3) showed examples in which standardized parts are used
for variable geometric situations. A hinged joint for example, can flexibly adjust to any angle within its
rotation range. Such “constructive rationalizations” can be separated into tolerances (i.e., positional
discontinuities (Section 1.3.7)) which deviate from the geometric segmentation, creating a discontinuous
model, and adaptations, which deform or hinge a building part to fit the geometric situation (Schiftner et
al. 2013).

The constructive criteria are an important part of our analysis of repetition. A sufficient tolerance,
deformation or hinge within the construction may validate a variable geometric parameter (Section 4.1).

3.2.1 Tolerances

Some degree of tolerance is incorporated in every construction to provide clearance between parts. This
accounts for the movement of the structure or allows for variable precision in fabrication and assembly.
These tolerances can be deliberately increased to reduce the variety of individual parts. While nodes and
edges require more precise fabrication, tolerances are used extensively to allow for repetitive facade
panels. Some facades use large elastic seams or even a separate substructure to enable a substantial
tolerance and achieve repetitive or planar panels.

Figure 3.8 Tolerances in architectural construction. Left: Longholes at the outer laths of the Multihalle in Mannheim allow a variation
in length (Burkhardt 1978). Middle: The panelling of the Olympic Stadium in Munich uses in-plane tolerances which are realized as
elastic neoprene joints (Harbeke 1972). Right: The glass facade of the Kogod Courtyard is designed with out-of-plane tolerances to
obtain planar panels (FP 2007).

Tolerances create a gap (or overlap) between building parts either in-plane, as illustrated by the Neoprene
seams of the Olympic Stadium in Munich, or out-of-plane, as illustrated by the scaled glass fagade of the
Kogod courtyard.

Tolerances are considered in our analysis of repetition by allowing a variation of the specific length or
shape parameter. Identifying the magnitude of a tolerance provides an important insight into the design
and construction process of an existing structure. Often, further building parts are necessary to bridge the
accrued gaps.

NODE EDGE FACE
o/ o B Y (o) | k K, T o S K/P o

tolerance tolerance

Table 3.3 Parametric impact of tolerances. Tolerances most commonly validate a variable geometry of face shape or edge length.
(ES 2018).
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3.2.2 Hinges

Hinges are used primarily to enable a specific structural behaviour without restraints and avoid undesired
bending moments in beams. They are located at the nodes of a network and facilitate the rotation of edges
around a given axis. They allow for an individual adjustment of joints to a variable node geometry.

Figure 3.9 Three hinged joints. Left: Laschenknoten SBP-2 offering an adjustment to the intersection angle .. Middle: Laschenknoten
HEFI-1 with some tolerance of the geodesic angle B. Right: Laschenknoten POLO-1 with vertical buttstraps. This could be used to
accommodate variable normal angles o. (Stephan et al. 2004).

Hinges are considered in our analysis of repetition by allowing a variation of a specific angle parameter.
The type and magnitude of angle give valuable insight into the specific detailing of this joint.

NODE EDGE FACE
o/1 o B Y o, K, kg T, o, S K/P (o}
hinge hinge hinge hinge

Table 3.4 Parametric impact of hinges. Hinges validate a variable geometry of node angles (ES 2018).

3.2.3 Deformation

‘Deformation’, in this context, refers to a planned elastic bending or twisting of a beam or panel, with the
goal to simplify the construction process. Other deformations caused by self-weight or external loads are
referred to as “deflections”.

Deformation is used for beams and facade panels to adjust to the desired curvature of edges or faces. It
is considered in our analysis of repetition by allowing a variation of specific curvature parameters. The type
and magnitude of curvature indicate how the building part is deformed. This information is decisive when
choosing the appropriate profile and material. It will be discussed in more detail in Section 3.2.4.

Figure 3.10 Deformation in architectural construction. Left: Multihalle Mannheim. The timber laths are bent and twisted into the
curved geometry (Photo: Rainer Barthel 2007). Middle: The ICD/ITKE Research Pavilion 2010. The timber lamellas are bent around
their weak axis, normal to the design shape (ICD 2010). Right: IAC Headquarters, New York. The glass panels are warped on site into
a curved geometry (Millard 2015).
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NODE EDGE FACE
o/ o B Y o k k T o S K/P o

n n g g e f

deform. deform. deform. deform.

Table 3.5 Parametric impact of deformation. Deformation validates a variable geometry of curvature of edges or faces (ES 2018).

Geometric Differentiation

As the term ‘deformation’ describes any strain (compression or tension) of material it is necessary to give
a more precise geometric differentiation in order to be able to model and compare deformed elements.
For design and modelling purposes, we therefore distinguish between two kinds of deformation for one or
two-dimensional objects (curves and surfaces).

Developable Deformation. Commonly, in geometric modelling, deformation is only considered if the
slender panel or lamella is transformed into a developable geometry (Section 1.2.1). This ensures that the
two-dimensional object does not undergo any geometric streching or shearing.

A deformation is thus called ‘developable’ if it follows an isometric mapping, as explained in Section 2.1.1.
This means that the curve or surface may change its shape without changing its length (and area), angles
or Gaussian curvature.

One-dimensional edges that are subject to developable deformation may be considered congruent if they
have the same length. Similarly, a two-dimensional face or strip which is subject to developable deformation
may change its shape, but maintain its edge length, area, proportion and Gaussian curvature. This is only
possible for single-curved (K = 0) surfaces.

Double-curved surfaces cannot change their shape without changing their Gaussian curvature and are
thus not considered for developable deformations. Similarly, a flat panel or lamella cannot be twisted or
formed into a double-curved shape in any other way if only developable deformations are allowed.

Physically, developable deformations result in bending stress, depending on the curvature and the section
modulus (W, or W, ) of the material. For slender lamellas or panels the latter can be derived simply by the
thickness t and the elasticity E of the material. These mechanical implications will be discussed in the case
study in Section 6.3.2.

Figure 3.11 Developable deformation. A flat panel or lamella can be bent around its long or short axis, or even warped diagonally,
and maintin a developable geometry, i.e., not undergo change in length, angle or double curvature (ES 2018).

Non-developable Deformation. Any strain exceeding developable deformation is considered ‘non-
developable’. Such non-developable deformation thus allows a slight change of length within the panel or
lamella. Two-dimensional objects such as faces or strips may, e.g., be twisted or buldged to subtly change
their double curvature. The repetitive geometry of such elements needs to be analysed individually based
on their shape, proportion and material properties.

Physically, non-developable deformations are expected to create additional stress due to strain which
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cannot be derived simply from the material thickness. Again, these mechanical implications will be
discussed on the basis of the case study in Section 6.3.2.

Figure 3.12 Non-developable deformation. If the panel/lamella is bent into a double-curved shape, such as an anticalstic or synclastic
surface, the Gaussian curvature does not stay constant. Even twisting a lamella leads to double curvature and an elongation of fibers
(ES 2018).

Deformation in Built Structures

When analysing built structures, the interpretation of a one or two-dimensional object becomes unclear as
even the thinnest rod has a thickness. In our analysis of repetition, panels and lamellas are seen as two-
dimensional objects, circular or double-symmetrical rods are seen as one-dimensional objects. Their
deformations are thus considered ‘developable’ if all requirements are fulfilled.

Finally, it must be said that any physical deformation is reliant on material properties and profile dimensions.
When designing a repetitive structure with deformation, threshold values, such as maximal normal or
shear stress, must be defined to limit the accepted bending radii or torsion.

3.2.4 Curvature and Deformation

To be able to correlate the curvature of curves on a surface (rg, k, and kg) with the structural deformation
of beams (k,, K, and «,), we must clarify the geometric relationship of the geometric model and the built
structure.

The following three requirements have to be fulfilled:

- The beams must be curved continuously and follow the smooth design network.

- The profiles must be continuously oriented upright (along the normal vector) to align with the
Darboux frame.

- The beams must be initially straight and bent elastically so that their deformation corresponds to
their curvature.

If all requirements are satisfied, the profile orientation (defined by the x, y and z axes) corresponds to the
Darboux frame (defined by the three vectors t, u and n) of the reference surface-curve. Similarly, the
expected deformation « , K, and «, of the structural profiles can be regarded equivalent to the geometric
curvatures Ty k,and kg, of the surface curves.

t = x; Tg = Ky a5
u=y; Ky = Ky; 39
n= z kgEKZ;

3 Theoretical Framework 59



Figure 3.13 Corresponding parameters of curvature and deformation (ES 2018).

This relationship allows for a direct analysis of deformation via the curvature radius of the reference
geometry. It is used in our analysis to classify the deformation of networks in Section 4.2, it is taken as a
basis for the study of curvature-related networks in Section 5.4, and is implemented in the case study to
deduce the residual stresses of bent lamellas in Section 6.3.2.
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3.3 Additional Criteria

Even though we have defined a set of geometric parameters and constructive criteria, there still remains a
large potential for misinterpretation when classifying repetitive structures. The following section lists
additional criteria to clarify and complete the author’s understanding of repetition.

Extent. The repetition of elements might not be enforced throughout the whole structure. We therefore
distinguish between full repetition, which is only valid if all instances of a certain parameter are identical
throughout the whole structure, and partial repetition. The quality of partial repetition can be quantified
by the number of equivalence classes and the number of congruent elements in each class. If not stated
otherwise, our studies focus on fully repetitive solutions.

Exeptions. Even if a parameter is fully repetitive, there are possible exceptions in a structure which call for
individual fabrication. This is often the case along the boundaries of a network. Here the beams and
panels are trimmed to fit the bespoke boundary and need to be fabricated individually. Another exception
are singularities within a homogeneous pattern which create nodes of varying mesh angles. Such
exceptions are regarded a side effect and have no influence on the parametric assessment.

Precision. Repetition is often approximated through optimization to achieve almost identical elements.
The constructive tolerances, described in Section 3.2, are a driver for such an approximate search. This
tolerance has a blurring, or softening effect on the solution spectrum of forms and segmentations. It is
therefore crucial to specify the precision of measurements in any comparative analysis or design study.

Choice. The specific construction technique may alter the choice of parameters to compare in a structure.
It might, e.g., be useful to keep a constant overall length of beams (see Shukhov’s hyperbolic towers),
rather than comparing the specific distances between nodes. While this kind of parameter selection is
valid and necessary, our subsequent investigations focus primarily on the parameters specified in Section
3.1.

Relevance. Looking at specific built structures, it becomes apparent that not every parameter or entity
listed in Section 3.7 might be relevant. For example, analysing an open cable network does not need any
consideration of face shape. Even though a geometric assessment might be possible, it would be
misleading and incomplete, as the constructive criteria cannot be judged. Therefore, we will only judge
those elements that are present in an existing structure.

Eccentricities. The constructive use of eccentricities can be utilized to simplify joints and create repetition.
The most prominent examples are reciprocal structures which allow for the use of identical rods, intersecting
tangentially at variable angles and distances. This topic is rich from both a geometric, as well as structural,
point of view. However, eccentricities are not a focus of this investigation.

Dimensioning. Even though an element might be geometrically repetitive, it may not be fabricated
identically as the specific load-bearing behaviour might call for differently sized elements. Especially in the
construction of gridshells, the stresses within the grid varies greatly and often leads to a varying
dimensioning of the beams. This thesis is focused on the geometric properties of grid structures and does
not evaluate the stress-related variation of elements.
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3.4 Strategies to Achieve Repetition

Based on the review of repetitive structures, in combination with the geometric and constructive parameters,
the following strategies to obtain repetition have been observed:

Geometric Strategies

In-plane Network Adjustment. The most obvious strategy to create repetition is to design and adjust
the network of a surface. Network adjustment refers to the deliberate movement of edges or nodes within
the uv-coordinates of the target surface (i.e., in-plane adjustment) without creating a discontinuous
network. For instance, using equilateral edges successfully adjusts a network and creates repetition
independently of the shape or other strategies.
In-plane adjustment, however, is limited in its possibilities to create repetition. One of the most successful
methods of in-plane adjustment is the alignment of the network with the principal curvature directions.

B Out-of-plane Network Adjustment. In contrast to the in-plane adjustment, the out-of-plane adjustment
refers to the deliberate movement of edges away from the target surface while keeping a continuous
network. In case of discrete segmentation, this kind of adjustment may create a rough (i.e., non-smooth)
surface. It is a powerful strategy and can create full repetition if a sufficient out-of-plane (proximity)
tolerance is allowed.

GG

in-plane adjustment out-of-plane adjustment

Figure 3.14 Networks can be adjusted in-plane and out-of-plane. This strategy maintains a continuous smooth or polyhedral network
(ES 2017).

B Shape Adjustment. Shape adjustment can be seen as an extreme out-of-plane adjustment with the
requirement of maintaining a smooth surface. In built structures, this is the most prominent strategy to
achieve repetition with varying impact on design freedom. While a sphere or cylinder are predefined
shapes, a translational mesh or minimal surface leaves the designer with a shape spectrum to design
within.

shape adjustment

Figure 3.15 Shape adjustments are the most common strategy to achieve repetition (ES 2017).

Shape adjustment may obtain element repetition for various reasons:

- A symmetrical shape creates repetition. In a spherical geometry, e.g., the Schwedler cupola, the
point symmetry allows for a repetitive use of meridian curves and horizontal circles.
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- A simplified curvature aids repetition. The constant Gaussian curvature of a sphere allows for a
repetition of node angles, edge- and face-curvature. In single curved shapes, the additional
advantage of isometric mapping applies, allowing the use of, e.g., equilateral triangles in a discrete
segmentation, or repetitive elements exhibiting developable deformation in a smooth segmentation.

- Traditional surfaces (Section 1.2.1) generally incorporate repetition within their surface definition.
While ruled surfaces offer the use of straight, continuous edges, rotational and translational surfaces
offer the use of planar quad faces if the network is aligned to the profile and path curves.

Constructive Strategies
The constructive criteria listed in Section 3.2 can also be understood as strategies to create repetition:

B Tolerances. In contrast to the network adjustments listed above, tolerances result in a discontinuous
surface. Tolerances have been implemented both in geometric (Repetitive Moulds, Section 2.2.2) and
practical investigations (the acrylic glass panels of the Olympic Stadium in Munich, Section 2.3). For the
investigation of repetition, tolerances have a rather blurring effect, as they allow for geometrically imprecise
solutions.

We can distinguish an in-plane tolerance, creating gaps or overlaps between tangent panels, or an out-
of-plane tolerance, which creates a scaled appearance.

G G

in-plane tolerance out-of-plane tolerance
Figure 3.16 Tolerances cause a positional discontinuity of the network, either in-plane or out-of-plane (ES 2017).

B Hinges. Hinges are a constructive adaptation enabling repetitive parts for a variable geometry. They
enable nodes to adapt to variable angles without creating a discontinuous segmentation. They are used in
both discrete and smooth segmentations.

B Deformation. Deformation is a constructive adaptation to enable edges and faces to adjust to a
variable curvature without creating a discontinuous segmentation. They are used to adjust edges and
faces in a smooth segmentation, or non-planar faces in a discrete segmentation.

We distinguish between developable deformation and non-developable deformation (Section 3.2.3).

GG

hinge deformation

Figure 3.17 Hinges allow a simplification of joints. Deformation may create curved edges or faces (ES 2017).
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4 Analysis of Repetition

The theoretical framework formulated in Chapter 3 will be used in this chapter to analyse repetitive
structures.

This analysis not only reveals repetitive parameters, but also draws a relationship between geometry and
construction: Any parameter variation must be considered in the construction process, either by fabricating
individual parts, or by utilizing tolerances, hinges or deformation during assembly. The analysis concludes
by identifying applied strategies and thus gives insight into the design and planning process.

This analysis is applied to the projects of the literature review. A comparative overview illustrates which
kind of repetition has been investigated so far — and how it was achieved.

Finally, as impulse for future investigations, all possible parameter combinations of smooth segmentations
are deduced systematically.

- Section 4.7 introduces the general workflow to assess the geometric and constructive parameters
of a given structure.

- In Section 4.2 this process is used to quantitatively examine three selected projects: The Multihalle
in Mannheim, the Reticulated Dome in Neckarsulm and the Eiffel Tower Pavilions in Paris.

- Section 4.3 presents an overview of existing structures based on a qualitative analysis and discusses
the use of strategies.

- As an impulse for further investigations, a table of all possible repetitive, smooth structures is
presented in Section 4.4.

Figure 4.1 Timber lattice of the Multihalle in Mannheim (Photo: Rainer Barthel 2007).
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4.1 Workflow

The analysis of repetition is separated into the following six steps:

1 Assessment of shape and segmentation
In a first step the shape and segmentation, as well as any specific geometric qualities, of the structure are
classified.

2 Analysis of geometric parameters

Based on the classification of surface and network, it is possible to identify the qualitative properties of the
network geometry, and label each parameter as either repetitive, variable or irrelevant. A quantitative
geometric analysis can even go further and define the precise values/spectrum of each geometric
parameter.

3 Review of constructive criteria
Next, we identify tolerances, hinges or deformations used within the construction and attribute them to
specific geometric parameters.

4 Superimposition of results

By superimposing both geometric and constructive results, a complete analysis of the repetitive properties
is created. Comparing each constructive criterion with its respective parameter values provides a
conclusion on the detailing requirements of building parts.

5 Checking additional criteria
Any additional criteria of repetition are discussed, highlighting exceptions or particular properties of the
specific project.

6 Insights and strategies
Finally, we summon all insights gained through the geometric and constructive analyses and identify
strategies used to obtain repetitive parts.

Qualitative and Quantitative Analysis

In Section 4.2, three selected projects are analysed quantitatively. In this case, the values of each instance
of parameter are measured in a digital model of the structure. For this purpose, the network geometries
were either obtained from the planner (Reticulated Dome in Neckarsulm: Geometry provided by Hans
Schober, SBP; Eiffel Tower Pavilions: Geometry provided by Alexander Schiftner, Evolute GmbH), or
remodelled based on the literature available (Multihalle in Mannheim). Unfortunately, the data available is
not always complete and some personal judgement was required during the modelling process.

A detailed survey of the existing structure could produce more precise measurements. This, however, is
not the goal of this research.

In Section 4.3, an overview of repetitive structures is given based on the qualitative analysis. In this case,

only the classification of surface and network, as well as the data provided in publications, are used in
order to judge if parameters are variable or constant without giving precise measurements.
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4.2 Analysis of Selected Projects

In the following section three existing smooth networks — the Multihalle in Mannheim, the Reticulated
Dome in Neckarsulm and the Eiffel Tower Pavilions in Paris — are used representatively for a quantitative
parametric analysis.

4.2.1 Multihalle in Mannheim

The grid structure of the Multihalle in Mannheim was form-found through a uniform, quadrilateral hanging
chain-model. The structure itself is constructed as a smooth network of elastically bent timber laths. The
PCV-coated membrane fagade is not considered in this analysis. A digital 3D model of the network was
created, based on the information available. This approximate model is, however, not sufficiently accurate,
to derive the parameter values for o, k , k andt
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Figure 4.2 Approximate network-model of the Multihalle in Mannheim (ES 2018).

Geometric Parameters
The funicular structure follows the typical parametric behaviour of a smooth network, resulting in a
simplification of nodes and, in this case, repetitive edges. All other parameters, such as the intersection

angle, curvature values and face-shape are variable. Due to the multi-layered structure, a varying length of
the outer layers of laths was considered.

NODE EDGE FACE
o/t o B Y o, | K, kg T, o, S K/P (o}
variable 0° 0° 0° 0.2m g'gscm variable variable variable 0.2m - - -

Table 4.1 Repetitive and variable geometric parameters of the Multihalle in Mannheim (ES 2018).

Constructive Criteria

The multi-layered structure is constructed with long holes, allowing the outer laths to slide and adjust to
the varying length (Figure 2.44, right). The joints are hinged around their z-axis (following the definition of
Figure 3.13) allowing an adaptation to the varying intersection angles. The laths are constructed from

slender, double-symmetric profiles allowing a deformation in all three axes to adapt to the varying curvature
K, » kg and T,
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NODE EDGE FACE
o/ o B Y o | k k T o S K/P o

n n g g e f

hinge - - - - 3 deform. deform. deform.
tolerance

Table 4.2 Constructive criteria of the Multihalle in Mannheim (ES 2018).

Superimposition

Superimposing the results of the geometric and constructive analyses shows that all parameters are either
constant or validated though a constructive criterion. The main structural grid can thus be constructed
with repetitive building parts. (With a sufficiently accurate model, the precise range of all parameters would
be given, and thus create insight on the maximal rotation of hinges and the minimal bending radii of laths.)

NODE EDGE FACE
o/t o B Y o, | K, K, T, o, S K/P o,
hinge 0° 0° 0° 0.2m :.;Scz deform. deform. deform. 0.2m

Table 4.3 Superimposition of geometric and constructive parameters of the Multihalle in Mannheim (ES 2018).

Additional Criteria

Exceptions can be observed along all boundaries where varying trims and supports call for bespoke
constructive solutions. The quadrilateral grid is assembled in two layers in which one family of laths passes
the other tangentially. This creates an eccentricity of 5 cm. The 50 x 50 mm profiles are used homogeneously
throughout the structures. To increase the load-bearing capacity, some areas use four layers of laths or
shear blocks which connect the top and bottom layers.

Conclusion

Apart from the equilateral design, the simplistic detailing of this complex shape is heavily dependent on
constructive strategies. The joints are hinged and the outer laths are equipped with long holes to allow for
a flexible adjustment of geometric variations. The main driver of repetition is the use of elastic deformation
during assembly. Due to the three varying curvature parameters, the laths must be constructed from
double-symmetric profiles to allow a deformation around all profile axes. This limitation leads to necessary
structural developments using additional layers and shear-blocks to stiffen this strained load-bearing grid.
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4.2.2 Reticulated Dome in Neckarsulm
The Reticulated Dome in Neckarsulm was designed as an equilateral (1.0 x 1.0 m), quadrilateral network
on a spherical geometry. The edges are curved and follow the geodesic paths between nodes.

REAN

Figure 4.3 The network of the Reticulated Dome in Neckarsulm (ES 2018, Geometry verified with Schober 2018).

Reviewing Geometric Criteria

The equilateral network causes a high variation of mesh angles. The spherical geometry allows for a
constant curvature of faces and edges. The smooth segmentation simplifies the node angles such that o
and vy are zero. A peculiarity of this network is the varying geodesic angle, creating a discrete progression
in-plane, and enabling a vanishing geodesic curvature of edges (Figure 4.4). It illustrates how node angle
and edge curvature are interchangeable and may achieve the same curvature. This correspondence is
decribed mathematically in Section 3.7.4. A similar effect is described in Section 5.1.3 for smooth
hexagonal networks with constant edge length on a sphere.

geodesic angle {33 Q{ intersection angle 1

Figure 4.4 Close-up of the hinged joint at the Reticulated Dome in Neckarsulm. The intersection and geodesic angles are taken at
seperate hinges (ES 2018).

NODE EDGE FACE
o/ o B Y o, | K, K, T, o, S K/P 0o,
48 - 132° 0° 0-3° 0 4cm 1.0m 1165 m 0 0 4cm variable | SPherical
r=16.5m

Table 4.4 Repetitive and variable geometric parameters of the Reticulated Dome in Neckarsulm (ES 2018).
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Reviewing Constructive Criteria

The grid structure is assembled from standardized curved edges with rectangular steel profiles of 60 x 40
mm. The traversal splice connectors are all identical and adjust to a varying intersection angle via their
z-axis (following the definition of Figure 3.13). Furthermore, the edges are connected through one fixed
and one long hole and allow for an additional varying geodesic connection angle. The facade panels have
a varying shape, but constant spherical curvature.

Figure 4.5 Building parts and assembly of the Reticulated Grid in Neckarsulm (Schober 2016).

NODE EDGE FACE
o/ o B Y o, K, kg T, o, S K/P (o}
hinge - hinge - - - - - - - - - -

Table 4.5 Constructive criteria of the Reticulated Dome in Neckarsulm (ES 2018).

Superimposition

Superimposing the results of the geometric and constructive analyses reveals a full repetition of all parts.
Furthermore, the table gives a precise measurement of the angle variation at the joints. While the mesh
angles call for a substantial hinge of up to 42°, the geodesic angle was solved simply with a larger hole
with up to 3° variance.

NODE EDGE FACE
o/t o B Y o, | K, K, T, o, S K/P o,
48 - 1827 0° 0-3° 0° 4cm 1.0m 1/16.5 m 0 0 4cm variable | SPherical -
hinge hinge r=16.5m

Table 4.6 Superimposition of geometric and constructive parameters of the Reticulated Dome in Neckarsulm (ES 2018).

Additional Criteria

Exceptions of repetition appear along all boundaries where varying trims and supports call for bespoke
constructive solutions. The structure is covered with spherical glass panels, which could be fabricated
with the same mould but had to be cut individually to fit the variable outline shape. The network is laid out
symmetrically creating four similar quadrants.

Conclusion

The gridshell in Neckarsulm achieves a high level of repetition through its restricted spherical shape,
equilateral network and hinged joints. The edges are laid out along geodesic paths resulting in a vanishing
geodesic curvature. They are thus only curved along their constant normal curvature. The varying
intersection angle and geodesic angle are taken up separately within each joint.
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4.2.3 The Eiffel Tower Pavilions

The surface and network of the Eiffel Tower Pavilions form a smooth, quadrilateral segmentation which is
aligned roughly with the principal curvature directions, simplifying the fabrication of glass panels and
mullions.

===

Figure 4.6 Network of the Eiffel Tower Pavilions in Paris (ES 2018, Geometry by Evolute 2011).

Reviewing Geometric Criteria

The vertical steel beams are continuous and create traversal nodes with no variation in normal, geodesic
or torsion angles. All edges display both normal and geodesic curvature. The alignment with the principal
curvature directions results in a low geodesic torsion, a prerequisite for developable edges and faces. A
constant, orthogonal intersection angle (which is usually a property of principal curvature networks) was
not pursued in this design.

NODE EDGE FACE
o/ o B Y o, | K, K, T, o, S K (o}
70 - 104° 0° 0° 0° c 0.7-26m | 0-1/7m 0-1/6m | 0-1/24 m c variable develop.

Table 4.7 Repetitive and variable geometric parameters of the Eiffel Tower Pavilions (ES 2018).

Reviewing Constructive Criteria

By considering a slight tangential and positional discontinuity along the mullions, the faces could be
rationalized further to be constructed from only cylindrical panels. All other geometric variations are
fabricated individually to fit.

NODE EDGE FACE
o/ o B Y o) | k k T o) S K/P (o}

tolerance

Table 4.8 Constructive criteria of the Eiffel Tower Pavilions (ES 2018).

Superimposition

Superimposing the results of the geometric and constructive analyses reveals a high parametric variance.
All structural members and facade panels were fabricated individually. Nonetheless, the network
optimization greatly simplified the fabrication of vertical mullions. Each box section was cut from flat metal
strips which were bent and welded to take on their three-dimensional shape. Similarly, the cylindrical
shape of glass panels significantly lowered their fabrication costs.
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NODE EDGE FACE
o/ o B Y o | k k T o S K o

n n g g e f

70 - 104° 0° 0° 0° c 0.7-26m | 0-1/7m | 0-1/6m | 0-1/24m c variable | Svlindrical -
tolerance

Table 4.9 Superimposition of geometric and constructive parameters of the Eiffel Tower Pavilions (ES 2018).

Additional Criteria
The quadrilateral network is trimmed along all boundaries creating some triangular panels. The design
surface is symmetrical along their central axis allowing for a repetition of panels on either side.

Conclusion

The Eiffel Tower Pavilions are an example of post-rationalization (Schiftner et al. 2013) of a freeform
surface. The facade geometry was optimized to facilitate the use of cylindrical panels and developable
edges within the permissible tolerances. This method results in a comparatively low geodesic torsion. All
other parameters are variable and call for an individual fabrication of building parts.

72 Part II: Repetitive Structures



4.3 Overview of Repetitive Structures

In the following section two overviews of repetitive structures are presented. The first table illustrates
existing structures and compares their repetitive qualities and strategies. The second table gives an
impulse for future investigations by deducing all possible parametric combinations for a subset of smooth
parameters.

4.3.1 Existing Projects

The existing projects presented in the literature review (Chapter 2) were analysed qualitatively. Table 4.10
gives an overview of their parameter repetition and strategies used, and thus illustrates a more general
behaviour of repetitive structures.

The projects are separated into theoretical and built examples, and further sorted by segmentation and
shape. The parameters of each project are labelled as ‘x’ (variable), ‘c’ (constant), ‘0’ (vanishing) or ‘-’ (not
relevant), without specifying precise values (Table 4.117). In some cases, abbreviations are used to clarify a
specific geometric quality. Each value is also colour-coded to indicate the specific strategy used to achieve
repetition.

Analysis
The table illustrates parameters and strategies used in repetitive structures. In the following, we highlight
some general principles that become apparent through this chart:

Geometric investigations are merely a first step towards creating repetitive parts. This is visualized by the
reduced use of strategies in the upper section of Table 4.70. Even if some parameters remain variable, only
construction planning will determine if these parameters need to be fabricated individually or if they can
be validated through tolerances, hinges or deformation.

Built structures on the other hand, display a more complete analysis. If the planning documentation shows
enough detail, we can assess the geometric and constructive criteria, and thus judge the complexity of
fabrication.

Itis noteworthy that constructive strategies can be implied within geometric investigations: The publications
on Shape Proxies (Eigensatz et al. 2010), e.g., implement tolerances in the planning process. Similarly,
the investigations on developable strips by Tang et al. (2016) suggest a use of developable deformation for
the construction process.

Network Adjustment. Choosing a discrete segmentation naturally eliminates the curvature of edges and
may create planar faces. Smooth segmentations, on the other hand, simplify the node angles, and create
a constant offset value. Consequently, a clustered parameter repetition can be observed in the respective
groups.

Hybrid segmentations (e.g., the Reticulated Dome in Neckarsulm) combine properties of discrete and
smooth segmentation. Here, the distribution of repetitive parameters and related strategies is more varied.
It is common in discrete geometric optimizations to allow minimal out-of-plane adjustments to achieve, for
example, torsion-free nodes or planar faces, as was done for the investigations on conical, edge-offset
and circular meshes. This is less common for smooth segmentations which are foremost created on a
reference surface. The publication on “Circular Arch Structures” is an exception. Here the edge curves
were optimized to create congruent nodes and circular arches, but allow a deviation from the reference
surface.
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Authors

Geometric investigations

Huard et al. 2015 Voxel Mesh polyhedral

Huard et al. 2015 Lobel Mesh developable

Jiang et al. 2014 Hexagonal Dual developable

Schober 2016 Translational Mesh translational 3

Singh, Schaefer 2010 Equivalence Classes free g

Troche 2008 Planar Hexagons free T

Pottmann et al. 2007b Conical Mesh free

Pottmann et al. 2007b Edge Offset Mesh free

Pottmann et al. 2007b Circular Mesh free

Tang et al. 2016 Geodesic Developable Strips free 0 X c X X C
Tang et al. 2016 Principal Curvature Dev. Strips free X 0 c X X C
Tang et al. 2016 Asymptotic Developable Strips free -‘g X X © X X ©
Bo et al. 2011 Circular Arch Structures free % - - © - -
Eigensatz et al. 2010 Shape Proxies free - - - @
Schling (see Section 5.2) | Smooth, Rectangular Panelistion | free - - - X @

Designer

Architectural developments

Hugo Junkers Junkers Lamella Roof cylindrical

Friedrich Zollinger Zollinger Lamella Roof cylindrical

Strozyk 2011 Wooden Textiles polyhedral

Walter Bauersfeld Geodesic Dome spherical ‘g

Jorg Gribl, SBP House for Hippopotamus, Berlin | translational g

Otto, Behnisch, Schlaich | Cable Net, Munich free

Foster + Partners Kogod Courtyard free

Asymptote, SBP Yas Viceroy Hotel free

Johann Schwedler Schwedler Cupola spherical -

Kohlmeier + Bechler Reticulated Dome in Neckarsulm | spherical .é

Agence Moatti-Riviere Eiffel Tower Pavilions free <

Buckminster Fuller Plywood Dome platonic solid

Frank Gehry Fondation Louis Vuitton developable

Duthilleul Strasbourg Train Station toroidal

Vladimir Shukhov Hyperbolic Towers HP-surface

Vladimir Shukhov Vyksa Gridshells parabolic 5

Schling (see Chapter 6) Asymptotic Gridshell minimal 8 X

Frei Otto Multihalle in Mannheim funicular g X X X c
Jurgen Mayer Metrosol Parasol free vertical X X X
Geier+Geier Brinebath, Bad Dirhheim free X X c
Shigeru Ban Centre Pompidou, Metz free X X c
Otto, Behnisch, Schlaich | Olympic Stadium, Facade free - X c

Table 4.10 Qualitative parametric analysis of the examples listed in Chapter 2 (ES 2018).
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Creating a rough surface is used exclusively with discrete segmentations. The two examples - Voxel Mesh
and Wooden Textiles - show how this strategy can either lead to full geometric repetition or be validated
by hinged connections in a built prototype.

Shape Adjustment. The restriction of shapes is the prevalent strategy used in built structures. Predefining
a shape is most successful with cylinders, spheres and platonic solids, and is often sufficient with no need
for other strategies (e.g., Junker’s lamella roof). Using a shape spectrum, on the other hand, leaves more
design freedom and is often used in combination with constructive strategies, such as hinges or deformation
(e.g., House for Hippopotamus at the Berlin Zoo).

Constructive Adaptation. As expected, the constructive strategy of hinges is only used with respect to
the angular parameters of nodes. They can be found in both discrete and smooth segmentations, and also
in combination with deformation.

Deformation, on the other hand, is only used with respect to curvature parameters of edges and faces. The
Multihalle in Mannheim, the Gridshell in Vyksa, and the Hyperbolic Towers, bend or twist linear beams to
obtain the curved geometry. The edges are interpreted here as one-dimensional elements, and are thus
listed as developable deformations.

The Plywood Dome by Buckminster Fuller uses slender panels which are elastically deformed within a
single-curved geometry. The Eiffel Tower Pavilions, the Fondation Louis Vuitton and the Strasbourg Train
Station harness similar geometric rules of developabilty to simplifying the production process. However,
the panels are prefabricated, which is why the strategies appear as ‘individual fabrication’.

There are three examples — the acrylic glass panels of the Olympic Stadium in Munich, the study on
smooth, rectangular panelization (presented in Section 5.2) and the Asymptotic Gridshell (presented in
Chapter 6) — which deliberately deform flat elements into a double-curved geometry. These examples are
highlighted as non-developable deformations.

Constructive Tolerances. The use of tolerances create ambiguous geometric parameters, resulting in a
mostly undefined analysis. However, their potential to achieve repetition is high. For this reason, tolerances
have been implemented in both theoretical and practical examples.

Individual Fabrication. Modern designs, such as the Brinebath in Bad Durrheim and the Centre Pompidou
in Metz, create smooth segmentation by individually fabricating each curved beam. This strategy is
supported by the increasing possibilities of digital fabrication. Nonetheless, the construction process can
be made more efficient by optimizing even a single parameter. This is common for fagade-rationalizations,
as inthe Fondation Louis Vuitton and the Strasbourg Train Station. By creating developable face geometries,
the glass panels can be fabricated without individual moulds.

Another trend is looking at the simplification of edge curvature. This was done at the Eiffel Tower Pavilions.
By minimizing the geodesic torsion of edges, the mullions can be fabricated from planar strips of metal.

Geometric strategies Constructive strategies Parameters
in-plane adjustment _ X = variable
out-of-plane adjustment hinge ¢ = constant
developable deformation - = not relevant
_ non-developable deformation ? = unknown
shape spectrum not relevant t = traversal node
Table 4.1 Legend for Table 4.10 (ES 2018). pa = partial repetition
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Further Potentials

This overview of repetitive structures naturally poses the question: Which other combination of strategies
have already been realized and what further applications are worth investigating?

It gives rise to a multitude of further research questions, such as:

- Can extreme out-of-plane tolerance be used to simplify smooth segmentation?

- Can deformation be applied to nodes? Can hinges be applied to edges?

- What are the potentials of deformation and tolerance for the construction of double-curved building
envelopes?

- How can limited curvature parameters benefit the construction of strained gridshells?

Some of these questions are part of future research, others are addressed in the following chapter.

4.4 Deduction of Possibilities

The theoretical framework can also be used to systematically deduce all possible solutions for repetitive
structures. Starting with a fully repetitive system, such as a platonic solid, we can “loosen” one parameter
at a time and investigate the possible geometric freedom. Such systematic deduction is easier said than
done. Often, the parameters of edges, nodes and faces are interdependent, and only lead to design
freedom if released simultaneously. Furthermore, the possible combinatorics of 13 parameters, would
require 8192 separate investigations, many of which have no valuable outcome.

To tackle this problem, we propose a focus on subsets of parameters.

In Table 4.12 we only look at the immediate edge and node parameters for a smooth segmentation without
considering offset and face geometry. This leaves us with five parameters: The intersection angle, the
edge length, and the three curvature parameters. Based on this reduced number of parameters, we can
create a chart for repetitive, smooth segmentations with only 32 possible combinations. Of course, this
reduced chart does not describe all the geometric effects, but it renders the possibility to assign initial
solutions and, subsequently, investigate the behaviour of further parameters.

We have added into this chart all solutions which are discussed in this thesis. Some of these solutions

might only be one of many options. Others might need to be refined more accurately. This conjecture
should be understood as an impulse for future investigations.
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X B _ _ _ X & X X _ R R _ | Asymptotic network on an anticlastic
surface (Section 5.4.2)
Smooth Chebyshev net on a freeform
X[ =-1-1-1-+ c [ x| x|[x]| - - - -

surface (Section 5.1.3)

Principal curvature network, gradient
c - - - - X X X X - - - - | network, principal stress network
(Section 1.4.4)

Any smooth network on a freeform
surface

Table 4.12 Overview of all possible geometric parameter combinations for smooth segmentation, based on a limited set of parameters
disregarding offset and face geometry (ES 2018).
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5 Studies on Repetition

This chapter presents five constitutive studies which investigate selected sets of parameters to explore the
morphological behaviour of repetitive networks. The studies gradually focus on smooth segmentations
and specifically investigate the use of deformation and its effect on design freedom.

There are three methods used in the investigations:

The first two studies (Section 5.7 and Section 5.2) use an inductive approach to generate network samples
and analyse their geometric behaviour. Section 5.3 uses a method of research by design, focusing on
aspects of construction and aesthetics. Finally, Section 5.4 and Section 5.5 use a deductive approach to
define geometric dependencies of curvature and develop a novel design method.

- Section 5.1 investigates the morphology of triangular, quadrilateral and hexagonal networks for both
discrete and smooth segmentation.

- Section 5.2 investigates a smooth panelization with repetitive, rectangular faces focusing on the
effects of deformation and tolerance.

- Section 5.3 investigates the experimental design of repetitive structures through physical prototypes.

- Section 5.4 deduces an overview of smooth networks, drawing a relationship between their
parameters of curvature and the elastic behaviour of beams. One particular curve type, asymptotic
curves, are chosen for further investigation as they show promising characteristics for the design
and construction of strained gridshells.

- In Section 5.5, a novel design method is developed using asymptotic curve networks on minimal

surfaces. The geometrical requirements of surface, network and edge-strips are defined and
implemented to illustrate the design spectrum of this repetitive structure.

Figure 5.1 Experimental design by Eleonora Velluto. Modular gridshell during construction (Photo: ES 2016).
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5.1 Inductive Study of Network Morphology

This inductive experiment digitally investigates the morphology of networks by testing their ability to adjust
to various shapes under specific parameter constraints. We deliberately choose a small subset of
parameters (I, ® and P) to enable a comparison of discrete and smooth segmentations of quadrilateral,
triangular and hexagonal networks.

NODE EDGE FACE
oh | o | B | v | o L ok | ok | 5, | o s | K | o

n

Table 5.1 Table of active parameters for the inductive study of network morphology (ES 2018).

We discuss the digital workflow in Section 5.1.1 and subsequently examine discrete (Section 5.1.2) and
smooth (Section 5.1.3) networks. The final Section 5.1.4 gives a comparison of both examinations and
draws a conclusion on general geometric principles of repetitive networks.

5.1.1 Digital workflow

Each network is first modelled in plane as regular uniform tessellation. Subsequently, the network is pulled
onto a predefined surface while a selection of parameters are held constant. Once the simulation is
complete, the individual parameters, as well as the proximity to the surface are measured. If the selected
parameters have remained constant and the mesh has sufficiently adapted the predefined shape, the
sample is approved as valid. If the shape and parameters did not converge, the sample is declared invalid.
Valid and invalid samples are recorded, as they both give valuable insights into the morphological behaviour
of the network.

Networks
The networks are first modelled as a flat, uniform grid of approximately 10 x 10 m in size, based on a
common circumcircle of radius 0.71 m.22 The following networks were used:

- Square quadrilateral network of 10 x 10 units with edge length /=1 m
- Equilateral triangular network of 15 x 9 units with edge length / = 1.22 m
- Regular hexagonal network of 7 x 9 units with edge length / = 0.71 m

Control Parameters
For each network, several parameters can be measured and controlled independently. When comparing
the parameters, any value within the given tolerance is considered repetitive.

- Edge length / is measured along the edge.

- Mesh angle o is measured between adjacent edges.

- Planarity P indicates the maximal distance of vertices to a common face plane.

- Proximity 8 indicates the distance of each node to a set target surface.

- Continuity ¢ indicates the deviation of continuous edges from a straight line.

- This parameter is used as a soft criterion in discrete segmentations to foster fair solutions. It is also
used for smooth segmentation to induce continuous curves.

22  Even though the study is independent of scale, the model uses meters as its base unit.
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Target Surface
There are eight generic shapes which are used as target surfaces for the network samples:
- ageneral cylinder
- atangential surface, as an example of a developable surface
- asphere with a radius of 6 m
- an anticlastic, saddle shape which is modelled as an Enneper minimal surface (degree 2)
- aconoid, as an example of a ruled surface
- atranslational surface
- arotational surface
- afreeform surface

Solutions
All results are colour-coded to indicate their success:

- Blue represents a geometric solution which satisfied the predefined goals.

- Green represents a solution which satisfies all predefined goals, but displays a varying curvature of
the edges. This can be interpreted as a developable deformation of one-dimensional elements, as
defined in Section 3.2.3.

- Red represents a solution (either blue or green) which satisfies the predefined goals, but does not
satisfy general expectations of network fairness (see below).

- Grey represents a trial sample which did not satisfy the predefined goals.

Behaviour and Limitations

Multiobjective Optimization. The transformation is computed in Rhino, Grashopper with the Plugin
Kangaroo?2 (Piker 2013), an interactive physics/constraint solver. It is based on a particle spring solver
which iteratively optimizes the geometry of a given network to find the best fitting solution for multiple
goals.

It must be said that this kind of non-linear optimization describes a non-convex objective function. It is
thus highly dependent on the initialization and may miss the global minimizer. Furthermore, the final
solution varies depending on the weighting of each objective, the arrangement and orientation of network
and shape, as well as the duration of the optimization process. Even re-computing the exact same settings
does not necessarily create the identical numerical result.

However, this software is well suited to experimentally investigate form and structure. It illustrates the
general geometric behaviour of repetitive nets and produces valuable results which can be sufficiently
reproduced.

Fairness. There are some samples which fulfil all parametric requirements but cannot be used as a
representative solution. This is because their general ‘fairness’ is not sufficient. This is caused, e.g., by a
wrinkled network, or S-curved edges between nodes.
To prevent these effects, some soft criteria are included that control the network fairness. This is done by
setting an additional low weighted objective for constant edge length, continuity or mesh angle. If sufficient
fairness cannot be achieved, the sample is colored red. The following criteria are used as an indication of
insufficient fairness:
- non-continuous edges:
- wrinkled edges in a discrete network
- s-shaped edges in a smooth network
- overlapping or collapsed edges
- irregular non-convex polygons
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Alignment. The alignment of network and surface has a decisive influence on the quality and success of
the solutions. Especially in respect to planarity (for discrete segmentations) and repetitive nodes (for
smooth segmentations), a close alignment to the principal curvature directions is a key feature.

The networks are generally modelled in alignment with profile and path curves of the target surface, and
thus have a general alignment with the principal curvature directions.

In some cases of the hexagonal samples, a rotation of the alignment by 90 degrees was tested during the
experiment to compare the quality of solutions.

Topology. The networks investigated in this experiment are modelled homogeneously without singularities.
This topology cannot change during optimization.

Accuracy. The accuracy of the calculation is limited by the calculation time, the software environment and
the solver. The tolerance for all length and angular requirements was set to + 0.1% of the target value.

Curvature. The curvature of smooth segmentation is modelled discretely by subdividing every edge into
four sub-segments. This subdivision has proven to be sufficient in accuracy while maintaining an efficient
workflow.

5.1.2 Discrete Segmentations
The first part of this study investigates discrete segmentations.
The following parameter combinations are investigated:
- “Face” enforces congruent faces, based on a constant /, ® and P.
- “Planarity” enforces only P.
- “Planarity + Edge” enforces P and /.
- “Edge” enforces only /.
- “Node” enforces only .

Figure 5.2 Parameters measured at the discrete quadrilateral, triangular and hexagonal networks (ES 2018).

Quads
Discrete quadrilateral networks (Figure 5.3) are versatile and may be adjusted in edge length or intersection
angle to fit the enforced repetitive requirements.

Face. Enforcing congruent, square faces is only possible on a general cylinder or a plane. For all other
shapes, the sample only approximates the geometry. Depending on how much proximity is enforced, the
networks may stray from a cylindrical shape. In the case of the sphere and the anticlastic surface, this
results in light folds which allow a closer representation of the target surface.

Planarity. The samples of planar quad meshes tend to align with the principal curvature (PC) directions of
the surface. For the cylindrical network this results in a simple parallel assembly. The developable surface
triggers a fan-shaped alignment along its rulings. On a sphere the PC-directions are not defined. Here the
network approximates the great circles. The solution for the conoid clearly displays the nature of the
principal directions — first curved, then straight — illustrating the gradient from double to almost single
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curvature. Both translational and rotational surfaces trigger a clean alignment with their generating profile
curves. For the rotational surface this creates a strong variation of edge length. A similar behaviour applies
to the anticlastic surface.

Even though the solver succeeded in finding a planar solution for the freeform surface, its curvature is too
extreme for this grid size (a contraction was avoided by fairness criteria). As a result, overlapping and
collapsed edges, wrinkled borders, and non-convex quads corrupt the fairness of this network. In particular,
there are two symmetrical locations in which the network overlaps. Here, a singularity would have greatly
benefited the layout.

Planarity + Edge. Restricting the planarity and edge length results in translational meshes. This applies to
the cylinder, the translational and the anticlastic surfaces. For the latter (which is, strickly speaking, not a
translational surface) this is a lucky by-product of its symmetrical geometry and may be the result of the
small tolerances of this study. All other shapes cannot find valid solutions. In the case of the sphere, the
failed sample displays a great resemblance to the successful edge-enforced sample below, with the only
difference that the outermost corners are not capable of wrapping around the sphere.

The invalid freeform sample shows an interesting effect: The quads collapse and create artificial singularities
with higher valence at the symmetrical locations mentioned above under Planarity.

Edge. Equilateral, quadrilateral networks can assume virtually any shape. This adaptation distorts the
network and creates acute intersection angles especially on shapes with high curvature. This is the case
for the sphere and the anticlastic surface where the mesh angles reach their extreme values in the corners.
Again, the freeform shape, with its extreme curvature, creates a wrinkled mesh with discontinuous edges
along the borders.

Node. A constant mesh angle of 90° results in planar, square panels. A respective network is only possible
on a plane or a cylinder where the single curvature can be adopted along parallel folds. Nonetheless, the
solver attempts to achieve a constant mesh angle by contracting the samples, exposing them to less
curvature.

A side effect of optimizing for constant node angle is planarity which is unintentionally achieved for the
samples on the spherical and anticlastic surface. Similar to the Planarity set, a general alignment with the
principal curvature directions can be observed.

Triangles

Discrete triangles (Figure 5.4) create the most rigid network. Only two groups of triangular networks are
tested. The combinations Face, Edge, Node and Planarity + Edge can all be considered in the same set
as they all result in rigid, equilateral triangles. Only the Planarity set allows for variable edge length and is
thus studied separately.

Equilateral Triangles. Equilateral triangles can only assume developable surfaces, such as the cylinder
and the tangential surface. This behaviour is in line with the insights of the literature review (see Section
2.2.1, Lobel Meshes). Any other shape triggers kinks and folds similar to the reference project “Wooden
Textiles” (Strozyk 2011), and thus does not produce valid solutions. The sample for the ruled surface has
a comparatively smooth appearance. This is owed to its low double curvature.

Planarity. Triangles are planar by definition. As a consequence, any triangular network, even if projected
straight onto a double-curved surfaces inevitably creates planar faces, but does not allow for other
parameter repetition. For this setup, the edge length was dampened to create homogeneous and fair
meshes.
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Hexagons

Discrete hexagonal networks (Figure 5.5) are flexible. If no fairness objectives are applied to ensure a
homogeneous layout, the networks easily distort beyond recognition. This flexibility also enables a great
variety of patterns.

Face. Enforcing regular hexagonal faces is only possible in plane as there are no continuous edges acting
as folds. Consequently, the samples only approximate the target surfaces. In contrast to the behaviour of
the respective quads, the hexagonal samples tend to adapt their geometry by creating a homogeneous,
almost spherical geometry.

Planarity. Similar to planar quads, planar hexagons are strongly influenced by the principal curvature
direction of a surface. In addition, positive and negative Gaussian curvature induce convex, honeycomb-
like or non-convex, mostly bowtie-shaped hexagons. This behaviour is well illustrated in this experiment.
For single curved shapes, the hexagons form straight edges aligned with the rulings of the surface, thus
creating a brick pattern. For a cylinder this pattern is parallel and regular. For a tangential surface, the
pattern fans out along the rulings, causing a variation in edge length.

The spherical and anticlastic shapes enable the most homogeneous convex and non-convex patterns
(Section 2.2.1). The convex hexagons on the sphere decrease in size towards the boundaries. Inversely,
on the anticlastic surface, the bow-tie-shaped hexagons increase in size towards the boundaries.

For the ruled, translational and rotational surfaces, the pattern cleanly depicts the surface curvature
morphing from honeycomb to bow-tie shapes. The intermediate areas are most complex, causing an
elongation or collapse of edges. The outer corners of the ruled surface sample display a chaotic pattern.
This is also the case for the freeform surface which displays the most extreme variation of curvature. In
both cases, a finer grid would help to achieve a more homogeneous layout.

Planarity + Edge. Combining planarity and length restriction is only possible on a cylindrical surface
where a parallel layout is feasible. In all other cases, the rigid edge length prohibits a smooth adjustment
to the surface curvature making planar hexagons impossible. This effect is best illustrated on the anticlastic
surface where the edges start overlapping to accommodate the non-convex kink.

Edge. Equilateral, hexagonal networks assume all tested shapes with a smooth, homogeneous appearance.
Nonetheless, the double curvature distorts the network. This behaviour is best illustrated by the spherical
and anticlastic sample creating condensed, or rather elongated hexagons around their perimeters.

Node. Enforcing a constant angle of 120° between the edges of a hexagonal network inevitably leads to a
planar layout. In contrast to triangular and quadrilateral layouts, the hexagons have no continuous edges
which would act as folds to allow a developable (for triangular) or at least cylindrical (for quadrilateral)
geometry. However, our experiment found a cylindrical solution with a reduced mesh angle. The mesh
depicted in Figure 5.5 (bottom, left) has a constant length of 0.71 m and a constant mesh angle of 119.87°.
Optimizing for constant mesh angles on any double-curved surface leads to partly heavy distortion of the
edge length.
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5.1.3 Smooth Segmentations
The second part of this study investigates smooth segmentations. In this case, the parameter P (Planarity)
is not investigated. However, some solutions enable a constant edge curvature k3. The following three
sets of parameters are investigated:
“Edge” enforces a constant edge length /.
- “Edge + Node” enforces a constant edge length / and mesh angle w.
“Node” enforces a constant mesh angle .

The curvature of networks is modelled through a subdivision of each edge into four segments. The edge
length is measured along these segments. The mesh angle are measured between the adjacent segments
at the nodes. A general continuity of curves is ensured through the continuity ¢ (Section 5.7.7) to model a
realistic representation of a smooth continuous network.

Figure 5.6 Parameters measured at the smooth quadrilateral, triangular and hexagonal networks (ES 2018).

Fisher-net Effect

Smooth segmentations may adjust to any shape by creating S-curved edges to compensate the variable
node distance. This fisher-net effect can be found in quadrilateral, triangular and hexagonal networks.
Even though this effect produces geometrically valid solutions, it is interpreted here as having insufficient
fairness. Nonetheless, the distribution of S-curves beautifully illustrates the effects of double curvature.

Figure 5.7 Close-up illustration of the fisher-net effect caused by enforcing constant edge length and mesh angle in smooth
segmentations (ES 2018).

Quads

The morphology of smooth quadrilateral networks (Figure 5.8) nicely illustrates the reciprocal relationship
of edge length and mesh angle. If one is constant, the other must become variable in order to accommodate
the distortion of double curvature. Nonetheless, virtually every smooth sample in our experiment produces
a geometrically valid solution due to the possibility of creating S-curved edges.

Edge. The behaviour of smooth equilateral quads is virtually identical to the corresponding discrete
investigation. The network adjusts to the curvature through a rotation of mesh angles. This effect is most
pronounced at the spherical and anticlastic surfaces. A fair network solution was obtained on the freeform
surface, but the edges are curved strongly in order to adjust to the double-curved surface.

23 A further differentiation of curvatures (kg, K., ‘cg) will be implemented in Section 5.4.
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Edge + Node. While in a discrete segmentation (Section 5.7.2), the combination of constant edge length
and mesh angle created congruent faces and required a planar or cylindrical arrangement, smooth
segmentations adjust to any shape by creating S-curved edges between the nodes. The fisher-net effect
appears at the outer regions of each sample and is most pronounced at the spherical and anticlastic target
surfaces.

Node. Enforcing a constant node angle of 90° within a smooth quadrilateral segmentation is successful in
all samples but the freeform surface. This sample did not converge due to the abstract modelling process
with four discrete sub-segments. The morphology of networks is similar to the corresponding discrete
investigation. An alignment with the principal curvature directions is noticeable, in particular for the
rotational and anticlastic samples.

Triangles

Smooth triangular networks (Figure 5.9) are similarly restrictive as their discrete siblings. The rigidity of
triangular networks results in S-curved edges on any shape other than developable surfaces. This effect
is most pronounced when restricting the edge length, but also appears subtly when the mesh angle is
restricted. Two samples of the freeform surface did not converge. Again, this behaviour is related to the
modelling process with four discrete sub-segments which impedes a constant node angle for highly
curved edges.

Hexagons

Smooth hexagonal segmentations (Figure 5.70) have a similar solution spectrum to quadrilateral networks.
Both constant edges and congruent nodes lead to fair solutions. Only the combination of both results in a
subtle fisher-net effect. Again, thisillustrates the reciprocal effect of distortion which is either accommodated
by the edge length or the mesh angle.

Edge. The behaviour of smooth equilateral hexagons is virtually identical to the corresponding discrete
investigation. Adapting the equilateral hexagons to a double curvature causes distortion. This behaviour is
best illustrated by the spherical and anticlastic samples, creating elongated hexagons around their
perimeters.

Constant Curvature. The spherical hexagonal mesh is the only smooth sample which displays a constant
curvature k on all edges, and is thus marked in blue. Because the edges of the hexagonal network are not
continuous, i.e., no traversal nodes are enforced, each edge may individually align with the geodesic path
between adjacent nodes. On a surface with constant Gaussian curvature (the sphere) this leads to a
constant curvature k. A similar effect is possible with equilateral, quadrilateral networks or triangular
networks if the continuity of edges was not enforced (Section 4.2.2).

Edge + Node. The existing S-curved edges are almost invisible for the Edge + Node parameter combination.
The subtlety of this effect asks whether, through some amount of tolerance, a smooth hexagonal network
with equilateral edges and congruent nodes could be constructed, defining the shape solely through its
edge curvature. A similar solution was achieved for a spherical hexagonal structure within the experimental
studies (Section 5.3.4).

Node. For the samples with constant mesh angle, the morphology of smooth hexagons also shows great
similarities to its discrete pendant. The repetitive nodes are achieved only through an extreme adjustment of
edge length. Especially for the translational and rotational surfaces, the enforced mesh angle seems to create a
stretching of the network in regions of low double curvature. So far, we cannot pinpoint the cause for this effect.
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5.1.4 Conclusion

The inductive study illustrates the morphological behaviour of triangular, quadrilateral and hexagonal
networks for both discrete and smooth segmentations. Even though the samples do not allow a full
analysis of all parameters, the various geometrical effects, such as distortion, fairness and alignment, are
fundamental to repetitive structures and will continuously occur in further studies.

Networks

The choice of network strongly influences the possible solutions space for repetitive structures. Triangular
networks are the most rigid network, offering no repetitive solutions for double-curved shapes other than
planarity of faces. However, if a full repetition of faces is intended, triangular segmentations show the
highest degree of flexibility due to their triple orientation of folds, and may form any developable shape.
Discrete quadrilateral and hexagonal networks generally allow constant edge length or planar faces on any
surface. Quadrilateral networks have the additional possibility to create translational meshes, combining
equilateral edges and planarity.

Smooth segmentations may create a regular network (of equilateral edges and congruent nodes) on any
developable surface. This is in line with the concept of an isometric mapping (Section 2.1.7). All double-
curved samples illustrate a reciprocal behaviour of edge length and mesh angle. If both parameters are
kept constant, a fisher-net effect will occur.

Alignment

The alignment with principal curvature directions is most promising for both planar networks and networks
with constant mesh angle. Ultimately, aligning a network to the surface curvature will trigger the formation
of singularities, i.e., a local change of topology. This possibility was not investigated in this study. It would,
however, offer further advantages for planar faces and congruent nodes.

Curvature

Considering the curvature of edges as a flexible geometric parameter allows for the adjustment of any
network to any shape. However, combining constant edge length and constant mesh angle creates
geometrically indeterminate solutions. The samples then display an S-curved shape of edges, which
impedes the fairness and would most probably complicate both construction and fagade solutions.

Only smooth segmentations allow for congruent nodes. Quadrilateral and hexagonal patterns may achieve
this quality on any freeform surface. For triangular networks this option is limited to developable surfaces.
In this experiment, only one solution was created which allows for a constant curvature k of all edges. This
quality was achieved through a geodesic layout of edges on a sphere.

Fairness and Proximity

The perception of fairness is subjective. Fairness was used in this investigation as a qualitative indication
of distortion or irregularities. Similarly, the importance of proximity to a target surface is questionable.
Many “failed” discrete samples have a high aesthetic quality. The deliberate investigation of “non-fair”
networks without a reference surface presents a versatile and promising field of future investigation. This
could be applied to smooth segmentations embracing a fisher-net effect or an undulating surface, or
discrete segmentations looking at the design of rough polyhedral meshes, or a combination of both.
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Distortion and Gaussian Image

Pulling a regular network onto a double-curved shape creates distortion. For equilateral networks, this is
expressed by a high variation of mesh angles. Conversely, enforcing a constant mesh angle results in a
high variation of edge length. Keeping both mesh angle and edge-length constant results in a geometrically
indeterminate solution, which is expressed by local “buckling” of edges into an S-shape. This is called
the fisher-net effect.

These effects are most pronounced along the outskirts of the networks. The greatest distortion has been
observed on the spherical, rotational, freeform and anticlastic surfaces.?* The intensity of distortions is
dependent on the size of the network and the curvature of the target surface.

Such dependencies are well known. The Gaussian curvature itself is nothing but a measurement of the
local area distortion between Gaussian image and surface, K=A__ . Image/ Agacer

The total curvature of a geodesic triangle on a doubly curved surface, e.g., equals the deviation of the sum
of its angles from =. A similar correlation is true for Chebyshev nets, where the interior angles of a patch is
related to its total Gaussian curvature via the formula of Hazzidakis (Section 2.2.1).

We conjecture a general correlation of the distortion of a repetitive network (without singularities) with its
Gaussian image. We are searching for a value which would indicate the distortion that is to be expected

within a repetitive network.

To draw a comparison, we measure the maximum deviation of intersection angles of each smooth,
quadrilateral, equilateral network, and analyse its Gaussian map. Next to the total curvature (TC) and the
absolute total curvature (ATC), the area of the silhouette of the Gaussian image is measured (i.e., the area
of the unit sphere that is touched by the Gaussian image). We call this value the Gaussian footprint (GF).
It resembles the two-dimensional range of surface orientation.

cylindrical developable spherical anticlastic ruled translational rotational freeform

TC: On TC: On TC: 0.86n TC: -0.78n TC: -0.12n TC: 0.00n TC: 0.01n TC: 0.00n
ATC: On ATC: On ATC: 0.861 ATC: 0.78n ATC: 0.12n ATC: 0.55n ATC: 1.01n ATC: 1.77n
GF: On GF: On GF: 0.86n GF: 0.78n GF: 0.12n GF: 0.28n GF: 0.62n GF: 0.39n

Figure 5.11 Analysis of the Gaussian image of eight equilateral networks. TC = total curvature, ATC = absolute total curvature, GF =
Gaussian footprint (ES 2018).

When comparing the values of curvature and deviation angle, we come to the conclusion that the total
curvature is not related to this distortion of networks. The freeform surface, e.g., has zero total curvature,
but causes deviations of . Similarly, the absolute Gaussian curvature seems to not correspond, as it is
extreme for an undulating surface, such as the freeform sample, but causes comparatively little change in
mesh angles.

The Gaussian footprint is more informative as its values roughly correspond to the measured effects of
angular variation. A more thorough mathematical investigation of this behaviour is a topic for future
research.

24  The distortion was measured by comparing the variation of node angles in an equilateral network.
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5.2 Inductive Study on Smooth, Rectangular Panelization

This study investigates the use of deformations combined with in-plane tolerances to achieve a smooth
layout of standardized panels on double-curved surfaces. It is focused solely on the geometry of faces.

NODE EDGE FACE
o | o | g | v | oo | | ok | ok | 5 | o o

n n g g e f

Table 5.2 Table of active parameters for the inductive study on smooth, rectangular panelization. The repetitive face-shape is
achieved through tolerances; the varying curvature is created by ‘non-developable deformations’ (ES 2018).

The research was conducted in 2016 in collaboration with Philipp Eversmann, André Ihde and Christian
Louter. The project investigated double-curved fagades, which are clad with elastically-formed,
standardized 1.0 x 2.0 m glass panels. It was published at the IASS 2016 Conference in Tokyo (Eversmann
et al. 2016b).

The first part of the paper (which is not presented here) focuses on simulating the bending process of
4 mm heat-strengthened glass (HSG). The panels are forced onto a predefined geometry along all four
edges while aiming to adhere to a maximum design stress. Through digital and physical experiments,
Eversmann and lhdé define a minimum principal curvature radius of 8.6 m, permissible for the deformation
of 4 mm HSG panels. This value was used in the subsequent geometric study (presented here) to investigate
the morphological aspects of this construction method.

The peculiarity of this experiment is the deliberate investigation of ‘non-developable deformations’ (Section
3.2.3), which allow the deformation of a flat face into a double-curved shape.

It would seem logical that a flat panel of glass, after bending, would remain a developable (singly-curved)
surface. However, the process of bending glass onto curved support frames creates additional elastic
strain which allows some deviation from single into double curvature.

Figure 5.12 Prototype (5 x 4 m) of a double-curved glass facade consisting of 10 rectangular (and initially flat) HSG panels (1.0 x 2.0
m, 4 mm thick) (Eversmann et al. 2016a).

Section 5.2.1 first defines a digital workflow based on abstract assumptions of the panel geometry which
ensure an efficient modelling process. This method is used in Section 5.2.2 to test the behaviour of
repetitive layouts in respect to surface curvature, and highlights the effects on seam tolerances. Finally
Section 5.2.3 discusses the design implications and proposes an optimization method for freeform
surfaces.
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5.2.1 Digital Workflow

Assumptions
To investigate the layout of elastically bent panels on a double-curved surface, it is necessary to efficiently
simulate and compare their geometry. Consequently, an abstract modelling process was set up based on
the following assumptions:
- The panels will approximate the shape of the target surface provided that the minimal bending
radius of 8.6 m is adhered to.
- Asthe glass panels are aligned tangentially to the target surface, any straight lines on the initially flat
panels will be bent along geodesic curves on the target geometry.
- The perimeter and diagonal length of panels will remain constant within the given tolerance.?®

Assuming that the perimeter and diagonal measurements of panels will remain constant throughout the
deformation process, and that the panel will adapt to the target surface, establishes enough information
to model their theoretical curved layout without simulating the actual bending process.

3D Modelling

For each panel, four points are projected onto a surface and connected with six geodesic curves (four of
which create the perimeter quad, and the other two create the diagonals) to determine the panel size and
proportion. These points are iteratively repositioned on the surface until all curves fulfil the predefined
length requirements (Figure 5.13). The resulting geodesic quad represents the outline of the bent glass

panel.
® —— quadrilateral grid

projected grid

L repositioned grid
\— geodesic curves with

defined edge length

flexible seam

four points represent the
four corners of adjacent panels

Figure 5.13 Modelling process: A quadrilateral point grid is projected onto the target surface. The projected grid is then adjusted to
fulfil the expected geodesic-length requirements. Additionally, a seam is simulated by modelling each corner of every panel seperately.
The resulting four points at each intersection can move independently (ES 2016).

Using this method, any quadrilateral point grid on a surface can be manipulated to represent a potential
layout by adjusting the geodesic distance of any point to its eight neighbours (to the expected values of
1.0 m and 2.0 m resp. for the perimeter dimensions, as well as 2.236 m (the square root of 5) for their
diagonal dimensions).

For any developable surface, such as cylinders or cones, this process yields a homogeneous, seamless
grid of equidistant panels. However, in the case of a double-curved surface, it is impossible for all panels
to maintain their edge lengths and proportion, and simultaneously create a seamless layout.

To solve this limitation, a flexible seam is introduced between the panels. The seam is implemented by
creating four points at every intersection in a facade grid; each point represents the corner of one of the

25 It is evident that the length requirements cannot remain constant during a transformation from single into double curvature, as
this does not qualify as an isometric mapping as defined in Section 2.1.1. However, in this experiment, the curvature is limited
to a principal curvature radius of 8.6 m. As a consequence, the length-variance remains within the tolerance of 0.1%. The
simulated, curved geometry of bent panels represents the closest and most realistic fit of the original panel-geometry. The
miniscule change in length may be attributed to non-developable deformation (Section 3.2.3).
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adjacent panels. These four points can move independently to allow the edges to fulfil the predefined
geodesic lengths.

Behaviour and Limitations

Multiobjective Optimization. The digital model is controlled by a particle spring system, Kangaroo 2. The
optimization process solves for multiple objectives, such as curve length and surface proximity. The
outcome may vary depending on the weighting of each objective, the arrangement and orientation of
network and shape, as well as the duration of the optimization process. Even re-computing the exact
same settings does not necessarily create the identical result. However, the geometric behaviour is well

depicted in this process, and is reproducible.

Simplifications. The geometric study implements an abstract model based on simplified assumptions.
This enables the simulation of large panel layouts, but does not consider all physical effects of such a
complex bending procedure. The permissible normal and shear stress within the glass are simply expressed

as a minimal principal curvature radius.
Alignment. The alignment of the network has a decisive influence on the quality of the layout. All samples
in this study are generally aligned with the surface’s uv-directions of the target surface. In the case of the

“hypar”-surfaces this layout is in line with the principal curvature directions.

Accuracy. The accuracy of the calculation is limited by the calculation time, the software environment and
the solver. The tolerance for all length requirements was set to + 0.1% of the target length.

5.2.2 Morphological Behaviour
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Figure 5.14 Smooth, rectangular panels on a sphere (bottom row) and a hyperbolic paraboloid (Hypar) (top row). Each panel has a
standard format of 1 x 2 m. The seam variance increases with the greater layout extent (left column) and smaller curvature radii (right
column). Anticlastic curvature causes a concave seam (top row). Synclastic curvature produces a convex seam (bottom row) (ES

2016).
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Curvature, Layout and Seams

The digital workflow is first applied to a sphere and a hyperbolic paraboloid (Hypar) (Figure 5.14) — two
surfaces with homogeneous positive and negative Gaussian curvature. Any curvature-related effect on the
layout are displayed most extremely on these two shapes (as was clarified in the first inductive study,
Section 5.1). First, we generate a curved panel layout and then we measure the difference in width between
the smallest and largest seams. This value is called the seam variance d.

The progression and size of seams throughout the grid is dependent on the curvature, the extent of the
layout and the proportion of panels (Figure 5.20). On synclastic surfaces, the seams follow a convex,
banana-like shape. Anticlastic surfaces produce concave, hour-glass-shaped seams. A greater Gaussian
curvature of the target surface induces larger seams in the panelization. Similarly, the layout-extent has an
increasing effect on the seams. Rectangular panels generally display wider seams along their long edge.

These characteristics do not come as a surprise. They result from the discrepancy of the surface area
when mapping a flat pattern onto a double-curved surface (Section 1.4.17). The varying seam-size can be
explained mathematically with the help of the Jacobi equation of geodesic curves (Pottmann et al. 2010,
p- 3).

The example given in Figure 5.14 illustrates the potential of such a repetitive smooth panelization: A glazed
spherical shell of 10 x 10 m with a curvature radius of 20.0 m can be covered using only one single,
rectangular glass format if a variance of only 41 mm along the seam is tolerated.

Bulging Effect

The edges of each panel form a geodesic curve along the surface. The panel grid, however, may deviate
from a geodesic curve as shown in Figure 5.15. Because of this deviation, succeeding glass-edges do not
follow a continuous curve. When aiming the view along the seams, we notice the panel edges “bulging”
from node to node, creating a cloud-like or serrated edge. In our example, this effect is most pronounced
along the boundary (up to 20 mm) and vanishes towards the centre.

convex bulging effect 4 concave bulging effect

Figure 5.15 Spherical and hyperbolic layout with minimal principal curvature radius 8.6 m. Shown are the resulting patterns of our
panel-fitting routine (black) and geodesics connecting the corner vertices (blue). When deviating from a geodesic curve, the glass
edges do not follow a continuous curve. They “bulge” individually from node to node creating a tolerance of up to 20 mm (ES 2016).

Stepping Effect

The tolerance inside the seams can be shifted to only one direction. This property can be useful when
designing with a linear substructure. It is achieved by enforcing collinear edges in the other direction, but
triggers a stepping effect between panel rows. Figure 5.76 shows two panelizations of the same target
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surface with seams oriented in opposite directions. The collinear edges are shifted creating a brick-like
pattern. This effect originates from the change in length of each surface strip and is dependent on the
variation of curvature in this area.

stepping effect seam along long edge seam along short edge stepping effect

Figure 5.16 Freeform surface with uni-directional seams. This can trigger a stepping effect transversal to the wider seam (ES 2016).

5.2.3 Freeform Design

To design an appropriate surface for use with bent, rectangular panels, the critical principal curvature
radius of 8.6 m has to be respected. This requirement is implemented by analysing the surface throughout
its design until no radius violation is detected.

It is our goal to design a freeform surface which displays a high curvature, but a minimal seam variance.
Since positive and negative Gaussian curvature have opposing effects on the progression of the seams,
we conjecture that distributing positive and negative curvature evenly across a freeform surface would
result in smaller seams. The two manual designs (Figure 5.17) confirm this assumption.

Figure 5.17 Two manually designed freeform surfaces with 5 x 10 panels: Left: Straight boundaries with local bump, R, = 8.7 m, d
=23 mm. Right: Four alternating hills and valleys, R, = 8.7 m, d = 18 mm (ES 2016).

Surface Optimization

To find a surface shape that maximizes curvature and minimizes seam tolerance, a simple optimization
routine is installed using Rhino, Grasshopper and the standard evolutionary solver Galapagos (Rutton
2010): A large set of sample surfaces is generated with 5 x 5 control points by randomly varying the
z-coordinates of each point. Each sample surface is analysed via a dense point-grid (50 x 50) which is
aligned with the rows and columns of the potential panel layout. The following three simple indicators are
measured at every point and multiplied within a fitness function:

- kg, I8 the absolute sum of all principal curvature radii. This value acts as an indicator for the inverse,

absolute total curvature of the surface.

- kg, is the number of penalties given for any curvature radius below a set value (in this case 8.6 m).
This value ensures that the final surface is appropriate for the use of the specific material.

- lanee 18 the difference between the longest and the shortest curve along each direction of the panel
layout. This value ensures that each row/column of panels is similar in length, thus minimizing the

necessary seam variance. In a sense, it resembles the total curvature of the design surface.
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Fitness: F =kg,, " (1+k
This fitness F is evaluated for each surface sample. Eventually a solution with minimal value F is found?s.
Such a surface has a comparatively high absolute total curvature (within the bounds of the minimal principal

curvature radius) and a balanced distribution of surface area. It is optimal for the implementation of curved,
rectangular panels, as it results in small seam variations.

Figure 5.18 Optimized freeform surface: The algorithm maximizes the surface curvature without violating the minimal principal
curvature radius and minimizes the differences of surface length measured along the panel grid. This results in low variation of seams:
Layout: 11 x 22 panels, R, = 8.61 m, d = 4.9 cm (ES 2016).

26 More background on the computational process of Galapagos can be found at Rutton (2010).
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5.2.4 Conclusion

The combination of tolerances and deformation allows for a smooth panelization of double-curved surfaces
with repetitive panels. The possible shape spectrum is dependent on the maximal seam and minimal
curvature radius permissible. These factors need to be set by the designer in accordance to the specific
construction technique and choice of material.

Seams

The seams take up the natural distortion caused by double curvature. The seam variance is dependent on
the curvature and extent of the network. In the case of synclastic curvature, the largest seams are found
at the centre of a layout. In the case of anticlastic curvature, the seams increase along the boundaries.
Furthermore, a misalignment of seams with geodesic curves leads to a serrated progression of face edges.
The implementation of uni-directional seams causes a shift of panels into a brick-like pattern.

Design

The design-surfaces can be optimized for low seam variance and high absolute total curvature by aiming
for a constant length for all rows and columns of panels. This optimization process favours undulating
surfaces with alternating positive and negative Gaussian curvature.

Figure 5.19 Analysis of the Gaussian image of five panelization layouts. TC = total curvature, ATC = absolute total curvature, GF =
Gaussian footprint (ES 2018).

Distortion

Similar to the comparison of equilateral nets in Section 5.7, we conjecture a correlation of the effects of
distortion with the Gaussian image. Therefore, we measured the seam variance d and compared it to the
total curvature (TC), the absolute total curvature (ATC), as well as the Gaussian footprint (GF) (our own
measurement of the spectrum of surface orientation, see Section 5.7.4).

Both spherical and hypar surfaces create high values for TC, ATC and GF, but also large seam variance.
The three freeform examples, on the other hand, create small but folded Gaussian images, with a low total
curvature, and comparatively high absolute total curvature.

The Gaussian footprint seems to be the best indicator to predict the intensity of distortion, as its value

roughly correlates with the seam variance. A more thorough investigation of this behaviour is a promising
topic for future research.
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5.3 Experimental Design Studies

Over the course of three years from 2014 - 2016, an annual design studio, Experimental Structures, was
conducted at the Chair of Structural Design, TUM, to creatively investigate the use of repetitive parts in the
design of double-curved structures. Parts of this study have been published as a technical report in the
Bautechnik magazine (Schling et al. 2014) and at the AAG 2016 in Zurich (Schling and Hitrec 2016).

After an introduction of the course assignment in Section 5.3.7, we present six projects from Section 5.3.2
- Section 5.3.7 which display various constructive applications of deformation. Each project is analysed
parametrically to highlight similarities to earlier studies.

Section 5.3.8 will list observations concerning this parametric behaviour and discuss the importance of
distortion for the network shape and construction.

Fyran
et

Figure 5.20 Overview of projects realized in the course of the design studio “Experimental Structures” (Photos: Matthias Kestel
2014 and 2015, Magdalena JooB 2016).

™Y J ‘

1 Eleonora Velluto: Modular Gridshell 2 Damiano Tosti: Hypar Gridshell 3 Rongguang Na: Reciprocal Gridshell 4 Pablo Mollina:
Geodesic Gridshell 5 Denis Hitrec: Asymptotic Gridshell 6 Anna Bosco: Developable Pentagon Gridshell 7 Huilian Tang, Bingyu Xu:
Folding Origami 8 Katrin Fleischer, Corinna Wiest: Deployable Dome 9 Jose Maria Arribas, Donald Ottoerson: Curved Folding
10 Jeremy Copley, Nick Franz: Snap Through Triangles 11 Alessandro Corso, Lukas Kaufmann: Curved Scissors 12 Yang Yu, German
Rueda: Movable Tensegrity 13 Sebastian Huth: Bending Tensegrity 14 Miroslava Denina: Folding Vault 15 Michal Markusek: Cubic
Surface 16 David Walsh; Bending Strips 17 Quirin Mihlbauer: Hexagonal Bending 18 Vitaly Entin: Conic Gridshell
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5.3.1 Course Assignment

The design studio was set up to encourage a “bottom-up” design approach - starting with fabrication and
finishing with a design shape — with the goal of investigating form as an emergent property of repetitive
construction.

In contrast to common assignments for architects, the students received no list of requirements in respect
to site, use or functionality. The design task only required the students to design and build a curved
structure from repetitive modules with a span of 2 x 2 m.

The design process was divided into three phases:

a research phase, looking at geometric and structural techniques to fabricate modules

a modular design phase, in which a single unit was developed and analysed for its geometrical and
structural properties

an assembly phase, in which the repetitive modules were joined to create a curved surface structure

This process satisfied two goals:

Pedagogically, the studio was directed to engage students in parametric thinking on a physical
level. Through iterative developments of physical prototype and active analysis of their parameters,
the students developed an understanding of the dependencies of a repetitive module and its related
agglomerative surface geometry.

Scientifically, this studio followed the principle of research by design to generate a multitude of
creative solutions to a research question. These experimental designs show a broad spectrum of
techniques, shapes and structures and thus illustrate the various possibilities to design curvature
with repetition.

The students aimed to achieve a symbiosis of fabrication, form and structure, with a strong emphasis on
aesthetic design. Their work is thus presented based on these four criteria.
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5.3.2 Bending Strips

Module

David Walsh investigated the behaviour of elastic strips. He connected two identical, rectangular plastic
sheets on all four corners, and subsequently pulled together the short edges with a cable. As a result, the
strips bulge outward creating a smooth, rhombic comb.

By placing the cable eccentrically at the upper edge, a distortion in two directions is obtained: The strips
twist, opening the top, and creating a funnel shape in section. Simultaneously, the strips bend downwards,

creating a bow-shape in elevation.

Figure 5.21 Development of an elastically deformed base module from planar, rectangular strips (ES 2018).

Assembly and Shape

To assemble this module, long, uniform strips of polysterol were first placed in parallel and connected
alternatingly to their left and right neighbour. Then, two families of cables were prestressed in the
longitudinal and lateral directions and then tightened at each intersection to ensure a homogeneous
waving motion. The bow-shape at each module creates a concave curvature in the longitudinal direction.
At the same time, the funnel-shape creates an opposing, convex curvature in the lateral direction.
Consequently, an overall, anticlastic, saddle shape emerges.

Figure 5.22 Completed structure, Bending Strips, by David Walsh. The assembly of modules creates a self-supporting sculpture
with a negatively curved shape (Photo: Matthias Kestel 2014).
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Structure and Aesthetics

The sculpture was assembled from 20 strips of 2 m long and 8 cm high lamellas connected every 28 cm.
The lamellas create a curved grillage that is supported vertically and horizontally to aid the load-bearing
behaviour of an arch. However, the structure is soft and susceptible to deflections due to the low bending
radii, slender lamellas, open boundaries, and point supports.

The smooth anticlastic shape creates a calm and inviting space. The waving motion of lamellas has a
natural and pleasant appearance. The slender strips allow for high transparency at a direct view and
opacity at an inclined view, and cast an intricate pattern of shadows.

Figure 5.23 Detail of the structure, Bending Strips. Steel cables on top and bottom induce the deformation and fix the overall shape
(Photo: Matthias Kestel 2014).

Analysis

The strips are oriented normal to the design surface which impedes a curvature in the normal direction.
The rhombic arrangement can be interpreted as a diagonal pattern, in which each diagonal is waving in
and out of an asymptotic path. Naturally, this arrangement can only be shaped into an anticlastic form (see
Section 5.4). The lamella segments are all fabricated equally and the lamellas meet tangentially at every
intersection.

The morphological behaviour shows similarities to a smooth quadrilateral network on an anticlastic surface
with constant edge length and constant mesh angle (see Section 5.1.3, Figure 5.8):

- The strips are naturally shaped in S-curves. This arrangement adjusts to the varying node-to-node
distance through a fisher-net effect.

- Due to the negative curvature a gradual distortion of the pattern occurs. The outer units contract
and widen to account for the surplus in surface area.

NODE EDGE FACE
o/ o B Y o, | K, K, T, o, S K o,
0° 0° 0° 0° c c 0° deform. deform. c

Table 5.3 Qualitative parametric assessment of the structure, Bending Strips. The strips are interpreted as edges, meeting tangentially
at each node (ES 2018).
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5.3.3 Cubic Surface

Design Process

Michal Markusek used a 10 x 10 x 10 cm cube as a base module with the goal of constructing a double-
curved surface. This posed the challenge to design a variable gap between modules. A standard distance
of 2 cm between units was defined which limited the possible inclination angle of two adjacent cubes and
thus determined the maximum curvature of the whole sculpture.

/N
Figure 5.24 Modules of the structure, Cubic Surface. It is assembled from prefabricated, repetitive Vierendeel cubes (Photo: ES 2014).

Markusek designed a double-curved surface with a central hill and two symmetrical valleys on either side.
He generated a point grid on this surface which originates at the central apex and reticulates in steps of
12 cm first in the longitudinal, and then in the lateral direction. The grid points mark the centre of each
cube which are then positioned normal to the design surface. The tolerance allows each cube to incline
without colliding with its neighbours. Once the exact position of each cube is defined, the position of
adjacent corners is measured to determine the geometry of ring connectors on top and bottom.
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Figure 5.25 Digital design model of the Cubic Surface. The cubes are laid out on a double-curved design surface (ES 2014).
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Figure 5.26 Detail of repetitive cubes and individual connection rings (Photo: Matthias Kestel 2014).

Connectors
The connection rings are subject to the four geometric effects, all caused by the distortion of the network:
- Thering-edges vary in length due to the convex or concave shape at top and bottom.
- Therings are bent in order to take up the normal angle between cubes.
- The double-curved surface results in a shift of the cubes (similar to the stepping effect described in
Section 5.2.2) and creates a sheared geometry of the connection rings.
- Due to geodesic torsion, subsequent cubes are rotated, causing an out-of-plane misalignment of
adjacent corners.

- - & :

Figure 5.27 Geometric effects of cube connectors. The rings adjust to the distance, angle, shear, and torsion (ES 2015).

Pattern

The extent of this distorted system is limited as the shift between cubes steadily increases from the centre
outward, ultimately prohibiting a feasible connection between units. The connector rings were unrolled as
2D geometry and cut out with a CNC-mill. The cutting pattern reveals another geometric characteristic:
The unrolled connectors create a nearly seamless tessellation, in which the corner angles of four adjacent
rings add up to 360°.
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Figure 5.28 Cutting pattern of the cube connectors (Left: bottom layer, Right: top layer). The convex and concave regions of the
design surface influence the size of the rings. The shifting of adjacent cubes is most pronounced at the outskirts, especially at the
corners of the top layer (ES 2016 based on Michal Markusek 2015).
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Structure and Aesthetics

The final sculpture was assembled from 17 x 9 cubes, made of 3 mm plywood, and 352 polysterol rings
(1.5 mm), which were bent and folded to bridge the gap and connect to each of the four corners of the
adjacent cubes. This curved Vierendeel grillage carries its weight via bending and only needs to be
supported vertically.

The contrast between rigid cubes and flexible connectors is graphically emphasized by the change in
material. It illustrates the impact of double curvature on an orthogonal grid. The repetitive Vierendeel cubes
create a graphical depth.

Figure 5.29 Completed structure, Cubic Surface, by Michal Markusek. The cubes form a rigid girder (Photo: Matthias Kestel 2014).

Analysis

Cubic Surface is an example of a repetitive tiling with tolerance, similar to the inductive study on smooth
panelization (see Section 5.2):

In this case, the tolerance is used in a multi-layered structure. The concave/convex orientation of curvature
has a major influence on the size of the gaps at top and bottom. The hierarchical layout of the underlying
point grid in longitudinal and lateral directions results in a stepping effect causing the cubes to shift
towards a brick-like pattern. While the middle rows are well aligned with the principal curvature direction,
the outer rows display geodesic torsion causing an out-of-plane misalignment of adjacent edges.

NODE EDGE FACE
®/ a B Y o, | K, K, T, o, S K (o}
variable deform. variable deform. c - - - - - tolerance c/P c

Table 5.4 Qualitative parametric assessment of the structure, Cubic Surface. The cubes are interpreted as faces of a quadrilateral
network and the rings are interpreted as nodes (ES 2018).
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5.3.4 Hexagonal Bending

How can a curved network be formed naturally by its internal stress? Quirin Mihlbauer used a simple 2D
concept to develop a 3D structure: When rigidly connecting a series of bent elements in one row with fixed
supports, the internal stress naturally pushes the assembly upward.

XA AT NS

Figure 5.30 Two-dimensional concept of the modular elastic design. The moduls are deformed, connected rigidly, and held at
horizontal supports. Consequently, the internal stress creates an upwards movement (ES 2016 based on Quirin Miihlbauer 2015).

This logic can be applied to an elastically bent hexagonal structure, creating restraint stresses in the
centre, and a ring of tension along the border. The structure consequently curves upwards to release
stress and creates a shallow dome shape.

Figure 5.31 Module, joint and assembly of the structure, Hexagonal Bending (ES 2016 based on Quirin Miihlbauer 2015) (Photo: ES 2015).

Design Development

Muihlbauer developed a star-shaped module based on a hexagonal grid. Three concentric arms branch
out to create six connection points. Each point is rigidly interlocked with two further modules. These
orthogonal joints enforce an equal distance between all connection points. Consequently, the longer open
edges bend into a bowl shape. The assembly creates an equilateral honeycomb system of three-legged
blossom-shaped modules connected rigidly on top and bent softly on the bottom.

Figure 5.32 Close-up of the interlocked and bent modules (Photo: ES 2015).
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Figure 5.33 Looking up at the structure, Hexagonal Bending, by Quirin Mihlbauer. The smooth hexagonal modules are overlaid by
a clean triangular grid of tension-ties (Photo: ES 2015).

Structure and Aesthetics

This sculpture was exhibited at the IASS?” Conference 2015 in Amsterdam. The setup consisted of 61
congruent modules cut from 4 mm Forex foam-board which formed a hexagon with five units along each
side.

It is remarkable that despite the fully repetitive construction with congruent joints, the sculpture naturally
assumes a double-curved dome shape. By adding a set of hexagonal cables to the bottom layer, the
structural height of the assembly is activated, creating sufficient stiffness to carry its self-weight over an
approximate span of 4 m.

The point symmetry of each connection and the smooth curvature of each module create an optical
illusion similar to a graphic of M.C. Escher. The flow of light along the reflective, clean plastic surface adds
further quality to this seemingly floating structure. The linear and straight cable-net acts as a regulative
layer, like a coordinate system, marking the axis of symmetry.

Analysis

The sculpture follows the principles of a smooth hexagonal network with constant edge length and
constant mesh angle on a spherical target surface as described in Section 5.1.3. The overall curved
geometry is achieved by a gradual distortion of the polygons, which results in a S-shape of the edges
along the outer rows of the assembly. Just like in the inductive study, this effect is very subtle due to the
low Gaussian curvature.

NODE EDGE FACE
o/ o B Y o, K, K, T, o, S K o,
120° c 0° 0° c c deform. deform. deform. - tolerance deform. c

Table 5.5 Qualitative parametric assessment of the structure, Hexagonal Bending. The modules are interpreted as both edges and
faces of a hexagonal network (ES 2018).
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5.3.5 Modular Gridshell

The Modular Gridshell by Eleonora Velluto was inspired by the strained timber gridshells of Frei Otto
(Section 2.4). Similar to Frei Otto’s chain models, Velluto relaxed a uniform quadrilateral grid to design a
funicular shape with equilateral edges. Velluto used a grid of 18 x 9 units and introduced six supports to
create two cupolas with a common arch.
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Figure 5.34 Funicular design process and module geometry of the Modular Gridshell (ES 2017 based on Eleonora Velluto 2016).

Module

Velluto’s goal was to construct this gridshell not from continuous laths with diagonal bracing, but to use
identical flat modules, which fulfil both structural functions: transmitting the compression of self-weight,
and bracing the system against asymmetric loads. This was achieved by designing a leaf-shaped unit with
two kinds of connections.

The primary connection is located on a central axis on both ends of the leaf, resembling the hinge point of
the equilateral network. The secondary connection is located on a set radius around the primary nodes,
and is emphasized through four arms. This secondary connection allows a coupling of adjacent modules
for variable intersection angles (from 45° to 135° degrees) to lock the node rotation and create shear
stiffness.

Assembly

The primary joint is inserted first to create a uniform, flat, hinged grid of 9 x 9 units. This network is then
hung from four supports to naturally fall into a funicular shape. In the course of this transformation process,
the joints rotate to adjust to the double curvature. Once the desired shape is obtained, the secondary
connections are inserted, fixing the geometry and creating a stiff shell.

This process is repeated for the second part of the structure. Finally, both shells are inverted and joined,
creating a tall, double dome on six supports.

Figure 5.35 Construction process of the Modular Gridshell. The modules are connected to form a uniform, planar, hinged network.
After the net is hung, each joint is fixed with two additional ties (Photos: ES 2016).
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Figure 5.36 Completed structure, Modular Gridshell, by Eleonora Velluto. Left: Final image of the inverted hanging shape. Right:
View up inside the funicular dome (Photos: Magdalena JooB 2016).

Structure and Aesthetics

Simplicity and efficiency are the virtues of this design project. The 162 identical cardboard-units of 1 mm
thickness create a shell with comparatively high stiffness. Only the slender supports with little double
curvature were strengthened with a second layer of modules to prevent buckling.

The voids between the leaves gradually alter their shape from an almost perfect circle in the apex to an
elongated ellipse towards the supports. This intricate pattern s both the geometrically and structural
properties of this shell, and simultaneously adds an architectural quality and orientation.

Analysis

The network follows a smooth, geodesic, equilateral, quadrilateral network on a synclastic surface (Section
5.1.3) with similar geometric properties to the Reticulated Dome in Neckarsulm (Section 4.2.2). In this
case, the surface is not spherical, but follows the physical laws of a funicular shape. The modules are
deformed into varying normal curvature, but follow geodesic paths. The geodesic curvature itself is taken
up at the nodes through a small geodesic angle in-plane. Additionally, the modules are slightly twisted, an
almost invisible occurrence, taken up within the “waistline” of each leaf.

NODE EDGE FACE
/1 o B Y o, | K, kg T, o, S K (o}
hinge 0 hinge 0° - c deform. 0 deform.

Table 5.6 Qualitative parametric assessment of the structure, Modular Gridshell. The modules are interpreted as edges of a quad
network (ES 2018).
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5.3.6 Curved Folding
Donald Otterson and Jose Maria Arribas investigated the geometric principles of curved folding. Their
basic module is derived from a set of simple model studies.

Geometric Principles

A straight fold produces a flat surface on either side (A). A curved fold creates a concave cone at its inside,
and a convex cone on its outside (B). This principle can be repeated along one strip. By alternating the
orientation of the curved fold, the resulting single curved surface also alternates its orientation from
concave to convex or vice versa (C, D). Expanding this method to hexagonal modules creates consistent
concave or convex boundaries surrounding a single curved triangle (E, F). This module has the potential
to be designed parametrically and tile a curved surface.

- ¢

B D

Figure 5.37 Principles of curved folding for a single, double and triple fold (ES 2015).

Geometric Deduction of the Module
The design objective for Otterson and Arribas was not to create individual modules for a freeform surface,
but to use the principle of platonic solids to create a repetitive module for a spherical structure. We can
deduce the shape and folds of this unit using two parallel illustrations (Figure 5.38 - Figure 5.40):

- Left: the 3D graphic of platonic solid projected onto its circumsphere

- Right: the 2D plan of the unrolled sheet-geometry for curved folding

The method is explained using a cube: It is defined by the Schlafli diagram {4,3}, where 4 signifies the

number of verticies/edges of each square, and 3 is the number of polygons (squares) meeting at each
node.

120°

Figure 5.38 Geometric deduction of the node. Using the Schléfli diagram to generate a 2D node for a curved folding pattern (ES 2015).

The information of one projected corner is mapped onto the plane, thus creating a regular intersection of
three edges at a constant angle of 120° and constant edge length a. Each square has four corners which
means that this planar node needs to be drawn four times, creating two thirds of a hexagon. This incomplete
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hexagon is the unrolled representation of one square projected onto the sphere. We deliberately choose a
half-edge as the position for the cut (labelled in red).

Figure 5.39 Geometric deduction of the polygon. Mapping the spherical quad onto the plane creates 240° of a reqular hexagon (ES 2015).

To be able to fold this shape into the tangential spherical geometry, a circular fold is introduced around the
centre of the hexagon. This fold initiates the convex outer cone (tangential to the sphere at the projected
edge) and a concave inner cone (directed to the centre of the sphere). To avoid bending the sheet into very
small radii, the inner cone is truncated along an offset to the initial circular fold.

Figure 5.40 Geometric deduction of the creases. The 2D pattern is used as a layout for the curved-folding structure. The circular
creases lie in offsets, tangent to the hexagon. A quadrilateral, conical module can be formed which approximates the sphere (ES 2015).

Platonic Solids

This principle, based solely on the two values of the Schl&fli diagram, can be applied to any platonic solid.
By multiplying the module by the number of faces, a continuous unrolled pattern for curved folded
structures is obtained. This method was verified with simple paper models for each platonic solid.

Figure 5.41 Curved-folding paper models and patterns based on the platonic solids. A) tetrahedron, B) cube, C) octahedron, D)
dodecahedron, E) icosahedron (ES 2015).
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Structure and Aesthetics

The pattern of the icosahedron was finally implemented at a larger scale by connecting six double-
pentagons (adjusting the base module to the available fabrication area of the laser cutter) to form a
spherical structure with 1.5 m diameter from 1 mm curved-folded translucent plastic sheets.

The modular structure can be interpreted as a 20-sided icosahedron of triangle-incircles or as a 12-sided
dodecahedron of pentagon-stars. The overlapping tangential joints are only visible at second glance. The
inner cones not only add aesthetic value to the three-dimensional pattern, they also establish a structural
depth and create resilience along the curved folds.

The surface of the pentagons is not mathematically defined. Here, five cones (originating from the
surrounding circular folds) merge creating an almost flat shape that is not strictly developable. This behavior
can be attributed to slight non-developable deformations.

Figure 5.42 Spherical curved-folding structure based on an icosahedron (Photo: Matthias Kestel 2015).

Analysis

The full repetition of segments and joints is owed to the platonic solid underlying the geometry of this
sculpture. Each module is deformed from a flat sheet material with predefined, curved folds. The curved
sculpture is a compound developable surface approximating a sphere.

NODE EDGE FACE
o/ o B Y o, | K, K, T, o, S K o,
c . . c
¢ deform. 0 0 ) ¢ deform. 0 0

Table 5.7 Qualitative parametric assessment of the structure, Curved Folding. The pentagonal modules can be interpreted as nodes
or edges (ES 2018).
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5.3.7 Asymptotic Grid

The ongoing research on smooth segmentation (Section 5.4) was incorporated in the design proposal by
Denis Hitrec. In his design for a temporary pavilion, Hitrec first implemented asymptotic curves on a
minimal surface. He thus took advantage of the beneficial geometric properties to design a lamella
structure with straight unrollings and repetitive, orthogonal nodes. His project was published together with
the research and physical models of the author at the AAG?® 2016 Conference in Zurich (Schling and
Hitrec 2016).

Surface Design

Hitrec’s design shape is based on the periodic minimal surface called Schwarz D. This surface is defined
by six edges of a cube. This basic cell can be repeatedly copied and rotated to form an infinitely periodic
surface. By clipping this repetitive surface with an inclined block, Hitrec defined the shape for his
experimental structure.

Network Design

Hitrec used this trimmed minimal surface to generate a quadrilateral network of asymptotic curves.
Because of the use of a periodic surface, the corresponding asymptotic network benefits equally from a
high level of repetition. The complete network can be described by the sixth part of the initial cubic cell. In
this case, the geometry of only five curve segments holds the information of the complete periodic grid.
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Figure 5.43 Design implementation of the Asymptotic Grid using a Schwarz D periodic minimal surface (lllustrations: Denis Hitrec
2016).

Fabrication and Assembly

The 3D information was translated into simple 2D drawings by marking the node-to-node distance onto
straight strips of beech veneer. Hitrec laser cut the strips with repetitive notches which allowed him to
interlock them orthogonally. The planar timber boundaries were fabricated separately and combined to
create a rigid frame, inside which the lamellas were installed.

™

Figure 5.44 Construction process of the Asymptotic Grid. The timber strips are laser cut straight and assembled within a rigid frame
(Photos: Denis Hitrec 2016).

28 Advances in Architectural Geometry
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Structure and Aesthetics

The timber structure of 2.4 x 1.3 x 1 m has an average mesh size of 8 x 8 cm and a strip height of 24 mm.
Even though there is no diagonal bracing, the grid is surprisingly rigid and extremely light. The rigid timber
frame supports the grid along the boundaries, allowing for cantilevers at the corners and edges.

Despite the high level of repetition, the pavilion displays a complex and sculptural shape, creating distinct
spaces like an archway and a semi-enclosed courtyard. The asymptotic network varies in density and
curvature, and thus becomes an important part of the design. The strong timber frame emphasizes both
the visual and structural boundary of the structure.

Figure 5.45 Completed structure of the Asymptotic Grid, by Denis Hitrec. The structure is built from straight strips with exclusively
orthogonal nodes (Photo: Denis Hitrec 2016).

Analysis

The network follows an asymptotic path of vanishing normal curvature. Each lamella can thus be unrolled
into a straight strip. Furthermore, all lamellas meet at 90° degrees. Apart from these geometric properties
typical for asymptotic curves on minimal surfaces, the design additionally benefits from a periodic reference
surface, creating multiple (invisible) axes of symmetry. The complete grid (with the exception of the
boundary trims) consist of only five unique strip segments.

NODE EDGE FACE
o/t o B Y o, | K, kg T, o, S K (o
90° 0° 0° 0° 24 mm variable 0° deform. deform. 24 mm

Table 5.8 Parametric assessment of the structure, Asymptotic Grid. The table reveals a high quality of geometric repetition (ES
2018).
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5.3.8 Observations

This experimental design approach stands in contrast to the theoretical studies presented in Section 5.1
and Section 5.2. It illustrates the broad spectrum of constructive solutions beyond the abstract geometric
networks. Nonetheless, each structure can be analysed and compared using the theoretical framework.
After the analysis, we will discuss aspects of distortion and its impact on design and construction.
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Figure 5.46 Overview of the six projects presented (Photos: Matthias Kestel 2014, Magdalena JooB 2016, Denis Hitrec 2016)

NODE EDGE FACE
®/t o B Y o, | K. K, T, o, S K (o}
A Bending 0° 0° 0° 0° c c 0° deform. | deform. c
Strips
B Cubic variable | deform. | variable | deform. c - - - - - tolerance c/P c
Surface
C Hexa_gonal 120° c 0° 0° c c deform. | deform. | deform. - tolerance | deform. c
Bending
Modular . . .
D Gridshell hinge 0 hinge 0 - c deform. 0 deform.
Curved c o o c
E Folding ¢ deform. 0 0 - ¢ deform. 0 0
F g:i):ijtOtlc 90° 0° 0° 0° c variable 0° deform. | deform. c

Table 5.9 Overview of the parametric assessment of the six experimental structures (ES 2018).

Parametric Analysis
Table 5.9 illustrates the geometric and constructive behaviour of all six projects. Listed below are some
insights of this parametric analysis:

- Projects A, C, D and E all realize a double-curved structure with identical parts. However, A and C
use an additional set of cables with individual lengths to fix the structure. Projects B and F rely on
fabricating individual joints/edge-lengths.

- There is a striking parametric similarity between structures A and F, with the only difference that F
did not enforce a constant edge length. Both structures combine the use of straight strips, normal
to the surface to construct a smooth anticlastic network. This construction technique follows the
geometric behaviour (and parametric signature) of asymptotic curves (see Section 5.5). While in A
this behaviour was stumbled upon experimentally, F deliberately implemented this design method
in a systematic process.

- All projects use deformation to achieve repetition. In particular, project C relies heavily on deformation
to adjust both edges and faces.

- There are three projects, A, C and E, in which both variables » and / are constant. Such a constellation
immediately causes suspicion as it stands in conflict with the principles of a distorted network
(Section 5.1.4). A repetition of both edge length and mesh angle (on a doubly curved surface) is only
possible if the node-to-node distance is artificially adjusted through an S-shaped deformation of
edges (A and C) - or if the network is based on a platonic solid (E).
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Distortion

The study on network morphology (Section 5.7) has shown that a double-curved network (without
singularities) inevitably displays distortion, which comes into effect either through variable edge lengths,
or variable mesh angles. This distortion is not merely a morphological occurrence, it is an essential part of
the network. It determines the geometry and is crucial to create a rigid structure. The question arises: If the
structure is fully repetitive, how is the distortion incorporated? And how is the curved shape determined?

In project A, the distortion is created only by a deformation of the individual modules. This
deformation can clearly be associated with adjustment of node-to-node distance, creating S-curved
edges, while the node angles stay constant. Such a network is considered geometrically
indetermined and leads to a comparatively soft structure. The shape in A is only determined by a
secondary network of the cables. These ties vary in length controlling the individual deformation of
modules.

Project B uses tolerances to accommodate distortion. They are taken up within the connection
rings between modules. The individual joints simultaneously determine the shape of the structure
by fixing the variable distance between faces.

Similar to A, the distortion in C is solely created by a deformation of edges into S-curves. This
geometrically indetermined network only permits a shallow curvature and results in a soft structure.
The dome shape of C is initiated by an equilibrium of stress in respect to self-weight and residual
stresses of deformation. Similar to A, a secondary network of cables is necessary stabilize the
structure.

In D, the distortion is realized by adjustable hinged joints. This method allows for a greater design
freedom and may realize a high double curvature. Furthermore, it offers the possibility to fix the
desired shape by locking each joint in its final position.

The segmentation of E follows the regular tessellation of a platonic solid, enabling a full repetition of
all elements without distortion. The spherical shape is determined through the topology of its
network.

Project F is based on an asymptotic curve network which follows the surface curvature and naturally
creates singularities limiting distortions. The remaining distortion is incorporated into the design by
the individual fabrication of edge lengths. However, the nodes are constructed with a slight
tolerance and allow for rotation. The rigid frame is thus necessary to determine the shape.

A fundamental insight from these observations is the advantage of incorporating distortion into the design
to enable a well-defined shape and a rigid structural system. This is achieved by creating either individual
edge length or individual intersection angles, and can be aided by designing with singularities.
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5.4 Deductive Study on Curvature and Deformation of Networks

The following section investigates smooth networks with repetitive curvature parameters. By systematically
examining all parametric combinations of k , kg and Ty specific shapes and network types are deduced
which allow for a construction with slender lamellas.

Parts of this study were published in the magazine DETAILstructure in April 2017 (Schling and Barthel
2017).

o | o | p | v | oo | 1t Pk |k | u | o s | kK | o

Table 5.10 Table of active parameters for the study on curvature and deformation of networks (ES 2018).

This study was inspired by the Multihalle in Mannheim. This strained gridshell fulfils the requirements
defined in Section 3.2.4, so that the deformation of laths « , K, and «,, can be considered equivalent to the
network curvatures Ty k. and kg.

In this example, all three curvatures are variable. Consequently, the laths had to be deformed around all
three profile axes. This demanded the use of slender, double-symmetric profiles. Understanding this direct
dependency of curvature and deformation led to the following research question:

- If one or two of the curvatures T, K, or k are avoided (i.e., kept at a constant value of zero), how
does this effect the progression of a curve, the topology and shape of networks, and the choice of
profile?

kg =Kz
&2 D

Figure 5.47 Diagram showing the aligned parameters of curvature and deformation (ES 2018).

We will first discuss the behaviour of each curvature parameter in Section 5.4.1, and subsequently present
six curvature networks depending on vanishing parameter values in Section 5.4.2. We focus on the
properties of asymptotic curves and list two more parametric simplifications (equilateral edges and
orthogonal nodes) in Section 5.4.3.

5.4.1 Curvature Parameters
To better understand the morphology of smooth networks, the distinct properties of each curvature

parameter and their influence on the respective curve are observed.

Normal curvature K is dependent on the surface curvature and curve direction. It is calculated in respect
to the tangent direction of the curve measured as its deviation p from the principal curvature directions:

k, = k;(cos p)? + k,(sin p)? (5.1)

On synclastic surfaces where k, and k, are positive the normal curvature is never zero.
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Geodesic torsion 1, resembles the twist of a curve and has no influence on the deviation from a straight
line. The torsion is unfavourable for developable strips as it leads to an incline of rulings. Similar to k , the
geodesic torsion is dependent on the principal curvatures and the direction of the curve.

1 :
=3 (ky — k) sin2p (5.2)
On a sphere where k, and k, are equal, the geodesic torsion is always zero.

Geodesic curvature kg is independent of the Gaussian curvature and describes the deviation from a
straight path within the two-dimensional surface. There is, thus, no mathematical equation relating kg to
the surface-curvature.

5.4.2 Curvature Networks
The properties of curvature can be used to deduce networks with vanishing curvature parameters. For
each network, we also describe the quality of developable strips (based on the behaviour of their rulings),
which can be modelled either tangentially or orthogonal to the reference surface along each curve. To
illustrate these qualities, physical models were built using thin strips of material that are twisted and bent
only around their weak axis.

Networks with Only Geodesic Curvature

Curves which display no geodesic torsion or normal curvature have a constant direction of their z-axis.
They are planar and permit no curvature of the reference surface. A related network is restricted to a planar
surface.

Along these curves, we can model developable strips orthogonal to the surface which have parallel rulings
and can be unrolled straight.

Such a network can be built as a planar grillage with curved beams. It can be assembled from straight
upright lamellas which are solely bent around their weak axis (z).

¥ F | r—

Figure 5.48 Model of a planar curved grillage. The network displays only geodesic curvature. The lamellas are only bent around their
local z-axis (Photos: ES 2018).

Networks with Only Geodesic Torsion

Geodesic torsion alone does not cause a curve to change direction. Curves which display no geodesic or
normal curvature have a constant direction of the x-axis. They are straight. A network of straight curves
only exists in the plane or on doubly ruled surfaces, such as a hyperbolic paraboloid or a rotational
hyperboloid.

Such curves are not developable as their rulings are parallel to the curve tangent making a geometric
modelling of developable strips impossible.

Such a network can be constructed from straight beams. Due to the continuous torsion, circular profiles
are favourable as they do not need to adjust their orientation to the surface. If slender strips of material are
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used, the normal orientation must be enforced by twisting the strips around their x-axis, as was done in
the physical example.

Figure 5.49 Model of hyperbolic paraboloid. The network displays only geodesic torsion. The lamellas are only twisted around their
local x-axis (Photos: ES 2018).

Networks with Only Normal Curvature

Curves which display no geodesic torsion or geodesic curvature have a constant direction of the y-axis.
These curves are planar and follow the surface curvature. A network of continuous curves is formed by the
great circles (geodesic curves) on a sphere.

The rulings of an orthogonal developable strip are oriented normal to the surface which allows clean
modelling and circular unrolling. If the strip is oriented tangential to the sphere, the rulings are parallel. The
strip can then be unrolled straight.

The respective physical model was constructed from elastically-bent, straight lamellas which lie tangentially
to each other.

Figure 5.50 Model of geodesics on a sphere. The network displays only normal curvature. The lamellas are only bent around their
local y-axis (Photos: Magdalena JooB 2016).

Networks with No Geodesic Curvature

Geodesic curves have a constant vanishing geodesic curvature. They follow the shortest path between
two points on any surface. A geodesic curve is defined by either selecting two points on the surface, or by
selecting one point and defining an initial curve direction. A common example for geodesic curves are
straight paper strips rolled onto a surface. The paper will inevitably follow a straight path (never turning left
or right) along the given surface direction. This property results in limited freedom when designing a
geodesic network. Even though the start and end of any curve can be controlled, the path progression
cannot be manipulated. On a surface of alternating curvature, geodesic curve networks show large
variations in density, scattering on synclastic regions and concentrating on anticlastic regions.

Just like the paper strips, tangential developable strips along geodesic curves can be unrolled straight.
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The quality of rulings is dependent on the proportion of normal curvature and geodesic torsion.
A structure along geodesic curves can be assembled from flat lamellas. Their tangential orientation
however, has little resistance to external loads and buckles easily.

Figure 5.51 Model of geodesic curves on a freeform surface. The network displays no geodesic curvature. The lamellas are not bent
around their local z-axis (Photos: ES 2016).

Networks with No Geodesic Torsion

Principal curvature (PC) lines have the property of a constant vanishing geodesic torsion. They are
tangent to the “magnetic field” of principal curvature directions (Section 1.1.3) creating a quadrilateral
network with orthogonal nodes.

A PC line is generated using a digital routine which identifies the PC direction at each subsequent point
and iteratively follows this path. The designer cannot influence the direction or progression of the curve. In
the case of an umbilical (planar or spherical) surface point, where is constant in all directions, the PC
network inevitably exhibits a singularity with a higher or lower valence. The quality of the overall network
is dependent on the surface curvature. A homogeneous curvature results in a homogeneous curve layout.
Due to the vanishing torsion, PC-networks have very good qualities for both tangential and orthogonal
developable strips. The rulings always stand normal to the curve. The unrolled strip however, remains
curved in plane. A tangential strip will be curved along the geodesic curvature — an unrolled orthogonal
strip displays the normal curvature of its surface curve.

A structure following a PC network can be built from planar strips which are bent around their weak axis
and meet perpendicularly at each node. The predetermined network layout with its varying density and
singularities can be of high aesthetic quality. However, a limited design freedom has to be accepted.
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Figure 5.52 Model of principal curvature lines on a freeform surface. The network displays no geodesic torsion. The lamellas are not
twisted around their local x-axis (Photos: ES 2016).
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Networks with No Normal Curvature

Asymptotic curves define the path along a constant vanishing normal curvature. This path only exists
on anticlastic regions of a surface. Similar to the PC lines, asymptotic curves are tangent to a magnetic
field of asymptotic directions (Section 1.1.3) and create a quadrilateral network.

Like PC lines, they can only be generated iteratively by analysing the surface curvature at every point. A
designer cannot influence the direction nor progression of asymptotic curves. In the case of an umbilical
(planar) surface point where k_ is constant in all directions, the asymptotic network creates a singularity
with a higher valence of 6.2°

Developable strips that are oriented orthogonal to the surface can be unrolled straight. The quality of
rulings is dependent on the proportion of normal curvature and geodesic torsion.

A lamella structure following asymptotic curves combines the benefits of straight unrolling and orthogonal
orientation. It can be assembled from flat lamellas which are bent (and twisted) only around their weak
axis. The orientation of lamellas normal to the surface is beneficial for the structural behaviour because it
can transmit external loads via bending.

Figure 5.53 Model of an asymptotic network on an anticlastic surface. The network displays no normal curvature. The lamellas are
not bent around their local y-axis (Photos: ES 2016).

5.4.3 Asymptotic Networks

Both geodesic curves and principal curvature lines have been successfully used in architectural projects.
However, there have been virtually no applications of asymptotic curves for load-bearing structures.® This
is surprising as asymptotic curves form the only network which combines the benefits of straight unrolling
and normal orientation to the surface, thus enabling a simple fabrication and good structural performance.
In the following section, we will focus on asymptotic networks and show two additional potentials for
creating repetitive parameters, namely, equilateral edges or congruent nodes.

NODE EDGE FACE
A R R O I R I A S

Table 5.11 Table of extended parameters for the study on asymptotic networks (ES 2018).

29 There are few exceptions. If a surface is point-symmetric around its singularity, it may exhibit a higher, even valence.
30 The rulings of a hyperbolic paraboloid are a special case of asymptotic curves and have been used in architectural design.
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Asymptotic Networks with Equilateral Edges

Asymptotic networks with equilateral edges exist on surfaces with constant negative Gaussian
curvature and have a constant geodesic torsion (Wunderlich 1951).

To build a physical model of such a network, we simply created a uniform grid of lamellas which are hinged
at every joint and oriented upright. This grillage can be deformed into any negatively curved network with
the above properties.
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Figure 5.54 Inductive physical model of an equilateral asymptotic network (Photos: ES 2018).

To confirm this behaviour, the same physical modelling process was simulated using an FE-modelling
environment (Figure 5.55, left). A more common workflow was tested by using a known surface of constant
negative curvature, the pseudosphere (Section 1.2.3), and generating an equilateral asymptotic network
on it (Figure 5.55, right). Both digital models display the given parametric properties.
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Figure 5.55 Equilateral asymptotic networks. Left: FEM-simulation, deforming a flat girder into an asymptotic grid (Jonas Schikore
2018). Right: Parametric design model on a pseudoshpere (ES 2018).

One particular feature should be mentioned: Equilateral asymptotic networks never display singularities.
This is a natural consequence of the constant negative Gaussian curvature of their reference surface. A
closer investigation of equilateral asymptotic networks will be part of further research.

Asymptotic Networks with Orthogonal Nodes

Asymptotic networks with a constant intersection angle of 90° exist on surfaces with constant vanishing
mean Gaussian curvature, i.e., minimal surfaces. This behaviour is well illustrated by the curvature graph
(Section 1.2.2). The equilibrium of normal curvature determines a regular interval between extreme values
and zero-crossings.

A method to model, design and construct asymptotic networks on minimal surfaces will be investigated in
the following Section 5.5 and Chapter 6.
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Figure 5.56 Model of an asymptotic network with congruent nodes. The curvature graph of a minimal surface illustrates the regular
behaviour of asymptotic directions (Photos: ES 2018).

5.4.4 Conclusion

This study illustrates the dependencies of curvature and deformation. It presents possibilities to simplify
the construction of double-curved structures by consciously choosing the surface and network depending
on the three curvatures of the network, Ty k and kg.

Avoiding two curvatures leads to a restriction of shapes, either to the plane (if k and T, are zero), the
sphere (if kg and T, are zero) or a double ruled surfaces (if k. and kg are zero).

Avoiding only one type of curvature allows the segmention of any freeform surface, but leads to a restriction
of networks to either geodesic curves (if K, is zero), principal curvature lines (if T, IS zero) or asymptotic
curves (on anticlastic surfaces) (if k_is zero).

kn=0
kg=X
‘Eg=0

curves on a plane
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Figure 5.57 Overview of smooth networks with constant zero curvature values (ES 2018).

A closer investigation of asymptotic networks presents two additional parametric simplifications, both
resulting in a further restriction of the design surface: Equilateral asymptotic networks form surfaces of
constant negative Gaussian curvature - asymptotic networks with orthogonal nodes live on surfaces of
constant vanishing mean curvature, i.e. minimal surfaces.
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5.5 Design Method for Asymptotic Networks on Minimal Surfaces

In the prior study on curvature and deformation of networks (Section 5.4) we introduced asymptotic curve
networks and their potential to be constructed from straight lamellas oriented normal to the design surface.
In this section we investigate the design process of such smooth repetitive networks.

For this purpose, a novel design method is developed which combines the use of minimal surfaces with
asymptotic curves to create a network with the additional advantage of repetitive orthogonal nodes. Such
a design allows for an elastic assembly of lamellas via their weak axis, and a local transfer of normal loads
via their strong axis. Furthermore, the lamellas form a double-curved network, enabling an efficient global
load transfer as a shell structure.

The following section is based on the publication “Designing Grid Structures Using Asymptotic Curve
Networks” which was published in September 2017 at the Design Modelling Symposium in Paris (Schling
et al. 2017a).

NODE EDGE FACE
o/t o B Y o, | K, kg T, o, S K (o
90° 0° 0° 0° c variable 0° deform. deform. c

Table 5.12 Parametric signature of asymptotic networks on minimal surfaces (ES 2018).

The method of designing asymptotic networks with orthogonal nodes can be divided into five phases,
which will be addressed in subsequent sections:

Section 5.5.1 presents the surface design which is focused on a fast and intuitive workflow.

Section 5.5.2 presents the form-finding workflow and measures for testing its accuracy.

Section 5.5.3 presents an algorithm to draw asymptotic curves on NURBS surfaces.

Section 5.5.4 discusses the challenge of desighing a homogeneous network.

Finally, Section 5.5.5 explains the geometry of developable and twisted strips.

This design method is tested in Section 5.5.6 to illustrate the design spectrum of surfaces and networks.
Section 5.5.7 presents a generalization of this method which was published independently.

Finally, Section 5.5.8 gives a short conclusion of the previous insights.

5.5.1 Surface Design

A minimal surface is the surface of minimal area between any given boundaries. In nature, such shapes
result from an equilibrium of homogeneous tension, e.g., in a soap film (Section 71.2.3). Such shapes can
only be designed by adjusting the boundary edges. For a designer this property is unfamiliar. It takes some
experience to understand the geometric behaviour and control such surfaces.

In the initial design phase, a fast and intuitive modelling method is key. The goal is to define the boundary
conditions and get instant feedback on the resulting design surface.

The minimal surface can either be approximated through physical models using elastic textiles or soap
films, or modelled digitally with fast numeric methods.

More insights on minimal surface shapes and their effects on the asymptotic network are presented in
Section 5.5.6.
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5.5.2 Form Finding

Once the boundary curves are defined, the accurate form is generated digitally by either minimizing the
area of a mesh, or finding the shape of equilibrium of tension.

Various tools are capable of performing such optimization on meshes with varying degrees of precision
and speed (Surface Evolver, Kangaroo-SoapFilm, Millipede, etc.) (Brakke 1992).

The Rhino-plugin TeDa (Chair of Structural Analysis, TUM) provides a tool to model minimal surfaces as
NURBS based on so-called isotropic pre-stress fields (Philipp et al. 2016).

Both methods, mesh and NURBS, produce sufficiently accurate results if a proper resolution and calculation
time is taken into account.

Enneper Surface

Certain minimal surfaces can be modelled via their mathematical definition. This is especially helpful as a
reference when testing the accuracy of other tools. We extensively used the parametric representation of
an Enneper surface (Figure 5.58) as a comparison to determine the accuracy of other tools (Pottmann et
al. 2007a, p. 650):

x(u,v) = 6u?v—2v3—6v
y(u,v) = 6 uv? —2u® — 6u (5.3)
z(u,v) = =12uv

This parametric definition does not only produce mathematically accurate minimal surfaces. The u and
v-values also follow the asymptotic directions and can simply be interpolated to draw accurate asymptotic
curves (Section 5.5.3). Furthermore, the resulting network is isothermal®', a quality which was also used to
test the network design routine (Section 5.5.4).

Accuracy

Measuring the total area of competing minimal surface representations is an effective way to compare
their overall accuracy. To identify regions of insufficient quality, we analyse the mean curvature and its
deviation from zero, or draw asymptotic curves and check the intersection angle. The latter is the decisive
requirement for our design method.

5.5.3 Asymptotic Curves

Asymptotic curves cannot be drawn by hand. They require a precise analysis of the reference surface in
order to iteratively find the path of vanishing normal curvature.

We developed a custom VBScript for Grasshopper/Rhino to trace asymptotic curves on any anticlastic
NURBS-surface based on a routine by Rutton and Gregson (2076).

The values and directions of the principal curvatures (k,, k,) are retrieved at each point of the surface along
this curve. With this information, we calculate the normal curvature k_for any deviation angle u from the
principal curvature direction.

kn (W) = ky (cos )? + k, (sin ) (6-4)

To find the asymptotic direction, the normal curvature must be zero, k = 0.
Solving for p results in:

, [2JKka (kz — k) + ky — 2k, (5.5)

kq

p=2m—2tan”

31 A principal curvature network is isothermal if the cells are square in an infinitely fine discretization. Similarly, this asymptotic
network has a quality of nearly square cells.
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By iteratively measuring p at each subsequent point and walking along this path, we can draw an asymptotic
curve on any anticlastic surface. The algorithm uses the Runge-Kutta method (Weisstein 2018a) to
average out inaccuracies due to step size. On minimal surfaces, the deviation angle n is always 45° (due
to the bisecting property of asymptotic curves and principal curvature lines).

This computational routine only works on NURBS surfaces. In the case of a mesh, we use EvoluteTools -
specifically the command , ExtractCurvaturelLines, to find the discrete asymptotic curves.

Accuracy

Both EvoluteTools and the VB-Script were checked for accuracy by comparing their results with the
asymptotic network on an Enneper minimal surface. Depending on the high quality of the mesh or NURBS
surface and a low step size of the asymptotic-curve-algorithm, a sufficient accuracy was achieved to plan
and construct an orthogonal asymptotic grid from straight lamellas.

Properties

It is crucial for a designer to understand the behaviour of asymptotic curves and its dependency on the
Gaussian curvature of the surface. The path of asymptotic curves is determined. The designer can merely
pick a starting point on an anticlastic surface from which two asymptotic paths will originate. The
progression of these paths can best be explained along their remaining curvature parameters:

Geodesic Curvature. The geodesic curvature K, of asymptotic curves on minimal surfaces is reciprocal
to the Gaussian curvature. The higher the Gaussian curvature, the straighter the curves become. When
approaching a singularity (a planar point of no Gaussian curvature) the asymptotic curves tend to spread
and swerve, increasing the geodesic curvature. Unfortunately, we have not found a mathematical equation
describing this relationship.

Geodesic Torsion. The geodesic torsion Ty of an asymptotic curve correlates directly with the Gaussian
curvature. The relationship is determined by the formula (Tang et al. 2016b):

1 .

where k; = —Kk, and up= 45° thus 14 =k4

On a minimal surface, k, and k, are equal opposites, and p is 45°. The geodesic torsion T, is thus equal to
the absolute value of either principal curvature.

With higher Gaussian curvature, more torsion and less geodesic curvature are to be expected.

5.5.4 Network Design

Drawing asymptotic curves on a surface does not necessarily create a homogeneous network. The
opposite is the case. Even if the designer picks a regular interval to initiate the asymptotic-curve-routine,
the resulting curves (drawn in two directions) will display a heterogeneous pattern unsuitable for architectural
design.

To ensure a regular spacing of network curves, we take advantage of the bisecting property between
asymptotic curves and principal curvature lines. By alternately drawing each curve and using their
intersections as a new starting point, we can create a network with nearly square cells (Sechelmann et al.
2013). This is owed to the fact that minimal surfaces are isothermic, i.e., allow for this highly regular
segmentation.
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With this method we can ensure a homogeneous layout which is not only beneficial for aesthetic reasons,
but also improves the structural efficiency of the grid.

Combining both networks, asymptotic curves and principal curvature lines, additionally allows the grid to
benefit from both their geometric properties simultaneously for substructure and facade. Subsequently,
we can implement efficient fagade solutions using tangential developable strips or even planar quads
(Pottmann et al. 2007, p.680).

Figure 5.58 Design process on an Enneper surface. Left: Principal curvature lines. Middle: Isothermal web of principal curvature
lines and asymptotic curves. Right: Strip model of the asymptotic network with diagonal bracing (lllustration: Denis Hitrec 2017).

Automated Modelling

Implementing this method manually is labour intensive and prone to inaccuracies. There are few routines
available which allow for an automated approximation of an isothermal segmentation. We used an existing
toolset (Rhino-Grasshopper, Milliped) to reparametrize a mesh and create a quasi-isothermic network
along the principal curvature lines. This network is used as the basis for a subsequent generation of the
bisecting asymptotic curve network.

Layout and Singularities

The network layout is dependent on the surface curvature. Isothermal networks tend to densify in regions
of high Gaussian curvature and spread out in the areas of low Gaussian curvature. This results in the
largest cells surrounding the planar singularities.

The singularities are a decisive factor in the grid layout. Their location not only has consequences on the
structural and aesthetic quality of the network, it also determines the possible grid size. If all singularities
are to be designed identically, e.g., with radial curves, the spacing of the network has to obey a regular
interval between them. This logic was used to design the network of the Asymptotic Gridshell (Section
6.7).

5.5.5 Strip Geometry
In the final modelling phase, we construct the strip-surfaces along the asymptotic paths. The strips can
either be modelled as truly developable surfaces, or as twisted strips normal to the design surface.

Developable Strips

A developable, i.e., singly-curved surface-strip is defined by its rulings. If this strip is orthogonal to a
reference surface and follows a surface-curve, its rulings are enveloped by the planes that contain the
normal vector n and tangent vector t of the Darboux frame (Figure 5.59, left). The vector of these rulings r
is dependent on the ratio of geodesic curvature and geodesic torsion. It is calculated via the equation:
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r= kgn + Tt (5.7)

For asymptotic curves (where k = 0), kg is equivalent to k and can simply be measured via the osculating

circle.
k= /knz + kg’ if kn=0 then k = kg (5.8)

To calculate the geodesic torsion, we use Equation 5.6 (Section 5.5.4): T, = K,
The rulings are not necessarily perpendicular to the surface. As a consequence, intersecting two
developable strips commonly results in a curved intersection (Figure 5.59, middle). Even more, in the case
of high Gaussian curvature, the rulings incline dramatically and become parallel to the tangent vector,
which makes modelling and construction of a developable strip impossible.

asymptotic

Figure 5.59 Asymptotic strip geometry. Left: A developable strip along an asymptotic curve, orthogonal to the surface, is defined by
rulings r, which are generally not parallel to the normal vector n. Middle: This results in curved intersections of developable strips.
Right: In our method, the strips are defined by the normal vectors n to ensure straight intersections. Consequently, they are not truly
developable, but twisted (ES 2018).

Twisted Strips

We thus propose to model the strip geometry along the normal vectors which allows for straight intersections
and a well-defined ruled surface (Figure 5.59, right). As a consequence, some twisting of the lamellas
needs to be considered during construction. The stresses caused by this twist will be examined in Section
6.3.2. This deviation from a truly developable strip is essential to realizing a simplified construction.

Strip Layout

For an elastic assembly the strips can be fabricated flat. The node-to-node distance, measured along the
asymptotic curves, is the only variable information needed to produce fabrication drawings. The distances
are marked along a rectangle of the desired width. The 3D modelling of strips is only used for visualization.

5.5.6 Design Spectrum

This novel design method was implemented for various minimal surfaces to illustrate the behaviour of the
asymptotic network and its singularities (Figure 5.60). This study also shows the wide range of possible
shapes that can be designed from minimal surfaces.

A minimal surface can be defined by one (A, B), two (C), or multiple (D) closed boundary-curves, with direct
impact on the topology and complexity of the surface. Symmetrical properties can be used to create
repetitive (C) and periodic (E) minimal surfaces. Asymptotic curve networks benefit greatly from symmetry,
both aesthetically and in construction. The Gaussian curvature of the design surface directly influences the
geodesic torsion of asymptotic curves, the density of the network and the position of singularities. A well-
balanced Gaussian curvature produces a more homogeneous network and thus eases construction.
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Figure 5.60 Overview of asymptotic strip networks on minimal surfaces. A) One polygonal boundary creating a saddle-shaped
network with singularities located at the boundaries. B) One spatial boundary-curve creating a surface with three high and three low
points and a network with central singularity. C) Two curves creating a rotational repetitive network with regular singularities along the
planar boundary. D) Multiple boundaries creating a freely designed minimal surface with four high points. E) Variation of a singly-
periodic “Sherk’s Two Minimal Surface”, with six interlinking boundaries (lllustration: Denis Hitrec 2017).

Examples shown in Figure 5.60 display how varying boundary conditions influence the surface and
asymptotic network. Boundary-curves may consist of straight lines (A), planar curves (D), or spatial curves
(B). This does not only have an effect on the later construction of the edge. Straight lines usually adapt well
to the built environment, but are likely to attract singularities (A). Spatial boundaries provide more freedom

to design, but increase complexity. A well-integrated boundary can be achieved by modelling a larger
surface and “cookie-cutting” the desired shape.
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5.5.7 Generalization

Asymptotic networks on minimal surfaces can be understood as a subset of a more general network
theory. If the normal curvature of curves must not necessarily be 0, but any constant value, the shape
spectrum is expanded to any surface with constant mean curvature.

Such a surface and network follow the simple and intuitive relationship:

Hgurface = kn,network = constant (5.9

This behaviour is well illustrated by the curvature graph of a CMC surface (Figure 5.61).

Constant normal curvature networks are always bisecting the principal curvature lines. The developable
strips are not necessarily straight, but have circular unrollings with r = 1/k . A computational workflow of
these networks, including a new discretization as quadrilateral meshes with spherical vertex stars was
published in collaboration with Martin Kilian, Hui Wang, Jonas Schikore and Helmut Pottmann at the AAG
2018 Conference (Schling et al. 2018).

k1 + k2 = constant
kn=H

N

k1

180°

Figure 5.61 Constant normal curvature network on a constant mean curvature surface. Left: Network on a so-called Ocean reference
surface (Schling et al. 2018). Right: Diagrammatic curvature graph of a constant mean curvature surface with indicated network
directions (ES 2018).

5.5.8 Conclusion

Asymptotic curves on minimal surfaces allow for a high level of repetition simplifying the fabrication and
construction process. The structure can be assembled from straight lamellas and identical joints.
Designing such a geometrically optimized structure is heavily dependent on digital tools to enable
modelling an accurate minimal surface, drawing accurate asymptotic curves and generating ahomogeneous
network layout. Similarly, the design freedom is restricted by the natural formation of the surface, the
predetermined path of asymptotic curves, and the location of singularities. Despite these restrictions,
there is a large design spectrum available to adjust to architectural requirements. We will present a case
study, the Asymptotic Gridshell (Chapter 6), which illustrates such a bespoke design solution.
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6 The Asymptotic Gridshell

The method presented in Section 5.5 was used to design and construct a large-scale architectural
structure, the Asymptotic Gridshell. It was completed in October 2017 for the opening of the Structural
Membranes Conference and was used as a venue for the 150" anniversary of the Technical University of
Munich in 2018.

Implementing this geometric method in an architectural context called for consideration of all architectural
requirements beyond pure geometry, such as site, functionality, safety, construction and load-bearing
behaviour. This holistic planning process added numerous insights and is used here as a case study to
illustrate the implications of a repetitive design using deformation.

99 . RS S -

Figure 6.1 The Asymptotic Gridshell was constructed in October 2017 at the TUM (Photo: ES 2018).

Section 6.1 presents the design process based on the design method developed in Section 5.5. A minimal
surface is adjusted to the building site (Section 6.7.7) and carefully refined to create a beneficial shape for
a load-bearing gridshell (Section 6.1.2). Subsequently, the curve network is designed by adjusting surface
curvature, singularity alignment and density (Section 6.7.3).

Section 6.2 presents the construction development of this strained gridshell based on the Multihalle in
Mannheim. The use of elastic deformation on a large-scale structure calls for a strategy to ensure stiffness
and stability (Section 6.2.7). The construction of two prototypes (one in timber and one in steel) further
helped to develop an efficient erection process (Section 6.2.2 and Section 6.2.3). The development of joint
details reflects these complex requirements (Section 6.2.4).

Finally, the fabrication and assembly process of the Asymptotic Gridshell is presented (Section 6.2.5).

The load-bearing behaviour is presented in Section 6.3. The structural behaviour is interpreted both locally
and globally, showing the effects of a grillage and a gridshell (Section 6.3.7). The normal and shear stresses
are calculated in dependency of the geometric network curvature (Section 6.3.2).

An FE-analysis was conducted for construction and approval planning. Its documentation would exceed
the research focus of this dissertation. Its content will thus be published separately.

Figure 6.2 Underneath the Asymptotic Gridshell (Photo: Martin Ley 2018)
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Project Team

The project was designed at the Chair of Structural Design, Prof. Dr.-Ing. Rainer Barthel. The research was
conducted by Eike Schling (project management) with support of Denis Hitrec (design and modelling) and
Jonas Schikore (structural analysis).

The student team during the construction process included Beatrix Huff, Denis Hitrec, Andrea Schmidt,
Viktor Spath, Miquel Lloret Garcia and Maximilian Gemsjager.

The pavillion was constructed in collaboration with the Brandl Steel Construction Company in Eitensheim
and the Technisches Zentrum of the TUM, foremost Matthias Midiller, the TUM metalsmith.

Financial support was granted by the Department of Architecture and the Architectural Research Incubator
/ARI of the TUM, the Dr. Marschall Foundation, as well as the Leonhard-Lorenz-Foundation.

The author’s personal involvement included the complete research and planning process from concept
design to construction documents, project management, as well as the installation, supervision and
logistics on site.
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de Rycke et al. (Eds.): Humanizing Digital Reality. Design Modelling Symposium Paris 2017. Singapore: Springer Singapore,
pp. 125-140.

- Schling, Eike; Hitrec, Denis; Schikore, Jonas; Barthel, Rainer (2017b): Design and Construction of the Asymptotic Pavilion.
In K.-U. Bletzinger, Eugenio Onate, B. Kroplin (Eds.): VIII International Conference on Textile Composites and Inflatable
Structures. STRUCTURAL MEMBRANES 2017. pp. 178-189.

- Schling, Eike; Kilian, Martin; Wang, Hui; Schikore, Jonas; Pottmann, Helmut (2018): Design and Construction of Curved

Support Structures with Repetitive Parameters. In Lars Hesselgren, Karl-Gunnar Olsson, Axel Kilian, Samar Malek, Olga
Sorkine-Hornung, Chris Williams (Eds.): AAG 2018. Advances in Architectural Geometry. Wien: Klein Publishing, pp. 140-165.
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6.1 Design

The design process of the Asymptotic Gridshell closely followed the method described in Section 5.5. This
section focuses on the findings which are specific to this case study.

In Section Section 6.1.1, the architectural requirements of the site are listed. Section 6.7.2 will present all
aspects of the surface design that exceed the purely geometrical parameters. Section 6.1.3 will address
challenges of the network design and its refinement.

6.1.1 Site Requirements

The Asymptotic Gridshell is located at the central campus of the TUM. The building site itself is a west-
facing semi-courtyard of approx. 18 x 28 m situated north of the main entrance hall.

This courtyard is designed as a green space for leisure. The landscape of bushes and trees is embedded
in elevated islands bound by curved steel rims. Three of these islands create various pathways which
connect the two entrances in the northeast and south. Three wide steps bridge the difference in height of
approx. 1 m between the courtyard and the main campus.

The design goal was to create an architectural sculpture which matches the scale and form-language of
the courtyard, and allows free movement throughout the site. The supports should align with the existing
landscape, and the grid structure should incorporate the central island and tree. These complex
requirements provided the opportunity to prove the flexibility of this novel design method.

A A

Figure 6.3 The site requirements called for a well-adjusted design surface encompassing a central tree (ES 2017) (Photo: Felix Noe
2017).

6.1.2 Surface Design
The surface design is separated into a concept, and form-finding phase.

During the concept phase, the surface was designed by adjusting only the boundary curves using a fast
digital routine to approximate a minimal surface. The real-time manipulation of the shape was key in
producing a multitude of design variations, and assessing their visual impact, functionality, support layout
and surface area (as a direct indicator of the construction cost).
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Figure 6.4 Design iterations and early sketch of the Asymptotic Gridshell (ES 2017).

A key obijective of the concept phase was to find a shape that would benefit the efficient shell-like load-
transfer. We deliberately aimed for qualities of a funicular form, such as sufficient double curvature, arch-
shaped edges, and well-distributed supports.

While the digital algorithm implemented only the geometric requirement of constant mean curvature, these
structural goals were subject to the experience and intuition of the designer.

Figure 6.5 The design shape is derived from a catenoid which is adjusted to fit the site requirements (ES 2017).

The final design shape is derived from a catenoid — the minimal surface between two circles. By manipulating
the position and shape of the two boundary circles, we designed an intricate, mussel-shaped surface with
high double curvature and arched-shaped boundaries. Cutting this shape with the horizontal plane
generated three curved support lines which nestle well into the site. The catenoidal topology creates a
circular oculus around a central island and tree, and opens two archways which allow visitors to move
freely throughout the courtyard.

Once the design and boundary curves were defined, the surface was determined more accurately as a
mesh and a NURBS surface (Section 5.5.2). This process was closely linked to the network design and
was conducted repeatedly with small adjustments until the surface curvature and network layout satisfied
all aesthetic and structural requirements (defined in Section 6.3.2).

6.1.3 Network Design

The network was first designed as an isothermal network of principal curvature lines and later bisected by
asymptotic curves at every node. This does not only produce a homogeneous, almost square cell layout.
As mentioned in Section 5.5.4, aligning the diagonals with the principal curvature direction creates
advantages for future fagade solutions with single curved or planar quadrilateral panels.

The network layout is directly dependent on the curvature of the surface. A high Gaussian curvature
increases the density and torsion of the lamella structure and might prohibit a smooth construction
process. Planar surface points, on the other hand, create singularities within the network, and thus have a
large impact on the layout and stability of the grid. Both factors were carefully adjusted by controlling the
progression of boundary curves, re-computing the surface and testing the new network layout.
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Figure 6.6 Refinement of surface and network. Left: Two 3D prints testing the network density. Right: Diagram illustrating the
alignment of singularities along a common principal curvature line (ES 2018).

In the case of the Asymptotic Gridshell, there are two singularities on opposite sides, east and west of the
oculus. To benefit the aesthetic and structural properties of the grid, both singularities are designed
identically as traversal nodes connecting six continuous edges. This requirement demanded that the
network aligns with both singularities. For this reason, both singularities were arranged on the same
principal curvature line. The network density was determined by a subdivision of this connecting axis
(Figure 6.6, right).

Design Proposal

The final design surface has a circular topology which is the remainder of the catenoid that it is derived
from. This property results in an upended shape, flipping the surface from inside to outside. Due to this
characteristic, the pavilion was named INSIDE\OUT in media publications.

Figure 6.7 Visualization of the final design of the Asymptotic Gridshell (lllustration: Denis Hitrec 2017).
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6.2 Construction

The repetitive parameters of asymptotic networks on minimal surfaces allow for identical, planar and
orthogonal grid joints. The grid can be constructed from straight lamellas, oriented normal to the design
surface. They are bent and twisted during construction to account for the geodesic curvature and geodesic
torsion of the design network. This large, elastic deformation limits the possible thickness and height of
the lamellas (Section 6.3.2).

All joints in the structural grid are identical and orthogonal. To activate the load-bearing behaviour of a
gridshell, the quadrilateral grid must be able to transmit shear loads in-plane. The grid is thus braced with
diagonal steel cables.

The detailing and construction process was informed by the practical solutions of the Multihalle in
Mannheim (Section 2.4).

Section 6.2.1 discusses a strategy to allow deformation and create stiffness. Section 6.2.2 and Section
6.2.3 present the two prototypes (timber and steel) to test the assembly process. Section 6.2.4 focuses on
the developments of joints for the typical grid intersection, singularities, edges, seams and supports.
Finally, Section 6.2.5, will present the manufacturing of lamellas, the prefabrication of segments and the
assembly process on site.

Edge lamellas

— Lamella grid

Supports

Singularity

Steel cables

Figure 6.8 Axonometry of the Asymptotic Gridshell (lllustration: Denis Hitrec 2017).

6.2.1 Deformation and Stiffness

Using the elastic behaviour of a material to construct a curved geometry will always raise the question of
deflections and stability under self-weight and external loads. Controlling this by increasing the bending
stiffness is not an option if the elements are to be bent elastically into a significantly curved geometry.
Lienhard (2014, p. 141) calls this discrepancy a “paradoxon that underlies all bending-active structures”.

The two opposing requirements — elastic deformation and stiffness — can be resolved within the construction
by introducing two parallel layers of beams. Each layer is sufficiently slender to be bent and twisted
elastically into its target geometry. Once the final geometry is installed, the two layers are coupled with
shear blocks in regular intervals to increase the overall stiffness.
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This strategy was realized in the Asymptotic Gridshell by installing two slender lamella-profiles of 100 x 1.5
mm each at 25 mm distance. They are coupled naturally at every joint within the dense grid. Additionally,
the two layers can be connected with shear couplings in regions close to the supports where normal
stresses (due to self-weight) naturally increase. The load-bearing behaviour of this combined profile is
dependent on the distance of the two layers, as well as the interval and size of couplings.

Figure 6.9 View from underneath the pavilion showing the lamellas and cables, as well as a diagonal seam (Photo: Felix Noe 2017).

6.2.2 Timber Prototype

This construction method was first tested on a timber prototype. The two asymptotic families of curves
were constructed on separate levels (one on top, and one below) using continuous lamellas of 4 mm
poplar plywood. The upper and lower level are connected with a square stud of 15 x 15 mm and 80 mm
length, enforcing the orthogonal intersection angle.

This rigid connection could only be fitted once all elements were curved in their final spatial geometry.
Consequently, each lamella had to be deformed and installed individually between rigid edge beams of 20
mm plywood. The height of these planar, curved beams was determined by their (partly steep) intersection
angle with the lamellas, creating a dominant arch-shaped frame. Finally, each pair of lamellas was
connected with additional blocks between the joints to increase the overall stiffness. The timber prototype
was not yet equipped with diagonal cables and thus carries its self-weight as a curved girder.

Figure 6.10 Timber prototype. The lamellas are constructed on separate levels allowing for continuous, uninterrupted profiles. The
lamellas were individually fitted between the rigid edge beams and later connected by shear blocks (Photos: Denis Hitrec 2016).

6 The Asymptotic Gridshell 143



6.2.3 Steel Prototype

The second prototype was built from 1.5 mm strips of steel. Here, the two asymptotic families of lamellas
are assembled flush on one level. Therefore, the lamellas were prepared with a perpendicular double slot
at every joint. The slots define the precise location of intersections and establish a scissor hinge with a
stable rotation around the z-axis. This detail allows us to first assemble all the lamellas into a flat grillage
and afterwards induce the desired shape through a global deformation.

Figure 6.11 Assembly process of the steel prototype showing the elastic transformation from flat to curved geometry (Photos: ES
2016).

For this purpose, the grillage was placed on a cross-shaped support and was “eased down” and “pushed
up” simultaneously (Quinn and Gengnagel 2014). During this deformation process, a pair of orthogonal
washers were tightened with one bolt at every node, enforcing the 90-degree intersection angle, thus
determining the final geometry.

Once the shape was defined, the edges are fitted by attaching bespoke steel strips on top and bottom.
This edge-beam is not aligned with the asymptotic grid and thus forms rigid triangles which fasten the final
geometry and generate stiffness. Again, no diagonal cables were attached, as the grillage was sufficiently
stiff to carry its own weight.

Figure 6.12 Steel prototype. The lamellas are doubled and coupled to allow for low bending radii and high stiffness (Photo: Tobias
Bahne 2016).

6.2.4 Joint Development

The construction joints were consistently developed throughout the design process. They were partly built
as prototypical joints at a 1:1 scale and later tested within the two prototypes. This helped to assess the
aesthetic and practical quality of each solution.
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Typical Grid Joint

The typical grid joint is planar and orthogonal with no geometric variation. Nonetheless, the construction
process, diagonal bracing and future facade attachment created multiple requirements which were
subsequently included in the detailing solutions.

A variety of joints were developed which vary in continuity and number of lamellas, separation of levels and
positioning of the diagonal cables (Figure 6.13):

The first three proposals (A, B, C) suggested the use of single lamellas to be either welded on site (A),
bolted individually (at slight eccentricity) (B), or secured with a bespoke connector and two parallel bolts
(C). The use of two parallel lamellas allows for a central connector (D, E). Joint B proposes the use of
individual lamella-segments which are folded and bolted at every joint, while joints A, C, D and E realize
continuous elements, either by interlocking lamellas through slots (A, C, E) or by arranging them on
separate levels (D).

The diagonal bracing can be installed within the slotted lamellas (C) or fixed separately at the top or
bottom (E).

%%%
N

A B C D E

Figure 6.13 Six proposals for the typical grid joint (ES 2018).

The final joint (E) was first tested in the steel prototype and subsequently chosen for the Asymptotic
Gridshell. It is constructed from two layers of lamellas in each direction, interlacing on the same level
through perpendicular slots. The slots are double as wide as the thickness of lamellas to allow a rotation
of up to 60° during assembly. The lamellas are locked by two star-shaped washers on top and bottom.
Another cross-shaped clamp fixes the diagonal cables and keeps them from sliding off. A single carriage
bolt and nut are used to fix the lamella and cable connections.

Figure 6.14 Fabrication and assembly of the typical grid joint (E) (Photos: Felix Noe 2017).
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This construction created the following advantages:

- The slotted connection of lamellas generates a scissor joint
during construction — a prerequisite to enable the global
deformation of segments without scaffolding.

- The star-shaped washers allow a fixture of the 90°
intersection and restrict the tolerance of the 3 mm wide
connection slots after assembly.

- The single carriage bolt allows a fast assembly. The square
neck on the underside is held by the square opening of the
washer. Thus only one nut per joint must be tightened.

- The central connection axis is beneficial for the structural
connection of double lamellas as well as the double bracing.

- Thetwo parallel lamellas allow the insertion of shear blocks
to couple and stiffen the beams. This ensures sufficient
rigidity to transmit additional bending and normal stress.

- Thejoint arrangement results in a minimalistic appearance
hiding all connecting elements between lamellas. The central
bolt, as well as the folded washer and clamp display the o
structural and functional purpose with minimal effort.

A disadvantage of this construction is the weakening of the lamellas
at the joints. On the one hand, this called for special attention
during assembly as the lamellas are likely to kink if handled
incorrectly. On the other hand, the elastic bending results in a
higher curvature and higher bending stress in these areas and
promotes buckling.

Figure 6.15 Explosion of the final grid joint (E) (ES 2018).

Singularity Joint

The only exception to the typical grid joint appears at the singularities. Here, six pairs of lamellas meet in
a regular hexagonal star. Similarly to the rectangular joints, it is interlaced with slots and fixed by a central
carriage bolt. This joint was constructed separately and connected with the lamellas on site.

Seam Connection

The lamellas are fabricated in segments of maximally 4 m in length. They are combined on site by
overlapping the lamella-ends between two joints and fixing them with 6 screws. The pavilion was
constructed from nine segments, the seams between those segments run diagonally or parallel to the grid.
They are almost invisible in the final structure (Figure 6.9).
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Figure 6.16 Left: Hexagonal joint for singularities. Right: Seam connecting prefabricated segments (Photos: ES 2018).

Edge Profiles and Joints

The edges are fitted with curved lamellas at top and bottom, running tangential to the design surface.
These edge-lamellas do not follow an optimized path of reduced curvature. They are laser cut individually
and later bent and twisted into the required geometry.

The gird-lamellas and cables are connected to these edge profiles. Each pair of lamellas is coupled with a
square tube and fixed to the edge-lamellas via a central bolt. The cable loops around a thimble and is
secured with a wide washer on top of a carriage bolt. The offset between edge-lamellas is kept constant
through a cylindrical tube.

Shear Coupling

The two parallel lamellas are coupled at every grid joint to increase their combined in-plane stiffness. Due
to the high axial load in some areas, these compound beams experience additional bending stress. To
prevent buckling their bending stiffness needed to be increased. For this purpose, a shear block was
planned to be constructed from square tubes (25 x 25 mm) creating an additional coupling of the lamellas
between each grid joint. This method turned out to be inefficient for two reasons:

- The tubes were not wide enough to be fixed with multiple screws and could not sufficiently transmit
shear forces.

- The curved lamellas tend to buckle between joints. This buckling behaviour is similar to the deflected
shape of the well -known Euler Buckling Mode 2. In this case, the shear connection at the central
position is ineffective as there is no shear stress at this location.

As a consequence, the square tubes were replaced by wider timber elements to restrict the buckling of
lamellas at the most crucial locations.

Figure 6.17 Left: Edge connections of lamellas and steel cables. Middle: Coupling of lamellas. Right: Each lamella is labeled
individually (Photos: ES 2018).
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Supports

The horizontal supports are fabricated individually following the incline and curvature of the grid. The
horizontal edge beam is supported in regular intervals by individual brackets taking up the variable incline.
The brackets are welded onto a base plate which is curved in the horizontal plane. To prevent the structure
from lifting up due to strong winds, the supports were equipped with a 100 mm high border and loaded
with gravel, adding approximately 5 kN of weight at every support.

Figure 6.18 The supports are fabricated individually and filled with gravel to reach the necessary weight against tilting and lifting
(Photos: ES 2017).

6.2.5 Construction Process

The Asymptotic Gridshell was constructed in approximately six weeks.

In the first two weeks the stainless steel lamellas were laser cut, labelled and transported to site. Additionally,
the star-shaped washers for the typical grid joints had to be cut and folded. During the third and fourth
week, nine individually curved segments were prefabricated off site. The final weeks, five and six, were
needed to assemble these segments on site, fasten the seam connections, attach the supports and fit the
diagonal cables.

Production of Parts

All lamellas are fabricated as flat and straight strips. The edge length of the digital design model are simply
marked along the rectangular strips.

The lamellas of the Asymptotic Gridshell were laser cut from rectangular 4 x 2 m steel panels. The
rectangular geometry allowed for minimal offcuts and easy transport. The fabrication of washers and
clamps was incorporated in the same laser cutting procedure, offering a cost-efficient production of all
parts.

The edge-lamellas and supports had to be fabricated individually. The edges were modelled in 3D, unrolled
into a flat geometry, and laser cut at the same thickness and width (1.5 x 100 mm) of the standard lamellas.
The supports were fabricated separately from 6 mm steel plates. The diagonal steel cables, looping from
edge to edge, were tailored to fit the precise length at the top of the lamella construction.

Figure 6.19 Prefabrication: The straight lamellas are interlocked by hand into flat segments. The segments are then transformed
elastically into their designed shape. This erection process follows a compliant mechanism without the need for scaffolding. Nine of
these segments were prefabricated individually off site (Photos: ES 2017, Felix Noe 2017, Andrea Schmidt 2017).
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Prefabrication

The pavilion was assembled from nine individual segments. The prefabrication process takes advantage
of the elastic erection process which was tested with the steel prototype (Section 6.2.3).

The lamellas were slotted together by hand to form a flat grillage (Figure 6.19). In this state, the lamellas
display no geodesic torsion. The intersection angles are not yet constant. The joints are flexible and allow
for a scissor movement around their z-axis.

Each planar lamella grillage was placed on a cross-shaped support and then deformed into the desired
shape. Unlike other elastic grids (such as the Multihalle in Mannheim) this grillage cannot assume any
shape. Instead, its deformation follows a predefined movement. The design shape is determined by
enforcing a constant node angle of 90 degrees.

This defined kinetic behaviour is called a compliant mechanism (Howell 2002). It enables an elastic
erection process without formwork.®2 The geometrical behaviour has been studied and published in
(Schling et al. 2018). Its detailed mechanical implications will be part of future research.

Assembly

The segments were installed on site in a “top to bottom” process. The two highest segments were first
connected on the ground and then hoisted up onto temporary supports. This strategy allowed the
construction team to work from the ground and limited the risk of falling. It also lowered the positional
tolerances, as all subsequent segments could simply be positioned and attached to the higher central
pieces.

After the lamella grid and edges were completed, the supports were attached at each horizontal edge. As
a last step, the steel cables were laced at every second diagonal gridline and tightened manually. Only
after all cables had been fixed at each node, the supporting scaffolding was slowly released.

The built structure proved to be surprisingly accurate in shape, given that its form is determined to a large
degree by the individual deformation of lamellas. The location of supports matched the previously surveyed
footprint with a tolerance of only + 30 mm.

Figure 6.20 Assembly: The prefabricated segments of up to 400 kg are positioned with a crane, temporarily supported, and bolted
together by hand. To activate the structural behaviour of a gridshell, the completed grid is braced diagonally and fixed at supports in
the vertical and horizontal directions (Photos: Andrea Schmidt 2017).

32 Naturally, the compliant mechanism is subject to gravity and other external loads and needs to be verified by selective
measurements.
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The Completed Pavilion

The Asymptotic Gridshell is the first architectural structure that utilizes the geometric potentials of an
asymptotic network on a minimal surface. The gridshell spans 9 x 12 m and covers an area of approximately
90 m2. Its surface weight is approximately 18 kg/m?, a total of 1.6 tons.

The steel structure has become an integral part of the Munich campus. The slender lamellas create a
gradient shadow with virtually full transparency at a straight view and an almost opaque appearance at an
inclined view.

Figure 6.22 View underneath the Asymptotic Gridshell (Photo: Martin Ley 2018).
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6.3 Load-Bearing Behaviour

Ensuring the structural integrity was a critical driver for the design and construction development. In the
following section, two approaches are presented which were used to investigate the load-bearing behaviour
of this strained gridshell.

Section 6.3.1 gives a qualitative evaluation of the load-bearing behaviour. The structure is interpreted as
both a grillage and a gridshell, considering local and global effects.

Section 6.3.2 investigates the correlation of curvature and deformation. The curvature values of the design-
network are used to predict the stresses inside the lamellas due to bending and torsion. The results were
used to define minimal curvature radii and maximal twisting, and thus inform the design process.

FE-Analysis

During the planning process, the structural grid was simulated in a Finite Element (FE) environment by
Jonas Schikore (Schling et al. 2017b). For this purpose, Schikore developed a novel workflow to incorporate
residual stress due to the erection process in the FE-analysis by translating the individual curvature of
lamellas into strain loads.

This model was used to calculate deflections and support reactions due to residual stress, self-weight,
wind and man loads. The calculations showed that the self-weight of the structure has marginal effects on
the stress distribution, which is determined mainly by the residual stress of the erection process. The
model verified the stability of the pavilion and was used to obtain planning approval.

The documentation and discussion of the FE-analysis is not part of this thesis.

6.3.1 Qualitative Structural Behaviour

We observed a hybrid load-bearing behaviour of two competing systems: a grillage and a gridshell. The
profiles are oriented normal to the surface. Due to the bending stiffness in their strong axis, the grid is able
to act as a beam grillage. This bending-stiffness is needed to account for the local planarity of asymptotic
networks (due to their vanishing normal curvature) and to stabilize open edges.

At the same time, the strips form a double-curved grid. Bracing this quadrilateral network with diagonal
cables and creating fixed supports (in vertical and horizontal directions) activates the form-active behaviour
of a gridshell.

Which of the two mechanisms dominates is dependent on the overall shape, supports and loading. The
Asymptotic Gridshell was designed with high double curvature and arch-shaped boundaries to promote a
shell-like behaviour for gravity load cases.

The elastic erection process results in residual stresses inside the curved and twisted grid elements. Due
to the low profile thickness, the initial bending moments stay low and have minor effects on the global
behaviour. However, compression of these curved elements increases the bending moment in their weak
axis. The strategy of doubling and coupling lamellas is therefore essential to control local buckling. The
buckling behaviour is dependent on the grid size as well as the offset distance and coupling interval of
parallel lamellas, and was adjusted individually during the construction process.

Generally, principal stress trajectories of a shell constitute the optimal orientation for compression and

tension elements in a respective grid structure. The novel design method chooses to follow a geometrically
optimized orientation along the asymptotic directions, taking into account an increase of stresses.
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6.3.2 Curvature and Deformation
During the early design phases, it was necessary to predict the normal and shear stress caused by the
deformation of lamellas, and deduce minimal bending radii and maximal torsion for the design.

In order to correlate the design curvature of a network with the deformation of its building parts, we have
defined three requirements (Section 3.2.4) that need to be fulfilled in the built structure.

The beams must be curved continuously and follow the smooth design network.

The profiles must be continuously oriented upright (along the normal vector) to align with the
Darboux frame.

The beams must be initially straight and bent elastically so that their deformation corresponds to
their curvature.

The Asymptotic Gridshell satisfies all three requirements. The continuous and straight lamellas were bent
elastically and held upright (normal to the reference surface) at every scissor joint. Therefore, the profile
orientation x, y and z can be considered equivalent to the three vectors t, u and n, and the expected
deformation K, and «, of the structural element can be regarded equal to the geometric curvatures Ty
k, and k; of the surface curves (Section 3.2.4).

kg =Kz

Figure 6.23 Diagram showing the aligned parameters of curvature and deformation (ES 2018).

Based on this relationship, each curvature can be analysed and used to predict respective stresses due to
deformation.

Due to geodesic curvature, the lamellas are bent around their z-axis. We use the classical beam
theory, Euler-Bernoulli, to calculate the normal stress due to bending.

Due to geodesic torsion, the lamellas are twisted around their local x-axis. Since the cross-section
is warp-free, the shear stress is calculated with the Saint-Venant Theory.

Additionally, the large twist of up to 65°/m causes an elongation/compression of the outermost/
central fibres within the lamellas. The normal stress is calculated using the theory of so-called Helix
Torsion (Lumpe and Gensichen 2014).

When choosing the profile height and thickness, the section modulus is adjusted to the maximum bending
and twist in order to keep deformation elastic.
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Analysis of Normal Stress due to Bending
We can express the relationship between the curvature kg and the bending moment M_ of the lamellas
based on the bending stiffness E-l, using the Euler-Bernoulli model.*

1 M,

TR [mm™1] 6.1)

kg: K, =

This relationship is used to calculate the minimum bending radius r_;

, for lamellas.

E-I, _ E-I, _ E-t
Mz,max Oyk* Wz Oyk* 2

Fmin = [mm]

t3h t?h
(where I, = - and W, = ?)

The equation shows that only the lamella’s thickness t is relevant to determine the minimal bending radius.
This calculation was used throughout the design process to check for plausibility of curvature and profiles.

Implementation. \We determined the minimum bending radius r_  for structural steel lamellas with
Equation 6.2 using the following specifications: t = 1.5 mm, o, =235 N/mmz2, E = 210000 N/mm?

210000 N 7+ 1.5 mm
Imin = m N =670 mm (6.3)
235 > 2
mm

The structure was designed with a minimum bending radius of approx. r . = 1060 mm. This corresponds
to a max. normal stress due to bending of 148.6 N/mm? (or a material utilization of 63%).

Analysis of Shear Stress due to Torsion

We can express the relationship between the geodesic torsion Ty and the torsional moment M, around the
x-axis of warp-free profiles based on the Saint-Venant torsional rigidity G-I, where G is the shear modulus
(indicating the shear rigidity of the material), and I, is the torsional constant (indicating the geometry of the
rectangular profile). The twist «_is described geometrically in radians as the angle of rotation 6 per length
[ along the lamella.

Ty = Ky Mt [rad] (6.4)

=GIT

If the maximum allowable shear stress Ty of the material is known, the maximal twist «_ nax C@N b€ deduced:

m

_ MT,max _ Ty,k'WT _ Ty,k [rad]

Tgmax = Kxmax = 761 T Tap T Gt [m
(6.5)
t3h th
(where Iy == and WT:T)

Again, only the lamella’s thickness is relevant to determine the maximum elastic twist.

33 Eis the Young’s modulus (indicating the material elasticity), and |, is the second moment of area with respect to the z-axis
(indicating the geometry of the rectangular profile with respect to thickness t and height h). The curvature is described
geometrically by the reciprocal value of the bending radius r.
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Implementation. We determined the maximum twist x, __ with Equation 6.5 for a structural steel lamella

of 1 m length using the following specifications: t = 1.5 mm, T, = 136 N/mm?2, G = 81000 N/mm?2

N
136 1
T =K = m 10002 = 1,124 ~ 64 °/m 6.6
gmax = TXMAX T 81000 1.5 mm m m / ©0

The pavilion structure was designed to fully utilize the elastic range due to twisting. This was necessary to
allow for the high double curvature of this gridshell.

Following Equation 5.6 (Section 5.5.3), Ty = K, , the surface was designed with a maximum principal
curvature of 1.12 m™', which equates to a curvature radius of 0.89 m and a Gaussian curvature of 1.25 m=2.

Analysis of Normal Stress due to Torsion
Calculating normal stress due to extreme torsion is not common. We will first present a purely geometrical
explanation of this effect, and subsequently introduce the mechanical theory.

The geodesic torsion of the design network causes a change in length within the geometry of strips. This
non-developable deformation (Section 3.2.3) was planned to allow for a simplification of nodes and a well-
defined geometry of strips (Section 5.5.5).

The difference in length A/ within a twisted strip is simply calculated by comparing helix-length / . and its

helix

original length /. The helix-length is linearly dependent on the geodesic torsion T and the radius r = h/2.

Al(r) = J(rg*l*r)z +12 -1 ©.7)

— —
S U

O ————
Al = Ihetix- [ | Wit
lhelix

Figure 6.24 Helix length. The difference in perimeter-length between a twisted and straight strip is dependent on the torsion and the
height of the strip (ES 2018).

This simple geometric dependency is used in the so-called theory of Helix Torsion (Lumpe and Gensichen
2014, pp. 118-124). The theory provides an equation to calculate strain and normal stress®* due to extreme
twisting. In this case, the difference in length is distributed between outer and inner fibres to create an
equilibrium of normal stress throughout the cross-section.

en= ()’ +cg  with co=—1i,°«2 (6.8)

The strain ¢, is distributed along a parabola which is naturally shifted such that its sum (and the sum of
normal stresses) at each section are zero. This shift is represented by ¢ . The maximum normal stress O max
occurs at the outermost fibers and the minimal stress o, . occurs at the centre of the profile.

34  The strain and normal stress related to Helix Torsion will be labelled as ¢, and o,
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—_————— — OH,max _ 1 1 2 - 2 2
> Oy max = 5 E (—h —ip7) Ky

2 4
é OH,min (6.9)

_ 1 . 2 2
CE = SH,min

In the case of slender lamellas, where height is much greater than their thickness, h >> t, we can consider
i, ~i,=1/J12*h, and simplify the equations:

~ 1 h2y2 .F — . N
OH,max ~ 12 h Kx E =-2 OH,min [mmz]
6.10
and 619
~ 1 h22 — . N
SH,max ~ 1z h Ky = — 2 EH,min [mmz]

The profile thickness is thus eliminated from the equation so that only the lamella height h is relevant to
determine the maximum normal stress.

Implementation. We determined the maximum and minimum strain and normal stress caused by torsion

using Equation 6.10, based on a maximum twist of 64°/m (= 1.12 rad/m), for a structural steel lamella of
100 mm height.

1 2 1)?
Emin = — 55 (100mm)? (0.00112 1) = —0.000523

€H,max — — 2" €min = 0.001045 6.11)

N
OHmin = €Hmin ' E = — 109.76mm2

N
GH,max = sH,max - E = 21952 -

The maximal normal stress due to torsion almost reaches the permissible stress of O, = 235 N/mm2,

Additionally, a contraction of the lamellas by up to 0.52 mm/m is expected at their most twisted part. This
change in length was not considered in the fabrication planning.

The normal stresses due to bending and torsion were not superimposed as their occurrence is reciprocal.
If the geodesic curvature is high, the geodesic torsion vanishes and vice versa (Section 5.5.3).
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Conclusion

This thesis investigates double-curved grid structures with constant geometric parameters.

For this purpose, a holistic theory of repetitive structures was established considering both geometric and
constructive criteria. This theory was used to analyse existing structures, investigate the morphology of
repetitive networks, and develop a novel method to design and construct strained gridshells.

Results and Insights
The thesis is arranged in three parts and six chapters:

Part | State of the Art

Chapter 1 presents the fundamental theories of geometry relevant for this thesis: The parameters of
curvature, classification of surfaces, segmentation and network topology are discussed. We highlight
analytical tools, such as the ‘normal curvature graph’ or the Gaussian image, and illustrate the effect of
singularities.

In Chapter 2, the review of relevant publications in geometry and architecture shows that a repetitive
construction is not necessarily based on a repetitive network geometry. Many built examples rely on
tolerances, hinges or deformation to adapt identical building parts to variable geometric situations. We
focus on the construction of the Multihalle in Mannheim, looking at detailing solutions of this elastically-
formed gridshell.

Part Il Repetitive Structures

In Chapter 3, a theoretical framework for repetitive structures is established using both geometric and
constructive criteria.

The separate analysis of smooth and discrete segmentations has proven especially insightful: Comparing
their parameter-sets allows the definition of dependencies between the three parameters of curvature of
an edge (k, kg, rg) in a smooth network, and three respective angles (o, B, y) at the nodes of a discrete
network. Combining both sets establishes a complete table of parameters which can be used to
geometrically compare even hybrid networks.

We distinguish tolerances, hinges and deformation as constructive criteria to achieve repetition. Our focus
is set on deformation which creates a curved structure from straight or flat building parts. We separate its
geometric behaviour into ‘developable deformations’, causing a change in curvature without a change of
length or proportion (for one or two-dimensional objects), and ‘non-developable deformations’, which
cause additional elongation or compression and may transform a flat element into a double-curved shape.
Finally, we define the requirements under which the curvature of edges can be regarded equivalent to the
deformation of beams.

In Chapter 4, the theoretical framework is implemented to analyse existing structures.
The workflow is demonstrated in three examples — The Multihalle in Mannheim, the Reticulated Dome in
Neckarsulm and the Eiffel Tower Pavilions in Paris. The quantitative analysis of parameter values not only
allows for an identification of repetitive parts, but also gives insights into the detailing of joints or bending
radii of beams based on their parametric range of angles and curvature. Furthermore, we can identify
geometric and constructive strategies which affect both the design and construction process.

Figure 6.25 Night view of the Asymptotic Gridshell (Photo: Felix Noe 2017).
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The projects presented in the literature review are analysed qualitatively to create an overview of theoretical
and practical, smooth and discrete networks. This table allows a broader understanding of common trends
and strategies used in repetitive structures.

Finally, a second table systematically deduces all possible parameter combinations of smooth
segmentations. It illustrates the potentials for repetitive design and gives incentives for future research.

Chapter 5 investigates the morphology and design of repetitive networks within five consecutive studies:
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The first study (Section 5.7) uses an inductive approach to simulate regular networks which are
pulled onto various shapes under constant parameter constraints. The experiment illustrates the
morphological behaviour of triangular, quadrilateral and hexagonal networks, detects principles of
form and distortion, and allows a comparison of discrete and smooth networks.

o Triangular nets show a geometrical rigidity. Their repetitive solutions are restricted to
developable shapes. In contrast, quadrilateral and hexagonal networks are versatile and
adjust their layout to various parameter constraints. An alignment with the principal
curvature direction is a successful strategy to achieve repetitive solutions.

o We observe a drastic increase of geometrically valid solutions if the curvature (i.e.,
deformation) of edges is permitted. However, this flexibility is attained through the
occurrence of fisher-net effects, causing a “non-fair” S-curved shape of edges.

o We conclude that a great potential for repetitive structures lies in the deliberate design of
structures which do not fulfil fairness or proximity requirements, creating S-curved edges
or undulating / folded surfaces.

o Finally, we conjecture that there is a correlation between the distortion of a repetitive
network (without singularities) and the footprint-area of its Gaussian image.

The second inductive study (Section 5.2) investigates the use of tolerances and deformation to
create double-curved fagades from standardized rectangular panels. It examines the design
workflow of appropriate surfaces and layouts that are limited by minimal curvature radii and aim for
minimal seam tolerance. This investigation comes to the following conclusions:

o With sufficient tolerance, any shape can be constructed from repetitive parts.

o Non-developable deformations may, to some degree, enable the construction of smooth
double-curved skins from flat panels.

o We describe the general behaviour of seam tolerance, where synclastic regions create
convex seams and anticlastic regions create concave seams. Furthermore, if the network
is not aligned with geodesic curves, the panel edges show a serrated progression.
Enforcing minimal seams along a row of panels causes a stepping effect which shifts
adjacent rows into a brick pattern.

o Again, we conjecture a correlation of the effects of distortion (in this case the seam
variance) with the footprint-area of its Gaussian image.

In our experimental studies (Section 5.3), we follow a research-by-design approach using physical
prototypes. We present six designs which all use deformation to create double-curved structures
from repetitive parts. The subsequent analysis of parameters reveals hidden similarities between
structures and illustrates the specific use of deformation. In a final observation, we discuss aspects
of distortion and come to the following conclusions:
o The distortion of a network is not merely a side-effect of curvature, but a crucial factor to
design and build double curvature. Designing a network which accommodates distortion
(through the topology of a network, the variation of angles or adjustment of edge lengths),
allows for a well-defined geometry, and aids an efficient self-supporting structure.



- The deductive study (Section 5.4) investigates the dependency of curvature and network, and their
potentials for strained grid structures. It reveals the close relationship between the curvatures of
surface curves and the shapes and networks which derive from them.

Combining repetitive curvature parameters with an elastic construction process additionally offers
the use of developable or straight strips of material to construct a curved network of beams.
Especially promising are asymptotic curves which are able to combine the benefits of straight
unrolling and an upright orientation of lamellas. A closer investigation of asymptotic networks reveals
two parametric simplifications:
o Equilateral asymptotic networks live on surfaces of constant negative Gaussian curvature.
o Asymptotic networks with orthogonal nodes live on surfaces with constant vanishing
mean Gaussian curvature (i.e., minimal surfaces).

- Ourfinal study (Section 5.5) takes advantage of the geometric properties of asymptotic networks on
minimal surfaces to develop a novel design method. We develop a workflow of designing minimal
surfaces, finding the paths of asymptotic curves and creating a homogeneous network bisecting
principal curvature directions.

We choose to deviate from a truly developable geometry of strips in order to obtain identical
intersections and a well-defined, ruled geometry of strips throughout the structure. As aconsequence,
some twisting of beams, i.e., non-developable deformations, have to be considered in the
construction planning.

Finally, we illustrate the design spectrum of this novel method and discuss how the boundaries
effect the surface, network and singularities.

Part Il Case Study

In Chapter 6 we implement the novel design method developed in Section 5.5 and present the planning
and construction process of an architectural case study, the Asymptotic Gridshell. The project development
reveals a multitude of practical and theoretical insights on the design process, the construction, fabrication
and assembly, as well as the load-bearing behaviour:

- In Section 6.1, we discuss the design process of surface and network. Fulfilling the architectural
requirements related to site, functionality and structure is naturally more complex, if the design
spectrum is restricted to minimal surfaces and asymptotic networks. In particular, the conception of
a beneficial structural form and network to foster the load-bearing behaviour of a gridshell demanded
much experience during this phase.

- Section 6.2 presents the planning, testing and execution of construction. The asymptotic network
allows for a simple construction from straight lamellas and orthogonal nodes. To ensure sufficient
stiffness a strategy of doubling and coupling lamellas was implemented. This also facilitated an
efficient grid-joint with a central connection axis. A novel erection process was developed along two
prototypes, one in timber and one in steel. The lamella grid with scissor joints create a so-called
compliant mechanism which allows a defined elastic deformation without the need for formwork.

- Finally, the load-bearing behaviour is investigated in Section 6.3 in three separate approaches:

o The qualitative evaluation observes a hybrid structural behaviour of both a grillage and a
gridshell which is dependent on the shape and support of the structure. The deliberate
use of deformation calls for constructive measures to control the buckling of lamellas
around their week axis. Finally, the asymptotic directions do not align with the principal
stress trajectories of a shell and thus constitute an increase of stress in the grid structure.
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o The correlation of curvature and deformation was used to calculate the permissible
bending radii and torsion of lamellas, and ensure an elastic behaviour of beams during
construction. A special focus was set on the twisting of lamellas. Next to shear stress,
which are calculated using the Saint-Venant-Theory, this non-developable deformation
causes an elongation of the outer fibres and compression of the inner fibres within the
lamellas. This results in normal stresses related to the lamella height, which can be
calculated based on the theory of Helix Torsion (Lumpe and Gensichen, 2014).

Final Reflections

This thesis combines the knowledge of differential geometry, architecture and structural engineering, and
establishes a parametric framework that takes into account both geometric and constructive criteria. This
approach allows us to design and build double-curved structures with repetitive parameters.

We systematically investigate the morphology of repetitive networks and uncover dependencies of shape
and structure: For example, we correlate the node angles in a mesh to the curvature of edge in a respective
smooth segmentation, and define requirements to equate the curvature of a network to the deformation of
its beams. We study the behaviour of triangular, quadrilateral and hexagonal nets and create an overview
of repetitive, discrete and smooth solutions. One important insight is that the effects of distortion, such as
rough meshes or S-curved edges, appear only if both mesh angle and edge length are restricted.

The results not only illustrate the spectrum of repetitive design. They bridge the gap between mathematics
and engineering and discover novel design solutions, which purposefully apply elastic deformation to
simplify the fabrication and assembly process. We focus on the use of straight, bendable strips to construct
strained lamella gridshells and demonstrate the mathematical background and physical application of
such designs. Finally, the insights are tested and verified in an architectural structure, the Asymptotic
Gridshell. The development of a construction technique and assembly process demonstrate the bandwidth
of this research.

Throughout this endeavour we have developed analytical tools, such as the curvature graph to visualize
curvature or the Gaussian footprint to detect distortion. Furthermore, we have deduced equations that
relate the parameters of curvature to the structural bending and torsion of edges and thus allow an
informed design process.

This dissertation is not the final result of our research. Rather it is part of the process and should be used
as a driver for further investigations.
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Future Research

Throughout the thesis we have encountered multiple domains that call for further investigation. These
domains can be separated into purely geometric observations related to the theoretical framework of
repetitive structures, structural aspects which investigate the load-bearing behaviour of strained gridshells,
and further construction development of our case study.

Geometrical Investigations on Repetitive Structures

The thorough examination of physical surfaces and their potential to carry repetitive structures is a
promising field of future research. Some further steps in this direction have already been addressed
in our publication on constant mean curvature surfaces (Schling et al. 2018). Another promising field
are equilateral, asymptotic networks on surfaces of constant negative Gaussian curvature.

The theoretical framework can be used to systematically deduce further parameter combinations
for repetitive structures. This research includes not only smooth and discrete, but also hybrid and
offset segmentations, offering a vast field of research. The various combination of strategies to
achieve repetition could be investigated in a similar way to produce novel design solutions.
Furthermore, the deliberate design of “non-fair” networks or polyhedral surfaces, offers great
potential for future repetitive designs.

The analysis of repetitive parameters proved to be very insightful in the investigation of existing
structures. This workflow could be used in the analysis of historic structures and help to understand
the design and construction process.

Furthermore, we suggest a mathematical study of the dependency of distortion of networks and
their Gaussian footprint.

Finally, the investigation of eccentricities and their impact on repetitive structure was left open in this
thesis and deserves further investigation.

Structural and Interdisciplinary Investigations

The structural analysis of repetitive structures seems to reveal global principles to do with the
network morphology. A sensitivity analysis of smooth and discrete, triangular, quadrilateral and
hexagonal networks would give further insights.

Using the curvature parameters to deduce the residual stress of strained structures has not only
proven efficient for the structural analysis. This workflow can also be used for form finding and the
simulation of deformation processes.

Similarly, the investigation of compliant mechanisms within lamella grids holds great potential for
future interdisciplinary research. We have already encountered a close overlap of mathematics and
engineering in the behaviour of elastically-bent lamellas grids (Schling et al. 2018).

Another interdisciplinary task is the optimization of surfaces for both geometric requirements (such
as a minimal surface) and structural performance (like a funicular form), offering to create a new
hybrid class of design shapes.

Construction Development
Apart from both geometric and structural domains, we aim to further develop the construction technique
of strained lamella gridshells looking at the following aspects:

Facade solution using planar quadrilateral panels, developable strips or membranes
Investigation of materials and related construction details
Constructive solutions and digital fabrication for permanent, large-span constructions
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Abbreviations

The following abbreviations are used to shorten the sources of institutions and architecture offices.

AB Archive Boston

AJN Atelier Jean Nouvel

AWA Auer + Weber Architects

FA Fuksas Architects

FP Foster + Partners Architects

GA Grimshaw Architects

ICD Institute for Computational Design and Construction
MBA Mario Bellini Architects

MPA J. Mayer H. and Partner Architects

MR Moatti Riviere Architecture et Scénographie
NA Nesbits Auctions

NP Ney + Partners Architects

SBP Schlaich Bergermann Partner

SE Seele GmbH

WM Wikimedia

Additionally, an abbreviation is used to label illustrations and photos by the author:
ES Eike Schling
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