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A B S T R A C T

The Bayesian failure probability inference (BFPI) framework provides a sound basis for developing new
Bayesian active learning reliability analysis methods. However, it is still computationally challenging to make
use of the posterior variance of the failure probability. This study presents a novel method called ‘semi-
Bayesian active learning quadrature’ (SBALQ) for estimating extremely low failure probabilities, which builds
upon the BFPI framework. The key idea lies in only leveraging the posterior mean of the failure probability
to design two crucial components for active learning — the stopping criterion and learning function. In
this context, a new stopping criterion is introduced through exploring the structure of the posterior mean.
Besides, we also develop a numerical integration technique named ‘hyper-shell simulation’ to estimate the
analytically intractable integrals inherent in the stopping criterion. Furthermore, a new learning function is
derived from the stopping criterion and by maximizing it a single point can be identified in each iteration
of the active learning phase. To enable multi-point selection and facilitate parallel computing, the proposed
learning function is modified by incorporating an influence function. Through five numerical examples, it is
demonstrated that the proposed method can assess extremely small failure probabilities with desired efficiency
and accuracy.
1. Introduction

In the context of probabilistic structural reliability analysis, a pri-
mary objective is to compute the so-called failure probability, which is
defined through a multidimensional integral as follows:

𝑃𝑓 = ∫
𝐼(𝑔(𝒙))𝑓𝑿 (𝒙)d𝒙, (1)

where 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑 ] ∈  ⊆ R𝑑 is a vector of 𝑑 basic random
variables; 𝑓𝑿 (𝒙) denotes the joint probability density function (PDF)
of 𝑿; 𝑔(⋅) is the performance function (also known as the limit state
function), which takes a non-positive value when a prescribed failure
event occurs; 𝐼(⋅) is the indicator function: 𝐼 = 1 if 𝑔(𝒙) ≤ 0 and
𝐼 = 0 otherwise. An analytical solution of Eq. (1) is always desirable,
which, however, is rarely available in the majority of real-world scenar-
ios. Therefore, the use of numerical approximation becomes essential
to derive a failure probability estimate. A typical numerical solution
scheme involves repeatedly eventuating the 𝐼-function (equivalently,
the 𝑔-function) many times. However, it is worth noting that each
evaluation of the 𝑔-function may take a long running time, which
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poses a significant computational challenge in probabilistic structural
reliability analysis.

There exist many numerical methods for approximating the failure
probability, such as crude Monte Carlo simulation (MCS) [1] and its
variants (e.g., important sampling [2–4], subset simulation [5], direc-
tional simulation [6] and line sampling [7]), first- and second-order
reliability methods [8–10] and surrogate-based methods (e.g., polyno-
mial chaos expansions [11] and Kriging [12]), to name just a few.
The reader is referred to [13] for a relatively comprehensive review of
existing computational methods for probabilistic structural reliability
analysis. Among the diverse paradigms, the active learning reliability
approaches have attracted increasing attention in the last decade. In
this context, two seminal works are the efficient global reliability
analysis [14] and the active learning reliability method combining
Kriging and MCS (AK-MCS) [15]. Since their inception, a large number
of active learning reliability analysis methods have been developed. To
learn about those advancements, we direct the reader to [16–18]. It has
been shown that active learning reliability analysis methods can yield
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accurate failure probability estimates with fewer 𝑔-function calls. This
is advantageous, especially for computationally demanding problems.

In addition, another new category, collectively called Bayesian ac-
tive learning reliability analysis methods (e.g., [19–26]), has emerged
in recent years. These methods feature a distinctive fusion of Bayesian
statistical inference and active learning techniques, referred to simply
as Bayesian active learning. A first attempt is the ‘active learning
probabilistic integration’ (ALPI) method reported in [19]. This method
frames the estimation of the failure probability integral as a Bayesian
inference problem, and a learning function and a stopping criterion are
developed based on the posterior mean and an upper bound on the
posterior variance of the failure probability. The ALPI method is further
enhanced to assess small failure probabilities and use parallel comput-
ing, resulting in the ‘parallel adaptive Bayesian quadrature’ (PABQ)
method [20]. In the work presented in [21], the authors introduce a
principled Bayesian framework known as ‘Bayesian Failure Probabil-
ity Inference’ (BFPI). A noteworthy contribution is that the posterior
variance of the failure probability is derived. However, it cannot be
expressed in a closed form and is expensive to evaluate numerically,
making it challenging to use for active learning purposes. Consequently,
efforts have been made to develop Bayesian active learning reliability
analysis methods that do not rely solely on the posterior variance of the
failure probability. For instance, parallel Bayesian probabilistic integra-
tion [25] and partially Bayesian active learning cubature (PBALC) [26]
are such methods. Besides, the Bayesian active learning concept is also
investigated in the context of line sampling for structural reliability
analysis [22–24]. While considerable progress has been made, there
is still significant room for improvement in making Bayesian active
learning reliability analysis methods more effective tools for practical
applications.

The objective of this paper is to develop a new Bayesian active
learning reliability analysis method with the capability to assess ex-
tremely low failure probabilities and facilitate parallel computing. This
method relies solely on the posterior mean of the failure probability,
aligning with the idea introduced in the previous work [26]. The
resulting method is termed ‘semi-Bayesian active learning quadrature’
(SBALQ). The primary contributions of this work can be summarized
as follows. First, a novel stopping criterion is introduced based on
exploring the structure of the posterior mean of the failure probability.
Second, an effective numerical integration method called ‘hyper-shell
simulation’ (HSS) is developed for approximating the two intractable
integrals involved in the proposed stopping criterion. Third, new learn-
ing functions are designed to enable multi-point section during the
active learning phase, thus facilitating parallel distributed processing.

The rest of this paper is arranged as follows. In Section 2, we provide
a brief review of two previous studies. The proposed SBALQ method
is introduced in Section 3. Five numerical examples are investigated
in Section 4 to illustrate the proposed method. This paper closes with
some concluding remarks in Section 5.

2. Brief review of two related works

This section provides a brief overview of the BFPI framework [21]
and the three PBALC methods [26], which are closely related to this
work. Note that both the PBALC methods and the proposed SBALQ
method are set up in the standard normal space (called the  space).
For consistency, we will reformulate the BFPI framework in the 
space. To do so, let us first introduce a transformation 𝑇 (e.g., Rosen-
blatt transformation and Nataf transformation) that can project the
physical random vector 𝑿 into a standard normal one 𝑼 , i.e., 𝑼 = 𝑇 (𝑿),
where 𝑼 = [𝑈1, 𝑈2,… , 𝑈𝑑 ] ∈  ⊆ R𝑑 is a set of 𝑑 i.i.d. standard normal
variables. This allows us to define a transformed performance function
(𝑼 ) = 𝑔(𝑇 −1(𝑼 )), where  = 𝑔 ◦ 𝑇 −1 and 𝑇 −1 represents the inverse
2

transformation. i
2.1. Bayesian failure probability inference

The BPFI framework recast in the  space begins by assigning a
Gaussian process (GP) prior over the -function:

0(𝒖) ∼ (𝑚0 (𝒖), 𝑘0 (𝒖, 𝒖
′)), (2)

where 0 represents the prior distribution of  before seeing any obser-
vation data; 𝑚0 (𝒖) and 𝑘0 (𝒖, 𝒖

′) denote the prior mean and covariance
functions, respectively, which can fully define the GP prior. Without
loss of generality, the prior mean and covariance functions are assumed
to be a constant and a squared exponential kernel, respectively:

𝑚0 (𝒖) = 𝛽, (3)

𝑘0 (𝒖, 𝒖
′) = 𝑠20 exp

(

−1
2
(𝒖 − 𝒖′)𝜮−1(𝒖 − 𝒖′)⊤

)

, (4)

here 𝛽 ∈ R; 𝑠0 > 0 is the standard deviation of the GP prior;
= diag

(

𝑙21 , 𝑙
2
2 ,… , 𝑙2𝑑

)

, where diag and 𝑙𝑖 > 0 are the diagonal
perator and the length scale in the 𝑖th dimension, respectively. The
arameters collected in 𝜽 = [𝛽, 𝑠0, 𝑙1, 𝑙2,… , 𝑙𝑑 ] are refereed to as the
yper-parameters.

Now suppose that we obtain an observation dataset 𝒟𝒟𝒟 = {𝒰𝒰𝒰 ,𝒴𝒴𝒴},
where 𝒰𝒰𝒰 =

{

𝒖(𝑗)
}𝑛
𝑗=1 is an 𝑛×𝑑 matrix with 𝑗th row being 𝒖(𝑗) ∈  and

𝒴 = [𝑦(1), 𝑦(2),… , 𝑦(𝑛)]⊤ is an 𝑛 × 1 vector with 𝑗th element being 𝑦(𝑗) =
(𝒖(𝑗)). Those hyper-parameters can be learned from 𝒟𝒟𝒟 by maximizing
the log-marginal likelihood:

log 𝑝(𝒴𝒴𝒴 |𝒰𝒰𝒰 ,𝜽) = −1
2

[

(𝒴𝒴𝒴 − 𝛽)⊤𝑲−1
0
(𝒴𝒴𝒴 − 𝛽) + log |𝑲0 | + 𝑛 log 2𝜋

]

, (5)

where 𝑲0 denotes an 𝑛×𝑛 covariance matrix with its (𝑖, 𝑗)th entry being
0 (𝒖

(𝑖), 𝒖(𝑗)).
The posterior distribution of  conditional on 𝒟𝒟𝒟 follows another GP:

𝑛(𝒖) ∼ (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′)), (6)

where 𝑛 represents the posterior distribution of  after seeing 𝑛 ob-
ervations; 𝑚𝑛 (𝒖) and 𝑘𝑛 (𝒖, 𝒖

′) are the posterior mean and covariance
unctions, respectively, which can given by:

𝑛 (𝒖) = 𝑚0 (𝒖) + 𝒌0 (𝒖,𝒰𝒰𝒰)⊤𝑲−1
0

(

𝒴𝒴𝒴 −𝒎0 (𝒰𝒰𝒰)
)

, (7)

𝑘𝑛 (𝒖, 𝒖
′) = 𝑘0 (𝒖, 𝒖

′) − 𝒌0 (𝒖,𝒰𝒰𝒰)⊤𝑲−1
0
𝒌0 (𝒰𝒰𝒰 , 𝒖

′), (8)

where 𝒎0 (𝒰𝒰𝒰) = [𝑚0 (𝒖
(1)), 𝑚0 (𝒖

(2)),… , 𝑚0 (𝒖
(𝑛))]⊤; 𝒌0 (𝒖,𝒰𝒰𝒰) = [𝑘0 (𝒖,

𝒖(1)), 𝑘0 (𝒖, 𝒖
(2)),… , 𝑘0 (𝒖, 𝒖

(𝑛))]⊤; 𝒌0 (𝒰𝒰𝒰 , 𝒖
′) = [𝑘0 (𝒖

(1), 𝒖′), 𝑘0 (𝒖
(2), 𝒖′),

… , 𝑘0 (𝒖
(𝑛), 𝒖′)]⊤.

The posterior mean and variance of the failure probability 𝑓 are
expressed as:

𝑚𝑓,𝑛 = ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖, (9)

𝜎2𝑓,𝑛 =∫ ∫
𝛷2

(

[

0
0

]

;
[

𝑚𝑛 (𝒖)
𝑚𝑛

(

𝒖′
)

]

,

[

𝜎2𝑛 (𝒖) 𝑘𝑛 (𝒖, 𝒖
′)

𝑘𝑛 (𝒖
′, 𝒖) 𝜎2𝑛

(

𝒖′
)

])

× 𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′

−

[

∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
]2

,

(10)

where 𝛷 and 𝛷2 denote the cumulative distribution function (CDF) of
the standard normal variable and bivariate normal CDF, respectively;
𝜙𝑼 (⋅) is the joint PDF of 𝑼 ; 𝜎2𝑛 (⋅) represents the posterior variance
unction of , i.e., 𝜎2𝑛 (⋅) = 𝑘𝑛 (⋅, ⋅).

The BFPI framework actually provides a probabilistic prediction for
he failure probability 𝑓 , though the exact distribution is unknown.
he posterior mean 𝑚𝑓,𝑛 is a natural point estimate for 𝑓 , while the
osterior variance 𝜎2𝑓,𝑛 can measure our uncertainty of the estimate.
ote that both 𝑚𝑓,𝑛 and 𝜎2𝑓,𝑛 are analytically intractable. Compared to

𝑓,𝑛 , 𝜎
2
𝑓,𝑛

is harder to approximate because it involves a more complex
ntegral.
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Table 1
Stopping criteria and learning functions developed in PBALC1, PBALC2, and PBALC3.

Method Stopping criterion Learning function

PBALC1
∫

[

𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

−𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖) −𝑏
)]

𝜙𝑼 (𝒖)d𝒖

∫ 𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
< 𝜖1 LSC (𝒖) =

[

𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

−𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏
)]

𝜙𝑼 (𝒖)

PBALC2
∫

[

𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖) +𝑏
)

−𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)

)]

𝜙𝑼 (𝒖)d𝒖

∫ 𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
< 𝜖2 RSC (𝒖) =

[

𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

+ 𝑏
)

−𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)]

𝜙𝑼 (𝒖)

PBALC3
∫

[

𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖) +𝑏
)

−𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖) −𝑏
)]

𝜙𝑼 (𝒖)d𝒖

∫ 𝛷
(

−
𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
< 𝜖3 LSRSC (𝒖) =

[

𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

+ 𝑏
)

−𝛷
(

− 𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏
)]

𝜙𝑼 (𝒖)

Note that: 𝑏 is a critical value that determines the desired confidence level; 𝜖1, 𝜖2 and 𝜖3 are three user-defined thresholds.
a

p
m
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𝑚
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
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⋃



w
1
T

2.2. Partially Bayesian active learning cubature

The three PBALC methods (denoted as PBALC1, PBALC2, and
PBALC3) further embed the BFPI framework in an active learning
circle. The underlying idea is to use only the posterior mean 𝑚𝑓,𝑛 to
esign crucial components for Bayesian active learning (i.e., stopping
riterion and learning function), thus avoiding the need to deal with
he posterior variance 𝜎2𝑓,𝑛 . The resulting three sets of stopping criteria
nd learning functions are summarized in Table 1. Note that the key
o achieving these results is to examine the numerator of the fractional
erm inherent in the posterior mean of the failure probability 𝑚𝑓,𝑛 .

3. Semi-Bayesian active learning quadrature

In this section, we present another novel Bayesian active learning
method, called SBALQ, which is based on the BFPI framework. This
method is tailored for conducting structural reliability analysis with
extremely low failure probabilities. The core idea of the proposed
method aligns with that of the three previously developed PBALC meth-
ods. Specifically, we sorely use the posterior mean 𝑚𝑓,𝑛 to formulate
both the stopping criterion and learning function. However, this study
focuses on the denominator rather than the numerator in the fractional
term involved in the posterior mean of the failure probability. Besides,
the proposed method allows for parallel computing while the PBALC
methods do not.

3.1. Stopping criterion and its numerical solution

The stopping criterion is of critical importance within a Bayesian
active learning reliability analysis method, as it determines when to
stop. In this context, we are looking for a stopping criterion that can
judge whether the posterior mean 𝑚𝑓,𝑛 , which serves as a failure
probability estimate, reaches a desired level of accuracy. However, it
is difficult to establish such a stopping criterion based on the posterior
mean 𝑚𝑓,𝑛 without invoking the posterior variance 𝜎2𝑓,𝑛 . To overcome
this dilemma, a possible means is to explore the structure of 𝑚𝑓,𝑛 .

As seen from Eq. (9), the integrand of 𝑚𝑓,𝑛 contains the ratio of
he posterior mean function 𝑚𝑛 (𝒖) to the posterior standard deviation
unction 𝜎𝑛 (𝒖). Building upon this insight, we introduce a novel quan-
ity by imposing a penalty on 𝜎𝑛(𝒖). This quantity, denoted as 𝑄𝑛(𝑝),
s defined as follows:

𝑛(𝑝) = ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖, (11)

where 0 < 𝑝 < 1 acts as a penalty factor. Consequently, we can define
the absolute difference of 𝑚𝑓,𝑛 and 𝑄𝑛(𝑝), denoted as 𝛥𝑛(𝑝):

𝛥𝑛(𝑝) =|𝑚𝑓,𝑛 −𝑄𝑛(𝑝)|

=
|

|

|

|

|

|

∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖 − ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
|

|

|

|

|

|

=
|

|

|

|∫

[

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎 (𝒖)

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎 (𝒖)

)]

𝜙𝑼 (𝒖)d𝒖
|

|

|

|

.

(12)
3

|

|

 𝑛 𝑛 |

|

Further, we can establish an upper bound for 𝛥𝑛(𝑝), denoted as 𝛥𝑛(𝑝):

𝛥𝑛(𝑝) = ∫

|

|

|

|

|

|

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

|

|

|

|

|

|

𝜙𝑼 (𝒖)d𝒖. (13)

To proceed, we examine the limit of 𝛥𝑛(𝑝):

𝑛 = lim
𝑝→0

𝛥𝑛(𝑝)

= lim
𝑝→0∫

|

|

|

|

|

|

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

|

|

|

|

|

|

𝜙𝑼 (𝒖)d𝒖

=∫

|

|

|

|

|

|

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

− 𝐼(𝑚𝑛 (𝒖))
|

|

|

|

|

|

𝜙𝑼 (𝒖)d𝒖

=∫
𝛷

(

−
|𝑚𝑛 (𝒖)|
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖,

(14)

where 𝐼 is the indicator function: 𝐼(𝑚𝑛 (𝒖)) = 1 if 𝑚𝑛 (𝒖) ≤ 0 and
𝐼(𝑚𝑛 (𝒖)) = 0 otherwise. Note that it is easy to show that as 𝜎𝑛 (𝒖) → 0+

nd 𝑚𝑛 (𝒖) → (𝒖), there exist 𝑛 → 0+ and 𝑚𝑓,𝑛 → 𝑓 .
Based on these findings, we can formulate the stopping criterion as:

𝑛
𝑚𝑓,𝑛

< 𝜖, (15)

where 𝜖 is a user-defined threshold, which should be a very small
ositive real number. This stopping criterion implies that the proposed
ethod stops when the value of 𝑛 becomes significantly smaller rela-

ive to 𝑚𝑓,𝑛 . The choice of the stopping criterion is rather natural, since
t actually constrains the upper bound of the relative error between
𝑓,𝑛 and lim𝑝→0𝑄𝑛(𝑝). In the context of active learning reliability
ethods, similar stopping criteria have been reported in [27,28]. The
se of the proposed stopping criterion, however, is not straightforward
ecause it involves two analytically intractable integrals.

In this study, we present a novel numerical integration method,
alled ‘hyper-shell simulation’ (HSS), to numerically approximate both
𝑓,𝑛 and 𝑛. Our method draws inspiration from and builds upon

ome established methods, especially incorporating some key principles
erived from the ‘‘importance ball sampling’’ (IBS) method [20] and

‘spherical decomposition-Monte Carlo simulation’’ (SD-MCS) method [2
The HSS method begins by partitioning the standard normal space
into ℎ concentric hyper-spherical shells, following the SD-MCS

ethod [29]:
ℎ

𝑖=1
𝑖 =  , (16)

𝑖
⋂

𝑗 = ∅, 𝑖 ≠ 𝑗, (17)

here 𝑖 =
{

𝒖|𝑅𝑖−1 ≤ ‖𝒖‖ < 𝑅𝑖
}

denotes the 𝑖th hyper-shell, 𝑖 =
, 2,… , ℎ; 𝑅𝑖−1 and 𝑅𝑖 are the inner and outer radius of 𝑖, respectively.
he radii,

{

𝑅𝑗
}ℎ
𝑖=0, forms an ascending sequence, i.e., 𝑅0 < 𝑅1 < ⋯ <

𝑅ℎ. Apart from 𝑅0 = 0 and 𝑅ℎ = +∞, one has to choose 𝑅𝑖 (𝑖 =
1, 2,… , 𝑚−1) properly, which can be specified as 𝑅𝑖 =

√

𝜒−2
𝑑 (1 − 10−𝑖),

where 𝜒−2(⋅) denotes the inverse CDF of the chi-squared distribution
𝑑



Reliability Engineering and System Safety 246 (2024) 110052C. Dang and M. Beer

d



𝑚



𝜓

w
𝛿


𝑚



a
p
c

w

e
𝛾

with 𝑑 degrees of freedom. A schematic representation of the space
ecomposition in two dimensions can be found in Fig. 1(a).

Building upon the space decomposition, we can rewrite 𝑚𝑓,𝑛 and
𝑛 as follows:

𝑓,𝑛 =
ℎ
∑

𝑖=1
𝑚(𝑖)
𝑓,𝑛

=
ℎ
∑

𝑖=1
∫𝑖

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖,

(18)

𝑛 =
ℎ
∑

𝑖=1
(𝑖)
𝑛

=
ℎ
∑

𝑖=1
∫𝑖

𝛷
⎛

⎜

⎜

⎝

−
|

|

|

𝑚𝑛 (𝒖)
|

|

|

𝜎𝑛 (𝒖)

⎞

⎟

⎟

⎠

𝜙𝑼 (𝒖)d𝒖,

(19)

Then, we introduce uniform sampling PDFs (denoted as 𝑝(𝑖)(𝒖), 𝑖 =
1, 2,… , ℎ − 1) for the first ℎ − 1 sub-regions and a truncated normal
sampling PDF (denoted as 𝜓 (ℎ)(𝒖)) for the last sub-region such that:

𝑝(𝑖)(𝒖) =

{

1
𝑣𝑖
, 𝒖 ∈ 𝑖

0, otherwise
, (20)

(ℎ)(𝒖) =

{ 𝜙𝑼 (𝒖)
𝛿ℎ

, 𝒖 ∈ ℎ

0, otherwise
, (21)

here 𝑣𝑖 = 𝜋𝑑∕2

𝛤 (𝑑∕2+1)

(

𝑅𝑑𝑖 − 𝑅
𝑑
𝑖−1

)

is the volume of the 𝑖th hyper-shell;
ℎ = ∫ℎ

𝜙𝑼 (𝒖)d𝒖 is the probability content of the outermost hyper-shell
ℎ. Accordingly, 𝑚𝑓,𝑛 and 𝑛 can be further reformulated as:

𝑓,𝑛 =
ℎ
∑

𝑖=1
𝑚(𝑖)
𝑓,𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖 ∫𝑖

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)𝑝(𝑖)(𝒖)d𝒖

+𝛿ℎ ∫ℎ

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜓 (ℎ)(𝒖)d𝒖,

(22)

𝑛 =
ℎ
∑

𝑖=1
(𝑖)
𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖 ∫𝑖

𝛷
⎛

⎜

⎜

⎝

−
|

|

|

𝑚𝑛 (𝒖)
|

|

|

𝜎𝑛 (𝒖)

⎞

⎟

⎟

⎠

𝜙𝑼 (𝒖)𝑝(𝑖)(𝒖)d𝒖

+𝛿ℎ ∫ℎ

𝛷
⎛

⎜

⎜

⎝

−
|

|

|

𝑚𝑛 (𝒖)
|

|

|

𝜎𝑛 (𝒖)

⎞

⎟

⎟

⎠

𝜓 (ℎ)(𝒖)d𝒖.

(23)

The HSS estimators for 𝑚𝑓,𝑛 and 𝑛 can be given by:

𝑚̂𝑓,𝑛 =
ℎ
∑

𝑖=1
𝑚̂(𝑖)
𝑓,𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖

(

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝛷

(

−
𝑚𝑛 (𝒖

(𝑖,𝑗))

𝜎𝑛 (𝒖
(𝑖,𝑗))

)

𝜙𝑼 (𝒖(𝑖,𝑗))

)

+𝛿ℎ
1
𝑁ℎ

𝑁ℎ
∑

𝑗=1
𝛷

(

−
𝑚𝑛 (𝒖

(ℎ,𝑗))

𝜎𝑛 (𝒖
(ℎ,𝑗))

)

,

(24)

̂𝑛 =
ℎ
∑

𝑖=1
̂(𝑖)
𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖
⎛

⎜

⎜

⎝

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝛷
⎛

⎜

⎜

⎝

−
|

|

|

𝑚𝑛 (𝒖
(𝑖,𝑗))||

|

𝜎𝑛 (𝒖
(𝑖,𝑗))

⎞

⎟

⎟

⎠

𝜙𝑼 (𝒖(𝑖,𝑗))
⎞

⎟

⎟

⎠

+𝛿ℎ
1
𝑁ℎ

𝑁ℎ
∑

𝑗=1
𝛷
⎛

⎜

⎜

⎝

−
|

|

|

𝑚𝑛 (𝒖
(ℎ,𝑗))||

|

𝜎𝑛 (𝒖
(ℎ,𝑗))

⎞

⎟

⎟

⎠

,

(25)

where 𝑚̂𝑓,𝑛 and ̂ are called total means, and 𝑚̂(𝑖)
𝑓,𝑛

and ̂(𝑖)
𝑛 are called

partial means;
{

𝒖(𝑖,𝑗)
}𝑁𝑖 , 𝑖 = 1, 2,… , ℎ−1 is a set of 𝑁 random samples
4

𝑗=1 𝑖
generated according to 𝑝(𝑖)(𝒖);
{

𝒖(ℎ,𝑗)
}𝑁ℎ
𝑗=1 is a set of 𝑁ℎ random samples

drawn from 𝜓 (ℎ)(𝒖). For how to generate these random numbers, please
refer to Appendices A and B. In addition, one can examine Fig. 1(b) for
a visual depiction of the sub-region sampling results.

The variances of the estimators can be expressed as:

Var
[

𝑚̂𝑓,𝑛

]

=
ℎ
∑

𝑖=1
Var

[

𝑚̂(𝑖)
𝑓,𝑛

]

=
ℎ−1
∑

𝑖=1

1
(

𝑁𝑖 − 1
)

𝑁𝑖

𝑁𝑖
∑

𝑗=1

[

𝑣𝑖𝛷

(

−
𝑚𝑛 (𝒖

(𝑖,𝑗))

𝜎𝑛 (𝒖
(𝑖,𝑗))

)

× 𝜙𝑼 (𝒖(𝑖,𝑗)) − 𝑚̂
(𝑖)
𝑓,𝑛

]2

+ 1
(

𝑁ℎ − 1
)

𝑁ℎ

𝑁ℎ
∑

𝑗=1

[

𝛿ℎ𝛷

(

−
𝑚𝑛 (𝒖

(ℎ,𝑗))

𝜎𝑛 (𝒖
(ℎ,𝑗))

)

− 𝑚̂(ℎ)
𝑓,𝑛

]2

,

(26)

Var
[

̂𝑛
]

=
ℎ
∑

𝑖=1
Var

[

̂(𝑖)
𝑛
]

=
ℎ−1
∑

𝑖=1

1
(

𝑁𝑖 − 1
)

𝑁𝑖

𝑁𝑖
∑

𝑗=1

[

𝑣𝑖𝛷

(

−
|𝑚𝑛 (𝒖

(𝑖,𝑗))|

𝜎𝑛 (𝒖
(𝑖,𝑗))

)

𝜙𝑼 (𝒖(𝑖,𝑗)) − ̂(𝑖)
𝑛

]2

+ 1
(

𝑁ℎ − 1
)

𝑁ℎ

𝑁ℎ
∑

𝑗=1

[

𝛿ℎ𝛷

(

−
|𝑚𝑛 (𝒖

(ℎ,𝑗))|

𝜎𝑛 (𝒖
(ℎ,𝑗))

)

− ̂(ℎ)
𝑛

]2

,

(27)

where Var
[

𝑚̂(𝑖)
𝑓,𝑛

]

and Var
[

̂(𝑖)
𝑛

]

are called partial variances and

Var
[

𝑚̂𝑓,𝑛

]

and Var
[

̂𝑛
]

are called total variances.
One of the salient features of the proposed HSS method is that it

llows us to generate more samples in the hyper-shell with the largest
artial variance, thus reducing the total variance more effectively. This
an be achieved by the following procedure:
Step A1: Generate 𝛥𝑁 initial samples in each hyper-shell, based on

hich the partial and total means and variances are calculated.
Step A2: Check whether the coefficients of variation are small

nough, i.e.,
√

Var
[

𝑚̂𝑓,𝑛

]

∕𝑚̂𝑓,𝑛 < 𝛾1 and
√

Var
[

̂𝑛
]

∕̂𝑛 < 𝛾2, where

1 and 𝛾2 are two user-specified thresholds.

∙ If
√

Var
[

𝑚̂𝑓,𝑛

]

∕𝑚̂𝑓,𝑛 < 𝛾1 and
√

Var
[

̂𝑛
]

∕̂𝑛 < 𝛾2 are satisfied,
then terminate the HSS method;

∙ If
√

Var
[

𝑚̂𝑓,𝑛

]

∕𝑚̂𝑓,𝑛 ≥ 𝛾1 and
√

Var
[

̂𝑛
]

∕̂𝑛 < 𝛾2, then identify
the hyper-shell with the largest partial variance for 𝑚̂𝑓,𝑛 as 𝑖⋆ =

arg max1≤𝑖≤ℎ Var
[

𝑚̂(𝑖)
𝑓,𝑛

]

and go to Step A3;

∙ If
√

Var
[

𝑚̂𝑓,𝑛

]

∕𝑚̂𝑓,𝑛 < 𝛾1 and
√

Var
[

̂𝑛
]

∕̂𝑛 ≥ 𝛾2, then iden-

tify the hyper-shell with the largest partial variance for ̂𝑛 as 𝑖⋆ =
arg max1≤𝑖≤ℎ Var

[

̂(𝑖)
𝑛

]

and go to Step A3;

∙ If
√

Var
[

𝑚̂𝑓,𝑛

]

∕𝑚̂𝑓,𝑛 ≥ 𝛾1 and
√

Var
[

̂𝑛
]

∕̂𝑛 ≥ 𝛾2, then identify

the two hyper-shells with the largest partial variances for 𝑚̂𝑓,𝑛 and ̂𝑛
as 𝑖⋆1 = arg max1≤𝑖≤ℎ Var

[

𝑚̂(𝑖)
𝑓,𝑛

]

and 𝑖⋆2 = arg max1≤𝑖≤ℎ Var
[

̂(𝑖)
𝑛

]

, and
go to Step A4;

Step A3: Start by generating an additional set of 𝛥𝑁 samples for
the 𝑖⋆th hyper-shell. Afterward, update the partial and total means and
variances, and proceed to Step A2;

Step A4: For both the 𝑖⋆1 th and 𝑖⋆2 th hyper-shells, generate an
additional set of 𝛥𝑁 samples for each. Subsequently, update the partial
and total means and variances before proceeding to Step A2;

The numerator and denominator on the left-hand side of the stop-
ping criterion (Eq. (15)) should thus be replaced by the corresponding
final estimates 𝑚̂𝑓,𝑛 and ̂𝑛. To avoid false convergence, the stopping

criterion needs to be satisfied twice in a row.
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3.2. Learning function and multi-point selection

In addition to the stopping criterion, another pivotal component
for developing a Bayesian active learning reliability analysis method
is the so-called learning (or acquisition) function. This function guides
the active learning process by selecting the most informative data
points. These carefully chosen data points, once evaluated, are expected
to yield the most significant improvement on the accuracy of the
failure probability prediction. Assuming that the accuracy of the failure
probability prediction can be effectively governed by the proposed
stopping criterion (Eq. (15)), then the optimal learning function is
one that minimizes the number of selected data points required to
meet this criterion. Therefore, our underlying principle for designing
the learning function is to align with the attainment of the stopping
criterion. Besides, we also seek to develop a strategy that can identify
multiple informative points instead of a single point in each iteration
from the designated learning function, in order to facilitate parallel
computing.

A new learning function, denoted as 𝑛, which is derived from the
roposed stopping criterion, is given as follows:

𝑛(𝒖) = 𝛷

(

−
|𝑚𝑛 (𝒖)|
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖). (28)

Note that the equation ∫ 𝑛(𝒖)d𝒖 = 𝑛 holds. Consequently, we
can interpret the learning function 𝑛 as a measure that quantifies
the contribution of the value at point 𝒖 to the overall value of 𝑛.
Intuitively, the point with the largest 𝑛-function value is likely to be
the most promising candidate point to choose. It is worth pointing out
that some existing learning functions can be regarded as variants of our
proposed 𝑛 function, e.g., 𝑈 function [15], expected misclassification
probability contribution (EMPC) function [21] and learning functions
in [27,30].

Having established the learning function, we now turn our attention
to the selection of multiple informative points from it. The method we
are going to develop is strongly inspired by the previous work [31],
where a multi-point expected improvement criterion was proposed for
efficient global optimization. It is important to note that 𝑛 is non-
egative, and drops sharply to zero at those sampled points. This
nherent property presents a promising avenue for developing a multi-
oint selection strategy. Suppose that in a given iteration of active
earning, we wish to select an additional 𝑛𝑎 points, in addition to the

existing 𝑛 points. The core of our strategy is to select the 𝑛𝑎 points one
t a time, rather than all at once. This can be achieved by sequentially
djusting the 𝑛 function to account for the possible effects induced by
he points that have been identified. To initiate the process, we begin by
dentifying the first point, denoted as 𝒖(𝑛+1), by maximizing the original
𝑛 function:

(𝑛+1) = arg max
𝒖∈[−𝐵,𝐵]𝑑

𝑛(𝒖), (29)

where [−𝐵,𝐵]𝑑 is a 𝑑-dimensional hyperrectangle of side length 𝐵 in
the standard normal space. A convenient way to specify a reasonable
value for 𝐵 is according to 𝐵 =

√

𝜒−2
𝑑 (1 − 𝜀), where 𝜀 = 1 × 10−10 is

adopted [26]. Then, one can choose the 𝑞th point 𝒖(𝑛+𝑞) by maximizing
a pseudo 𝑛+𝑞 function (denoted as  (𝑞)

𝑛 ) such that:

𝒖(𝑛+𝑞) = arg max
𝒖∈[−𝐵,𝐵]𝑑

 (𝑞)
𝑛 (𝒖; 𝒖(𝑛+1), 𝒖(𝑛+2),… , 𝒖(𝑛+𝑞−1)). (30)

Here  (𝑞)
𝑛 is used to approximate the real 𝑛+𝑞 function without

evaluating the last 𝑞 − 1 points on the  function. The  (𝑞)
𝑛 function

takes the following form:

 (𝑞)
𝑛 (𝒖; 𝒖(𝑛+1), 𝒖(𝑛+2),… , 𝒖(𝑛+𝑞−1)) = 𝑛(𝒖) ×

𝑞−1
∏

𝐼𝐹 (𝒖, 𝒖(𝑛+𝑗)), (31)
5

𝑗=1
where 𝐼𝐹 (𝒖, 𝒖(𝑛+𝑗)) is the influence function, defined by [31]:

𝐼𝐹 (𝒖, 𝒖(𝑛+𝑗)) =1 − 𝜌(𝒖, 𝒖(𝑛+𝑗))

=1 − exp
(

−1
2
(𝒖 − 𝒖(𝑛+𝑗))𝜮−1(𝒖 − 𝒖(𝑛+𝑗))⊤

)

,
(32)

in which 𝜌(𝒖, 𝒖(𝑛+𝑗)) denotes the correlation coefficient function. By
introducing the influence function, the  (𝑞)

𝑛 function takes a zero
alue at the 𝑞 − 1 already selected points 𝒖(𝑛+1), 𝒖(𝑛+2),… , 𝒖(𝑛+𝑞−1), and
pproaches to the original 𝑛+𝑞 function when far away from those

points. This function is referred to as ‘pseudo’ because its primary
purpose is to serve as an approximation for the true 𝑛+𝑞 function. To
produce 𝑛𝑎 points in a given iteration using the proposed strategy, it is
necessary to perform 𝑛𝑎 optimizations on the corresponding learning
functions. Fortunately, this computational burden is typically much
smaller than that of a single evaluation of the -function in practical
scenarios.

3.3. Implementation procedure of the proposed method

The main steps for implementing the proposed SBALQ method are
summarized below, alongside a flowchart shown in Fig. 2.

Step B1: Generate an initial observation dataset
To begin the proposed method, it is necessary to create an initial

observation dataset by evaluating the -function. This can be achieved
by first generating a small number (denoted as 𝑛0) of uniformly dis-
tributed samples 𝒰𝒰𝒰 =

{

𝒖(𝑗)
}𝑛0
𝑗=1 within a 𝑑-ball of radius 𝑅 using a

low-discrepancy sequence. In this study, the radius is specified as 𝑅 =
√

𝜒−2
𝑑 (1 − 𝜐) with 𝜐 = 10−8, and the Hammersley sequence is employed.

ext, the corresponding output values 𝒴𝒴𝒴 = [𝑦(1), 𝑦(2),… , 𝑦(𝑛0)]⊤ of the
-function at 𝒰𝒰𝒰 can be obtained through parallel computation. Finally,
he initial observation dataset is formed by 𝒟𝒟𝒟 = {𝒰𝒰𝒰 ,𝒴𝒴𝒴}. Let 𝑛 = 𝑛0.
Step B2: Obtain the GP posterior of the -function
This step entails obtaining the posterior distribution of the -

unction (i.e., (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′))), given the data 𝒟𝒟𝒟 . Such task can

e accomplished using some well-established GP regression toolkits. In
his study, we utilize the fitrgp function from the Statistics and Machine
earning Toolbox in Matlab.
Step B3: Compute the two integrals in the stopping criterion
In this stage, one needs to compute the two estimates 𝑚̂𝑓,𝑛 and ̂𝑛

y using the proposed HSS method outlined in Section 3.1.
Step B4: Check the stopping criterion
If ̂𝑛

𝑚̂𝑓,𝑛
< 𝜖 is met twice in a row, go to Step B6; Otherwise, go to

Step B5.
Step B5: Enrich the observation dataset
In this phase, the current observation dataset needs to be enriched

with new data. First, identify the next 𝑛𝑎 point(s) 𝒰𝒰𝒰+ =
{

𝒖(𝑛+𝑗)
}𝑛𝑎
𝑗=1

by optimizing the proposed learning function(s), where the genetic
algorithm is used in this study. Then, the evaluation of the -function
at 𝒰𝒰𝒰+ can be performed in parallel, which yields the output value(s)
𝒴+. Finally, the enriched observation dateset can be formulated as
𝒟 =𝒟𝒟𝒟 ∪

{

𝒰𝒰𝒰+,𝒴𝒴𝒴+}. Let 𝑛 = 𝑛 + 𝑛𝑎 and proceed to Step B2.
Step B6: End the method
Return the current estimate 𝑚̂𝑓,𝑛 as the failure probability estimate

and end the entire procedure.
One must specify at least the parameters 𝑛0, ℎ, 𝛥𝑁 , 𝛾1, 𝛾2 and 𝜖

before running the SBALQ algorithm. Although they all have a clear
physical meaning, some experience may be required to set the proper
values. For example, the size of the initial observed dataset 𝑛0 should be
neither too small nor too large. On the one hand, too small 𝑛0 can result
in a very coarse initial GP posterior model, which is less informative for
subsequent active learning. On the other hand, too large 𝑛𝑎 is neither

necessary nor unadvisable.
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Fig. 1. Illustration of the HSS method (ℎ = 3) in two dimensions.
Fig. 2. Flowchart of the proposed SBALQ method.
. Numerical examples

Five numerical examples are analyzed in this section to demonstrate
he effectiveness of the SBALQ method in estimating extremely small
ailure probabilities. In each of these examples, the parameters not yet
pecified in the proposed method are set to be: 𝑛0 = 10, ℎ = 10, 𝛥𝑁 =
2× 105, 𝛾1 = 𝛾2 = 2%, 𝜖 = 2%(4%). Additionally, we vary the value of 𝑛𝑎
to systematically investigate its influence on the obtained results. For
comparison, several representative existing methods, i.e., PBALC1 [26],
6

PBALC2 [26], PBALC3 [26], PABQ [20] and extreme AK-MCS (eAK-
MCS) [32] are also conducted. These methods and the proposed method
are run independently 20 times to evaluate their robustness. Where it is
feasible to do so, the reference failure probabilities are generated using
the MCS method with a significantly large number of simulations.

4.1. Example 1: A series system with four branches

The first example involves a series system comprising four branches,
which has been extensively studied as a benchmark (see for
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Table 2
Reliability analysis results of Example 1 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓
MCS – 1013 3.04 × 10−9 0.57%
PBALC1 (𝜖1 = 2.5%) [26] 𝑛𝑎 = 1 35.75 44.75 3.04 × 10−9 3.82%
PBALC2 (𝜖2 = 2.5%) [26] 𝑛𝑎 = 1 41.10 50.10 3.04 × 10−9 1.39%
PBALC3 (𝜖3 = 5.0%) [26] 𝑛𝑎 = 1 40.50 49.50 3.03 × 10−9 1.99%
PABQ 𝑛𝑎 = 4 18.00 78.00 2.95 × 10−9 1.06%
eAK-MCS 𝑛𝑎 = 4 – – – –

Proposed SBALQ (𝜖 = 2%)

𝑛𝑎 = 1 32.15 41.15 3.03 × 10−9 1.31%
𝑛𝑎 = 2 19.35 46.70 3.03 × 10−9 0.58%
𝑛𝑎 = 3 15.55 53.65 3.01 × 10−9 0.75%
𝑛𝑎 = 4 12.75 57.00 3.02 × 10−9 0.80%
𝑛𝑎 = 5 11.10 60.50 3.02 × 10−9 0.68%
𝑛𝑎 = 6 9.95 63.70 3.03 × 10−9 0.48%
𝑛𝑎 = 7 9.95 72.65 3.03 × 10−9 0.44%
𝑛𝑎 = 8 10.65 87.20 3.00 × 10−9 3.98%

Note: 𝑁𝑖𝑡𝑒𝑟 = the total number of iterations; 𝑁𝑐𝑎𝑙𝑙 = the total number of performance
unction calls; 𝑃𝑓 = the failure probability estimate; 𝛿𝑃𝑓 = the COV of 𝑃𝑓 .

xample [15,29,33]). The performance function is given as follows:

(

𝑋1, 𝑋2
)

= min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎 + (𝑋1−𝑋2)2
10 − (𝑋1+𝑋2)

√

2

𝑎 + (𝑋1−𝑋2)2
10 + (𝑋+𝑋2)

√

2

(𝑋1 −𝑋2) +
𝑏
√

2

(𝑋2 −𝑋1) +
𝑏
√

2

, (33)

here 𝑋1 and 𝑋2 are two independent standard normal variables; 𝑎
nd 𝑏 are two constant parameters, which are specified as 6 and 12,
espectively.

Table 2 summarizes the results of several structural reliability anal-
sis methods. The reference failure probability, obtained thorough the
CS method with 1013 samples, is 3.04 × 10−9 with a COV of 0.57%.
hen 𝑛𝑎 = 1 (indicating that parallel computing is not permitted

uring the active learning phase), the proposed SBALQ method requires
n average number of 32.15 iterations, which stands as the lowest
mong PBACLC1, PBACLC2 and PBACLC3, while producing a fairly
ood average failure probability with a small COV. When considering
he case 𝑛𝑎 = 4, the PABQ method demands more iterations on average
ompared to the proposed method. The results of eAK-MCS are missing
ecause it is unable to converge in this example. The proposed method
𝑛𝑎 = 4) can give a fairly good failure probability mean with a small
OV at the expense of only 12.75 iterations (on average). As for the
roposed method itself, it can always produce nearly unbiased results
ith COVs less than 4% when 𝑛𝑎 varies from 1 to 8. Besides, it is
vident that the average number of -function calls increases with 𝑛𝑎,
hile the average number of iterations first decreases, stays the same,
nd then finally increases. This observation implies that selecting an
xcessive number of points at each iteration may not necessarily lead
o a reduction in the overall number of iterations.

For a more intuitive illustration, Fig. 3 shows the selected points
nd convergence curve obtained from a typical run of the proposed
ethod (𝜖 = 2% and 𝑛𝑎 = 2). As evident in Fig. 3(a), a majority of the
oints chosen during the active learning phase are clustered around the
our critical regions of the actual limit state curve. As we continue to
dentify more informative points, Fig. 3(b) illustrates how the posterior
ailure probability estimate gradually approaches the reference value
efore the stopping criterion is reached. These observations indicate the
ffectiveness of the proposed learning functions and stopping criterion.

.2. Example 2: A nonlinear oscillator

As a second example, we consider a nonlinear oscillator subject to
7

rectangular pulse load [34], as shown in Fig. 4. The performance p
Table 3
Random variables for Example 2.

Variable Description Distribution Mean COV

𝑚 Mass Lognormal 1.0 0.05
𝑘1 Stiffness Lognormal 1.0 0.10
𝑘2 Stiffness Lognormal 0.2 0.10
𝑟 Yield displacement Lognormal 0.5 0.10
𝐹1 Load amplitude Lognormal 0.4 0.20
𝑡1 Load duration Lognormal 1.0 0.20

Table 4
Reliability analysis results of Example 2 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓
MCS – – 1012 4.04 × 10−8 0.50%
PBALC1 (𝜖1 = 5%) [26] 𝑛𝑎 = 1 20.10 29.10 4.03 × 10−8 4.29%
PBALC2 (𝜖2 = 5%) [26] 𝑛𝑎 = 1 22.90 31.90 4.07 × 10−8 2.61%
PBALC3 (𝜖3 = 10%) [26] 𝑛𝑎 = 1 21.95 30.95 4.05 × 10−8 3.66%
PABQ 𝑛𝑎 = 4 9.40 43.60 3.94 × 10−8 7.48%
eAK-MCS 𝑛𝑎 = 4 11.35 51.40 4.05 × 10−8 3.92%

Proposed SBALQ (𝜖 = 4%)

𝑛𝑎 = 1 22.45 31.45 4.03 × 10−8 1.72%
𝑛𝑎 = 2 13.35 34.70 4.09 × 10−8 2.08%
𝑛𝑎 = 3 10.00 37.00 4.03 × 10−8 1.95%
𝑛𝑎 = 4 8.50 40.00 4.05 × 10−8 1.40%
𝑛𝑎 = 5 7.95 44.75 4.04 × 10−8 1.12%
𝑛𝑎 = 6 7.20 47.20 4.02 × 10−8 1.95%
𝑛𝑎 = 7 6.45 48.15 4.06 × 10−8 1.74%
𝑛𝑎 = 8 6.20 51.60 4.04 × 10−8 1.48%

function reads:

𝑔
(

𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1, 𝑡1
)

= 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑘1 + 𝑘2

sin

(

𝑡1
2

√

𝑘1 + 𝑘2
𝑚

)

|

|

|

|

|

|

, (34)

where 𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1 and 𝑡1 are six random variables, as listed in
Table 3.

The results of several structural reliability analysis methods are
reported in Table 4. The reference value of the failure probability is
taken as 4.04 × 10−8 (with a COV of 0.50%), which is produced by the
MCS method with 1012 samples. In the non-parallel case (i.e., when
𝑛𝑎 = 1), the proposed SBALQ method performs similarly to PBALC1,
PBALC2, and PBALC3, with a slightly smaller COV. In the parallel case
(i.e., when 𝑛𝑎 = 4), the proposed method requires fewer iterations on
average compared to the PABQ and eAK-MCS methods. However, the
proposed method exhibits a smaller COV of 1.40% compared to the
PABQ and eAK-MCS methods, which have COVs of 7.48% and 3.92%,
respectively. In all eight cases, the proposed method can give a nearly
unbiased average failure probability with a small COV. Notably, the
average number of iterations can be reduced from 22.45 to 6.20 as 𝑛𝑎
increases from 1 to 8.

4.3. Example 3: A reinforced concrete section

The third example consists of a reinforced concrete section under a
bending moment [35], as depicted in Fig. 5. The performance function
can be expressed as:

𝑔(𝑿) = 𝑋1𝑋2𝑋3 −
𝑋2

1𝑋
2
2𝑋4

𝑋5𝑋6
−𝑋7, (35)

here 𝑋1 to 𝑋7 are seven random variables, as shown in Table 5.
Table 6 lists the results of several different methods. The reference

ailure probability generated by the MCS method (with 5×1011 samples)
s 1.59×10−8 (with a COV of 0.79%). In the non-parallel case (i.e., 𝑛𝑎 =
), the proposed method performs slightly better than PBALC1, PBALC2
nd PBALC3 . When 𝑁𝑎 = 4, the PABQ and eAK-MCS methods require
ewer iterations than the proposed method. However, they exhibit
OVs of 12.90% and 7.17%, respectively, which are much larger than
hat of the proposed method (1.50%). As 𝑛𝑎 increases from 1 to 8, the

roposed method can produce fairly good results with almost no bias
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Fig. 3. Illustration of the proposed SBALQ method (𝜖 = 2% and 𝑛𝑎 = 2) for Example 1.
Fig. 4. A nonlinear oscillator subject to a rectangular pulse load.
w
a

Fig. 5. Ultimate stress state of a reinforced concrete section subject to a bending
oment.

Table 5
Basic random variables for Example 3.

Variable Description Distribution Mean COV

𝑋1 Area of reinforcement Normal 1260 mm2 0.05
𝑋2 Yield stress of reinforcement Lognormal 300 N/mm2 0.10
𝑋3 Effective depth of reinforcement Normal 770 mm 0.05
𝑋4 Stress–strain factor of concrete Lognormal 0.35 0.10
𝑋5 Compressive strength of concrete Lognormal 30 N/mm2 0.15
𝑋6 Width of section Normal 400 mm 0.05
𝑋7 Applied bending moment Lognormal 80 kN m 0.20

and a small COV, while significantly reducing the average number of
iterations.
8

a

Table 6
Reliability analysis results of Example 3 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓
MCS – 1012 1.59 × 10−8 0.79%
PBALC1 (𝜖1 = 5%) 𝑛𝑎 = 1 14.70 23.70 1.60 × 10−8 3.16%
PBALC2 (𝜖2 = 5%) 𝑛𝑎 = 1 16.45 25.45 1.57 × 10−8 2.63%
PBALC3 (𝜖3 = 10%) 𝑛𝑎 = 1 16.10 25.10 1.59 × 10−8 3.37%
PABQ 𝑛𝑎 = 4 6.75 33.00 1.58 × 10−8 12.90%
eAK-MCS 𝑛𝑎 = 4 5.40 27.60 1.60 × 10−8 7.17%

Proposed SBALQ (𝜖 = 4%)

𝑛𝑎 = 1 14.60 23.60 1.58 × 10−8 2.35%
𝑛𝑎 = 2 9.95 27.90 1.58 × 10−8 2.51%
𝑛𝑎 = 3 8.90 33.70 1.56 × 10−8 1.59%
𝑛𝑎 = 4 8.15 38.60 1.57 × 10−8 1.50%
𝑛𝑎 = 5 7.25 41.25 1.57 × 10−8 1.53%
𝑛𝑎 = 6 6.60 43.60 1.56 × 10−8 1.26%
𝑛𝑎 = 7 6.20 46.40 1.57 × 10−8 1.64%
𝑛𝑎 = 8 6.20 51.60 1.57 × 10−8 1.05%

4.4. Example 4: A spatial truss structure

The fourth example is a 120-bar spatial truss structure under vertical
loads [19,20], as depicted in Fig. 6. The finite element of the struc-
ture is built using OpenSees and it contains 49 nodes and 120 truss
members. The cross-sectional area and Young’s modulus, denoted 𝐴
and 𝐸, are assumed to be the same for all members. Thirteen vertical
loads, denoted 𝑃0 - 𝑃12, are applied to nodes 0–12, respectively. The
performance function is formulated as follows:

𝑔(𝑿) = 𝛥 − 𝑉0(𝐴,𝐸, 𝑃0-𝑃12), (36)

here 𝑉0 denotes the vertical displacement of node 0; 𝛥 is the associ-
ted threshold, which is specified as 100 mm; 𝐴, 𝐸, 𝑃0 - 𝑃12 are treated

s 15 random variables, as listed in Table 7.
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Fig. 6. A 120-bar space truss structure subject to thirteen vertical loads.
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Table 7
Random variables for Example 4.

Variable Distribution Mean COV

𝐴 Normal 2000 mm2 0.10
𝐸 Normal 200 GPa 0.10
𝑃0 Lognormal 500 kN 0.20
𝑃1∼𝑃12 Lognormal 60 kN 0.15

The reliability analysis results of several methods are summarized
n Table 8. To provide a reference solution, the important sampling (IS)
ethod available in UQLab [36] is used instead of MCS. The reference
9

p

failure probability obtained is 1.87 × 10−7 with a COV of 1.98%, at
the expense of 30,142 -function evaluations. When 𝑛𝑎 = 1, the three
PBALC methods, on average, demand slightly fewer  function calls
compared to the proposed SBALQ method, but they exhibit higher
variability. When 𝑛𝑎 = 4, although the PABQ method outperforms the
roposed SBALQ method in terms of the average number of iterations,
he former yields a rather large COV of 162.04%. The eAK-MCS method
ails to produce results due to computer memory issues. As for the
roposed SBALQ method itself, the average number of iterations can
e reduced from 37.05 to 12.55 (although the average total number of
erformance function calls increases) when 𝑛 is increased from 1 to 8.
𝑎
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Fig. 7. A jet engine turbine blade.
Table 8
Reliability analysis results of Example 4 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓
IS – 30,142 1.87 × 10−7 1.98%
PBALC1 (𝜖1 = 5%) 𝑛𝑎 = 1 36.25 45.25 1.85 × 10−7 7.39%
PBALC2 (𝜖2 = 5%) 𝑛𝑎 = 1 30.45 39.45 1.84 × 10−7 6.36%
PBALC3 (𝜖3 = 10%) 𝑛𝑎 = 1 32.75 41.75 1.84 × 10−7 7.44%
PABQ 𝑛𝑎 = 4 9.70 44.80 1.95 × 10−7 162.04%
eAK-MCS 𝑛𝑎 = 4 – – – –

Proposed SBALQ (𝜖 = 4%)

𝑛𝑎 = 1 37.05 46.05 1.82 × 10−7 3.39%
𝑛𝑎 = 2 22.70 53.40 1.80 × 10−7 6.87%
𝑛𝑎 = 3 20.20 67.60 1.82 × 10−7 6.48%
𝑛𝑎 = 4 17.20 74.80 1.85 × 10−7 5.09%
𝑛𝑎 = 5 14.95 79.75 1.82 × 10−7 7.93%
𝑛𝑎 = 6 14.30 89.80 1.81 × 10−7 6.54%
𝑛𝑎 = 7 13.15 95.05 1.83 × 10−7 6.64%
𝑛𝑎 = 8 12.55 102.40 1.82 × 10−7 6.42%

In addition, the proposed method can produce a nearly unbiased failure
probability mean with a COV less than 8% in each case.

4.5. Example 5: A jet engine turbine blade

The final example concerns a turbine blade from a jet engine
(as depicted in Fig. 7), which is available in the Partial Differential
Equation Toolbox of Matlab R2022b. The turbine blade is made of
nickel-based alloy (NIMONIC 90) with Young’s modulus 𝐸, Poisson’s
ratio 𝜈 and the coefficient of thermal expansion 𝐶𝑇𝐸. The root face
(face 3 in Fig. 7(a)) in contact with other metal is fixed. Pressure load
𝑝1 is applied to the pressure sides, and pressure loads 𝑝2 are applied
to the suction sides. The finite-element model is discretized by linear
tetrahedral elements with the maximum element size 0.01 m, which is
shown in Fig. 7(b). One typical cause of the blade failure is mechanical
stress, and hence we define the following performance function:

𝑔(𝑿) = 𝜎𝑡ℎ − 𝜎𝑚𝑎𝑥(𝐸, 𝜈, 𝐶𝐸𝑇 , 𝑝1, 𝑝2), (37)

where 𝜎𝑡ℎ = 0.8 GPa is the threshold for the maximum von Mises stress
𝜎𝑚𝑎𝑥 of the blade; 𝐸, 𝜈, 𝐶𝐸𝑇 , 𝑝1 and 𝑝2 are five random variables, as
listed in Table 9.

Table 10 reports the reliability analysis results of several meth-
ods, i.e., IS [36], PBALC1, PBALC2, PBALC3, PABQ, eAK-MCS and
the proposed SBALQ method. IS [36] was implemented to provide a
reference value for the failure probability. However, its results were
10
Table 9
Random variables for Example 5.

Variable Distribution Mean COV

𝐸 Normal 220 GPa 0.10
𝜈 Normal 0.30 0.05
𝐶𝐸𝑇 Uniform 1.25 × 10−7 1/K 0.05
𝑝1 Gumbel 500 kPa 0.15
𝑝2 Gumbel 450 kPa 0.15

Table 10
Reliability analysis results of Example 5 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓
IS – – – –
PBALC1 (𝜖1 = 5%) 𝑛𝑎 = 1 28.85 37.85 1.25 × 10−8 0.77%
PBALC2 (𝜖2 = 5%) 𝑛𝑎 = 1 41.00 50.00 1.25 × 10−8 1.45%
PBALC3 (𝜖3 = 10%) 𝑛𝑎 = 1 38.30 47.30 1.24 × 10−8 2.04%
PABQ 𝑛𝑎 = 4 3.95 21.80 1.01 × 10−8 34.05%
eAK-MCS 𝑛𝑎 = 4 – – – –

Proposed SBALQ (𝜖 = 4%)

𝑛𝑎 = 1 18.65 27.65 1.25 × 10−8 1.63%
𝑛𝑎 = 2 12.00 32.00 1.26 × 10−8 2.92%
𝑛𝑎 = 3 10.50 38.50 1.25 × 10−8 1.42%
𝑛𝑎 = 4 8.35 39.40 1.26 × 10−8 1.10%
𝑛𝑎 = 5 8.05 45.25 1.25 × 10−8 1.02%
𝑛𝑎 = 6 8.55 55.30 1.25 × 10−8 0.84%
𝑛𝑎 = 7 8.15 60.05 1.25 × 10−8 0.59%
𝑛𝑎 = 8 8.95 73.60 1.25 × 10−8 1.28%

not available because something went wrong during the analysis. As
an alternative, the reference failure probability is taken as 1.25 × 10−8
(with a COV of 0.77%), which is the mean value given by PBALC1
(𝜖1 = 5%) with 20 runs. For 𝑛𝑎 = 1, PBALC1, PBALC2 and PBALC3
methods and the proposed SBALQ method can produce quite similar
mean values for the failure probability with rather small COVs. Among
them, the proposed method requires the fewest -function calls. When
𝑛𝑎 = 4, PABQ gives a biased mean for the failure probability, while
processing a large COV. Like IS, eAK-MCS encountered an error when
running the finite element analysis, so no results can be given. On the
contrary, the proposed method (𝑛𝑎 = 4) performs well, as do other cases
(i.e., 𝑛𝑎 = 1, 2, 3, 5, 6, 7, 8). Moreover, the number of iterations required
by the proposed method decreases as 𝑛𝑎 increases from 1 to 5, but
increases as 𝑛𝑎 increases from 5 to 8.

Remark. As observed in the five numerical examples above, the av-
erage number of iterations required by the proposed method does not
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always decrease as 𝑛𝑎 increases. This means that if 𝑛𝑎 cores are used
for an expensive  function, a too large 𝑛𝑎 may not lead to a reduc-
tion in the overall computation time. According to our computational
experience, 𝑛𝑎 = 4–6 should be sufficient.

. Concluding remarks

This study presents an innovative method termed ‘semi-Bayesian
ctive learning quadrature’ (SBALQ) for structural reliability analysis,
articularly for evaluating extremely small failure probabilities. The
ain contributions lie in the development of two key components for

ctive learning (i.e., stopping criterion and learning function) based on
he well-established Bayesian failure probability inference framework,
hile avoiding the use of the posterior variance of the failure probabil-

ty, which is expensive to evaluate. First, we introduce a new stopping
riterion by exploring the structure of the posterior mean of the failure
robability only. This criterion involves two analytically intractable
ntegrals. Second, a numerical integration technique called ‘hyper-shell
imulation’ is devised to approximate the integrals. Third, we propose
new learning function based on the proposed stopping criterion, and
y maximizing it a single point can be identified at each iteration of
he active learning phase. Fourth, the proposed learning function is
urther modified by multiplying an influence function so as to enable
ulti-point selection and hence parallel distributed processing. It is

mpirically shown from five numerical examples that the proposed
BALQ method is capable of estimating very low failure probabilities
n the order of 10−9–10−7, while maintaining desired efficiency and
ccuracy. It is worth noting that the computational efficiency can be
urther improved by leveraging the parallelizability inherent in the
roposed approach.

The proposed method, in its current form, performs poorly in high
imensions due to the limitations of GP and HSS. Consequently, a
romising avenue for future research lies in the integration of effective
imension reduction techniques. Furthermore, it is still challenging to
pply the proposed method to highly nonlinear problems when using
he squared exponential kernel, as it implies a smooth assumption.
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Appendix A. Generation of uniform random samples in the 𝒉 − 𝟏
inner hyper-shells

The procedure for generating 𝑁𝑖 uniform random samples in the
ℎ − 1 inner hyper-shells is as follows:

1. Draw 𝑁𝑖 random samples that are uniformly distributed on
[

𝑅𝑑𝑖−1, 𝑅
𝑑
𝑖
]

, denoted as
{

𝑣(𝑗) ∶ 𝑗 = 1, 2,… , 𝑁𝑖
}

;
2. Generate 𝑁𝑖 random samples from 𝜙𝑼 (𝒖), denoted as

{

𝒖(𝑗) ∶ 𝑗 =
1, 2,… , 𝑁𝑖

}

;
3. Obtain the 𝑗th sample in the 𝑖th inner hyper-shell by 𝒖(𝑖,𝑗) =

𝑑√𝑣(𝑗)𝒖(𝑗)
‖𝒖(𝑗)‖ .

Appendix B. Generation of random samples in the outermost
hyper-shell

The procedure for generating 𝑁𝑖 random samples from 𝜓 (ℎ)(𝒖) in
he outermost hyper-shell is as follows:

1. Draw 𝑁𝑖 random samples that are uniformly distributed on
1 − 10−(ℎ−1), 1

]

, which are denoted as
{

𝑝𝑗 ∶ 𝑗 = 1, 2,… , 𝑁𝑖
}

;
2. Generate 𝑁𝑖 random samples from 𝜙𝑼 (𝒖), denoted as

{

𝒖(𝑗) ∶ 𝑗 =
1, 2,… , 𝑁𝑖

}

;
3. Obtain the 𝑗th sample in the outermost hyper-shell by 𝒖(𝑖,𝑗) =

√

𝜒−2𝑑 (𝑝𝑗 )𝒖(𝑗)

‖𝒖(𝑗)‖ .
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