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Abstract
We prove that the Blaschke locus has the structure of a finite dimensional smoothman-
ifold away from the Teichmüller space and study its Riemannian manifold structure
with respect to the covariance metric introduced byGuillarmou, Knieper and Lefeuvre
in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify
some families of geodesics in the Blaschke locus arising from Hitchin representations
for orbifolds and show that they have infinite length with respect to the covariance
metric.
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1 Introduction

Classical Teichmüller theory is a rich field which involves the interplay of tools from
analysis, geometry and topology.Onebeautiful theoremdatingback to the early twenti-
eth century states that the Teichmüller space is a finite dimensional smooth contractible
manifold (see for example [54], [1], [60]). Among many different proofs of this fact,
one approach, due to Fischer and Tromba ( [20]), is based on global analysis and
Riemannian geometry, by viewing the Teichmüller space as a space of isotopy classes
of hyperbolic metrics on a closed connected oriented surface S with genus G ≥ 2.
Many other interesting results can also be obtained from this Riemannian geometrical
characterization: for example, the Weil-Petersson metric on the Teichmüller space is
Kähler and has negative sectional curvature (see e.g. [57, Section 5]).
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In this note, we will explore properties of a finite dimensional subspace of the
space of isotopy classes of negatively curved metrics that contains the Teichmüller
space, using this Riemannian geometrical approach. Given a complex structure J
on S and a holomorphic cubic differential with respect to J , one can lift them to a
universal cover S̃ of S and produce a parametrization f : S̃ → R

3 of a hypersurface
of special type arising from affine differential geometry, called a hyperbolic affine
sphere (see [41], and also Sect. 5.1). A hyperbolic affine sphere in R

3 is a surface of
constant negative affine mean curvature (see Sect. 5.1). It comes naturally equipped
with an affine invariant Riemannian metric which descends to a uniquely determined
negatively curvedmetric on S in the conformal class of J , called aBlaschke metric.We
denote the space of Blaschke metrics on S byMB and the space of smooth hyperbolic
metrics on S by M−1. A hyperbolic metric σ ∈ M−1 on S is a special case of a
Blaschke metric: in this case, the hyperbolic affine sphere determined by the complex
structure corresponding to σ and the zero cubic differential can be taken to be the
hyperboloid model of hyperbolic space; the descended Blaschke metric is exactly the
hyperbolic metric σ. Therefore, upon taking quotients by D0, the space of smooth
diffeomorphisms isotopic to the identity, the Teichmüller space T (S) =M−1/D0 is
contained in the space MB/D0, which we call the Blaschke locus.

Our work is in two directions: the first goal is to understand the topology and
regularity of the Blaschke locus, which is finite dimensional. The second is to study
some of its Riemannian geometric properties with respect to a Riemannian metric
constructed in [24] on the space of isotopy classes of negatively curved metrics which
restricts to the Weil-Petersson metric on T (S).

1.1 Structure of the Blaschke Locus and Relation to Higher Teichmüller Theory.

Our first result is concerned with the topology and smooth structure ofMB/D0. The
proof follows the spirit of Tromba’s proof of the fact that the Teichmüller space is a
smooth manifold ( [57, Corrolary 2.4.6]).

Theorem A (Theorem 5.20, Theorem 5.17) The Blaschke locus MB/D0 is a con-
tractible space. Moreover, it has the structure of a smooth manifold of dimension
16G − 17 away from the Teichmüller space T (S).

To motivate our interest in the Blaschke locus and the idea behind the proof of
TheoremA,we now further explain the relation between the Blaschke locus and Teich-
müller space, from a different point of view. For this, we start with a brief exposition
of closely relevant objects—the Hitchin components. Classically, besides viewing the
Teichmüller space T (S) as a space of (equivalence classes of) Riemannian metrics of
constant negative curvature (or hyperbolic structures) on S, one can also view it as a
space of (equivalence classes of) Riemann surface structures (complex structures) on
S or as a connected component of the space of (conjugacy classes of) representations
of π1(S) into PGL(2,R). The Hitchin component Hn(S), as an important example
of higher rank Teichmüller spaces (see [59] for a survey), generalizes T (S) from the
representation theory viewpoint and is a connected component of the space of (conju-
gacy classes of) representations from π1(S) into PGL(n,R) for n ≥ 2. When n = 2,

123



The Covariance Metric in the Blaschke Locus Page 3 of 54 145

the Teichmüller space T (S) coincides with H2(S) and embeds into all other Hitchin
components Hn(S). When n = 3, a complex analytical counterpart of H3(S) was
discovered independently by Loftin [39] and Labourie [32] in analogy to the view-
point of T (S) as spaces of Riemann surfaces. Let Q3(S) be the vector bundle over the
Teichmüller space T (S) whose fiber over a complex structure (or, more accurately, an
equivalence class of complex structures) is given by the vector space of holomorphic
cubic differentials on S, which by the Riemann-Roch theorem is finite dimensional (cf.
(2.2)). They showed that there exists a mapping class group equivariant homeomor-
phism between the Hitchin componentH3(S) and the holomorphic cubic differentials
vector bundle Q3(S). One can then ask whether there is a natural Riemannian geomet-
rical generalization of the Teichmüller space T (S). As hinted previously, the Blaschke
locus MB/D0 as a space of negatively curved Riemannian metrics, even though not
in bijection toH3(S), plays this role. Modulo an S1 action on the vector bundle Q3(S)

(which identifies a holomorphic cubic differential q with e2π iθq for any θ ∈ [0, 1)),
using the holomorphic data Q3(S) as a bridge, one obtains the following mapping
class group equivariant homeomorphisms

H3(S)/S1
homeo� Q3(S)/S1

homeo� MB/D0, (1.1)

where the S1 action on H3(S) is simply obtained by pullback of the S1 action on
Q3(S).

The above three objects are generalizations of T (S) from different viewpoints
(representation theoretic, complex analytic andRiemannian geometrical respectively).
Amore detailed characterization of themand their relationswill be described in Sect. 5.
In particular, the first homeomorphism is proved and implied from [39] and [32]. The
second bijection is first shown in [46]. We explain the second homeomorphism in
Proposition 5.19. These identifications will be crucial for the proof of Theorem A.

1.2 The Covariance Metric in the Blaschke Locus

As mentioned before, we also study the Riemannian geometry of the Blaschke locus
MB/D0 with respect to the covariance metric G(·, ·) introduced by Guillarmou,
Knieper and Lefeuvre ( [24]).1 This metric extends the Weil-Petersson metric from
the Teichmüller space (viewed as the space of isotopy classes of hyperbolic metrics)
to a Riemannian metric on the space of isotopy classes of metrics of variable nega-
tive curvature, using techniques originating from the study of the X-ray transform on
closedAnosovmanifolds ( [23], [25]). In our case, startingwith the simple observation
that the extended mapping class group is a subgroup of the group of isometries for
the covariance metric (Proposition 4.12), the mapping class group equivariant homeo-
morphisms fromH3(S)/S1 toMB/D0 in (1.1) allow us to identify certain families of
covariance metric geodesics in MB/D0 arising from special orbifold Hitchin repre-
sentations (Sect. 2.3). Briefly, let a two-dimensional orbifold Y be given as a quotient
of a Riemann surface X J (with underlying smooth surface structure S) by a finite
diffeomorphism group �. One can then associate to Y a special one-parameter family

1 This Riemannian metric is referred to as the pressure metric in [24].
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of representations inH3(S), denoted byH3(Y ), as a fixed point set of the group action
of� onH3(S), with� understood as a subgroup of the extended mapping class group
(see Sect. 3.2). We show

Theorem B (Lemma 6.5, Theorem 6.7) Let Y be a non-orientable orbifold of nega-
tive Euler characteristic with orientation double cover Y+ given by a sphere with 3
cone points of respective orders m1 ≥ 3, m2 ≥ 3 and m3 ≥ 4. Then H3(Y )/Z2 is
homeomorphic to a half line and embeds as a geodesic (unparametrized) inMB/D0
with respect to the covariance metric G(·, ·), where theZ2 action onH3(Y ) is induced
from the S1 action on H3(S).

These geodesics, which are homeomorphic to half lines, have starting points in Teich-
müller space T (S) and eventually leave all compact sets of MB/D0 (see Theorem
6.11). We further proceed in Sect. 6.2 to estimate their covariance metric lengths. We
show in Corollary 6.5,

Theorem C (Corollary 6.5) The covariant metric geodesics inMB/D0 corresponding
toH3(Y )/Z2 given in Theorem B have infinite length.

In fact, our proof works more generally for any curve in MB/D0 parametrized by a
ray starting from T (S) in a fixed fiber of the bundle Q3(S)/S1, using identification
(1.1),

Corollary D (Theorem6.12)Letσ be ahyperbolicmetric on S andq be anonzero cubic
differential which is holomorphic with respect to the complex structure determined by
σ . Then the curve {[gt ]}t≥0 ⊂MB/D0, where gt ⊂MB satisfies Wang’s equation
(5.4) with cubic differential

√
tq, has infinite length with respect to the covariance

metric.

It remains as a question whether there are candidates for finite covariance metric
length paths leaving all compact sets of MB/D0 but not in the Teichmüller space
T (S). In general, incomplete paths in moduli spaces indicate meaningful geomet-
ric phenomena. For instance, in the Teichmüller space T (S), Wolpert exhibits some
incomplete paths for the Weil-Petersson metric in [61]. These are paths realizing
“pinched Riemann surfaces”.

In the Appendix 1 we end with some further estimates for the covariance metric in
MB/D0. An explicit formula (Proposition A.5) for the covariance metric G(·, ·) at a
point in T (S) with tangent vectors corresponding to a direction tangential to the fiber
of Q3(S)/S1 is given as a direct application of [26, Lemma A.1, Remark A.2]. We
hope that this formula can be further simplified in the future.

1.3 Outline of the Proofs

We briefly discuss our proofs of the main theorems in the sequel. Both for regularity
results and the study of the covariance metric in MB/D0, an important tool used in
our investigation is a single partial differential equation, called Wang’s equation (5.4).
It underlies the second identification (1.1) and has natural connection to Blaschke
metrics and the theory of affine differential geometry.

For regularity results, the ideas are as follows:
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• The proof of the smoothness of the Blaschke locusMB/D0 relies on constructing
smooth charts for it away from T (S), and is modeled on the construction of charts
for theTeichmüller space outlined in [57, Section 2.4]. There, the key observation is
that the finite dimensional space of transverse traceless (= divergence free and trace
free) symmetric two tensors with respect to a fixed hyperbolicmetric can be locally
identified with a slice of smooth hyperbolic metrics inside the Hilbert manifold
of hyperbolic metrics of fixed Sobolev regularity. This slice locally parametrizes
T (S), thus providing a natural local coordinate for it. For us, the coordinates for
the Blaschke locus are constructed via local identification with the vector bundle
of holomorphic cubic differentials over those slices for T (S).
• The link between local slices for the bundle of holomorphic cubic differentials and
local slices for the space of Blaschke metrics, viewed as a subset of the Banach
manifold of negatively curved metrics ofCk,α regularity, is given byWang’s equa-
tion (5.4). It allows us to produce smooth diffeomorphisms between those slices,
by means of the implicit function theorem and the inverse function theorem for
Banach spaces.

To study the covariance metric in MB/D0, we use a mixture of global geometry
concerning mapping class groups actions and local estimates using tools from partial
differential equations:

• The equivariance of the homeomorphisms in (1.1) with respect to the mapping
class group action allows one to preserve the fixed point sets of actions of certain
subgroups of it on the different spaces. By showing that the covariance metric is
extended mapping class group invariant, some one-dimensional fixed points sets
arising from geometric symmetry in the Hitchin components pull back by (1.1) to
geodesics in the Blaschke locus. Then, analytical tools can be applied.
• To estimate the lengths of the geodesics above, Wang’s equation is again a key,
togetherwith some standard techniques from the theory of partial differential equa-
tions. These include the existence of supersolutions and subsolutions for Wang’s
equation, previously obtained by Loftin (Proposition 6.9), and some maximum
principle arguments.

1.4 Structure of the Article

The article is organized as follows. In Sect. 2, we recall some fundamental results from
Teichmüller theory and Weil-Petersson geometry. We then introduce Higgs bundles,
Hitchin components andHitchinmaps.We also include a short discussion on orbifolds
and orbifold representations. Section3 is devoted to explaining the actions of the
extended mapping class group on various mathematical objects from different areas.
Thiswill play an important role in the proofs of Sect. 6. Section4 contains an exposition
on the covariance metric introduced in [24] in the space of negatively curved metrics.
We also show in this section that the covariance metric is extended mapping class
group invariant. In Sect. 5, we introduce Blaschke metrics, the Blaschke locus, and
explain the identification (1.1). We also discuss some important results concerning
the regularity and topology of Blaschke locus. In Sect. 6, we prove some results about
geodesics in the Blaschke locus with respect to the covariance metric and estimate
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their lengths. Finally, we end with some further estimates for the covariance metric in
the Blaschke locus near the Teichmüller space T (S) in Appendix 1.

2 Preliminaries

This section develops the background material we will need in later sections. A reader
familiar with this material may skip it. We begin in Sect. 2.1 with an exposition on
the classical Teichmüller space and the Weil-Petersson metric. Then in Sect. 2.2, we
introduce some basics on Higgs bundles and Hitchin components. We conclude with
a discussion of orbifolds and orbifold representations in Sect. 2.3.

2.1 Teichmüller Space andWeil-PeterssonMetric

In this subsection, we will discuss Teichmüller space from the viewpoint of Rieman-
nian geometry, initiated by Tromba and Fischer [20].

Let S be a closed orientable smooth surface of genus G ≥ 2. We denote by M
the space of smooth Riemannian metrics on S, by M− the subspace of negatively
curved smooth Riemannian metrics, and byM−1 the subspace of hyperbolic metrics
on S. We also denote by D be the diffeomorphism group of S, by D+ the group of
orientation preserving diffeomorphism on S (when S is given an orientation), and by
D0 the normal subgroup of D consisting of smooth diffeomorphisms isotopic to the
identity.

Definition 2.1 The Teichmüller space, denoted as T (S), is the quotient space
M−1/D0, where the right action of D0 on M−1 is given by

M−1 ×D0 →M−1,
(σ, ψ) �→ ψ∗σ.

We denote the equivalence class of σ ∈M−1 by [σ ] ∈M−1/D0.

Equivalently, the Teichmüller space T (S) is the space of (oriented) complex struc-
tures on S up to D0-action. According to another viewpoint, the Teichmüller space
T (S) is a connected component of the representation space Hom(π1(S),PGL(2,R))/

PGL(2,R). This will be discussed in Sect. 2.2.

Remark 2.2 We remark that with Definition 2.1 above, the Teichmüller space does not
“see” the orientation on S, in the sense that ifψ is an orientation reversing isometry for
a metric σ , then [ψ∗σ ] = [σ ] ∈ T (S). When T (S) is viewed as the space of oriented
hyperbolic structures moduloD0, which is a point of view often taken in the literature
(see e.g. [42]), if ψ : S → S is an orientation reversing isometry for a hyperbolic
metric σ andG is the positively oriented hyperbolic structure that σ determines, then
the hyperbolic structure obtained by pulling back the charts ofG by ψ , mod D0, is an
element of the Teichmüller space of S, where S has the opposite orientation from S.

Given a Riemann surface X J with complex structure J , we denote by KJ the
canonical line bundle associated to X J , which is the (1, 0)-part of the complexified
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cotangent bundle T ∗XC

J = C ⊗R T ∗X J . Further, we denote by H0(X J , Kd
J ) the

space of J -holomorphic differentials of order d, and by H0(X[J ], Kd
[J ]) the space of

their D0-equivalence classes. Explicitly, if ψ ∈ D0, the J -holomorphic differential
q ∈ H0(X J , Kd

J ) and the ψ∗ J -holomorphic differential ψ∗q ∈ H0(Xψ∗ J , Kd
ψ∗ J )

represent the same point in H0(X[J ], Kd
[J ]), denoted as [q]. The action of the groups

D and D0 on complex structures and holomorphic differentials will be explained in
detail in Sect. 3. It iswell known that the cotangent space of theTeichmüller spaceT (S)

at [σ ] can be identified with the space of quadratic differentials H0(X[J ], K 2[J ]) on
the Riemann surfaces X[J ] = (S, [J ]) where [J ] is associated to the (D0-equivalence
class of) hyperbolic metrics [σ ]. An extensively studied Riemannian metric on the
Teichmüller space T (S), defined using holomorphic quadratic differentials, is the
following Weil-Petersson metric.

Definition 2.3 The Weil-Petersson metric is a cometric on T (S) defined by

〈[q1], [q2]
〉
WP

([σ ]) = Re
∫

X J

q1q2
σ 2 dvσ ,

where [σ ] ∈ T (S) and [q1], [q2] are holomorphic quadratic differentials with respect
to [J ] and σ, J , q1, q2 are representatives picked from their equivalence classes so
that q1, q2 are holomorphic with respect to J .

It is well known that theWeil-Peterssonmetric isKähler ( [2]) and negatively curved
( [3], [57], [62]). The isometry group of theWeil-Peterssonmetric is the mapping class
group [42]. Also, although the Weil-Petersson metric is not complete ( [9], [61]), it
exhibits many nice properties of complete negatively curved metrics (see [61], [63]).
In Sect. 4.6 we will discuss a different interpretation of the Weil-Petersson metric
(Theorem 4.16).

2.2 Hitchin Components and Hitchin Map

In this subsection, using Higgs bundles techniques, we introduce the Hitchin compo-
nent, which is a connected component of the representation space

Rep(π1S,PGL(n,R)) := Hom(π1S,PGL(n,R))/PGL(n,R),

for n ≥ 2, as a generalization of the classical Teichmüller space T (S).

2.2.1 Higgs Bundles, Hitchin Components and Hitchin Sections

In this subsection, n ≥ 2 is an integer. The discussion here holds for much wider
classes of groups, but for our purposes we will restrict to the group G = PGL(n,R).

Let sl(n,R) = so(n,R) ⊕ sym0(n,R) be the Cartan decomposition of sl(n,R),
where sym0(n,R) is the set of n × n symmetric matrices of trace zero. Denote
sym0(n,C) = sym0(n,R) ⊗ C. The following definition is a special case of [4,
Definition 3.14].
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Definition 2.4 A PGL(n,R)-Higgs bundle on a Riemann surface X J is a pair (E, ϕ),
where

• E is a holomorphic Lie algebra bundle with typical fiber sl(n,C) and structure
group PO(n,C),
• ϕ ∈ H0(X J ; KJ ⊗ adsym0(n,C)(E)) is a holomorphic section, called the Higgs
field.

Here by adsym0(n,C)(E) we mean the bundle of symmetric adjoint endomorphisms of
E , i.e. endomorphisms of E locally of the form adξ : sl(n,C) → sl(n,C) for some
ξ ∈ sym0(n,C).

The space of gauge equivalence classes of PGL(n,R)-Higgs bundles with some
“good” conditions forms the moduli space of PGL(n,R)-Higgs bundles, denoted
by MHiggs(PGL(n,R)). (The “good” conditions are polystablity conditions for the
Higgs bundles. One can find an introduction in [5], for example.)

Suppose that the holomorphic vector bundle E has holomorphic structure ∂̄E and is
equipped with a Hermitian metric H . Recall that the Chern connection AH of E is the
unique connection that is compatible with H and satisfies A0,1

H = ∂̄E . The following
is important.

Theorem 2.5 (Hitchin [29], Simpson [53]) Let (E, ϕ) be a polystable PGL(n,R)-
Higgs bundle and let H be a Hermitian metric on E . A connection D = AH+ϕ+ϕ∗H
on (E, ϕ, H) is flat if and only if the following Hitchin equation is satisfied,

FAH + [ϕ, ϕ∗H ] = 0, (2.1)

where FAH is the curvature of the connection AH . Moreover, the holomorphic vector
bundle E admits a Hermitian metric H satisfying the Hitchin equation if and only if
(E, ϕ) is polystable.

We will come back to a special case of the Hitchin equation (Eq. (5.4)), which is of
central importance for this note, in Sect. 5.1.

Hitchin [30] further introduces the Hitchin component using Higgs bundles and the
Hitchin section.Webrieflydiscuss theHitchin components and theHitchin sectionhere
and refer the reader to section 2 of [5] for a more comprehensive exposition. Let gC be
sl(n,C) and let g be sl(n,R)which is a split real formfixed by an antilinear Lie algebra
involution τ of gC. Given a principal 3-dimensional subalgebra s = span{x, e, ẽ} of
sl(n,C) consisting of a semisimple element x and regular nilpotent elements e and ẽ
with commutation relations

[x, e] = e, [x, ẽ] = −ẽ, [e, ẽ] = x,

the Lie algebra sl(n,C) decomposes into a direct sum of irreducible subspaces under
the adjoint representation of s:

sl(n,C) =
n−1⊕

i=1
Vi .
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We take e1, · · · , en−1 as the highest weight elements of V1, · · · , Vn−1, where e1 = e.
Another decomposition is

sl(n,C) =
n−1⊕

d=−n+1
g
(d)
C

,

where g(d)
C

is the subspace of sl(n,C) onwhich adx acts with eigenvalue d. Associated
to this decomposition is a natural Lie algebra bundle

Ecan :=
n−1⊕

d=−n+1
g
(d)
C
⊗ Kd

J .

This is a common choice of the holomorphic bundle E in Definition 2.4. With this
defined, we can introduce the Hitchin section in the setting of MHiggs(PGL(n,R)).

Definition 2.6 A Hitchin section sJ is a map from
n⊕

i=2
H0(X J , Ki

J ) to MHiggs

(PGL(n,R)) defined as follows: for q = (q2, q3, · · · , qn) ∈
n⊕

i=2
H0(X J , Ki

J ), the

image sJ (q) is a Higgs bundle Ecan with its Higgs field ϕ(q) ∈ H0(X , KJ ⊗
adsym0(n,C)(Ecan)) given by

ϕ(q) = ẽ + q2e1 + q3e2 + · · · qnen−1.

Hitchin in [30] shows that any Higgs bundle in the image of the Hitchin section
sJ has the associated flat connection D (Theorem 2.5) with holonomy in PGL(n,R)

(See [4, Section 3]). This leads to the following important definition of the Hitchin
component:

Definition 2.7 ([30]) When n ≥ 2, the Higgs bundles in the image of the Hitchin
section sJ are stable and have holonomy in PGL(n,R). Moreover, the corre-
sponding representations form a connected component of the representation space
Rep(π1S,PGL(n,R)). This connected component is homeomorphic to a Euclidean
space of dimension (2G − 2)(n2 − 1) and is called the Hitchin component, denoted
as Hn(S).

An element in Hn(S) is a conjugacy class of representations, called a (conju-
gacy class of a) Hitchin representation. Given a representation ρ, we denote its
conjugacy class by [ρ]. When n = 2, the Hitchin section exactly parametrizes the
Teichmüller space, i.e., one has H2(S) = T (S). When n > 2, one can choose a
principal 3-dimensional subalgebra s ∼= sl(2,C) of the form s = span{x, e, ẽ} which
is τ -invariant, and it induces an inclusion sl(2,R) ↪→ sl(n,R). This induces a group
homomorphism κC from PGL(2,C) � Int(sl(2,C)) to PGL(n,C) � Int(sl(n,C))

(see [4, Section 2.2]). By restricting the groups respectively to PGL(2,R) and
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PGL(n,R), one obtains the principal representation κ : PGL(2,R) → PGL(n,R)

and an embedding of the Teichmüller space T (S) in the Hitchin component Hn(S).
In other words, the principal representation κ sends [ρ0] ∈ T (S) to [ρ] = [κ ◦ ρ0] ∈
Hn(S). We often call [ρ] = [κ ◦ ρ0] (a conjugacy class of) Fuchsian representations
ofHn(S) and the space of conjugacy classes of Fuchsian representations is called the
Fuchsian locus of Hn(S).

Remark 2.8 We note that in the literature, the Hitchin component is usually defined as
a component of Hom(π1S,PSL(n,R))/PSL(n,R) ( [30], [32]). In this note, we define
Hn(S) up to PGL(n,R) conjugacy (to work with orbifolds and orientation reversing
maps). The differences between these definitions are further discussed in Remark 2.15.

2.2.2 Hitchin Map

The holonomymaps of flat connections D associated toHiggs bundles in the images of

Hitchin section sJ induce a homeomorphism HJ :
n⊕

i=2
H0(X J , K

i
J )→ Hn(S). This

map describes a parametrization of the Hitchin component Hn(S) by holomorphic
differentials and is often called the Hitchin parametrization. However, one drawback
of the Hitchin parametrization is that it depends on a specific choice of complex
structure J . In particular, it breaks the invariance with respect to the mapping class
group action, which will be extensively discussed in Sect. 3. An attempt towards a
mapping class equivariant construction is the following, due to Labourie [33]. Let
Qn(S) denote the vector bundle over the Teichmüller space T (S) whose fiber over
X[J ] is

Qn(S)
∣∣[J ] = H0(X[J ], K 3[J ])⊕ · · · ⊕ H0(X[J ], Kn

[J ]). (2.2)

Then consider the Hitchin map H defined as

H : Qn(S) −→ Hn(S)

([J , q3, · · · , qn]) �→ HJ (0, q3, · · · , qn).

Here J is a representative of the equivalence class [J ] and qi are i-th order differentials
holomorphic with respect to J that are representatives from [qi ]. The image of HJ is
obtained by taking holonomy of the flat connection D associated to the Higgs bundle
sJ (0, q3, · · · qn) (Recall Definition 2.6).

Remark 2.9 The vector space H0(X J , Ki
J ) can be identified with the space

H0(X[J ], Ki
[J ]). Via the map HJ , the holonomy defined using the flat connection

associated to ([J , q3, · · · , qn]) induces representations well defined up to conjuga-
tion.

The Hitchin map is always a surjective mapping class group equivariant map. A
natural question to ask is whether the Hitchin map is a homeomorphism. A recent
result from Sagman and Smille ( [50]) shows that it fails to be injective and therefore
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not a homeomorphism when n ≥ 4. However, in this note we will only focus on the
case n = 3, for which the homeomorphism result is well known.

Theorem 2.10 ( [39, Theorem 2], [32, Theorem 1.0.2]) The Hitchin map

H : Q3(S)→ H3(S)

is amapping class group equivariant homeomorphism, where themapping class group
actions on Q3(S) and on H3(S) (as outer automorphism group action) are the left
actions which will be explained in Sect.3.

Remark 2.11 It will be useful for later to remark that the bundle Qn(S) over T (S),
with the latter viewed as M−1/D0 and with the fiber over each [σ ] consisting of
holomorphic differentials with respect to the positively oriented complex structure
determined by [σ ], has the natural C∞ topology (which is the quotient topology
descended from theC∞ topology of objectswithout taking quotients by theD0 action).
For holomorphic differentials, the C∞ topology is equivalent to the compact open
topology due to Weierstrass’ Theorem. Therefore a sequence of pairs of hyperbolic
metrics and holomorphic differentials {(σk, qk)}k≥0 converges to a pair of hyperbolic
metric and holomorphic differential (σ, q) if the hyperbolic metrics σk converge to σ

in C∞ topology and the lifts of holomorphic differentials qk to the universal covers D
converge uniformly on compact subsets of D to the lift of q.

2.3 Orbifolds and Orbifolds Representations

2.3.1 Orbifolds

An orbifold is a space that is locally modeled onRn modulo finite group actions. In the
special case that all of these finite groups are trivial, we obtain a manifold. Otherwise,
orbifolds have singularities. For a general introduction on orbifolds, we refer the reader
to [56, Chapter 13]. Much of the presentation in this subsection follows [4, Section
2]. We restrict our discussion to n = 2. Let Y be a closed connected smooth orbifold
of dimension 2. There are three types of singularities of Y :

(1) p is a cone point of order m: there is a neighborhood of p that is isomorphic to
R
2/Zm where Zm acts on R

2 by rotation.
(2) p is a mirror point: there is a neighborhood of R2/Z2 where Z2 acts by reflection

in the y-axis.
(3) p is a corner reflector of order n: there is a neighborhood of p that is isomorphic

to R2/Dn where Dn is the dihedral group of order 2n, with presentation

〈a, b : a2 = b2 = (ab)n = 1〉.

For a 2-dimensional orbifold Y , we will denote by k the number of cone points (of
respective orders m1, · · · ,mk) and by l the number of corner reflectors (of respective
orders n1, · · · , nl ). We will also denote by Ỹ the orbifold universal cover of Y . The
orbifold fundamental group is denoted by π1(Y ), which is defined to be the group of
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deck transformations of the universal cover Ỹ . We say Y orientable if its underlying
topological space |Y | is orientable and if Y has only cone points as singularities. The
Euler characteristic of an orbifold Y is defined as

χ(Y ) = χ(|Y |)−
k∑

i=1
(1− 1

mi
)− 1

2

l∑

j=1
(1− 1

n j
).

We will assume in this note that Y has negative Euler characteristic: χ(Y ) < 0. We
say that a 2-dimensional orbifold is a good orbifold if it has some covering orbifold
which is a surface. Every orbifold of negative Euler characteristic is a good orbifold. It
can be seen as a quotient of a closed orientable surface and has a presentation defined
as follows:

Definition 2.12 A presentation of a closed connected orbifold Y is a triple (S, �, ϕ),
where S is a smooth closed connected orientable surface, � is a finite subgroup of D
and ϕ is an orbifold isomorphism ϕ : Y → S/�. We then write Y � [S/�], with ϕ

ignored.

Remark 2.13 If X J = (S, J ) is a Riemann surface and � acts on X J by holomorphic
or anti-holomorphic maps, then Y = YJ inherits the “complex structure” from X J and
we denote it as Y � [X J /�]. For nonorientable orbifolds, these are called orbifold
dianalytic structures. Precisely, an orbifold dianalytic structure on Y is an orbifold
complex structure on its orientable double cover Y+ with Z/2Z action given by an
anti-holomorphic involution, see [4, Section 5.1].

2.3.2 Hitchin Representations for Orbifolds

Thurston studied the space of hyperbolic structures on a closed 2-orbifold Y of neg-
ative Euler characteristic [56, Chapter 13]. This is called the Teichmüller space of Y ,
denoted as T (Y ). Similarly to the case of closed surfaces, by taking the holonomy
representations of hyperbolic structures on Y , this space of hyperbolic structures on
Y is identified with a connected component of the representation space

Rep(π1Y ,PGL(2,R)) := Hom(π1Y ,PGL(2,R))/PGL(2,R).

Similarly to the closed surface case, one can define Fuchsian representations and the
Fuchsian locus for orbifolds using the principal representation κ : PGL(2,R) →
PGL(n,R). A (conjugacy class of) representations [ρ] : π1Y → PGL(n,R) is called
a (conjugacy class of) Fuchsian representations if there exists [ρ0] ∈ T (Y ) such that
[ρ] = [κ ◦ ρ0]. The space of (conjugacy class of) Fuchsian representations is called
the Fuchsian locus of Rep(π1Y ,PGL(n,R)).

TheHitchin component of the orbifold Y is defined using Fuchsian representations.

Definition 2.14 The Hitchin component of Y , denoted as Hit(π1Y ,PGL(n,R)), is
the connected component of Rep(π1Y ,PGL(n,R)) := Hom(π1Y ,PGL(n,R))/

PGL(n,R) that contains the Fuchsian locus. An element in Hit(π1Y ,PGL(n,R))

is called a Hitchin representation.
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Remark 2.15 ( [4, Remark 2.5]) If Y is orientable (for instance if Y = S is a closed
orientable surface), then any Fuchsian representation of π1(Y ) is in fact contained in
Hom(π1Y ,PSL(n,R)). It may happen that there are two Hitchin components (for
example, when n is even) if we consider such representations up to PSL(n,R)-
conjugacy. These representations in two connected components are related by an
inner automorphism of PGL(n,R). Therefore PGL(n,R)-conjugacy identifies these
components. On the other hand, when Y is nonorientable, the images of Fuchsian
representations of π1(Y ) are in PGL(n,R) (and may not be able to be restricted to
PSL(n,R)).

3 Mapping Class Group Actions

We give an exposition on how the extended mapping class group acts on various
mathematical objects.

3.1 ExtendedMapping Class Group Action on RiemannianMetrics

Let S be a closed orientable smooth surface of genus G ≥ 2 as in Sect. 2.1. Recall
thatM− denotes the space of negatively curved smooth Riemannian metrics on S, on
which the diffeomorphism groupsD,D+ (when S is oriented), andD0 act by pullback.
The extended mapping class group is given by the quotient groupMod±(S) := D/D0.
Two smooth diffeomorphisms f1 and f2 represent the same point in Mod±(S) if and
only if f1 is smoothly isotopic to f2. In other words, the extended mapping class
group Mod±(S) is the group of isotopy classes of elements in D. When S is given
an orientation, we also denote by Mod(S) = D+/D0 the mapping class group which
is the group of isotopy classes of all orientation-preserving smooth diffeomorphisms
of S. The mapping class group Mod(S) is an index 2 subgroup of Mod±(S). Given
ψ ∈ D, we denote by [ψ] the induced element in Mod±(S). The action of D onM−
by pullback induces an action of Mod±(S) on the quotient spaceM−/D0. This space
will be discussed further in Sect. 4.4. Note that this action of Mod±(S) is a right action
on M−/D0. To be consistent with the outer automorphism group action introduced
in the next subsection, people also often use the induced left action of Mod±(S) on
M−/D0 given by [ψ] · [g] = [(ψ−1)∗g].

3.2 ExtendedMapping Class Group Action on Hitchin Components

3.2.1 Outer Automorphism Group

The outer automorphism group Out(π1S) is defined as the quotient

Out(π1S) = Aut(π1S)/Inn(π1S),

whereAut(π1S) is the group of automorphisms ofπ1S and Inn(π1S) denotes the group
of all inner automorphisms: for any h ∈ π1S, the associated inner automorphism is
defined by
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Ih : π1S→ π1S,

g �→ hgh−1.

By the Dehn-Nielsen-Baer Theorem [19, Theorem 8.1], the extended mapping class
group Mod±(S) is isomorphic to the outer automorphism group Out(π1S). There is a
natural left action of Out(π1S) onHn(S). Given a representation ρ ∈ Hn(S) and any
ψ ∈ Out(π1S), define

ψ · ρ = ρ ◦ ψ−1.

This action preserves the Hitchin component Hn(S) (see the paragraph after Lemma
2.8 in [4]). As the extended mapping class groupMod±(S) is identified with the group
Out(π1S), we obtain a natural action of Mod±(S) on the Hitchin component Hn(S).
In particular, this action onH2(S) = T (S) corresponds to the left extended mapping
class group action on M−1/D0 by (inverse) pullback defined in Sect. 3.1.

3.2.2 Outer Automorphism Group and Orbifolds

In Sect. 2.3, we presented a 2-dimensional closed connected smooth orbifold Y of
negative Euler characteristic as a quotient of a closed orientable surface S by a finite
subgroup � ≤ D. This implies the existence of a short exact sequence:

1→ π1S→ π1Y → �→ 1.

In particular, π1S is a normal subgroup of π1Y of finite index and � � π1Y/π1S.
The finite group� ≤ D yields a subgroup� ≤ Mod±(S)which is isomorphic to a

subgroup of Out(π1S) by the Dehn-Nielsen-Baer Theorem. Because Out(π1S) acts on
the Hitchin component Hn(S) from the left by (inverse) precomposition, one obtains
an action of � onHn(S). We will denote by Fix�Hn(S) the fixed locus of the action
�. The following theorem from [4] about the relation between Hitchin representations
for orbifolds and the outer automorphism group action on Hn(S) will be important
later:

Theorem 3.1 ([4, Theorem 2.12]) Given a closed connected 2-orbifold of nega-
tive Euler characteristic Y and a presentation Y � [S/�], the map ρ �→ ρ|π1S

induces a homeomorphism j : Hit(π1Y ,PGL(n,R)) → Fix�Hn(S) between
Hit(π1Y ,PGL(n,R)) and the �-fixed locus inHn(S).

3.3 ExtendedMapping Class Group Action on Holomorphic Differentials

In this subsection, we first explain how the extended mapping class group acts on the
space of sections of holomorphic differentials in general. Then we focus on surface
diffeomorphisms that are holomorphic or antiholomorphic with respect to a certain
complex structure, and discuss the extended mapping class group action they induce.
Thiswill naturally lead to an expositionon the equivariant structure ofHitchin fibration
from [4, Section 4.1].
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Given a complex structure J ∈ C∞(S;End(T S)), a diffeomorphism ψ ∈ D acts
on J from the right as: (ψ∗ J )x = (dψ−1)ψ(x) ◦ Jψ(x) ◦ dψx . In particular, we say
ψ is holomorphic with respect to J if ψ∗ J = J ; We say ψ is anti-holomorphic with
respect to J if ψ∗ J = −J . Upon taking a quotient by D0 action, one obtains an
action of the extended mapping class group Mod±(S) = D/D0 on isotopy classes of
complex structures.

The action of ψ ∈ D naturally induces a left action of ψ on all powers of the
canonical bundles Kd

J , denoted by κψ . Let X J = (S, J ) be the Riemann surface with
the complex structure J . We can define an action of ψ on a holomorphic section
s ∈ H0(X J , Kd

J ) by ψ∗s := κψ
−1 ◦ s ◦ ψ as illustrated by the following diagram:

Kd
ψ∗ J K d

J

(S, ψ∗ J ) (S, J )

κψ

ψ

ψ∗s s .

More explicitly, for p ∈ S and v ∈ (T XC

ψ∗ J )
(1,0), we have

(ψ∗s)(p)
(
v, · · · , v) = s(ψ(p))

(
dψ(v), · · · , dψ(v)

)
.

Here dψ denotes the complexified differential dψ : TpXC

ψ∗ J → Tψ(p)XC

J . The pull

back ψ∗s is a holomorphic section on H0(Xψ∗ J , Kd
ψ∗ J ). After taking D0 quotient,

we obtain a right Mod±(S) action on (D0-equivalence classes of) holomorphic d-
differentials. Often, we also use the induced left action by inverse pull back given by
[ψ] · [s] = [(ψ−1)∗s].

Now we focus on diffeomorphisms that are either holomorphic or antiholomorphic
with respect to a fixed complex structure J and explain their actions on holomorphic
differentials. Suppose that � is a finite subgroup ofD. We fix an orientation for S and
a �-invariant Riemannian metric g on S. Denote by J = Jg the complex structure
associated to g. Then a map ψ ∈ � is holomorphic with respect to J if it preserves
the orientation of S; otherwise, it is anti-holomorphic. The bundle isomorphism κψ

from Kψ∗ J to KJ defined before induces a bundle automorphism τψ : KJ → KJ .
More explicitly, when ψ is orientation preserving, we let τψ = κψ , which is clearly
a bundle automorphism. When ψ is orientation reversing, given ξ = (p, w) ∈ Kd

J |p,
we let τψξ := κψξ . Since κψ maps the bundle Kψ∗(−J ) to K−J andψ∗(−J ) = J , it is
also clear in this case that τψ : KJ → KJ is a bundle automorphism. This introduces
an action of τψ on all tensor powers Kd

J . The definition of the τψ action here then
coincides with the τψ action in [4, Section 4.1].

The family τ = (τψ)ψ∈� forms a �-equivariant structure of the holomorphic
bundle Kd

J in the following sense:
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(1) For all ψ ∈ �, the following diagram commutes (i.e. π ◦ τψ = ψ ◦ π ),

Kd
J Kd

J

(S, J ) (S, J )

τψ

π πs
ψ

ψ A·s ,

where π : Kd
J → (S, J ) is the projection. (The map ψ A will be explained in the

next paragraph.)
(2) The bundle map τψ is fiberwise C-linear if ψ is holomorphic with respect to J

and fiberwise C-antilinear if ψ : X → X is anti-holomorphic with respect to J .
(3) τid = IdKd

J
and τψ1ψ2 = τψ1τψ2 .

Note that since ψ and τψ are simultaneously holomorphic or anti-holomorphic, the
composition τψ ◦ s ◦ ψ−1 is again a holomorphic section in H0(X J , Kd

J ). We will
denote this (left) action by ψ A · s := τψ ◦ s ◦ ψ−1 to emphasize that this is an
automorphism and distinguish it from the pull back action ψ∗s and its induced left
action ψ · s = (ψ−1)∗s by inverse pull back.

In general, suppose X J is a Riemann surface with complex structure J so that the
finite group � acts on X J by holomorphic or anti-holomorphic maps. Then ψ ∈ �

act on H0(X J , Kd
J ) as an automorphism ψ A : H0(X J , Kd

J ) → H0(X J , Kd
J ). The

following Proposition in [4] will be important later.

Proposition 3.2 ([4, Lemma 4.3]) Under the above assumptions, the Hitchin

parametrization HJ :
n⊕

i=2
H0(X J , Ki

J ) → Hn(S) is �-equivariant and induces a

homeomorphism

Fix�

( n⊕

i=2
H0(X J , K

i
J )
) � Fix�Hn(S)

for any integer n ≥ 2.

4 CovarianceMetric on the Space of Negatively Curved Riemannian
Metrics

In this section, which follows closely [24, Section 2], we will define the covariance
metric introduced there on the space of negatively curved metrics. The material here
works for n-dimensional Riemannian manifolds with Anosov geodesic flows, though
we only discuss it in the setting that we are interested in, namely that of a closed
orientable smooth surface S with genus G at least 2.
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4.1 Function Spaces

If M is a closed manifold, we will denote by D′(M) := (C∞(M))′ the space of
distributions, and by Hs(M) the Sobolev space of order s ∈ R. The latter can be
defined as

Hs(M) := {u ∈ D′(M) | (1−�g0)
s/2u ∈ L2

g0(M) },

where �g0 denotes the negative Laplace-Beltrami operator of a fixed Riemannian
metric g0 and L2

g0(M) is the space of square integrable functions with respect to the
probability measure induced by the volume density dvg0 of g0, i.e. with respect to

dvg0
Vol(M,g0)

. An alternative useful characterization of Hk(M) for integer k ≥ 0 is given
by

Hk(M) = {u ∈ D′(M)|V1 · · · Vmu ∈ L2
g0(M), 0 ≤ m ≤ k, for any Vj ∈ X(M)},

where X(M) denotes smooth vector fields on M . A choice of g0 induces an inner
product

〈u, v〉Hs
g0

(M) = 〈(1−�g0)
s/2u, (1−�g0)

s/2v〉L2
g0

(M) = 〈(1−�g0)
su, v〉L2

g0
(M),

making Hs(M) into a Hilbert space (the last equality follows by self-adjointness). In
our applications, M will typically be either S or T 1Sg , where T 1Sg is the unit tangent
bundle with respect to a Riemannian metric g on S. Whenever we write L2(T 1Sg), it
will be understood that the measure used to define the L2 inner product and norm is
the Liouville measure of g normalized to have total mass 1, denoted by μL

g . Notice
that if f ∈ C∞(S) and π0 : T 1Sg → S is the natural projection we have

∫

T 1Sg
π∗0 f dμL

g =
1

Area(S, g)

∫

S
f dvg.

For k ∈ N0 and α ∈ (0, 1), we will also make use of Hölder spaces

Ck,α(M) := {u ∈ Ck(M)|V1 · · · Vku ∈ Cα(M), for any Vj ∈ X(M)}

where

Cα(M) = C0,α(M) = {u ∈ C0(M) | sup
x �=y
|u(x)− u(y)|
distg0(x, y)α

<∞}.

Upon fixing a norm, Ck,α(M) becomes a Banach space. Spaces of sections of smooth
vector bundleswith Sobolev orHölder regularity are defined using local trivializations.
We remark that for both Sobolev and Hölder spaces, a different choice of background
metric g0 does not change the spaces themselves, and different choices of metrics
result in equivalent norms.
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4.2 The5g andVariance Operators

For the rest of this discussion, fix a negatively curvedmetric g on S. In [23], an operator
�g : Hs(T 1Sg)→ H−s(T 1Sg) is constructed usingmicrolocal tools.When restricted
to f ∈ C∞(T 1Sg) satisfying the mean zero property (that is, 〈 f , 1〉L2(T 1Sg) = 0), it
is given by

�g : C∞(T 1Sg)→ D′(T 1Sg),

〈�g f , f ′〉 = lim
T→∞

∫ T

−T
〈 f ◦ φt , f ′〉L2(T 1Sg)dt .

Here φt is the geodesic flow of g on T 1Sg and the convergence of the integral on the
right hand side is guaranteed by exponential decay of correlations for φt (see [37]).

From another perspective, �g is related to the Variance and Covariance, arising
from the Thermodynamic formalism.

Definition 4.1 The variance of f ∈ C∞(T 1Sg) which is of mean zero with respect to
μL
g is defined as

Var( f , μL
g ) = lim

T→∞
1

T

∫

T 1Sg

(∫ T

0
f (φt (x))dt

)2
dμL

g (x)

and the covariance of two μL
g -mean zero functions f1, f2 ∈ C∞(T 1Sg) is given by

Cov( f1, f2, μ
L
g ) = lim

T→∞
1

T

∫

T 1Sg

(∫ T

0
f1(φt (x))dt

)(∫ T

0
f2(φt (x))dt

)
dμL

g (x).

A crucial fact is that if f ∈ C∞(T 1Sg) is of mean zero, one can use the φt -invariance
of the Liouville measure μL

g to obtain

〈�g f , f 〉 = Var( f , μL
g ); (4.1)

A proof can be found in [49, Proposition4]. Note that (4.1) is always nonnegative.
Similarly, one can check that 〈�g f1, f2〉 = Cov( f1, f2, μL

g ) if f1, f2 are of mean
zero.

The following Theorem is proved by Guillarmou in [23]. We state it in our setting:

Theorem 4.2 ( [23, Theorem 1.1], [22, Section 4A]) For all s > 0, the operator
�g : Hs(T 1Sg)→ H−s(T 1Sg) is bounded and self-adjoint and satisfies the following
properties:

(1) �g is positive in the sense that 〈�g f , f 〉 ≥ 0 for all real-valued f ∈ Hs(T 1Sg).
(2) If f and Xg f belong to Hs(T 1Sg), then �g Xg f = 0, where Xg is the geodesic

vector field on T 1Sg.
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(3) If f ∈ Hs(T 1Sg) with 〈 f , 1〉L2(T 1Sg) = 0, then �g f = 0 if and only if there

exists a solution w ∈ Hs(T 1Sg) to the cohomological equation Xgw = f , and
w is unique modulo constants.

(4) �g1 = 0.
(5) If f ∈ Hs(T 1Sg), then 〈�g f , 1〉 = 0.

These properties of �g are important for introducing the covariance metric from
[24, Section 2]. In particular, the fact that �g1 = 0 allows one to use (4.1) to make
sense of�g for allC∞(T 1Sg): once one notices that�g f = �g( f −〈 f , 1〉L2(T 1Sg)),
the following is immediate.

Lemma 4.3 The operator �g : C∞(T 1Sg)→ D′(T 1Sg) is given by

〈�g f , f ′〉 := lim
T→∞

∫ T

−T
〈Pg( f ) ◦ φt , f ′〉L2(T 1Sg)dt,

where Pg : C∞(T 1Sg)→ C∞(T 1Sg) is the projection operation defined by

Pg( f ) := f − 〈 f , 1〉L2(T 1Sg).

4.3 Symmetric tensors on a Surface S

We denote by Sm(S) the space of smooth symmetric m-tensors on S (and we use
Sk,αm (S) when we need Ck,α regularity). If f ∈ Sm(S) and m ∈ N0 = {0, 1, 2, . . . },
we denote by π∗m f ∈ C∞(T S) the map π∗m f (x, v) := fx (v, · · · , v). So π∗m converts
a symmetricm-tensor to a function on the tangent bundle T S. A Riemannian metric g
naturally induces a scalar product 〈·, ·〉 on Sm(S) (see for example [22, Section 2A1]).
The formal adjoint of π∗m is given by declaring

〈 f , πm∗h〉L2
g(S) = 〈π∗m f , h〉L2(T 1Sg),

where f ∈ Sm(S) and h ∈ C∞(T 1Sg).
Fix a smooth Riemannian metric g on S for the rest of this discussion. We denote

by Dg the symmetrization of the covariant derivative with respect to the Levi-Civita
connection ∇g . One has the following relation [22, Lemma 2.3] between the geodesic
vector field Xg on T 1Sg and the operator Dg ,

Xgπ∗m = π∗m+1Dg. (4.2)

The formal adjoint of Dg is the negative of the divergence operator on symmetric
m-tensors, i.e. D∗g := − trg ◦∇g : Sm(S)→ Sm−1(S). Note that the negative Laplace-
Beltrami operator on functions is given by �g = −D∗gDg .

We will be mostly interested in symmetric 2-tensors, either smooth or of Hölder
regularity, and for those, the following L2-orthogonal decompositions will be useful.
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Any tensor f ∈ Sk,α2 (S) can be decomposed uniquely as a sum

f = Dgχ + v, (4.3)

where χ ∈ Sk+1,α1 (S) and v ∈ Sk,α2 (S) satisfies D∗gv = 0. The component Dgχ is
often called the potential part of f , whereas the divergence free component v is called
solenoidal. Another helpful decomposition of f ∈ Sk,α2 (S) is the one into a conformal
and a trace free part with respect to g:

f = f1 + f2,

where f1 = 1
2 (trg f )g is conformal to g and f2 = f − 1

2 (trg f )g is trace free.

4.4 The SpaceM−/D0

Herewe summarize someuseful facts found in [24, Section2.3].Recall that inSect. 2.1,
we defined M as the space of smooth Riemannian metrics on a closed orientable
smooth surface S of genus G ≥ 2 andM− as the open subspace (in theC∞ topology)
of negatively curved Riemannian metrics. The spaceM is a smooth Fréchet manifold
whose tangent space at g ∈ M can be naturally identified with the space S2(S) of
smooth symmetric 2-tensors. SinceM− is an open subset ofM in theC∞ topology, it
has the same tangent space. The groupD0 of smooth diffeomorphisms isotopic to the
identity is a Fréchet Lie group ( [28, Section 4.6]) and acts onM on the right by pull
back. This action is smooth and proper on M ( [16], [17]). Moreover, for negatively
curved metrics, this action is free [21]. By Ebin’s slice theorem (see [17], [11]), for
any g0 ∈ M−, there exists a neighborhood U of g0 in M−, a neighborhood V of
Id ∈ D0, and a Fréchet submanifold W of M− containing g0 such that

W × V → U ,

(g, ψ) �→ ψ∗g
(4.4)

is a diffeomorphism of smooth Fréchet manifolds and such that

Tg0W = {v ∈ S2(S)|D∗g0v = 0}. (4.5)

Because the tangent space of the orbit space g ·D0 ⊂M− at g consists of elements
of the form LY g for Y ∈ X(S), the fact that 1

2LY g = Dg(Y �) implies that it consists
exactly of the potential symmetric 2-tensors. Therefore, Tg0W and Tg0(g · D0) are
mutually orthogonal with respect to the L2

g0 inner product. For g near g0, one has
TgW ∩ Tg(g ·D0) = {0}. Since the action of D0 on M− is proper and free, together
with the diffeomorphism property of (4.4), a neighborhood of [g] in M−/D0 can be
identified with a neighborhood of g inW . The setM−/D0 therefore inherits fromW
the structure of a Fréchet manifold with its tangent space at [g0] identified with (4.5).

We will also make use of the spaceMk,α
− of Ck,α negatively curved metrics, where

k ∈ N is large and α ∈ (0, 1), which is a Banach manifold with TgMk,α
− = Sk,α2 (S)
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at each g. The group Dk+1,α
0 of Ck+1,α diffeomorphisms isotopic to the identity acts

continuously, freely and properly on Mk,α
− , but not smoothly (see [57]). Thus we

cannot use the quotient manifold theorem to give Mk,α
− /Dk+1,α

0 the structure of a

smooth manifold. However, we note that the Dk+1,α
0 orbit through any C∞ metric in

Mk,α
− is a smooth submanifold of the latter with tangent space at g0 consisting of the

Ck,α potential symmetric 2-tensors with respect to g0.
With all these understood, we can proceed to introduce the covariance metric on

the space of negatively curved metrics in the next subsection.

4.5 The Covariance Metric onM−/D0

To construct the covariance metric ( [24]) onM−/D0, we first produce a bilinear form
G on M− and on Mk,α

− . It might be tempting to think that π2∗ ◦�g ◦ π∗2 induces a
positive definite symmetric bilinear form on Tg(M−/D0) by Theorem 4.2. However,
even though �g is positive (Theorem 4.2), positive definiteness of the bilinear form
associated with π2∗ ◦ �g ◦ π∗2 does not follow (see Remark 4.11). To tackle this
problem, the authors in [24] consider the operator

�
g
m :Sm(S)→ S−∞m (S),

�
g
m : = πm∗(�g + 1⊗ 1)π∗m,

where the operator 1 ⊗ 1 : C∞(T 1Sg) → C∞(T 1Sg) projects a function f ∈
C∞(T 1Sg) onto its mean 〈 f , 1〉L2(T 1Sg) and S−∞m (S) := (Sm(S))′. The operator �

g
m

can be thought of as an analog of the normal operator of the X-ray transform, defined
on a compact manifold with boundary having sufficiently good geometric properties,
which averages the X-ray transform of a tensor field over all geodesics passing through
a point (see for example [48]). On the closed surface (S, g), the X-ray transform is
defined as

I gm : Sm(S)→ �∞(C), f �→ I gm f (c) = 1

L(c)

∫ L(c)

0
π∗m f (φt (z))dt, (4.6)

where C denotes the set of closed orbits of the geodesic flow and in (4.6) a closed orbit
c of primitive length L(c) is parametrized as φt (z), where t ∈ [0, L(c)] and z ∈ c. The
fact that on S the space of all geodesics does not have a manifold structure necessitates
the more complicated construction of �

g
m , compared to the normal operator.

Now one can define a bilinear form on TgM− as follows:

Definition 4.4 Define a bilinear form Gg(·, ·) on TgM− by

Gg(h1, h2) := 〈�g
2h1, h2〉L2

g(S)

for h j ∈ TgM− � S2(S) and j = 1, 2.
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Lemma 4.5 The bilinear form Gg(·, ·) satisfies

Gg(h, h) = Var(Pg(π
∗
2 h), μL

g )+ 〈π∗2 h, 1〉2L2(T 1Sg)
,

for g ∈M− and h ∈ TgM−, where Var is the variance defined in Definition 4.1.

Proof We have

Gg(h, h) = 〈�g
2h, h〉L2

g(S)

= 〈�gπ∗2 h, π∗2 h〉 + 〈π∗2 h, 1〉L2(T 1Sg)〈π∗2 h, 1〉L2(T 1Sg)

= 〈�g(Pg(π∗2 h)
)
, π∗2 h〉 + 〈π∗2 h, 1〉L2(T 1Sg)〈π∗2 h, 1〉L2(T 1Sg)

(by Lemma 4.3)

= 〈�g(Pg(π∗2 h)
)
, Pg(π

∗
2 h)〉 + 〈π∗2 h, 1〉L2(T 1Sg)〈π∗2 h, 1〉L2(T 1Sg).

(By Theorem 4.2(5).)

The result follows immediately because thefirst termcoincideswithVar(Pg(π∗2 h), μL
g ).
��

Corollary 4.6 The bilinear form Gg(·, ·) also satisfies

Gg(h1, h2) = Cov(Pg(π
∗
2 h1), Pg(π

∗
2 h2), μ

L
g )+ 〈π∗2 h1, 1〉L2(T 1Sg)〈π∗2 h2, 1〉L2(T 1Sg)

= Cov(Pg(π
∗
2 h1), π

∗
2 h2, μ

L
g )+ 〈π∗2 h1, 1〉L2(T 1Sg)〈π∗2 h2, 1〉L2(T 1Sg).

Proof For a proof, see [14, Corollary 2.21 and Definition 2.22]. ��
Proposition 4.7 The bilinear form Gg(·, ·) is defined on the Banach manifold Mk,α

−
for fixed large k and α ∈ (0, 1) and is Ck−3 there, in the sense that for any smooth
local sections h1, h2 ∈ C∞(U; Sk,α2 (S)), where U ⊂Mk,α

− is an open neighborhood
of a metric g0, the function

U → R, g �→ Gg(h1(g), h2(g)) (4.7)

is Ck−3. Similarly, if U ⊂M− and h1, h2 ∈ C∞(U; S2(S)) with h1, h2 :Mk,α
− →

Sk,α2 (S) smooth for all k, then (4.7) is smooth on U .

Proof We will use the expression in Corollary 4.6, which also makes sense onMk,α
− ,

as the following proof shows. For U ⊂Mk,α
− and for i = 1, 2, consider the map (see

[24, Section 1.2] for the last equality)

Fi (g) : U → R,

g �→ 〈π∗2 hi (g), 1〉L2(T 1Sg) =
∫

T 1Sg
π∗2 hi (g)dμL

g =
1

Area(S, g)

∫

S
trghi (g)dvg.
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The integral factor can be written locally in coordinates x1, x2 in the form
∫ 2∑

s,t=1
gst (hi (g))st

√
det(g)dx . Since for all s, t = 1, 2, the maps g �→ gst and

g �→ √det(g) are smooth into Ck,α(S), so is the integrand. Then the integral defines
a bounded linear map from Ck,α(S) (actually even from C0(S)) into R, so the com-
position is smooth. The area is given locally by

∫ √
det(g)dx , so it is also smooth in

g. So the maps Fi and their product are smooth.
Then we show that g �→ Cov(Pg(π∗2 h1(g)), Pg(π∗2 h2(g)), μL

g ) is Ck−3. From the
thermodynamic formalism, we know (see e.g. [47, Proposition 4.11], [14, Remark
2.25]) that

Cov(Pg(π
∗
2 h1(g)),

Pg(π
∗
2 h2(g)), μ

L
g ) = ∂2P(−Jug + sπ∗2 h1(g)+ tπ∗2 h2(g), Xg)

∂t∂s

∣∣∣∣
s=t=0

.

(4.8)

Here P(·, Xg) is the pressure function with respect to the geodesic flow of g (see
e.g. [47]), which is determined by the geodesic vector field Xg ∈ Xk−1,α(T S) ⊂
Xk−1(T S) (note that this inclusion is smooth). The Liouvile measure μL

g is the equi-
librium state of−Jug , where Jug is the unstable Jacobian of the geodesic flow generated
by Xg ( [7, Section 4 and Section 5]). The pressure is real analytic in the first com-
ponent (see [47, Proposition 4.8], [44, page 377]). By (4.8) and polarization, to show
that g �→ ∂21P(0, Xg)(π∗2 h1(g), π∗2 h2(g)) is Ck−3, it suffices to show that

f (t, g) := P(tπ∗2 h2(g), Xg) : R×Mk,α
− → R

is Ck−1. Since we know

U � g �→ π∗2 h j (g) ∈ Ck,α(T S) and U � g �→ Xg ∈ Xk−1(T S)

are smooth, from [10, Theorem C(a)] one knows that upon fixing t = t0, the map
P(t0π∗2 h2(g), Xg) isCk−1 respect to g. Sincevarying t does not change thebackground
flows and corresponding subshifts of finite type [10, Lemma 5.1], the proof of [10,
Theorem C] (page 110) can be adjusted to show that P(tπ∗2 h2(g), Xg) is jointly Ck−1
for both parameters t and g from the real analytic dependence of the pressure on the
first component. ��

It is important for our purposes that the bilinear form Gg(·, ·) is positive definite
on TgM− ∩ kerD∗g :

Lemma 4.8 [[24, Lemma 2.1]] Given h ∈ TgM− ∩ kerD∗g, then

Gg(h, h) ≥ 0.

Moreover, Gg(h, h) = 0 if and only if h = 0.
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Another important criterion for the bilinear form G(·, ·) to descend toM−/D0 is the
following Lemma

Lemma 4.9 Suppose h1 = Dg p ∈ TgM− is a potential tensor with p ∈ S1(S). Then

Gg(h1, h2) = 0

for any h2 ∈ S2(S).

Proof We write

〈�g
2h1, h2〉L2

g(S) = 〈�gπ∗2 (Dg p), π
∗
2 h2〉 + 〈π∗2 (Dg p), 1〉L2(T 1Sg)〈π∗2 h2, 1〉L2(T 1Sg).

By equation (4.2) and Theorem 4.2, we know that π∗2 Dg p = Xgπ∗1 p and that Xgπ∗1 p
is in the kernel of the �g operator. Also 〈π∗2 Dg p, 1〉L2(T 1Sg) = 〈p, D∗gπ2∗1〉L2

g(S), so

since π2∗1 = 1
2g and D∗g = −Trg∇g , we conclude that Gg(h1, h2) = 0. ��

Now we are able to introduce the Riemannian metric from [24].

Proposition 4.10 ( [24, Proposition 3.9]) The bilinear formG produces a Riemannian
metric on the quotient space M−/D0, called the covariance metric. Given [g] ∈
M−/D0, we denote the covariance metric at [g] by G[g](·, ·).
Proof The proof of this Proposition can be found in [24, Proposition 3.9] and we only
repeat it for its importance. For a fixed g0 ∈ M−, we identify a neighborhood of
[g0] ∈ M−/D0 with a slice W ⊂ M− (a Fréchet submanifold) passing through
g0. We verify positive definiteness. For g ∈ W near g0, let h ∈ TgW . Since we can
decompose h = LY g + h′, where Y ∈ X(S) and D∗gh′ = 0, by Lemma 4.9 we obtain
Gg(h, h) = Gg(h′, h′) ≥ 0 with equality exactly when h′ = 0, by Lemma 4.8. If
h′ = 0, the fact that TgW ∩ {LY g|Y ∈ X(S)} = {0} yields h = 0. We notice that the
argument does not depend on which slice W we use to identify M−/D0 by Lemma
4.9. So G[g](·, ·) is a well-defined Riemannian metric on the quotient spaceM−/D0.

��
Remark 4.11 From the proof of Lemma 4.9, we notice that 〈�gπ∗2 h, π∗2 h〉 =
Var(Pg(π∗2 h), μL

g ) also descends to a bilinear form on M−/D0. However it is not
positive definite and therefore does not give a Riemannian metric on M−/D0. For
example, consider a family of conformal metrics {gt }t∈R ∈ M− given by gt = tg
for some g ∈ M−. Since h = ġ0 = g is divergence free (and therefore not a
potential tensor), we have dπM−h = dπM−g ∈ T[g0](M−/D0) is nonzero (where
πM− : M− → M−/D0 is the quotient map). But Pg(π∗2 h) = Pg(π∗2 g) = 0, so
〈�gπ∗2 h, π∗2 h〉 = 0.

Next we show that the extended mapping class group is an isometry subgroup of
the covariance metric. Recall that the action of D onM− by pullback induces a right
action of the extended mapping class group Mod±(S) on the space M−/D0. In the
following proposition, if [ψ] ∈ Mod±(S), we write this action as θ[ψ] :M−/D0 →
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M−/D0, [g] �→ θ[ψ]([g]) = [ψ∗g]. Then θ[ψ] is smooth with smooth inverse (note
that Mod±(S) is discrete and [g] �→ [ψ∗g] is smooth, as one can see by writing [g]
and [ψ∗g] in terms of slices W and ψ∗W as in (4.4)). It is actually an isometry with
respect to the covariance metric G[g](·, ·).
Proposition 4.12 (Isometry subgroup) The covariance metric is invariant under the
extended mapping class group action on M−/D0. In other words, the extended
mapping class group is an isometry subgroup of the covariant metric. Explicitly,
given [g] ∈ M−/D0 and ĥ j ∈ T[g](M−/D0), for j = 1, 2, and an element
[ψ] ∈ Mod±(S), we have

Gθ[ψ]([g])(dθ[ψ]ĥ1, dθ[ψ]ĥ2) = G[g](̂h1, ĥ2).

Proof First observe that if ĥ ∈ T[g](M−/D0) and h ∈ TgM− satisfies dπM−h = ĥ
for some g ∈ [g], then dθ[ψ]ĥ = dπM−(ψ

∗h), for anyψ ∈ [ψ]. Indeed, let gt ∈M−
be a curve with h = d

dt gt
∣∣
t=0, so that

d
dt [gt ]

∣∣
t=0 = ĥ. Then

dθ[ψ]ĥ = d

dt

(
θ[ψ]([gt ])

)∣∣
t=0 =

d

dt
πM−(ψ

∗gt )
∣∣
t=0 = dπM−(ψ

∗h).

This and the definition of the covariance metric imply that it suffices to show

Gψ∗g(ψ
∗h1, ψ∗h2) = Gg(h1, h2) (4.9)

for h j ∈ TgM− satisfying dπM−h j = ĥ j and ψ ∈ D, since in that case we have

G[g](̂h1, ĥ2) = Gg(h1, h2) = Gψ∗g(ψ
∗h1, ψ∗h2) = Gθ[ψ]([g])(dθ[ψ]ĥ1, dθ[ψ]ĥ2).

(4.10)

Note here that the h j are determined by ĥ j up to the addition of a tensor field which
is vertical with respect to the quotient map, that is, a potential tensor. The validity of
(4.10) is independent of the choice of h j by Lemma 4.9.

To show (4.9), recall that

Gg(h1, h2) = lim
T→∞

1

T

∫ T

−T
〈Pg(π∗2 h1) ◦ φt , π

∗
2 h2〉L2(T 1Sg)dt

+〈π∗2 h1, 1〉L2(T 1Sg)〈π∗2 h2, 1〉L2(T 1Sg),

where Pg(π∗2 h1)(x) = π∗2 h1(x)− 〈π∗2 h1, 1〉L2(T 1Sg). The Liouville probability mea-

sures of g and ψ∗g are related by pushforward, i.e., μL
ψ∗g = (ψ−1∗ )∗μL

g , where

ψ−1∗ : T 1Sg → T 1Sψ∗g is the induced diffeomorphismbyψ . Also, by the naturality of

the Levi-Civita connection, the geodesic flows φ
g
t and φ

ψ∗g
t of g andψ∗g respectively

are related by conjugation by ψ , that is, φψ∗g
t = ψ−1∗ ◦φg

t ◦ψ∗ : T 1Sψ∗g → T 1Sψ∗g .
A simple change of variable then yields (4.9). ��
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Remark 4.13 Although we have only shown the above theorem for the right pull back
action of the extended mapping class group onM−/D0, it naturally also holds for its
induced left action introduced in Sect. 3.1.

4.6 The Special Case ofT (S)

Fischer andTromba [20], usingRiemannian geometry and non-linear analysis, reprove
the classical result that T (S) = M−1/D0 is a C∞ finite dimensional contractible
manifold. Its tangent space at [σ ] ∈M−1/D0 is isomorphic to

Sσ,T T
2 (S) = {h ∈ S2(S)| trσ h = 0, D∗σ h = 0}, (4.11)

where σ ∈ [σ ]. More specifically, given σ0 ∈ M−1 and k � 1, α ∈ (0, 1), one
can construct a local slice S ⊂ M−1 ⊂ Mk,α

−1 passing through σ0, identified with

a neighborhood of [σ0] ∈ M−1/D0, so that Tσ0S = Sσ0,T T
2 (S) (see [57, Theorem

2.4.2] and Sect. 5.3)2. Moreover, for h ∈ TσS the decomposition (4.3) holds with v ∈
Sσ,T T
2 (S). The space Sσ,T T

2 (S) is related to holomorphic data on the Riemann surface
X J , where J is the complex structure determined by σ and a choice of orientation:

Theorem 4.14 ( [20, Theorem 8.9]) For σ ∈M−1, there is a canonical isomorphism
between the spaces H0(X J , K 2

J ) and Sσ,T T
2 (S), given by q �→ Re(q). Thus by the

Riemann-Roch theorem, the space Sσ,T T
2 (S) is of real dimension 6G − 6.

One can then simplify the formula of the covariance metric when restricting to the
Teichmüller space T (S) =M−1/D0 and show that it restricts to a scale of the Weil-
Petersson metric there.

Corollary 4.15 On Teichmüller space T (S), the covariance metric at [σ ] ∈ T (S)

satisfies

G[σ ](̂h, ĥ) = Var(π∗2 h, μL
σ ),

where ĥ ∈ T[σ ]T (S), σ ∈ [σ ] and h is the lift of ĥ in Sσ,T T
2 (S).

Proof We have 〈π∗2 h, 1〉L2(T 1Sσ ) = Area(S, σ )−1
∫
S trσ h dvσ = 0 (see [24, Section

1.2]). Since h ∈ Sσ,T T
2 (S), one concludes that π∗2 h is of mean zero. ��

Combining the above discussions, we obtain:

Theorem 4.16 ( [44, Theorem 1.5], [8], [34, Theorem 6.3.1]) Given ĥ ∈ T[σ ]T (S),
consider the lift h ∈ Sσ,T T

2 (S) given by the real part of a holomorphic quadratic
differential q (Theorem 4.14). Then

G[σ ](̂h, ĥ) = Var(R(q), μL
σ ) = C〈[q], [q]〉WP([σ ])

2 In [57], the slice S is a submanifold of the Hilbert manifold Ms−1 of hyperbolic metrics with fixed
Sobolev regularity, though the proofs work similarly in the Hölder case.
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Here R(q) := π∗2 (Re(q)) ∈ C∞(T 1Sσ ,R). The constant C only depends on the
topology of S.

5 The Blaschke Locus inM−/D0

This section discusses the Blaschke locus MB/D0. In Subsection 5.1, we introduce
some basic concepts from affine differential geometry. Then in Subsection 5.2, we
introduce the Blaschke locus and discuss its relation with the holomorphic vector
bundle Q3(S) (Subsection 2.2). We then investigate regularity of the Blaschke locus
MB/D0 in Subsection 5.3 in the spirit of Tromba [57], finishing with a discussion on
the topology of the Blaschke locus in Subsection 5.4. Wang’s equation (5.4) will be
the key for our study in this and the next sections.

5.1 Affine Differential Geometry and BlaschkeMetrics

In this subsection we give a brief introduction on affine spheres and Blaschke metrics.
Those are objects arising from affine differential geometry, which is the study of affine
differential invariants, namely differential properties of hypersurfaces of Rn+1 which
are invariant under all volume preserving affine transformations. Standard references
for affine differential geometry are [41] and [45]. The space of Blaschke metrics,
which include hyperbolic metrics as special examples, will be the object of study in
what follows.

A basic construction in affine differential geometry associates to a hypersurface L
of Rn+1 a transverse vector field ξ � L , the affine normal vector field, which is an
affine differential invariant. An affine sphere is a hypersurface L whose affine normal
lines are concurrent at a point, the center. We outline here the construction of an affine
sphere in the special case of R3 and its associated affine differential invariants. Let L
be a hypersurface in R

3. A choice of a transverse vector field ξ : L → R
3 yields a

decomposition R
3 = TpL ⊕ 〈ξ(p)〉 for any p ∈ L , where 〈ξ(p)〉 stands for the line

spanned by ξ(p). This allows one to decompose the standard flat affine connection D
on R3 into tangential part ∇ and normal part as follows,

DXY = ∇XY + g(X ,Y )ξ, (5.1)

DXξ = −B(X)+ τ(X)ξ, (5.2)

where X and Y are tangent vector fields to L and B = Bξ is an endomorphism of T L .
Observe that ∇ is a torsion-free connection on T L , so g is a symmetric 2 tensor. By
restricting to the casewhere L is strictly convex and ξ points towards the convex side of
the surface L , we can assume g is positive definite. Further, by imposing the conditions
τ ≡ 0 and det(ξ, X1, X2)

2 ≡ 1 for any g-orthonormal frame (X1, X2), one determines
a unique transversal vector field ξ on L , which is an affine differential invariant and
is called the affine normal of L . The endomorphism B is then called the affine shape
operator. Moreover, one can check that the vector field ξ being concurrent to a point is
equivalent to the affine shape operator B being a nonzeromultiple of identity: B = H I
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for some constant H ∈ R \ {0}, the affine mean curvature. We will focus on the case
where H = −1, in which case L is a hyperbolic affine sphere.3

We will need two other affine differential invariants associated to the affine sphere
L . One of them is the affine second fundamental form g, which is symmetric and
positive definite. It yields a Riemannian metric which is an affine differential invariant
on L , called the Blaschke metric. The second is a cubic form A on T L known as
the Pick form: it is given by taking the difference ∇ − ∇g , where ∇g denotes the
Levi-Civita connection of the Blaschke metric, and lowering an index via g. If we use
the conformal class of the Blaschke metric to regard L as a Riemann surface, then the
Pick form A is the real part of a cubic differential q = q̃(z)dz3 on L , which is called
the Pick differential.

The map f = ξ : L → R
3 provides an immersion of L into R3 if the integrability

conditions for the structure equations (5.1) and (5.2) are satisfied.4 Written in com-
plex coordinates z determined by the conformal class of the Blaschke metric g, the
integrability conditions (see [41, Section 5]) for f are the following partial differential
equations,

q̃z̄ = 0, (5.3)

K (g) = −1+ 2|q|2g. (5.4)

The first equation (5.3) simply requires the Pick differential q to be holomorphic.
The second equation (5.4) is an second order partial differential equation in g, where

K (g) denotes the Gaussian curvature of g and |q|2g = |q|
2

g3
is the pointwise g norm of

the holomorphic cubic differential q. It is calledWang’s equation in the affine sphere
literature [58]. This equation is of key importance in this note.

Proposition 5.1 ( [38]) Wang’s equation (5.4) admits a unique smooth solution given
a holomorphic cubic differential q on a compact Riemann surface.

An interesting aspect of affine sphere theory is its connectionwith Higgs bundle theory
introduced in Sect. 2.2. Wang’s equation can be viewed as a special case of the Hitchin
equation for a PGL(3,R) Higgs bundle: let J be a complex structure on S and denote
by σ the hyperbolic metric associated to J . Let q be a holomorphic cubic differential
with respect to the complex structure J . The Hitchin equation (2.1) for the Higgs
bundle sJ (0, 2q) in fact reduces to a single scalar equation, which is Wang’s equation
(5.4) on S associated to (J , q) (see for example [32, Section 9] and [36, Section 6.2]).

Returning to the closed oriented surface S with genus G ≥ 2 we started with, we
denote S̃ its universal cover. The punchline of the whole discussion is the following
important Theorem.

Theorem 5.2 ( [58, Theorem 3.1, Theorem 3.5]) Given a complex structure J on S, any
holomorphic cubic differential q on X J = (S, J ) determines a complete hyperbolic

3 By applying a translation, one can always assume that the center of the hyperbolic affine sphere is the
origin.
4 While f (L) is the immersed affine sphere we obtain through this construction, we often abuse notation
and call L the affine sphere.
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affine sphere f : S̃ → R
3 that admits discrete and properly discontinuous subgroup

action in SL(3,R) so that the quotient topologically is S. Its Blaschke metric is given
by the solution ofWang’s equation on S̃ which descends to S. Conversely, any complete
hyperbolic affine sphere f : S̃→ R

3 that admits a discrete and properly discontinuous
subgroup action in SL(3,R) with quotient topologically given by S defines a complex
structure J given by the conformal class of its Blaschke metric and a holomorphic
cubic differential q with respect to this complex structure on S.

Remark 5.3 A last remark that we want to make about the affine sphere theory is its
relation with hyperbolic geometry and Teichmüller theory. In the special case in which
the holomorphic cubic differential q ≡ 0, Wang’s equation reduces to the classical
curvature equations for metrics of constant curvature −1. Therefore a hyperbolic
metric is a special example of a Blaschke metric. In these cases, the affine spheres
obtained are universal covers of hyperbolic surfaces viewed in the hyperboloid model
as mentioned in the introduction.

5.2 The Blaschke LocusMB/D0

In this section, we define the Blaschke locus first as a set and then study its manifold
structure.

Definition 5.4 We defineMB to be the space of Blaschke metrics on S. The quotient
space of MB up to D0-action is denoted by MB/D0, called the Blaschke locus.

The Blaschke locus MB/D0 is a subset of the space M−/D0 due to the following
Proposition:

Proposition 5.5 ( [15, Theorem 5.1], [46, Lemma 3.3]) Any Blaschke metric g is
strictly negatively curved, i.e. K (g) < 0.

Fix a choice of orientation on S. Denote by J (σ ) the complex structure determined
by σ and the orientation. Let

Q̃3(S) :=
⊔

σ∈M−1

H0(X J (σ ), K
3
J (σ )), (5.5)

viewed as a subset ofM−1×S3(S)C, where the superscriptC denotes complexification
and X J (σ ) = (S, J (σ )) is the Riemann surface with the complex structure J (σ ). Let

g̃ : Q̃3(S)→MB ⊂M− (5.6)

be the map that assigns to a pair (σ, q) the solution of Wang’s equation (5.4) on
the Riemann surface X J (σ ). Now D0 (or D+) act on Q̃3(S) and M−1 in a natural
way from the right by pullback (and similarly from the left by inverse pullback).
Consider the equivalence relation on Q̃3(S) given by (σ, q) ∼ (σ ′, q ′) if and only if
for some ψ ∈ D0, one has σ ′ = ψ∗σ and q ′ = ψ∗q. We henceforth identify Q3(S)

with Q̃3(S)/D0 by viewing Q3(S) as a bundle over M−1/D0, for a fixed choice of
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orientation.With some abuse of notation we denote elements in Q̃3(S) by either (σ, q)

or (J , q) = (J (σ ), q). This is allowed because positively oriented complex structures
are in one-to-one correspondence with hyperbolic metrics.

Proposition 5.6 The map g̃ is equivariant with respect to the action of ψ ∈ D+ by
pullback: ψ∗(̃g(J , q)) = g̃

(
ψ∗(J , q)

)
. Similarly, it is equivariant with respect to the

left action ofD+ on Q̃3(S) andMB by inverse pullback. Thus after taking a quotient
by the D0 action, we obtain a well defined mapping class group equivariant map

g : Q3(S)→MB/D0.

Proof Denoting g = g̃(J , q), we need to verify that K (ψ∗g) = −1+ 2|ψ∗q|2ψ∗g . By
uniqueness, this will imply thatψ∗g is the solution ofWang’s equation (5.4) associated
to the pair ψ∗(J , q). Since ψ is an isometry between ψ∗g and g, we know

K (ψ∗g) = ψ∗K (g) = ψ∗(−1+ 2|q|2g).

It now suffices to show that |ψ∗q|2ψ∗g = ψ∗|q|2g on S. Let z be conformal coor-
dinates with respect to J and write z = ψ(w), with w conformal coordinates
with respect to ψ∗ J . Then if g = eu(z)dzdz̄ and q = f (z)dz3, we have ψ∗g =
eu(ψ(w))|dz/dw|2dwdw̄ and ψ∗q = f (ψ(w))(dz/dw)3dw3, so that locally

|ψ∗q|2ψ∗g = | f (ψ(w))|2/e3u(ψ(w)) = ψ∗|q|2g.

This is a local computation but we have invariantly defined global objects on both
sides, so we have the claim. ��
Remark 5.7 Since the solution ofWang’s equation corresponding to (J , q) is the same
as the one corresponding to (−J , q̄), the proof of Proposition 5.6 shows that if one
views g̃ as a map from the bundle of holomorphic cubic differentials over all complex
structures (not necessarily positively oriented), then it is also equivariant with respect
to the action of D by pullback and inverse pullback, so it descends to an extended
mapping class group equivariant map when taking D0 quotients. This point of view
will not be needed or used in the sequel, except briefly in the proof of Lemma 6.6.

Besides the D0 action on Q̃3(S), there is also a natural action of S1 on Q̃3(S)

which is given by e2π iθ · (σ, q) = (σ, e2π iθq). From now on, we will write elements
in Q̃3(S)/S1 as (σ, 〈q〉) for the class of (σ, q) ∈ Q̃3(S). Because the S1 action on
Q̃3(S) commutes with the D0 action on Q̃3(S), it descends to an action on Q3(S).
Moreover, the map g̃ is constant on the orbits of this action as seen from (5.4). Thus
by Proposition 5.6, the maps g̃ and g descend to a map

g0 : Q3(S)/S1→MB/D0.

The following proposition, whose proof we include for its importance, shows that the
map g0 is bijective.
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Proposition 5.8 ( [46, Proposition 4.1]) Suppose that [(σ j , q j )] ∈ Q3(S), for j =
1, 2, and that [g j ] = g([(σ j , q j )]) are the associated Blaschke metrics. Then [g2] =
[g1] if and only if [(σ2, q2)] = [(σ1, e2π iθq1)] for some θ ∈ [0, 1).
Proof The “if” direction follows from Propositions 5.1 and 5.6. For the converse,
suppose that [g1] = [g2], which implies that g1 = ψ∗g2 for some ψ ∈ D0. For
j = 1, 2, write g j = eu j σ j for suitable smooth functions u j . Then

eu1σ1 = ψ∗(eu2σ2) = eψ∗u2ψ∗σ2,

which shows that σ1 andψ∗σ2 are hyperbolic metrics in the same conformal class and
thus equal. We now show that q1 = e2π iθψ∗q2 for some θ ∈ [0, 1), which will imply
the claim. Since g1 = ψ∗g2, from Wang’s equation 5.4 we have

|q1|2g1 = ψ∗(|q2|2g2) = |ψ∗q2|2ψ∗g2 = |ψ∗q2|2g1 .

Therefore, if we write q1 = f1(z)dz3 andψ∗q2 = f2(z)dz3 in conformal coordinates
with respect to the complex structure J (g1), where f j is holomorphic for j = 1, 2, we
see that | f1| = | f2| pointwise. If f1 or f2 is identically zero then they both are and we
are done. Else, writing f2 = λ f1, where λ : S → S1 is a meromorphic function, we
conclude that λ ∈ S1 must be a constant. Thus q1 = e2π iθψ∗q2 for some θ ∈ [0, 1)
and we obtain the claim. ��

5.3 Smoothness of the Blaschke LocusMB/D0

Our goal in this subsection is to prove Theorem 5.17, namely that the Blaschke locus
MB/D0 has the structure of a finite dimensional smooth manifold away from the
Teichmüller space T (S) = M−1/D0. Our strategy is based on the construction of
smooth charts for T (S) as outlined in [57] (see also Subsection 4.6). Briefly, one can
construct local compatible smooth charts for the Blaschke locus MB/D0 using the
smooth manifold structure of Q3(S).

Throughout, k is a large integer and α ∈ (0, 1). The superscript k, α will indicate
that the relevant space of functions or sections of a bundle have Hölder regularity of
this order. The following theorem collects the results in [57, Chapter 2] regarding the
smooth manifold structure of Teichmüller space. It is stated in terms of Ck,α instead
of Sobolev regularity, with the proof being the same as in the Sobolev case.

Theorem 5.9 Let σ0 ∈M−1. There exists a smooth local submanifold S of Mk,α
−1 of

dimension 6G − 6 passing through σ0 which contains only C∞ metrics and satisfies
Tσ0S = Sσ0,T T

2 (S) (see (4.11)). Moreover, when S is sufficiently small, the map

�S : S ×Dk+1,α
0 →Mk,α

−1 , (σ, ψ) �→ ψ∗σ, (5.7)

is a diffeomorphismonto its image. The slicesS locally parametrizeT (S) =M−1/D0
(that is, each S does not contain two distinct metrics in the same D0 orbit) and
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define smoothly compatible charts, giving T (S) the structure of a smooth manifold of
dimension 6G − 6, homeomorphic to R6G−6.

A local slice for T (S) through a metric σ0 ∈M−1 in Theorem 5.9 is constructed
via the Poincaré map

λ :Mk,α
− →Mk,α

−1 ,

which takes a metric to the unique hyperbolic metric in its conformal class. More
specifically, λ defines a smooth diffeomorphism between a neighborhood of 0 in
Sσ0,T T
2 (S) and S, given by writing S � σ = λ(σ0 + h), where h ∈ Sσ0,T T

2 (S) is

sufficiently small. Since Sσ0,T T
2 (S) is a 6G − 6 dimensional vector space consisting

of smooth tensor fields, we can write h in terms of a basis {h j }6G−6j=1 . Smallness of

h =∑6G−6
j=1 a j h j means exactly smallness of the coefficients a j .

Remark 5.10 We remark that different choices of k, α (for k sufficiently large) result
in equivalent topologies underlying the smooth structures induced by the slices in
Theorem 5.9. To see this, one can express σ ∈ S in terms of a basis for Sσ0,T T

2 (S) via

the Poincaré map. Explicitly, if in S we have σn = λ(σ0 +∑6G−6
j=1 a j

n h j )
n→∞→ σ =

λ(σ0 +∑6G−6
j=1 a j h j ) in the Ck,α topology, we have a j

n
n→∞→ a j for all j , therefore

σn
n→∞→ σ inC∞ topology as well. Moreover, since T (S) is homeomorphic toR6G−6

with respect to the topology induced from anyMk,α
−1 and there exist no exotic smooth

structures on R
d for d �= 4, the smooth structures obtained for T (S) by means of

Theorem 5.9 are equivalent for all values of k, α.

Recall that we defined the space Q̃3(S) in (5.5) as a space of holomorphic cubic
differentials with respect to varying Riemann surfaces. Since the projection Q̃3(S)→
M−1 is D0-equivariant, we obtain a well defined surjective map

p : Q3(S)→ T (S).

Each fiber of p naturally carries the structure of a complex vector space of dimension
5(G −1). It is known that Q3(S) is a smooth vector bundle (it is actually holomorphic,
see for example [6]) over a contractible space, so it is globally trivial. Its topology was
discussed in Remark 2.11. Below we discuss an identification of Q3(S) with slices in
Q̃3(S).

Lemma 5.11 Let σ0 ∈ M−1 and let S be a slice in Mk,α
−1 passing through σ0 as in

Theorem 5.9. We can identify Q3(S) locally near a point [(σ0, q)] with a slice

SQ :=
⊔

σ∈S
H0(X J (σ ), K

3
J (σ )) (5.8)

over S.
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Proof Given [(σ, q)] ∈ Q3(S) near [(σ0, q0)] and the unique σ ∈ [σ ] lying in S,
there exists a unique q ∈ H0(X J (σ ), K 3

J (σ )) such that (σ, q) ∈ [(σ, q)]. Indeed, if
(σ, q) = ψ∗(σ, q ′) for ψ ∈ D0, then because the D0-action is free onM−1, we have
that σ = ψ∗σ implies ψ = id. ��

Using the identification described in Lemma 5.11 we can obtain trivializations for
SQ via a smooth global trivialization φ0 of Q3(S), thus giving each slice SQ a smooth
bundle structure so that the projection (σ, q) �→ σ is smooth. That is, if we let

πSQ : SQ→ πSQ(SQ) ⊂ Q3(S) and πS : S → πS(S) ⊂ T (S) (5.9)

be the respective D0 quotient maps and φ0 : Q3(S) → T (S) × C
5G−5 be a smooth

global trivialization for Q3(S), then

φ̃S = (π−1S × id) ◦ φ0 ◦ πSQ : SQ→ S × C
5G−5

is a (global) smooth trivialization for SQ. Using it, we can write a smooth local
frame {(σ, q�(σ ))}5G−5�=1 for the fiber of Q̃3(S) over σ ∈ S, by choosing a frame

{[(σ, q�(σ ))]}5G−5�=1 for the bundle Q3(S) and considering the unique representatives
of [(σ, q�(σ ))] over the slice S. Then we can express an element q(σ ) of SQ as
q(σ ) = ∑5G−5

�=1 b�q�(σ ), b� ∈ C. Moreover, such a section q(σ ) is smooth when
viewed as a map into Sk3(S)C, for any k ≥ 0. This follows from the construction in
[6, Theorem II], where it is shown that for each element f (z)dz3 ∈ Q3(S)

∣∣
τ0
lifted to

the universal cover D (the unit disk), where τ0 ∈ T (S), one has f (z) = F(z, τ0) for
some jointly holomorphic function F(z, τ ), with respect to the complex structure on
D× T (S), and the fact that S is a smooth chart for T (S).

It follows byTheorem5.9 that for two slicesS andS ′withU := πS(S)∩πS ′(S ′) �=
∅, there exists a smooth map �S,S ′ : π−1S (U ) → π−1S ′ (U ) which maps σ ∈ S
to the unique σ ′ ∈ S ′ such that [σ ] = [σ ′]. One has �S,S ′(σ ) = ψ∗σ σ , where
ψσ = π2 ◦�−1S ′ (σ ) with �S ′ as in (5.7) and π2 the projection onto the second factor.

(A priori, ψσ ∈ Dk+1,α
0 , but because the slices S, S ′ consist of smooth metrics, it is

actually smooth, see the proof of [57, Theorem 2.3.1].) Thus we similarly obtain a
map

�̃S,S ′ : SQ→ S ′Q, (σ, q) �→ (ψ∗σ σ, ψ∗σq), (5.10)

and one checks that φ̃S ′ ◦ �̃S,S ′ ◦ φ̃−1S (σ, b) = (�S,S ′(σ ), b), and therefore �̃S,S ′ is
smooth.

In what follows we construct charts for the Blaschke locus MB/D0, away from
the Teichmüller space T (S), using the map g̃ in (5.6). Similarly to the approach in
[57], we will use theCk,α topology forMB/D0 to give it a smooth structure, although
the metrics we are interested in are actually smooth. The key for the construction is
Wang’s equation (5.4). We will now write this equation slightly differently. Consider
the logarithmic density u of a Blaschke metric g given by g = g̃(σ, q) = eu(σ,q)σ .
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Then Wang’s equation (5.4) is equivalent to the following semilinear elliptic partial
differential equation for u:

�σu = 2eu − 4e−2u |q|
2

σ 3 − 2. (5.11)

Equation (5.11) has a unique smooth solution u for any given (σ, q) ∈ Q̃3(S) (Recall
Proposition 5.1).

Lemma 5.12 Let SQ ⊂ Q̃3(S) be a slice as in (5.8). Then the map g̃
∣∣SQ : SQ →

Mk,α
− is smooth.

Proof Writing g = euσ , where u satisfies (5.11), it suffices to show that the map
(σ, q) �→ u(σ, q) ∈ Ck,α(S) is smooth on SQ. Define a map F : SQ × Ck,α(S)→
Ck−2,α(S) by

F((σ, q), u) = �σu − 2eu + 4e−2u |q|
2

σ 3 + 2.

Then u(σ, q) is given implicitly by F((σ, q), u(σ, q)) = 0
We claim that the map F is smooth. The smoothness of the map S × Ck,α(S) �

(σ, u) �→ �σu ∈ Ck−2,α(S) follows from the coordinate expression (with summation
convention)

�σu = σ k�∂2k�u + ∂kσ
k�∂�u + σ k�

2 det σ
∂k(det σ)∂�u.

The map Ck,α(S) � u �→ eu ∈ Ck,α(S) is smooth because the exponential map is

smooth. Finally, the map (σ, q) �→ |q|2
σ 3 is seen to be smooth by expressing q(σ ) =

∑5G−5
k=1 bkqk(σ ) in terms of an orthonormal frame, where bk ∈ C, and noting that
|q|2
σ 3 =

∑

k,�

bkb̄� qk(σ )q�(σ )

σ 3 .

We then show the partial derivative ∂u F
∣∣
((σ,q),u)

: Ck,α(S) → Ck−2,α(S) is an
isomorphism. Computing the derivative of F with respect to u at a fixed (σ, q) gives

∂u F
∣∣
((σ,q),u)

v = �σ v − 2euv − 8e−2u |q|
2

σ 3 v = (�σ − 2eu − 8e−2u |q|
2

σ 3 )v.

We observe that P := ∂u F
∣∣
((σ,q),u)

= �σ −2eu−8e−2u |q|
2

σ 3 : Ck,α(S)→ Ck−2,α(S)

is a bounded linear operator. It has trivial kernel: if v ∈ Ck,α(S) satisfies Pv = 0 we
have, by the divergence theorem,

0 = 〈Pv, v〉L2
σ (S) = −‖dv‖2L2

σ (S)
− ∥∥(2eu + 8e−2u |q|

2

σ 3

)1/2
v
∥∥2
L2

σ (S)
,
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implying that v = 0. To see that it is surjective, consider w ∈ Ck−2,α(S) ⊂ Hk−2(S).
Since P is self-adjointwith respect to the L2

σ inner product, it has index 0 as an operator
P : Hk(S) → Hk−2(S) (see [52, Theorem 8.1]) and thus it is surjective since it is
injective. So there exists v ∈ Hk(S) so that Pv = w ∈ Ck−2,α(S), and by elliptic
regularity we see that v ∈ Ck,α(S). Since ∂u F

∣∣
((σ,q),u)

= P : Ck,α(S) �→ Ck−2,α(S)

is a continuous bijection between Banach spaces, it is an isomorphism by the open
mapping theorem. Since SQ is a finite dimensional manifold, by the Banach manifold
implicit function theorem (see, e.g. [35, Theorem I.5.9]), the function u = u(σ, q) is
smooth and therefore g̃(σ, q) = eu(σ,q)σ is smooth. ��

We now continue our discussion involving the S1 action on Q̃3(S) and Q3(S)

mentioned in Sect. 5.2. The S1 action on Q̃3(S) restricts to an action on each slice
SQ, and the identification map πSQ is equivariant with respect to it. Moreover it is
smooth, proper and free on SQ∗ = SQ \O and on Q∗3(S) := Q3(S) \O (whereO is
the zero section, which is canonically identified with T (S)). We obtain

Corollary 5.13 The respective quotients Q∗3(S)/S1 and SQ∗/S1 are smooth manifolds
of real dimension 16G − 17.

The following viewpoint of Q∗3(S)/S1 will be used in later proofs.

Remark 5.14 Since theD0 and S1 actions on Q̃3(S) commute with each other, we can
identify Q∗3(S)/S1 ∼= ((Q̃3(S)\O)/S1)/D0, that is, with the S1 quotient taken before
the D0 quotient.

Next we show in Lemma 5.15 below that g̃
∣∣SQ∗ descends to a map on SQ∗/S1

which is an immersion intoMk,α
− . Recall that, as in the finite dimensional case, a Ck

map f : E1 → E2 between Ck Banach manifolds is an immersion if for all z ∈ E1
there exists an open neighborhood Z of z such that f

∣∣
Z induces a Ck diffeomorphism

of Z onto a submanifold of E2; equivalently, if for every z ∈ E1 it has injective
differential with image that splits (see [35]). The latter condition means that d f

∣∣
z has

closed range Ran(d f
∣∣
z) and there exists a closed Banach space B ⊂ T f (z)E2 which

is complementary to Ran(d f
∣∣
z); this condition is satisfied automatically when E1 is

finite dimensional.
We remind our reader of our different notations g̃, g, g̃0, g0: the tilde is used for

maps before the D0 quotient and the subscript 0 is used for maps after taking the S1

quotient.

Lemma 5.15 (Injective differential) Let (σ0, q0) ∈ Q̃∗3(S) = Q̃3(S)\O and consider
a slice SQ∗ := SQ ∩ Q̃∗3(S) containing it, where SQ is as in (5.8) with S a slice
around σ0 as in Theorem 5.9. Suppose that for X ∈ T(σ0,q0)SQ∗ one has

dg̃
∣∣
(σ0,q0)

X = Dg0χ, χ ∈ Sk+1,α1 (S), g0 := g̃(σ0, q0),

where g̃ is viewed as a map into Mk,α
− and Dg0 is the symmetric differential (see

Sect.4.3). Then X is tangent to the S1 orbit through (σ0, q0) in SQ∗ and so it
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projects under the quotient map to the zero vector in T(σ0,〈q0〉)(SQ∗/S1). Therefore, the
descended map g̃0 : SQ∗/S1 →Mk,α

− has injective differential at (σ0, 〈q0〉) whose
image splits. The map g̃0 is an immersion from a sufficiently small neighborhood U
of (σ0, 〈q0〉) ∈ SQ∗/S1 into Mk,α

− . The image V := g̃0(U) is a 16G − 17 dimen-

sional submanifold of Mk,α
− consisting of smooth Blaschke metrics and satisfying

TgV ∩ TgO
k+1,α
g = {0} for g ∈ V , where Ok+1,α

g is the Dk+1,α
0 -orbit through g.

Proof By means of a trivialization for SQ we can identify X ∈ T(σ0,q0)SQ with a

pair (hTT , v), where hTT ∈ Tσ0S = Sσ0,T T
2 (S) and v ∈ R

10G−10. Consider a curve
αt = (σt , qt ) : (−ε, ε) → SQ∗ with α0 = (σ0, q0) and α̇0 = (hTT , v). We write
u(σ, q) for the smooth solution of (5.11) for given (σ, q) ∈ SQ∗, and we also write
ut = u(αt ), u̇t = d

dt ut , so that g0 = g̃(σ0, q0) = eu0σ0. By our hypothesis,

Dg0χ =
d

dt
g̃(σt , qt )

∣∣
t=0 =

d

dt
(eu(σt ,qt )σt )

∣∣
t=0 = eu0hTT + eu0 u̇0σ0. (5.12)

Taking the L2
g0(S) inner product of equation (5.12) with hTT ,

1

Area(S, g0)

∫

S
eu0 |hTT |2g0dvg0 + 〈g0u̇0, hT T 〉L2

g0
(S) − 〈Dg0χ, hTT 〉L2

g0
(S) = 0.

(5.13)

Since we are in dimension two, the tensor hTT is trace free and divergence free
with respect to any metric that is conformal to σ0, in particular with respect to g0.
So the second and third term of (5.13) vanish. We conclude that hTT = 0 and so
u̇0g0 = Dg0χ .

We now apply the X-ray transform I g02 on both sides of the equation u̇0g0 = Dg0χ .

Since I g02 (Dg0χ)(c) = 0 for every χ ∈ Sk+1,α1 (S) and for every closed orbit c of the
geodesic flow of g0 (see [24]), we have

0 = 1

L(c)

∫ L(c)

0
u̇0(γ (s))g(γ ′(s), γ ′(s))ds = 1

L(c)

∫ L(c)

0
u̇0(γ (s))ds = I g00 (u̇0)(c),

where the orbit c is parametrized as (γ (s), γ ′(s)) : [0, L(c)] → T 1
g0 S. By [27, The-

orem 3.6], I g00 is injective on a compact Riemannian surface (S, g0) with g0 ∈M−
(also see [12] for the higher dimensional case), therefore u̇0 = 0.

In summary, (hTT , v) = (0, v) and du
∣∣
(σ0,q0)

(hTT , v) = du
∣∣
(σ0,q0)

(0, v) = 0. So

α̇0 = ˙̃α0, where α̃t is of the form α̃t = (σ0, q̃t ), and d
dt u
(
α̃t
)∣∣
t=0 = 0. Differentiating

Wang’s equation (5.4) along α̃t and using that u̇0 = 0, we find that

0 = d

dt
|q̃t |2g0

∣∣∣
t=0 =

q̃t∂t q̃t + q̃t∂t q̃t
g30

∣∣∣
t=0 = |q̃0|

2
g0

(
∂t q̃t
q̃t
+ ∂t q̃t

q̃t

) ∣∣∣
t=0.
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Note that q̃t are all holomorphic cubic differentials with respect to J = J (σ0), so
q̃t
q̃0

is a family of meromorphic functions with respect to J . So the above equation implies
that the meromorphic function ∂t (

q̃t
q̃0

)
∣∣
t=0 on S is purely imaginary, and therefore

constant. We conclude that ∂t q̃t |t=0 = λi q̃0, λ ∈ R, which precisely characterizes
elements in the tangent space of the S1 orbit through q̃0 = q0. Thus we have the
claim. It is immediate now that dg̃0

∣∣
T(σ0,q0)(SQ∗/S1) is injective. Moreover, its image

splits because T(σ0,q0)(SQ∗/S1) is finite dimensional. Thus g̃0 is an immersion at
(σ0, 〈q0〉), and thus also in a sufficiently small neighborhood of it by definition of an
immersion, with its image being a submanifold of Mk,α

− which consists of smooth
Blaschke metrics.

For the last statement, recall that TgO
k+1,α
g consists exactly of potential symmetric

2-tensors. So

Tg0V ∩ Tg0O
k+1,α
g0 = {0}, (5.14)

by the first statement of the lemma. This implies that the same holds for a sufficiently
small neighborhood of g0. To see this, consider a smooth nonvanishing section Y (g)
of TV ⊂ TMk,α

− = Sk,α2 (S). Then by (5.14) we have ‖πkerD∗g0
Y (g0)‖Ck,α > 0, where

πkerD∗g denotes the orthogonal projection with respect to the decomposition (4.3). This

is because the potential tensor fields are precisely those which are annihilated by
πkerD∗g0

. The operator πkerD∗g is a bounded operator on Sk,α2 (S) as a pseudodifferential

operator of order 0, and it depends continuously on themetric g in aC∞ neighborhood
of g0 (see for example the proof of [24, Lemma 2.2]). Therefore, ‖πkerD∗g Y (g)‖Ck,α is

nonzero for g in a neighborhood of g0, which implies TgV ∩ TgOk+1,α
g = {0} near g0.

��
Recall that our final goal is to construct smooth charts for the Blaschke locus

MB/D0 away from T (S). In Lemma 5.15 we constructed slices V in MB ⊂Mk,α
− .

In the following lemma,we show that ifV are taken sufficiently small, then they locally
parametrize MB/D0.

Lemma 5.16 If the slice V in Lemma 5.15 is taken to be sufficiently small, then each
point of V corresponds to exactly one orbit of D0.

Proof Let gi = eu(σi ,〈qi 〉))σi ∈ V , i = 1, 2, be two metrics in the same D0 orbit, that
is, g2 = ψ∗g1 for some ψ ∈ D0. From eu(σ2,〈q2〉)σ2 = ψ∗(eu(σ1,〈q1〉)σ1), it follows
that both σ2 and ψ∗σ1 are hyperbolic metrics in the same conformal class, so it must
be the case that σ2 = ψ∗σ1. Since σ1, σ2 ∈ S and both are in the same D0 orbit, we
conclude that σ1 = σ2 by Theorem 5.9. So ψ = id by freeness of theD0 action. Thus
g1 = g2. ��

We now state our main theorem in this section.

Theorem 5.17 Away from the Teichmüller space T (S) = M−1/D0, the Blaschke
locus MB/D0 has the structure of a smooth manifold of real dimension 16G − 17.
Moreover, the map g0 : Q∗3(S)/S1→ (MB/D0)\T (S) is a diffeomorphism.
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Proof At this point, for each metric g0 ∈ MB we have constructed a local slice V
containing it and consisting of smooth Blaschke metrics. A slice corresponding to g0
is constructed as the image under g̃0 of a neighborhood U ⊂ SQ∗/S1 of g̃−10 (g0), and
via a trivialization of SQ∗ we have U ∼= S×R

10G−11. We have also shown that if V is
sufficiently small, it is in bijective correspondence with theD0 orbits passing through
it. So V parametrizes MB/D0 near [g0]. To show that the slices V together with the
corresponding maps g̃−10 : V → U define smooth charts, we have to show that they
are smoothly compatible.

Write πB : MB → MB/D0 for the natural projection with respect to the D0
quotient. Note that this map is a bijection onto its image when restricting to each slice
V . So we can set

FV : πB(V)→ U ∼= S × R
10G−11, [g] �→ g̃−10 (g),

where g is the unique element in V with g ∈ [g]. We want to show that if V = g̃0(U)

and V ′ = g̃0(U ′) are different slices whose images πB(V), πB(V ′) have nonempty
overlap, then the change of charts FV ′ ◦F−1V : U → U ′ is smooth where it is defined.
Here U ′ ⊂ (S ′)Q∗/S1 is a chart over a different slice S ′. To this end, write

FV ′ ◦ F−1V (σ, 〈q〉) = FV ′([eu(σ,〈q〉)σ ]).

Now because [g] = [eu(σ,〈q〉)σ ] ∈ πB(V) ∩ πB(V ′), there exists a unique element
eu(σ ′,〈q ′〉)σ ′ ∈ V ′ such that [eu(σ ′,〈q ′〉)σ ′] = [eu(σ,〈q〉)σ ]. Therefore, there exists an
element ψ = ψ(V,V ′, [g]) ∈ D0 such that eu(σ ′,〈q ′〉)σ ′ = ψ∗(eu(σ,〈q〉)σ ). So we
have

(σ ′, 〈q ′〉) = FV ′ ◦ F−1V (σ, 〈q〉) = g̃−10

(
eu(σ ′,〈q ′〉)σ ′

) = g̃−10

(
ψ∗(eu(σ,〈q〉)σ )

) ∈ U ′.

In other words, (σ ′, 〈q ′〉) is the unique element in U ′ such that

eu(σ ′,〈q ′〉)σ ′ = ψ∗(eu(σ,〈q〉)σ ) = eψ∗(u(σ,〈q〉))ψ∗σ.

Now σ ′ and ψ∗σ are both hyperbolic metrics in the same conformal class. Therefore
σ ′ = ψ∗σ . So by the freeness of theD0 action onM−1 we see thatψ = ψσ is unique
and is determined only by the pair σ and σ ′. In other words, it does not depend on 〈q〉.
This implies that

u(σ ′, 〈q ′〉) = ψ∗σ
(
u(σ, 〈q〉)) �⇒ u(σ ′, 〈q ′〉) = u(ψ∗σ (σ, 〈q)〉)

= u(σ ′, ψ∗σ 〈q〉) �⇒ 〈q ′〉 = ψ∗σ 〈q〉

by injectivity of the map 〈q〉 �→ u(σ, 〈q〉) for each σ . Therefore by (5.10),

(σ ′, 〈q ′〉) = FV ′ ◦ F−1V (σ, 〈q〉) = ψ∗σ (σ, 〈q〉) = (ψ∗σ σ, 〈ψ∗σq〉) = 〈�̃S,S ′(σ, q)〉.

Hence FV ′ ◦ F−1V is smooth.
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The second statement is a consequence of Lemmas 5.12 and 5.15 by taking U ⊂
SQ∗/S1 as a chart for Q∗3(S)/S1 near [(σ0, 〈q0〉)] and V = g̃0(U) as a chart for
MB/D0 near [g0] = [eu0σ0] = g0([(σ0, 〈q0〉)]). Then since g̃0 is an immersion
at (σ0, 〈q0〉), it is a diffeomorphism onto its image upon shrinking U if necessary.
Thus g0 : Q∗3(S)/S1 → (MB/D0)\T (S) is a local diffeomorphism. Because it is
bijective (Proposition 5.8), it is in fact a global diffeormorphism from Q∗3(S)/S1 to
(MB/D0) \ T (S). ��
Corollary 5.18 The quadratic formGg(·, ·) defined in Sect.4 defines aC∞ Riemannian
metric on (MB/D0) \ T (S).

Proof We saw in Proposition 4.10 that G[g](·, ·) defines a Riemannian metric on
M−/D0, so in particular on the Blaschke locus. Since the slices V we constructed are
smooth charts forMB/D0 and they are also finite dimensional smooth submanifolds
of Mk,α

− , we conclude by Proposition 4.7 that Gg restricts to a Ck−3 quadratic form
on each slice. Thus it is a Ck−3 metric onMB/D0 away from T (S). Notice however
that since by Theorem 5.17 the map g0 : Q∗3(S)/S1 → (MB/D0)\T (S) is a diffeo-

morphism regardless of the space Mk,α
− of which MB was viewed as a subset, we

see that we can choose the k arbitrarily large, concluding that the metric Gg(·, ·) on
MB/D0 is smooth away from T (S). ��

5.4 Topology of the Blaschke Locus

The results of the previous section allow us to elaborate on the topological structure
of the Blaschke locus.

Proposition 5.19 The quotient space Q3(S)/S1 is homeomorphic to MB/D0, when
the two spaces are endowed with quotient topologies resulting from C∞ topologies.

Proof Themap g0 : Q3(S)/S1→MB/D0 is bijective by Proposition 5.8, andwewill
first show that it is continuous. Each slice SQ parametrizing Q3(S) carries the smooth
structure (and topological structure) of Q3(S), see Remark 2.11, and we showed in
Lemma 5.12 that the map g̃ : SQ → Mk,α

− is smooth, so in particular continuous
(note that the smoothness also works at the zero section). This is true for any k, α, so
g̃ : SQ→M− is continuous. Therefore, writing g locally as

g = πB ◦ g̃ ◦ π−1SQ : πSQ(SQ) ⊂ Q3(S)→MB/D0 ⊂M−/D0

(see (5.9)), we see that it is continuous. Since g is constant on the orbits of the S1

action on Q3(S), the descended map g0 : Q3(S)/S1→MB/D0 is continuous.
We then show that g−10 : MB/D0 → Q3(S)/S1 is continuous. Suppose that

[g j ] j→∞→ [g] ∈ MB/D0 with the quotient topology of M−/D0. Then we can
consider lifts g j = eu j σ j of [g j ] to a slice W ⊂M− about a lift g = euσ ∈M− of
[g] as in Section 4.4, which converge to g in C∞. Here σ j , σ ∈M−1. Then we have
that σ j = λ(g j )

j→∞→ λ(g) = σ in C∞, where λ is the Poincaré map. Now fix a large
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integer k, and α ∈ (0, 1). The σ j do not necessarily lie in a slice S ⊂Mk,α
−1 through

σ as in Theorem 5.9, but for such a slice there exist diffeomorphisms ψσ j ∈ D0 such
that5 ψ∗σ j

σ j ∈ S. Moreover, ψσ j depend continuously on σ j in the Ck+1,α topology.

So since σ j → σ ∈ S, it follows that ψσ j → id in Ck+1,α . Therefore, ψ∗σ j
g j → g in

Ck,α , and we have λ(ψ∗σ j
g j ) = ψ∗σ j

λ(g j ) ∈ S and

g−10 ([g j ]) = [̃g−10 (g j )] = [ψ∗σ j
g̃−10 (g j )] = [̃g−10 (ψ∗σ j

g j )].

Thus wemay replace our assumption that g j → g inC∞ with the assumption g j → g
in Ck,α , where σ j = λ(g j ) ∈ S converge to σ = λ(σ) in Ck,α , and we want to show
that [̃g−10 (g j )] → [̃g−10 (g)] =: [(σ, 〈q〉)]. As already mentioned in Remark 5.10,
S � σ j → σ in Ck,α actually implies that σ j → σ in C∞.

So now we would like to show that 〈q j 〉 → 〈q〉 in SQ/S1. Notice that by Wang’s
equation (5.4), for any q j , q such that g j = g̃(σ j , q j ), g = g̃(σ, q), one has |q j |2g j

→
|q|2g in Ck−2,α and therefore in particular in C0. Moreover, since g j = eu j σ j →
g = euσ and σ j → σ in C0 we conclude that u j → u in C0. Therefore, |q j |2σ j

=
e3u j |q j |2g j

→ |q|2σ = e3u |q|2g in C0. In particular,
∫
S |q j |2σ j

dvσ j →
∫
S |q|2σdvσ . Now

(q, q ′) �→
∫

S

qq ′

σ 3 dvσ (5.15)

is a continuous Hermitian inner product on the fibers of SQ, so we can choose a
local orthonormal frame {q̂�(σ )}5G−5�=1 with respect to it and write q j =∑� b

�
j q̂�(σ j ),

q =∑� b
�q̂�(σ ) for b�, b�

j ∈ C. Then

∑

�

|b�
j |2 =

∫

S
|q j |2σ j

dvσ j

j→∞→
∫

S
|q|2σdvσ =

∑

�

|b�|2.

In particular, the sequence b j = (b1j , . . . , b
5G−5
j ) ∈ C

5G−5 is bounded, and for any

limit point b̃ ∈ C
5G−5 of it, the cubic differential q̃(σ ) =∑� b̃

�q̂�(σ ) is holomorphic
with respect to the conformal structure determined by σ and satisfies |q̃|2σ = |q|2σ .
If q ≡ 0, then we have b̃ = 0, and thus q j → q. If q �≡ 0, then the ratio q̃/q
defines a meromorphic function on (S, J (σ )), and since |q̃/q|2 = |q̃|2σ /|q|2σ = 1, it
has values in S1. This implies that it is constant, and therefore q̃ = e2π iθq, θ ∈ [0, 1).
We conclude that 〈q j 〉 → 〈q〉 in SQ in the S1 quotient topology originating from C0,
which is equivalent to the one originating from C∞. Therefore, [(σ j , 〈q j 〉)] converges
to [(σ, 〈q〉)] in Q3(S)/S1. ��

Using Proposition 5.19, we now have:

Theorem 5.20 MB/D0 is a 16G − 17 dimensional connected contractible space.

5 A priori, ψσ j are only C
k+1,α , but because σ j are all smooth and the slice S consists of smooth metrics,

they are actually smooth, see the proof of [57, Theorem 2.3.1].
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Proof Each fiber of Q3(S)/S1 is isomorphic to C
n/S1, where n = 5G − 5, by the

Riemann-Roch Theorem. Taking away 0 from C
n , we have the following homeomor-

phism (actually diffeomorphism),

(Cn \ {0})/S1 −→ (0,∞)× CPn−1,
〈
(z1, · · · , zn)

〉 �−→ (
∣∣(z1, · · · , zn)

∣∣,
⌊
z1, · · · , zn

⌋
).

Here
〈 · 〉 denotes the equivalence class for the S1 action that identifies (z1, z2, · · · , zn)

with e2π iθ (z1, z2, · · · , zn) for any θ ∈ [0, 1) and ⌊ · ⌋ denotes the equivalence class
for projective lines in C

n .
Therefore C

n/S1 is homeomorphic to the cone given by
([0,∞) × CPn−1)/∼.

The relation “ ∼ " glues {0} × CPn−1 to a single point and is trivial otherwise. A
deformation retraction of

([0,∞)× CPn−1)/∼ to a point is given by ft ({(r , x)}) =
{((1 − t)r , x)} ∈ ([0,∞) × CPn−1)/∼. Here r ∈ [0,∞), x ∈ CPn−1 and {(r , x)}
denotes the equivalence class of (r , x) in

([0,∞) × CPn−1)/∼. Since MB/D0 is
homeomorphic to Q3(S)/S1 and Q3(S) is a trivial vector bundle over the contractible
space T (S), we conclude thatMB/D0 is homeomorphic to the product space of T (S)

and ([0,∞)× CPn−1)/∼. The result follows. ��
Remark 5.21 The proof of Theorem 5.20 shows that MB/D0 is topologically the
product of T (S) with a cone having as base the compact manifold CPn−1. This
implies that it can be viewed as a wedge or “manifold” with edges in the sense of
[51, p.266], with the difference that here the edge T (S) is not a closed manifold. It
would be interesting to know whether the covariance metric actually behaves like (a
conformal multiple of) an edge-type metric near T (S) (see [43, §2]), though we have
not pursued this.

We conclude with the relation between the Blaschke locusMB/D0 and the Hitchin
componentH3(S). The following corollary is an immediate consequence of Theorem
2.10 and Proposition 5.19.

Corollary 5.22 The S1 action on Q3(S) induces a S1 action on H3(S) by the Hitchin
mapH : Q3(S)→ H3(S).Denote the quotient space byH3(S)/S1 and the descending
map by H0 : Q3(S)/S1→ H3(S)/S1. Then the composition

� := g0 ◦H−10 : H3(S)/S1→MB/D0

is amapping class group equivariant homeomorphism, where themapping class group
actions on H3(S)/S1 (as outer automorphism group action) and on MB/D0 are the
left actions introduced in Sect.3.

6 Geodesics inMB/D0

We will study some families of geodesics with respect to the covariance metric in the
Blaschke MB/D0. In Sect. 6.1, we identify some geodesics in MB/D0 leaving all

123



145 Page 42 of 54 X. Dai, N. Eptaminitakis

compacts sets, using the Hitchin orbifold representations introduced in Sect. 2.3, and
we estimate their lengths with respect to covariance metric in Subsection 6.2.

6.1 Geodesics in the LocusMB/D0

Throughout this section, we fix a presentation Y � [S/�] of an orbifold Y , where
� is a finite subgroup of the diffeomorphism group D of the surface S. Moreover,
we assume that Y = YJ descends from a Riemann surface X J = (S, J ) so that
Y � [X J /�]. In [4], the orbifolds of negative Euler characteristic with 1-dimensional
Hitchin components are classified. These are non-orientable orbifolds. In particular,
for Hit(π1Y ,PGL(3,R)), one has

Proposition 6.1 ( [4, Theorem 6.5]) Let Y be a non-orientable orbifold of negative
Euler characteristic. Then we have dim Hit(π1Y ,PGL(3,R)) = 1 if and only if the
orientable double cover Y+ of Y satisfies one of the following:

(1) Y+ is a sphere with 4 cone points of respective orders m1 = m2 = m3 = 2 and
m4 ≥ 4.

(2) Y+ is a sphere with 3 cone points of respective orders m1 ≥ 3, m2 ≥ 3 and
m3 ≥ 4.

By Theorem 3.1, the space Hit(π1Y ,PGL(3,R)) is homeomorphic to the one-
dimensional space H3(Y ) := Fix�H3(S). Among the examples of orbifolds Y �
[X J /�] given in Proposition 6.1, there are examples of H3(Y ) ⊂ H3(S) which are
parametrized by a single holomorphic cubic differential. These are

Proposition 6.2 [ [4, Theorem 5.5, Theorem 6.6]] Suppose dimH3(Y )=1 andH3(Y )

is parametrized by a single non-vanishing cubic differential, then Y+ must be a sphere
with 3 cone points of respective orders m1 ≥ 3, m2 ≥ 3 and m3 ≥ 4.

Remark 6.3 The Teichmüller space T (Y+) for the orbifolds Y+ in Proposition 6.2
(spheres with 3 cone points) is of dimension 0 (see [56, Corollary 13.3.7]). Therefore
Y+, which is the orientable double cover of Y , has a unique complex structure and
Y also inherits a unique “complex structure”, presented as Y = YJ � [X J /�] (see
Remark 2.13).

From now on, we restrict our interest to orbifolds Y = YJ for which H3(Y )

is one dimensional and is parametrized by a single non-vanishing holomorphic
cubic differential. Recall that elements in � act on X J as holomorphic or anti-
holomorphic maps and Y � [X J/�]. For Y arising from Proposition 6.2, the vector
space Fix�H0(X J , K 2

J ) is trivial. So in these cases, we have a homeomorphism

Fix�H0(X J , K 3
J )

HJ� H3(Y ) given by the Hitchin parametrization (recall Proposi-
tion 3.2). Because H3(Y ) is a real one-dimensional subspace of H3(S), the vector
space Fix�H0(X J , K 3

J ) = {q ∈ H0(X J , K 3
J ) | ψ A · q = q,∀ψ ∈ �} is also real

one-dimensional. It is formed by the real span of a single holomorphic cubic differ-
ential q.
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To further consider the counterpart ofH3(Y ) inMB/D0, we need to discuss the S1

action onH3(Y ) and Fix�H0(X J , K 3
J ) ⊂

3⊕

i=2
H0(X J , Ki

J ) (recall Sect. 5.2). We first

need the following lemma which allows us to identify the Hitchin parametrization HJ

and the Hitchin map H on some special fibers:

Lemma 6.4 For any complex structure J , when restricting to H0(X J , K 3
J ), the com-

position of the inverse of the Hitchin map H−1 and the Hitchin parametrization HJ

H−1 ◦ HJ :
3⊕

i=2
H0(X J , K

i
J )→ H3(S)→ Q3(S)

satisfies

H−1 ◦ HJ |H0(X J ,K 3
J )
= Id|H0(X J ,K 3

J )
,

where H0(X J , K 3
J ) is identified with H0(X[J ], K 3[J ]).

Proof TheHitchinmapH : Q3(S)→ H3(S) is a homeomorphism andH([(J , q)]) =
HJ (0, q) for any representative (J , q) in [(J , q)] ∈ Q3(S). Equivalently, one has that
H−1 ◦ HJ (0, q) = [(J , q)] ∈ H0(X[J ], K 3[J ]) is the identity map. ��

Regarding to the S1 action on H3(Y ) with Y = YJ arising from Proposition 6.2,
we have

Lemma 6.5 The S1 action on H3(S) induces a two-to-one identification on H3(Y )

except at HJ (0). The quotient ofH3(Y ) by the Z2 action induced from the S1 action,
denoted by H3(Y )/Z2, is homeomorphic to R+ = [0,∞).

Proof The Hitchin parametrization HJ is �-equivariant and is a homeomor-
phism between Fix�H0(X J , K 3

J ) and H3(Y ) by Proposition 3.2. After identifying
Fix�H0(X J , K 3

J ) with Fix�H0(X[J ], K 3[J ]) and HJ with H by the previous lemma,

the S1 action on Q3(S) induces a Z2 action on Fix�H0(X J , K 3
J ) = spanR(q) ⊂

3⊕

i=2
H0(X J , Ki

J ). Moreover, this Z2 action identifies tq with −tq for any t ∈ R/{0}.
The identification is trivial when t = 0. We obtain that the quotient H3(Y )/Z2 is
homeomorphic to the half line R+ = [0,∞). ��

With what we have obtained, we are able to show the following lemma. It suggests
that the half line given byH3(Y )/Z2 provides a (unparametrized) geodesic inMB/D0
via the map � : H3(S)/S1→MB/D0 defined in Corollary 5.22.

Lemma 6.6 The set �(H3(Y )/Z2) ⊂MB/D0 is a fixed point set of the group action
of �, where � ≤ D is identified with a finite subgroup of Mod±(S).
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Proof If ψ ∈ � is orientation-preserving, then the fact that every point in
�(H3(Y )/Z2) is fixed by [ψ] follows fromCorollary 5.22 and the definition ofH3(Y ).
Otherwise, if ψ ∈ � is orientation-reversing, then it is an anti-holomorphic map with
respect to X J . We have ψ∗q ∈ H0(X−J , K 3−J ) for q ∈ H0(X J , K 3

J ). Notice that

�(H3(Y )/Z2) = g0 ◦ H−10

(
H3(Y )/Z2

) = g0
(
Fix�H0(X J , K 3

J )/Z2

)
, by Lemma

6.4. For q ∈ Fix�H0(X J , K 3
J ), the fact that ψ

A · q = q implies, by the discussion in
Subsection 3.3,

ψ∗q = κ−1ψ ◦ q ◦ ψ = τψ−1 ◦ q ◦ ψ = (ψ A)−1 · q = q.

Together with the observation that the solution of equation (5.4) is invariant under
the complex conjugation z → z and q → q , we obtain [ψ]∗g0([(J , 〈q〉)]) =
g0([(−J , 〈q〉)]) = g0([(J , 〈q〉)]). Here we made use of Remark 5.7. So [ψ] ·
g0([(J , 〈q〉)]) = [ψ−1]∗g0([(J , 〈q〉)]) = g0([(J , 〈q〉)]) and g0([(J , 〈q〉)]) is a fixed
point of the induced left action of �. ��

We further have

Theorem 6.7 Let Y be a non-orientable orbifold of negative Euler characteristic with
orientation double cover Y+ given by the cases in Proposition 6.2. Then H3(Y )/Z2
embeds as a (unparametrized) geodesic in MB/D0 with respect to the covariance
metric G(·, ·).
Proof By Proposition 6.2 and Lemma 6.5, the set �(H3(Y )/Z2) is homeomorphic to
a half lineR+ inMB/D0. By Lemma 6.6, the set�(H3(Y )/Z2) is pointwise fixed by
the action of the group � ≤ Out(π1S) ∼= Mod±(S). Because Mod±(S) is a subgroup
of isometries of the covariance metric G(·, ·) on MB/D0 and a one dimensional
connected subset pointwise fixed by a subgroup of isometries must be a geodesic
(see [31, Theorem 5.1]), we conclude that H3(Y )/Z2 embeds as a (unparametrized)
geodesic inMB/D0. ��

6.2 Infinite Length Geodesics

In this subsection, we estimate lengths of certain families of curves in the Blaschke
locus MB/D0 with respect to the covariance metric; some of them are geodesics, as
mentioned in the last part of Sect. 6.1. Specifically, fix a complex structure J on S and
let σ ∈M−1 be the corresponding hyperbolic metric. Let q be a nonzero holomorphic
cubic differential with respect to J and consider the curve {gt = eutσ : t ≥ 0} ⊂MB ,
where, as in (5.11), for each t ≥ 0 the logarithmic density ut satisfies

�σut = 2eut − 4te−2ut |q|
2

σ 3 − 2. (6.1)

With gt = eutσ , (6.1) is equivalent to Wang’s equation (5.4) given by Kgt = −1 +
2|√t q|2gt . Our goal is to estimate the length of the curve {[gt ]}t≥0 ⊂ MB/D0. We
start with some preliminaries.
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6.2.1 Some Estimates for Blaschke Metrics

The following Lemma benefits from communication with Michael Wolf.

Lemma 6.8 The logarithmic density ut of the Blaschke metric gt is monotone increas-
ing with respect to the parameter t when t ≥ 0.

Proof This is proved more generally in [13, Proposition 4.1]. For completeness, we
include a proof for the case we need. Taking a time derivative of (6.1), we find that

�σ u̇t = 2
(
eut + 4e−2ut t |q|

2

σ 3

)
u̇t − 4e−2ut |q|

2

σ 3 . (6.2)

By elliptic regularity, equation (6.2) implies that u̇t ∈ C∞(S). We prove that u̇t > 0
for all t ≥ 0. Suppose that this is not the case for some t ≥ 0, so that for this t one has
u̇t (p) ≤ 0 for a p on S where the minimum of u̇t is attained. Consider the operator
L = −�σ + 2eut . We rewrite equation (6.2) as

Lu̇t = 4e−2ut |q|
2

σ 3 (1− 2t u̇t ). (6.3)

In a small neighborhoodU of p,we have (1−2t u̇t ) ≥ 0,which implies that Lu̇t
∣∣
U ≥ 0.

So by the strong maximum principle [18, Section 6.4, Theorem 4(ii)], u̇t is constant
on U . If u̇t

∣∣
U ≡ 0, then q = 0 on U , and thus everywhere, which contradicts our

assumption. If on the other hand u̇t
∣∣
U < 0, then the left hand side of (6.3) is negative

on U whereas the right hand side is non-negative, and this is a contradiction. ��
We will need the following result, due to Loftin:

Proposition 6.9 ( [39, Proposition 4.02]) If ut satisfies equation (6.1) with respect to
the hyperbolic metric σ and the holomorphic cubic differential q for t ≥ 0, then

0 ≤ ut ≤ log
(
R
(
max
S

{ t |q|2
σ 3

}))
,

where R(a) is the largest positive root of the polynomial pa(x) = 2x3 − 2x2 − 4a.

Lemma 6.10 The polynomial pa(x) = 2x3 − 2x2 − 4a has a unique positive root

provided a ≥ 0, and if we set xt as the positive root of x3 − x2 − 2max
S

{
t |q|2
σ 3

}
, we

have

lim
t→∞

xt
t1/3
=
(
2max

S

{ |q|2
σ 3

})1/3
.

Proof The fact that the polynomial pa(x) has a unique positive root for a ≥ 0 is clear
if a = 0. If a > 0, we know that a real root exists and any real root xa satisfies
x2a (xa − 1) = 2a. Thus a real root xa satisfies xa > 1. Taking the derivative, we find
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that p′a(xa) > 0. Therefore there cannot be more than one positive real roots, because
between any two roots for which p′a > 0 there has to be at least one more root and pa

has at most three real roots in total. Write b = 2max
S

{ |q|2
σ 3

}
> 0; we look for x > 0

satisfying x3 − x2 − bt = 0, for t > 0 large. Set z = x/t1/3 and s = t−1/3. Notice
that (x, t) �→ (z, s) is a bijection on (0,∞) × (0,∞), so x3 − x2 − bt = 0 with x ,
t > 0 exactly when

F(z, s) := z3 − z2s − b = 0, z, s > 0.

The function F satisfies F(b1/3, 0) = 0 and is smooth near (z, s) = (b1/3, 0). Since
∂z F(b1/3, 0) = 3b2/3, by the implicit function theorem we conclude that in a neigh-
borhood of (b1/3, 0), the equation F(z, s) = 0 holds if and only if z = f (s) for a
smooth function f defined in a neighborhood of s = 0. Denoting by xt the positive
solution of x3 − x2 − bt = 0,

lim
t→∞

xt
t1/3
= lim

t→∞ f (t−1/3) = lim
s→0

f (s) = b1/3.

��
Loftin proves the following result regarding the asymptotic behavior of theBlaschke

metrics gt when t →∞ (see also [55, Theorem 3.8]).

Theorem 6.11 ( [40, Proposition 1]) The family of Blaschke metrics gt given by

equation (6.1) degenerates to the singular flat metric |q| 23 associated to the cubic
differential q (up to some scaling) in the following sense: when t →∞, we have

t−
1
3 gt → 2

1
3 |q| 23 ,

uniformly on every compact subset of the complement of the zeros of q in S.

6.2.2 Length Estimates

The following proposition shows that any curve in the space MB/D0 corresponding
to a ray in a fixed fiber of the bundle Q3(S) has infinite length with respect to the
covariance metric.

Theorem 6.12 Let σ be a hyperbolic metric on S and q be a nonzero cubic differential
which is holomorphic with respect to the complex structure determined by σ and an
orientation. Then the projection {[gt ]}t≥0 ⊂MB/D0 of the curve gt = {eutσ }t≥0 ⊂
MB, where ut satisfies equation (6.1), has infinite lengthwith respect to the covariance
metric.

Proof By Lemma 4.9, for given class [g] ∈ M−/D0, the norm of an element ĥ ∈
T[g](M−/D0)with respect to the covariancemetric is given byGg(h, h)1/2, where g is
a representative in [g], h ∈ TgM− is a lift of ĥ, andGg(·, ·) is the bilinear form defined
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in Definition 4.4. Thus the length of the segment γT := {[gt ] : t ∈ [0, T ]} ⊂MB/D0
is given by

L(γT ) =
∫ T

0

√
Ggt

(
∂t (gt ), ∂t (gt )

)
dt .

We will show that

lim
T→∞ L(γT ) = ∞.

To simplify notation, we denote ht := ∂t (gt ). We have, according to Definition 4.4,

Ggt (ht , ht ) = 〈�gt
2 ht , ht 〉L2(T 1Sgt )

= 〈�gtπ∗2 ht , π∗2 ht 〉 + |〈1, π∗2 ht 〉L2(T 1Sgt )
|2

Note that ht = u̇t gt . Since π∗2 ht (v) = π∗2 (u̇t gt )(v) = π∗0 (u̇t )(v) for v ∈ T 1Sgt , we
have6

Ggt (ht , ht ) = 〈�gtπ∗0 u̇t , π∗0 u̇t 〉 + |〈1, π∗0 u̇t 〉L2(T 1Sgt )
|2

≥ |〈1, π∗0 u̇t 〉L2(T 1Sgt )
|2 = |〈1, u̇t 〉L2(S,dvgt )

|2
Area(S, gt )2

,

where the inequality follows by Theorem 4.2. Note that above we wrote 〈·, ·〉L2(S,dvgt )= Area(S, gt )〈·, ·〉L2
gt (S).

We now examine u̇t in more detail. Since our manifold is two dimensional, we have
�σ = eut�gt , thus from (6.2) it follows that

�gt u̇t =
(
2+ 8

t |q|2
g3t

)
u̇t − 4

|q|2
g3t

. (6.4)

Now integrate (6.4) over S with respect to the gt area form: by the divergence
theorem,

∫
S �gt u̇t dvgt = 0 and therefore

〈(
2+ 8

t |q|2
g3t

)
u̇t , 1

〉

L2(S,dvgt )

= 4

〈 |q|2
g3t

, 1

〉

L2(S,dvgt )

.

The curvature of gt is given by Kgt = 2t |q|
2

g3t
− 1 (recall equation (5.4)), therefore

〈(6+ 4Kgt )u̇t , 1〉L2(S,dvgt )
= 4

〈 |q|2
g3t

, 1

〉

L2(S,dvgt )

.

6 Recall that the Liouville measure is of total mass 1, so locally dμL
g = dθdvg

2πArea(S,g) .
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Using the fact that u̇t ≥ 0 (by Lemma 6.8) and that Kgt < 0 (by Proposition 5.5), we
find

〈u̇t , 1〉L2(S,dvgt )
≥ 〈(1+ 2

3
Kgt )u̇t , 1〉L2(S,dvgt )

= 2

3

〈 |q|2
g3t

, 1

〉

L2(S,dvgt )

.

(6.5)

We now seek for a lower bound for the right hand side. Since dvgt = eut dvσ , we have

〈 |q|2
g3t

, 1

〉

L2(S,dvgt )

=
∫

S
e−2ut |q|

2

σ 3 dvσ ≥ 1

x2t

∫

S

|q|2
σ 3 dvσ ;

the inequality is by Proposition 6.9, where xt is the positive root of the polynomial

x3 − x2 − 2max
S

{
t |q|2
σ 3

}
. Thus by Lemma 6.10, there exists a positive constant Cq,σ

and T0 > 0 depending on Cq,σ such that for t ≥ T0 one has

〈 |q|2
g3t

, 1

〉

L2(S,dvgt )

≥ Cq,σ t
−2/3.

On the other hand, we have Area(S, gt ) ≤ Dqt
1
3 +2π |χ(S)| (see [46, Lemma 3.4])

where Dq is a positive constant depending only on q and χ(S) is the Euler character-
istic of S. Combining this with equation (6.4) and equation (6.5), and adjusting T0 if
necessary, we can find a positive constant C ′q,σ so that for t � T0,

√
Ggt (ht , ht ) ≥ C ′q,σ t

−1.

Hence we obtain, for T ≥ T0,

L(γT ) ≥ L(γT0)+ C ′q,σ

∫ T

T0
t−1dt T→∞→ ∞.

��
Corollary 6.13 The geodesics H3(Y ) given in Theorem 6.7 have infinite length with
respect to the covariance metric.
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Appendix A: Some Further Estimates for the Covariance Metric in
MB/D0

We collect in this appendix some estimates for the covariance metric in the Blaschke
locus MB/D0. One first interesting question is to understand the behavior of the
covariance metric G(·, ·) at the Fuchsian locus T (S) ⊂MB/D0. Given [σ ] ∈ T (S),
we know that this metric restricts to a scalar of theWeil-Petersson metric on T[σ ]T (S);
However, the behavior of the covariance metric G(·, ·) at [σ ] on directions that are
transverse to Fuchsian locus T (S) inMB/D0 remains unclear.

Our first estimate is along directions tangential to the family of equivalence classes
of Blaschke metrics {[gt ]}t≥0 ⊂MB/D0 that lifts to the curve given by {gt = eutσ :
t ≥ 0} ⊂MB described by equation (6.1), so that σ is a representative in the class
[σ ]. These represent vectors tangential to fiber directions of the bundle Q3(S)/S1.

Proposition A.1 Let σ be a hyperbolic metric on S. Fix a holomorphic cubic differ-
ential q with respect to the complex structure corresponding to σ and an orientation.
Suppose ĥ0 ∈ T[g0]M−/D0 is a vector that lifts to h0 := ∂t (gt )|t=0 ∈ TσM−, where
{gt }t≥0 are solutions of equation (6.1) with g0 = σ . Then

G[σ ]
(̂
h0, ĥ0

) ≥ 1

π2|χ(S)|2 ‖q‖
4
σ .

where ‖q‖σ is the L2 norm of q with respect to inner product (5.15) and χ(S) is the
Euler characteristic.

Proof By Lemma 4.9, the computation can be lifted to MB , and we just need to
estimate Gσ (h0, h0). Recall that

Gσ (h0, h0) = Var(Pσ (π∗2 h0), μL
σ )+ 〈π∗2 h0, 1〉2L2(T 1Sσ )

.

The first part, which equals 〈�σ π∗2 h0, π∗2 h0〉, is nonnegative (Theorem 4.2). We esti-
mate the second part. Note that gt = eutσ and h0 = u̇0σ . From equation 6.4, we
have

(�σ − 2)u̇0 = −4|q|2σ ,
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so

〈π∗2 h0, 1〉L2(T 1Sσ ) =
∫

T 1Sσ

π∗0
(− 4(�σ − 2)−1

(|q|2σ
))

π∗2 σdμL
σ

=
∫

T 1Sσ

π∗0
(− 4(�σ − 2)−1

(|q|2σ
))
dμL

σ .

Since −(�σ − 2)−1 is a self-adjoint positive operator and −(�σ − 2)−1(1) = 1
2 , we

obtain

〈π∗2 h0, 1〉L2(T 1Sσ ) =
1

Area(S, σ )

∫

S
4|q|2σ

(− (�σ − 2)−1(1)
)
dvσ

= 1

π |χ(S)|
∫

S
|q|2σdvσ = 1

π |χ(S)| ‖q‖
2
σ ,

using the Gauß-Bonnet theorem. This gives the conclusion. ��
The inequality can be strengthened to strict inequality because of the following two

lemmas.

Lemma A.2 Suppose g ∈M− and h ∈ S2(S) is conformal to g, then

〈�gπ∗2 h, π∗2 h〉 = 0

if and only if h = Cg, where C is a constant.

Proof Let’s assume h = f g, with f ∈ C∞(S). If suffices to show that

〈�gπ∗0 f , π∗0 f 〉 = 0

is equivalent to f being a constant function. The proof for this is similar to the proof
for [22, Lemma 4.6]. Let � = (1 − �G)1/2, where �G is the (negative) Laplace-
Beltrami operator with respect to the Sasaki metric on T 1Sg; then for any m, s ∈ R,
�s : Hm(T 1Sg) → Hm−s(T 1Sg) is an invertible bounded self-adjoint operator. So
by Theorem 4.2, the composition �−2 s�g : Hs(T 1Sg)→ Hs(T 1Sg) is bounded for
s > 0. Moreover, we know from equation (4.1) and Theorem 4.2,

〈�−2s�gπ∗0 f ′, π∗0 f ′〉Hs (T 1Sg)

= 〈�gπ∗0 f ′, π∗0 f ′〉L2(T 1Sg) ≥ 0 for all f ′ ∈ Hs(S),

so �−2s�g is also positive on Hs(T 1Sg). It follows that �−2s�g is self-adjoint
on Hs(T 1Sg), and as such it has a self-adjoint square root R which is bounded on
Hs(T 1Sg), with the property �2s�g = R2 = R∗R. Thus,

0 = 〈�gπ∗0 f , π∗0 f 〉L2(T 1Sg) = 〈�−2s�gπ∗0 f , π∗0 f 〉Hs (T 1Sg) = ‖Rπ∗0 f ‖2Hs (T 1Sg)
.
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Thus our hypothesis implies that �gπ∗0 f = �g(Pg(π∗0 f )) = 0 (recall that �g1 = 0
and Pg(π∗0 f ) = π∗0 f − 〈π∗0 f , 1〉L2(T 1Sg)). Then by Theorem 4.2, there exists w ∈
Hs(T 1Sg) such that Xgw = Pg(π∗0 f ), where Xg is the geodesic vector field on
T 1Sg . Therefore, for every closed orbit c of the flow of Xg , parametrized as φ·(z) :
[0, L(c)] → T 1Sg ,

0 = 1

L(c)

∫ L(c)

0
(Pg(π

∗
0 f ))(φt (z))dt = 1

L(c)

∫ L(c)

0
π∗0
(
f − 〈 f , 1〉L2

g(S)

)
(φt (z)

)
d

t = I g0
(
f − 〈 f , 1〉L2

g(S)

)
(c). (.6)

By the injectivity of the X-ray transform for negatively curved metrics ( [27]), f =
〈 f , 1〉L2

g(S), i.e., a constant. ��
Lemma A.3 The solution u̇t of equation (6.2)

�σ u̇t =
(
2eut + 8e−2ut t |q|

2

σ 3

)
u̇t − 4e−2ut |q|

2

σ 3

cannot be constant for any t ≥ 0 unless q ≡ 0.

Proof We prove the claim by contradiction. Suppose u̇t = ct and q �≡ 0. Recall that
gt = eutσ satisfies

�gt u̇t =
(
2+ 8t

|q|2
g3t

)
u̇t − 4

|q|2
g3t

.

This yields:

(4− 8tct )
|q|2
g3t
= 2ct �⇒ |q|2

g3t
= 2ct

(4− 8tct )
.

This is impossible for any t ≥ 0, because q is nonzero and the left hand side only
vanishes at the finite zeros of q, while the right hand side is constant. This yields the
claim. ��
Corollary A.4 Fix a holomorphic cubic differential q with respect to the complex
structure corresponding to the hyperbolic metric σ and an orientation. Suppose
[gt ] ∈ MB/D0 lifts to the solutions {gt } of equation (6.1) and ĥt ∈ T[gt ]MB/D0
lifts to ht = ∂t (gt ). Then

〈�gtπ∗2 ht , π∗2 ht 〉 > 0.

In particular, this implies

G[σ ](̂h0, ĥ0) >
1

π2|χ(S)|2 ‖q‖
4
σ .
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Proof Since gt = eutσ and ht = u̇t gt , the first statement follows from Lemma A.2
and Lemma A.3. The second statement is a special case at t = 0 combined with
Proposition A.1. ��

It would be desirable to obtain a concise explicit formula for G[σ ]
(̂
h0, ĥ0

)
men-

tioned above. We conclude with a partial answer to this question following from [26].
It would be of interest to know whether the formula below can be further simplified.

Proposition A.5 Under the same assumptions of Proposition A.1, we have

G[σ ](̂h0, ĥ0) =
〈
4
�(1/4− L)�(1/4+ L)

�(3/4− L)�(3/4+ L)
(−�σ + 2)−14 |q|

2

σ 3 , (−�σ + 2)−14 |q|
2

σ 3

〉

L2
σ (S)

+ 1

π2|χ(S)|2 ‖q‖
4
σ ,

where �(·, ·) is the Euler Gamma function and L = i
2

√−�σ (1− P0)− 1/4, where
P0 is the orthogonal projector onto ker�σ .

Proof The proof is a direct application of [26, Lemma A.1, Remark A.2] combined
with Proposition A.1. ��
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