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Abstract: The freedom of additive manufacturing allows for the production of heat-transferring
structures that are optimized in terms of heat transfer and pressure loss using various optimization
methods. One question is whether the structural optimizations made can be reproduced by additive
manufacturing and whether the adaptations can also be verified experimentally. In this article, adjoint
optimization is used to optimize a reference structure and then examine the optimization results
experimentally. For this purpose, optimizations are carried out on a 2D model as well as a 3D model.
The material chosen for the 3D optimization is stainless steel. Depending on the weighting pairing
of heat transfer and pressure loss, the optimizations in 2D result in an increase in heat transfer of
15% compared to the initial reference structure with an almost constant pressure loss or a reduction
in pressure loss of 13% with an almost constant heat transfer. The optimizations in 3D result in
improvements in the heat transfer of a maximum of 3.5% at constant pressure loss or 9% lower
pressure losses at constant heat transfer compared to the initial reference structure. The subsequent
experimental investigation shows that the theoretical improvements in heat transfer can only be
demonstrated to a limited extent, as the fine contour changes cannot yet be reproduced by additive
manufacturing. However, the improvements in pressure loss can be demonstrated experimentally
following a cross-section correction. It can therefore be stated that with increasing accuracy of the
manufacturing process, the improvements in heat transfer can also be utilized.

Keywords: additive manufacturing; adjoint optimization; heat transferring structures; high tempera-
ture; experimental testing

1. Introduction

The elimination of many manufacturing restrictions through additive manufacturing
opens up new possibilities for the optimization of heat-transferring structures. This is
also accompanied by the practical application of various optimization techniques that
can be used to further optimize and improve structures. The optimization methods for
heat-transferring structures can basically be divided into three categories: size (parameter)
optimization, shape optimization and topology optimization. This article focuses on the
shape optimization of fins that can be used in compact heat exchangers, for example.

Size optimization is the most basic form of structural optimization. In this variant,
the geometry of a heat-transferring structure is first clearly described by corresponding
parameters, e.g., fin height, mesh size or web diameter. During the course of the optimiza-
tion, these defined geometry parameters are varied in order to determine the optimum of a
predefined target or cost function. The general shape of the structure remains unchanged;
only its size varies.

The basics for size optimization are formed by numerical and/or experimental parameter
variations of various structural parameters in order to determine the influence on heat transfer
and pressure loss. As a result, correlations are usually created which map the influences through
simple geometric relationships. The best-known examples are the geometry variations and
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derived correlations for off-set strip fins, wavy fins or louvered fins. The design freedom of
additive manufacturing further expands this parameter space and also adds new structures,
the best-known representatives of which are so-called “lattice structures” and “minimal surface
structures”. Niknam et al. [1] provided an overview of various additively manufactured struc-
tures (fins, lattice structure and minimal surface) and the parameter variations carried out, in
which the influence of parameter variation on heat transfer and pressure loss is investigated, for
example by Liang et al. [2] on various lattice structures or Tang et al. [3] on so-called “minimal
surface structures”. The disadvantage of this method lies in the restriction to fixed geometry
parameters, which means that a potential optimum is limited to the choice of geometry. Further-
more, the computational requirements of this method rise sharply with an increasing number of
parameters, which is drastically increased by the degrees of freedom of additive manufacturing
and the associated additional geometries. The possibilities of parameter optimization in the
development of heat exchangers are thus largely exhausted or can no longer be carried out with
reasonable effort, so other methods must be used to achieve further performance improvement.

In shape optimization, the entire shape of a previously defined geometry is changed.
This can be done, for example, by approximating the shape using polynomials, as presented
in Bacellar et al. [4] or Wenterodt [5], which are then modified using an optimization
criterion. Other variants of shape optimization are the manual adjustment of the shape
based on developed flow profiles, e.g., to reduce detachment areas. This method offers
the advantage that further optimization can be achieved following size optimization, for
example, by reducing areas that are unfavorable to the flow. However, this type of shape
optimization requires all flow variables to be solved again after each design change, which
also results in a considerable computational effort for increasingly complex geometries
or polynomial approximations with corresponding parameters. Shape optimization, on
the other hand, can be accelerated by applying the adjoint approach, in which only the
sensitivity of the change of the boundary to the flow variable is calculated.

Vidya [6] performed optimizations on pin fins, focusing on a single pin fin in 3D
and on a pin fin array in 2D. Through optimization, an increase in heat transfer and a
reduction in pressure loss can be achieved. Wang et al. [7] used a 3D adjoint approach
to optimize the fins of a heat exchanger to reduce the drag. Czerwinski et al. [8] used
the adjoint approach to optimize the fin geometry of a heat sink for electronics cooling to
increase the performance. Kametani et al. [9] carried out an optimization and experimental
investigation of cylinders in 3D using the adjoint approach, whereby they obtained the
turbulent variables from a direct numerical simulation for the specific optimization case.
This procedure allows for completely new structural shapes to be determined, although the
basic design or arrangement of the bodies (the topology) is retained. This approach was
extended to V-shaped oblique wavy fins by Kametani et al. [10], and they tested different
weight factors and their impact on heat transfer and pressure loss.

However, it is important to note that a high-quality mesh must be maintained during
the optimization, particularly in the case of automated shaping methods, in order to obtain
a physically plausible result. Furthermore, the choice of the turbulence model and its
implementation in an adjoint optimization has a major influence on the calculation results,
especially if a large number of design iterations are carried out, as Kühl, Müller and
Rung [11] show. It is therefore advisable to carry out a complete remeshing with high mesh
quality following the optimization in order to check the optimization results accordingly.
Ideally, an experimental investigation should also be carried out in order to check the
reproducibility of the optimizations made by the manufacturing process.

This is where this article comes in. The structures developed are mainly used in
compact heat exchangers, which are used for high-temperature fuel cell and electrolysis
systems as well as Power-to-X (“P2X”)-systems.

An example of such a heat exchanger is shown in Figure 1. This plate-and-fin heat
exchanger consists of several layers through which the hot and cold fluid flows in counter-
flow. Inside, the heat exchanger is equipped with fin-like structures that are optimized for
the additive manufacturing process.
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Figure 1. Example of an additive-manufactured heat exchanger with internal fins.

These heat exchangers must be designed in such a way that low-pressure losses are
achieved with high efficiency and a high degree of compactness, as stated in Li et al. [12],
for example, in SOFC systems. This means that the heat exchangers are only operated in the
laminar flow range, as is often the case with compact heat exchangers [13]. However, this
results in small Nusselt numbers due to the low turbulence and rapid decay of turbulent
effects. The increase in performance must therefore be achieved in particular through thin
thermal boundary layers, which, however, also causes correspondingly thin hydrodynamic
boundary layers, resulting in increased wall shear stresses and thus increased frictional
pressure losses. The aim must therefore be to develop structures in which unfavourable
areas for heat transfer are reduced in order to reduce the pressure loss and at the same
time, expand areas that have a positive effect on heat transfer. For this task, therefore,
shape optimization of fin-like structures is to be carried out, whereby the initial design
point is a manual optimization, which was carried out under heat transfer aspects. This
optimization is further refined in 2D and 3D by means of the adjoint optimization. By
varying the weights for heat transfer and pressure loss, a Pareto front is created so that
different optimized geometries are ultimately available depending on the application
focus. Two of the optimized structures are then tested experimentally to ensure that the
optimization measures can be reproduced in production.

2. Materials and Methods

The initial design for the optimizations presented in this paper is based on a parameter
variation of different fin parameters (fin height, fin spacing, fin length and fin longitudinal
displacement), which are presented in Fuchs et al. [14]. The different fin parameters are
evaluated on the basis of their entropy production number, and a parameter combina-
tion that has the lowest entropy generation is selected [15]. Based on this fin geometry,
various optimizations for high heat transfer and low-pressure loss have been carried out
by adjusting the fin shape to the corresponding thermal and hydrodynamic boundary
layer. Furthermore, a reduction in detachment areas and a reduction in excessive flow
acceleration at sudden changes in cross-section has been achieved, which was validated
in [16]. This process is shown in Figure 2 on the left side and in the center part.
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Based on this reference structure, further optimizations with a focus on heat transfer
and pressure loss will be carried out in both 2D and 3D in this article using the Adjoint
Method; see also Figure 2 on the right. The 2D optimization is used to check the extent to
which an optimization can also be transferred to three dimensions, as a 2D optimization
could be carried out much faster. For this purpose, the 2D optimization aims to improve
the heat transfer at a constant pressure loss and the resulting shape is then transferred
to 3D, using both aluminum (λAl = 155 W/mK) and stainless steel (λAl = 16 W/mK) as
materials.

Furthermore, 3D optimizations are also carried out in order to improve the reference
structure further by taking into account the heat conduction within the fin structure. The
focus here is also on increasing the heat transfer while at the same time reducing or keeping
the pressure loss constant. The 3D optimization is only carried out with stainless steel.

The initial models, or the reference structure, for the 2D and 3D optimization are
shown in Figure 3 as 3D and 2D models.
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2.1. Simulation Settings

Ansys Fluent 2021 R2 [17] and Ansys Meshing 2021 software are used for the numerical
flow calculations of the reference geometry, the subsequent adjoint optimization and
remeshing. The CAD model is created using SolidWorks 2021 [18], SpaceClaim 2021 and
DesignModeler 2021 [19].

The calculation is time-stationary and the flow is assumed to be incompressible. The
pressure-based solver “Coupled” is used.

The flow in the structures is macroscopically in the laminar range. However, the
turbulence model k-ω SST [20] is still used in order to be able to correctly capture a possible
turbulent transition as well as any local turbulence that may occur. A comparison of the



Energies 2024, 17, 1246 5 of 27

calculation results of the k-ω SST model with a laminar model in Table 1 shows an average
deviation of 0.039% for the pressure loss and 0.086 K for the outlet temperature at Reynolds
numbers of 89, 306 and 498. The results of the k-ω SST model are therefore classified as
valid.

Table 1. Comparison of the laminar and the k-ω SST calculation for the reference structure.

Re [-] 89 306 498

Tout,lam − Tout,SST [K] 0.0038 −0.0159 0.2033
∆plam
∆pSST

× 100 [%] 0.018 0.042 −0.058

Second-order upwind schemes are used as discretization schemes for the conservation
equations, and first-order upwind schemes are used for the turbulence discretization in
order to increase the calculation accuracy.

2.2. Adjoint Optimization

As mentioned at the beginning, the optimization of heat-transferring structures for
a high heat transfer and a low-pressure loss is subject to the problem of a large number
of available geometric degrees of freedom. This is further exacerbated by the rectified
interaction of the two objective functions, as a high heat transfer is usually accompanied
by an increased pressure loss. This makes the optimization of heat-transferring structures
based on parameter variations very computationally intensive and therefore inefficient,
especially in the context of additive manufacturing.

This increased computational effort can be countered by the adjoint approach. The
method calculates the sensitivities of an objective function as a function of the available
design parameters and is therefore clearly superior to other “direct” methods in terms of
computing power [21].

The adjoint approach can be divided into the “discrete” and the “continuous adjoint
approach”. In this paper, the “discrete adjoint approach” is used through the use of Ansys
Fluent and is therefore briefly introduced based on the descriptions by Gauger [22], as this
provides a good understanding of the underlying ideas. For the exact implementation in
ANSYS Fluent, please refer to the Fluent Theory Guide [23].

A cost function Z to be optimized can be influenced by the design variable R
(e.g., the physical boundary) as well as by the flow variables (S), so we have Z = Z(R, S).
Similarly, the equations for calculating the flow variables (G), such as pressure, velocity
and temperature also change due to changes in the design variables and other flow vari-
ables (e.g., the change in the pressure field when the velocity field changes), therefore
G = G(R, S) applies. As these are conservation equations, we can put G = 0.

When G = 0, the optimization problem Z can be expressed using the Lagrange duality:

L = Z + λTG, (1)

where λT denotes the Lagrangian Multiplier. The derivative of L according to the design
variable R leads to the following expression:

dL
dR

=
∂Z
∂R

+
∂Z
∂S

dS
dR

+ λT
[

∂G
∂S

dS
dR

+
∂G
∂R

]
(2)

and can be transformed to:

dL
dR

=

(
∂Z
∂R

+ λT ∂G
∂R

)
+

[(
∂Z
∂S

+ λT ∂G
∂S

)
dS
dR

]
. (3)
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The calculation of λT is carried out using the following bracketed expression of the
second term: (

∂Z
∂S

+ λT ∂G
∂S

)
= 0 → ∂Z

∂S
= −λT ∂G

∂S
(4)

and is referred to as an “adjoint equation”. This means that the computing time-intensive
calculation of the flow variables can be dispensed, and the gradient of the variable L to be
optimized only depends on the design variables R:

dL
dR

=

(
∂Z
∂R

+ λT ∂G
∂R

)
. (5)

The result is the sensitivity of the optimization variable to a change in the design
variable [24]; for example, if the mesh is moved in the x,y,z-direction.

If there is a multi-objective function, this can be expressed by individual objective
functions in combinations with weights [6] as follows:

Z =
N

∑
i=1

wiZi(R, S). (6)

By selecting the weights, the optimization can be directed towards the different target
functions; for example, more in the direction of pressure loss or in the direction of heat
transfer. A Pareto front can thus be created from different weights, each of which represents
an optimum for heat transfer and pressure loss depending on the weights. It follows that
this method also requires the selection of parameters, but the number is significantly lower
than with the usual gradient-based parameter methods.

The consideration of turbulent variables during adjoint optimization is the subject
of numerous studies [9,11,25], as they can have a considerable influence on the result
depending on the flow condition. In this article, the k-ω SST model, which is not yet
available as an adjoint variant in Fluent, is used. In Fluent, the turbulence variables are,
therefore, kept constant when calculating the sensitivities. This means that no sensitivities
of the turbulent variables are available for the change in the design variables. This principle
is referred to as “frozen turbulence” [6]. The influence of this principle on the calculation
result is, of course, highly dependent on the turbulence present, as [26] shows. In this article,
the structures are operated in the (macroscopic) laminar flow region and transition region
so that the turbulent quantities are orders of magnitude smaller than in the fully turbulent
region. Therefore, the “frozen turbulence” assumption will be used in the following adjoint
optimization.

Freeform Scale Factor or Step Size

After calculating the sensitivities, geometry changes can be determined based on the
defined cost function values. After defining a desired cost function value change, Fluent
calculates the new expected value. This value is multiplied by the so-called “freeform scale
factor” (FFSF) (or step size) and results in a new value after adjusting the geometry. The
freeform scale factor acts as a kind of amplification factor and leads to correspondingly
stronger changes in geometry and stronger changes in the new cost function value. Follow-
ing the corresponding geometry change, mesh morphing takes place in order to adapt the
mesh accordingly.

However, this results in the problem that the choice of the optimum freeform scale
factor is unknown. A value that is too small leads to very long calculation times, while
a value that is too large causes the geometry to change too much and therefore, a poten-
tial optimum is not found. In addition, large FFSFs lead to strong mesh distortions, so
sometimes, only a few design iterations are possible before remeshing becomes necessary.
It is, therefore, necessary to start with an appropriate investigation of how sensitive the
changes to the geometry affect the target variable. Once the geometry has been adjusted,
the flow variables are iterated again, and the adjoint variables are calculated, resulting in
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the sensitivities for the next design iteration. In this way, the optimum can be approached in
a gradient-like manner with repeated runs. The strength of Adjoint Optimization is derived
from this: instead of a large number of (manual) geometry changes and corresponding flow
calculations, only the sensitivities are calculated.

2.3. Boundary Conditions for the Numerical Calculations and Optimization Region

The 2D and 3D structures presented in this article differ in boundary conditions (BC).
Figure 4 shows the 2D initial structure with the corresponding boundary conditions. A
constant velocity (uin = 2.7 m/s) is selected at the inlet for the optimization; the inlet
cross-section temperature is Tin = 355.8 K. Air is used as the fluid; the fluid properties are
calculated as a function of temperature using polynomials in accordance with the VDI Heat
Atlas [27]. A relative outlet pressure of 0 Pa is assumed at the outlet of the flow area, and
an outflow area is modelled.
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The choice of boundary conditions at the fins is more challenging. In reality, neither
an exactly constant wall temperature nor a constant heat flux prevail in a fin cross-section.
For example, there are typically significantly higher heat fluxes in the area of the stagnation
point than in the area of the fin flank, so the assumption of constant heat flux for the entire
fin wall would be less suitable. However, heat conduction within the fin (in the direction of
flow) leads to a more uniform temperature, which is why the constant wall temperature of
550 K is ultimately chosen as the boundary condition.

The upper and lower areas are provided with symmetry conditions. The fin contour
is only optimized in the area marked in blue so that the overall length of the structures
remains unchanged.

The boundary conditions for the 3D optimization are shown in Figure 5. A constant
velocity (uin = 2.7 m/s) and an inlet temperature of Tin = 355.8 K are again specified at
the inlet cross-section. The boundary condition “pressure outlet” (pout) is specified at the
outlet with a relative outlet pressure of 0 Pa, as for the 2D case.

In the 3D case, the finned structures are part of the side wall, and both are made of
stainless steel, which ensures the separation between the hot and cold fluid in the later heat
exchangers. If such a heat exchanger is now operated in counterflow, constant heat flux in
the side wall can be assumed when a developed flow is present. As the 3D case is more or
less a mini section of such a counterflow heat exchanger, a constant heat flux is set for the
side wall. This also allows the formation of a realistic temperature profile within the fins,
which is particularly important for materials with low thermal conductivity.

The opposite side is provided with a symmetry condition since only half a channel is
simulated. Symmetrical boundary conditions are also set at the top and bottom. The front
and rear sides of the wall are assumed to be adiabatic. The interface between fluid and
solid (side wall and fins) is assumed to be coupled, i.e., a conjugate heat transfer problem.

The optimization area for the adjoint optimization is also limited to the fins in the
3D case, with the optimization box (area marked in blue) again extending from the front
edge of the fins to the rear edge of the last row of fins and from the wall to the top edge of
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the fins. As in the 2D case, this is intended to ensure a constant overall volume and thus
prevent increased heat transfer from being achieved simply by using longer fins.
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2.4. Meshes for the 2D and 3D Optimization

The mesh used for 2D optimization is shown in Figure 6. The meshing with tetrahedra
cells with an element size of 0.035 mm is based on the results of a mesh independence
study, considering heat transfer and pressure loss, shown in Table 2.
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Table 2. Check for mesh independence for the reference mesh in 2D.

Variable Mesh 1 Mesh 2 Mesh 3

No. of Elements in thou. 87 132 176
Temperature difference in K 42.516 42.518 42.520

Pressure loss in Pa 24.135 24.364 24.368

The boundary layers are resolved with 10 inflation layers at a growth rate of 20%. This
fine resolution is necessary to achieve the highest possible minimum orthogonal quality of
0.5 to allow for a sufficient number of iterations during the optimization without excessive
mesh distortion.

The mesh for the 3D optimization is shown at the bottom of Figure 6 and is signifi-
cantly more complex than for the two-dimensional case. A very high orthogonal quality
(minimum orthogonal quality of 0.17) should be achieved in order to allow a sufficient
number of design iterations. The general element size is set at 0.08 mm; the boundary layer
areas are provided with eight inflation layers at a 20% growth rate. The mesh independence
checks in Table 3, as well as the investigations of the reference structure in Fuchs et al. [16],
confirm the accuracy of the mesh.

Table 3. Check for mesh independence for the reference mesh in 3D.

Variable Mesh 1 Mesh 2 Mesh 3

No. of Elements in Mio. 4.8 5.7 6.9
Temperature difference in K 42.91 42.944 42.948

Pressure loss in Pa 73.38 73.62 73.72

2.4.1. Mesh Morphing

The presented Adjoint Optimization calculates sensitivities for the corresponding observ-
ables, which are used to make changes to the geometry. These geometry changes, therefore,
make it necessary to adapt the computational mesh in order to recalculate the sensitivities in the
next design iteration. This is known as mesh morphing. This article uses a polynomial-based
morphing approach from Fluent, as it modifies both the near-wall and the far-wall mesh and
thus enables a more accurate solution. The large-scale mesh deformation is calculated using
Bernstein polynomials, while the fine-scale mesh deformation is calculated using B-spline
polynomials. For more detailed explanations, please refer to the Fluent Users Theory Guide [28].

2.4.2. Mesh Improvement

Mesh morphing inevitably leads to mesh distortion, which increases with increasing design
iterations. The orthogonal quality and skewness deteriorate accordingly, which increases the
inaccuracies in the results. Therefore, a mesh correction is required after a certain number of
design iterations. This is done in two ways in this article. Firstly, the correction is carried out
using a mesh improvement implemented in Fluent, in which cells with low orthogonal quality
are split into several tetrahedra cells. This is particularly important for the 3D optimization, as a
higher mesh distortion occurs after fewer iterations than in the 2D case. This automated mesh
correction thus enables further design iterations.

The second mesh correction is carried out in the 2D case by means of a complete remeshing
at the end of the calculations. For this purpose, the optimization is interrupted once the
orthogonal quality is less than 0.1, and the resulting geometry is exported as a .stl-file. The
structure is then remodelled in SolidWorks to be completely remeshed with the initial mesh
settings specified above.

2.5. Determination of the Heat Transfer Coefficients

Different variables are used for the subsequent comparison of the optimizations and
the general evaluation. These are the fraction of heat flow and logarithmic temperature
difference, the Colburn j-factor and the Fanning f-factor.
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The fraction of heat flow and logarithmic temperature difference are used to compare
the changes in the heat transfer coefficient, the surface efficiency η0 and the heat transferring
surface Aht,tot as a whole resulting from the optimizations, especially in the Pareto diagrams.
The corresponding equation is:

α Aht,tot η0 =

.
Q

∆Tlog
, (7)

with

∆Tlog =
(Tf,in − Tw,in)− (Tf,out − Tw,out)

ln (Tf,in−Tw,in)
(Tf,out−Tw,out)

(8)

as a logarithmic temperature difference for the case of constant heat flux density. The
temperature differences between the wall and the fluid at the inlet and outlet are used for
the evaluation.

The length-averaged temperatures at the contact line between the fluid and the wall
directly in front and behind the fin structure are used for the wall temperatures. The
fluid temperatures are used then at the same location in the form of the mass flow aver-
age temperatures. The heat flow is determined via an energy balance around the fluid
.

Q =
.

m cp (Tf,out − Tf,in). The specific isobaric heat capacity is calculated with the arith-
metic mean temperature between inlet and outlet. Figure 7 shows the positions of the
temperatures as well as the areas and lines for the evaluation.
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For further determination of the heat transfer coefficient α, the surface efficiency must
be determined:

η0 = 1 −
Aht,fin

Aht,tot
(1 − ηfin) (9)

with the fin efficiency for straight fins:

ηfin =
tanh

(√
α P

λfin A∗ h
)

√
α P

λfin A∗ h
. (10)

The total heat transferring surface Aht,tot in the considered area is made up of the base
area and the fin area Aht,fin minus the fin base area. The fin cross-section A∗ and the fin
perimeter P are determined on the basis of a single fin. Table 4 provides an overview of the
geometric data of a single fin.



Energies 2024, 17, 1246 11 of 27

Table 4. Geometric data for the reference fin.

Fin Type hfin [mm] A* [mm2] P [mm]

Reference fin 4.65 2.4 10.07

The Colburn j-factor can now be calculated using the following equation:

j =
α dh

λf RePr1/3 . (11)

whereas dh denotes the hydraulic diameter and λ f the thermal conductivity of the fluid.
As with the heat capacity, the thermal conductivity is calculated at the average fluid
temperature between the inlet and outlet. The hydraulic diameter is determined at the
point of the narrowest flow cross-section, where the following equation applies dh = 4 Ac,f l

Aht,tot
.

Ac,f describes the minimum flow cross-section, Aht,tot the total heat transferring surface
and l the length of the area Aht,tot. This is also illustrated in Figure 7. The heat transfer
coefficient can now be determined via a simple iterative procedure, such as the Newton
method.

The Fanning f-factor, which can be determined directly from the pressure loss calcula-
tions, is used to evaluate the pressure loss as a dimensionless variable. It is determined
using the following equation:

f = ∆p
dh ρ

l 2

(
Ac,f

.
m

)2
. (12)

The density is determined at the arithmetic mean temperature between the inlet and
outlet. For the length l, the length of the calculation domain is used, as shown in Figure 7.

Finally, the Reynolds- number is defined as follows:

Re =

.
m dh

Ac,f ηf
. (13)

The dynamic viscosity is calculated based on the arithmetic mean fluid temperature.
The Colburn j-factors and the Fanning f-factors determined can now be used to derive
correlations for the various structures. The correlations for calculating the j- and f-factors
are power laws with adjustable parameters. The following approach is used for the j-factor:

j = CjRenj (14)

and for the f-factor:
f = CfRenf (15)

The adjustable parameters Cj, nj, Cf, nf are determined using a simple regression
method based on the results for all Reynolds numbers for each structure.

2.6. Test Rig

The test rig in which the additive-manufactured heat exchangers are tested is shown
in Figure 8. The test rig provides two air flows that are heated to the desired temperature by
electric heaters. The flow rate is controlled by two MassFlow controllers (type Bronkhorst
F203AV and Bürkert type 8746). The inlet and outlet temperatures are measured using
type K thermocouples with diameters of ø1 mm and ø0.5 mm, which are calibrated in
advance. Two thermocouples are installed in each inlet and outlet port to determine a
possible temperature gradient across the cross-section in the fluid in order to make any
corrections to the structure of the mixing chamber. These mixing chambers are installed
in front of the thermocouples at 40 mm intervals in order to supply the thermocouples
with a more uniform temperature profile. As the measurements are carried out at up to
700 ◦C, the influence of radiation must also be taken into account [29]. For this purpose,
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the surrounding temperature measurement areas are equipped with a heater so that the
pipe wall temperature can be set accordingly, as shown in Figure 9.
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Figure 9. Left: Detail of the external heating for radiation compensation. Right: the principle of
radiation compensation.

With this control, the temperature of the surrounding pipe wall is raised to 1–2 K
below the measured fluid temperature, which drastically reduces the influence of heat
radiation. The principle of this wall heating and the principle is shown in Figure 9. The
pressure losses are measured using precision U-tube pressure gauges, as the measured
pressure losses cover a wide range, thus ensuring consistent accuracy. Furthermore, the
U-tube pressure gauges are not subject to drift, which makes it easy to compare the results.
The measurement uncertainties are calculated using the “Guide to the expression of the
uncertainty in measurements” (GUM) [30].

2.6.1. Test Heat Exchangers

The optimizations made are to be verified by means of experiments. For this purpose,
two heat exchangers with optimized structures are manufactured. The external dimensions
of the heat exchangers are identical; only the internal structures differ.

For the experimental validation, a structure with a focus on optimized heat transfer
and another structure with a focus on reduced pressure loss is selected. The two heat
exchangers are made of AISI 316L stainless steel. Figure 10 shows such a heat exchanger
with connecting flanges and a layer with the internal structure. Each heat exchanger
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consists of a total of 7 layers, alternating between a cold and hot layer (four cold and three
hot). The heat exchangers are designed in a counterflow configuration.
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For the evaluation of the optimized structures, the heat transfer area, the flow cross-
section area and the hydraulic diameter of a heat exchanger with the reference structure
are used. This allows a better comparison of the results, as it is no longer possible to
precisely determine the geometric variables (in particular the flow cross-section area) of the
optimized variants. The geometric values for the evaluation are listed in Table 5.

Table 5. Geometric data for the evaluation.

Geometric
Characteristics

Total Heat
Transfer Area

Aht,tot [m2]

Fin Heat Transfer
Area

Aht,fin [m2]

Flow Cross-Section
Area

Ac,f [m2]

Hydraulic
Diameter

dh [m]

Value 0.1729 0.1545 7.642 × 10−4 1.18 × 10−3

For the investigations, the mass flows of the hot and cold fluid are varied between
0.1–0.5 kg/min. Furthermore, three temperature levels (h/c: 200/80 ◦C, 400/80 ◦C,
700/380 ◦C) are investigated in order to detect a possible radiation influence in addition to
the convective heat transfer. This results in a Reynolds number range of 70–800, with both
balanced and unbalanced flows being examined in order to investigate the performance of
the structures over a wide range.

2.6.2. Evaluation Methodology of the Experimental Results

The Colburn j-factor and the Fanning f-factor are also to be determined from the
experimental data. For the j-factor, a method from Fuchs et al. [16] is used. At first, the
measured fluid inlet and outlet temperatures are used to determine the overall heat transfer
coefficient for the different mass flow rates:

kAexp,i =

.
Qcold,i

∆Tlog,i
=

.
mc,i cp,c,i (Tc,out,i − Tc,in,i)

(Th,in,i−Tc,out,i)−(Th,out,i−Tc,in,i)

ln
(Th,in,i−Tc,out,i)
(Th,out,i−Tc,in,i)

. (16)

Second, a mathematical model (Fuchs et al. [31]) of the heat exchanger is used to
calculate the theoretical overall heat transfer coefficients kAth,i, by using approach functions
for the j-factor (see Equation (14)). By varying the parameters Cj,exp and nj,exp in the model
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using a genetic algorithm, the error of the cost function s is minimized for all measuring
points (mass flows); the following applies:

s = min
→
x=(Cj,exp,nj,exp)


√√√√√ 1

Ntest − 1 ∑Ntest
i=1

1 −
kAexp,i

kAth,i

(→
x
)
2

. (17)

This procedure is necessary in order to eliminate the influence of axial heat conduc-
tion and heat transfer in the inlet and outlet distributors of the heat exchanger from the
measurement results and to enable a direct comparison with the numerical data.

The overall pressure loss of the heat exchanger can be divided into pressure losses due
to contraction and expansion at the in- and outlet of the distributor as well as the pressure
loss due to friction in the finned section, which lead to:

∆ptot = ∆pcon,Dist + ∆pfric,fin + ∆pex,Dist. (18)

The evaluation of the pressure losses in the distributor is calculated with the following
equation:

∆pex/con,Dist = ζex,con,Dist
ρ

2
u2

max. (19)

For the velocity umax, the velocity in the smaller cross-section is chosen throughout.
The determination of the loss coefficients ζex/con,Dist is based on the diagrams according to
Kays [32] for “multiple square tubes” for the Reynolds number Remax and the respective
flow area ratio.

The Fanning f-factor for the finned section ffin is determined using the following equation:

ffin = ∆pfric,fin
dh
L

ρ

2

(
Ac,f

.
m

)2
. (20)

For the measurement, the length of the structured section L of the heat exchanger is
used, please see Figure 10.

3. Results
3.1. Optimization in 2D and Transfer to 3D

First, the 2D structure is optimized on the basis of the reference structure. A FFSF of 15
is used for the optimization, as this represents the best compromise between shape change
and mesh quality. This is kept constant for further design iterations.

The exact cost function FLUENT is using is not known; for the 2D multi-objective
optimization the goal is to minimize the pressure loss and maximize the fluid outlet
temperature, so the optimization objective is:

Z = min f
(
wTout , (1/Tout), w∆p, ∆p

)
. (21)

Tout is the mass-weighted average fluid temperature at the outlet and ∆p the overall
pressure loss of the entire fluid domain (refer to Figure 4).

The optimization can now be carried out using the determined FFSF. The weight
factors are wTout = 0.77 and w∆p = 0.22 to increase the heat transfer at a constant pressure
loss; this structure is referred to as A27. The weights were obtained by a “try-and-error”
method. The optimization is initially carried out for a Reynolds number of Re = 200.
Figure 11 shows the contour plots of the velocity and temperature for different design
iterations with the same weights and the same FFSF. This clearly shows that with increasing
design iterations, the fin structures are increasingly drawn out in length and interlock
with each other. Furthermore, a more pointed design of the stagnation points can be seen,
which, in combination with the entanglement, leads to thin thermal boundary layers. The
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analysis of the change in geometry also shows that the change in geometry slows down
after 140 design iterations.
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Furthermore, after 140 design iterations, a manufacturing limit is reached, particularly
at the leading and trailing edge of the fin, as also stated in [33]. Figure 12 illustrates this
case. Due to the limited diameter of the laser spot of ~50 µm, the leading and trailing edges
of the fins cannot be resolved by the laser and, therefore, are not manufactured accurately.
As a consequence, further optimization in this area would not make any sense since it
would have no effect on the later experiments.

As a result, for 140 iterations, an increase in the heat transfer rate of 16.1% is achieved
for A27, while the pressure loss decreases by 0.5%.

Based on the optimization with the designation A27, further optimizations are now
carried out to reduce pressure loss. For the single objective optimization the objective
function changes to Z = min f

(
w∆p, ∆p

)
with w∆p = 1 and a FFSF of 15. In order to

prevent this from happening simply by reducing the fin cross-section, any change in shape
in the y-direction is suppressed. The reason for this is that the fin efficiency cannot be taken
into account in 2D optimization. If an optimization is carried out with a focus on a lower
pressure loss, there is a risk that the fins will be made thinner, which would drastically
reduce the fin efficiency. Furthermore, the manufacturability limit would be undercut,
especially in the inflow and outflow area of the fin, which would mean that the optimization
could no longer be verified experimentally. A total of 17 design iterations are carried out.
Figure 13 shows the fin shapes after design iterations 5, 11 and 17. These structures are
referred to as B27, C27 and D27.



Energies 2024, 17, 1246 16 of 27

Energies 2024, 17, x FOR PEER REVIEW 16 of 28 
 

 

edges of the fins cannot be resolved by the laser and, therefore, are not manufactured 
accurately. As a consequence, further optimization in this area would not make any sense 
since it would have no effect on the later experiments. 

 
Figure 12. Detail of the design iteration 140 with the 3D printer laser pathway (dashed red line) and 
the missing geometry (black lines) at the leading and trailing edge of the fin. 

As a result, for 140 iterations, an increase in the heat transfer rate of 16.1% is achieved 
for A27, while the pressure loss decreases by 0.5%. 

Based on the optimization with the designation A27, further optimizations are now 
carried out to reduce pressure loss. For the single objective optimization the objective 
function changes to 𝑍 = min 𝑓(𝑤 , Δ𝑝) with 𝑤 = 1 and a FFSF of 15. In order to pre-
vent this from happening simply by reducing the fin cross-section, any change in shape 
in the y-direction is suppressed. The reason for this is that the fin efficiency cannot be 
taken into account in 2D optimization. If an optimization is carried out with a focus on a 
lower pressure loss, there is a risk that the fins will be made thinner, which would drasti-
cally reduce the fin efficiency. Furthermore, the manufacturability limit would be under-
cut, especially in the inflow and outflow area of the fin, which would mean that the opti-
mization could no longer be verified experimentally. A total of 17 design iterations are 
carried out. Figure 13 shows the fin shapes after design iterations 5, 11 and 17. These struc-
tures are referred to as B27, C27 and D27. 

Figure 12. Detail of the design iteration 140 with the 3D printer laser pathway (dashed red line) and
the missing geometry (black lines) at the leading and trailing edge of the fin.

Energies 2024, 17, x FOR PEER REVIEW 17 of 28 
 

 

 
Figure 13. Geometry contours for the different pressure loss optimizations. 

The figure shows that the fins become shorter as the number of iterations increases 
and the overlap decreases, which reduces the pressure losses, but at the same time the 
product of heat transfer coefficient and heat transfer area also decreases. As a result, a 
reduction in pressure loss of 14.3% and an increase in the “heat transfer*area” product of 
3.7% is achieved for structure D27; see the 2D values in Figure 15. 

In the next step, these shapes are converted into three dimensions in order to achieve 
better comparability, also taking into account the fin efficiency. For this purpose, the op-
timized 2D geometries are exported as .stl files, converted into a solid body and trans-
ferred into 3D, as indicated in Figure 14. The structures have an inclination angle of 37° to 
the vertical to enable additive manufacturing; the normal height is 2.8 mm. These 3D 
structures are then meshed and provided with boundary conditions in accordance with 
Figure 5. The calculations are performed with both aluminum and stainless steel to eval-
uate the influence of different materials. 

 
Figure 14. Left: 2D structure of A27 with direction for extrusion (red arrow). Right: extruded fins of 
A27 to a normal height of 2.8 mm. 

For the 3D case, no improvement compared to the 3D-reference structure in heat 
transfer can be determined for the stainless-steel variant, which is between 91 and 95% of 
the reference structure, see Figure 15. As a result of the thin thermal boundary layer at the 
fin tip, there are high heat transfer coefficients, which only lead to low heat flux densities 
compared to the reference structure due to the smaller solid cross-section at the fin tip. 
This leads to a greater drop in performance, particularly with structure A27, as the greater 
overlap of the fin rows results in higher heat transfer coefficients at a position with a small 
fin cross-section than is the case with the other structures. 

An analysis of the pressure loss for stainless steel shows that this increases by 0.2% 
for variant A27 compared to the 2D variant. For the other variants, a greater decrease can 

Figure 13. Geometry contours for the different pressure loss optimizations.

The figure shows that the fins become shorter as the number of iterations increases
and the overlap decreases, which reduces the pressure losses, but at the same time the
product of heat transfer coefficient and heat transfer area also decreases. As a result, a
reduction in pressure loss of 14.3% and an increase in the “heat transfer*area” product of
3.7% is achieved for structure D27; see the 2D values in Figure 15.

In the next step, these shapes are converted into three dimensions in order to achieve
better comparability, also taking into account the fin efficiency. For this purpose, the opti-
mized 2D geometries are exported as .stl files, converted into a solid body and transferred
into 3D, as indicated in Figure 14. The structures have an inclination angle of 37◦ to the
vertical to enable additive manufacturing; the normal height is 2.8 mm. These 3D structures
are then meshed and provided with boundary conditions in accordance with Figure 5. The
calculations are performed with both aluminum and stainless steel to evaluate the influence
of different materials.
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Figure 14. Left: 2D structure of A27 with direction for extrusion (red arrow). Right: extruded fins of
A27 to a normal height of 2.8 mm.

For the 3D case, no improvement compared to the 3D-reference structure in heat
transfer can be determined for the stainless-steel variant, which is between 91 and 95% of
the reference structure, see Figure 15. As a result of the thin thermal boundary layer at the
fin tip, there are high heat transfer coefficients, which only lead to low heat flux densities
compared to the reference structure due to the smaller solid cross-section at the fin tip.
This leads to a greater drop in performance, particularly with structure A27, as the greater
overlap of the fin rows results in higher heat transfer coefficients at a position with a small
fin cross-section than is the case with the other structures.
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An analysis of the pressure loss for stainless steel shows that this increases by 0.2% for
variant A27 compared to the 2D variant. For the other variants, a greater decrease can be
observed compared to the 2D case, attributed to the smaller temperature differences and,
thus, smaller viscosity differences along the fin height and the fluid.

If aluminum is used for finned structures, there is a lower drop in the heat transfer
rate compared to the 2D initial structure due to the higher fin efficiency. With the exception
of structure D27, a higher heat transfer is achieved for all variants as compared to the
reference structure. In the case of aluminum, the areas of the stagnation point can now take
advantage of a higher heat transfer and dissipate the heat flux density better.

For the pressure loss, similar behavior can be observed. The calculated relative
pressure losses for all structures are close to those of the 2D variants. Due to the higher
temperatures and, thus, higher dynamic viscosities in the fluid boundary layer along the
fin height, higher fluid friction and pressure losses are present.
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3.2. 3D Optimization

The optimizations carried out in advance are limited to 2D shaping, which means that
optimizations with regard to fin efficiency and 3D flow control are not taken into account.
However, optimizations of the fin efficiency are of great importance for fin materials
with lower thermal conductivity, as for stainless steel in this case, as these influence the
effectiveness of the heat exchanger accordingly. Furthermore, 3D optimization can reduce
unfavorable areas for pressure loss and heat transfer along the fin height. Therefore, a 3D
optimization should follow, in which the fin contour also varies along the fin height. The
initial structure for the 3D optimization is the reference structure; see Figure 5 with the
corresponding boundary conditions.

For the 3D optimization, the multi-objective function is:

Z = min f
(
wTinner , Tinner, w∆p, ∆p

)
. (22)

Tinner is the area-weighted average wall temperature along the fins and the base
surface (Tinner = 1/Aht∑i Aht,iTinner,i) and ∆p the overall pressure loss of the entire fluid
domain. Due to the boundary condition “constant heat flux” at the outer wall, the overall
heat flow remains constant. To improve the structure in terms of heat transfer, the inner
wall temperature has to be reduced to obtain an improvement in convective heat transfer.

A mesh with very high quality is used for 3D optimization; the minimum orthogonal
quality is 0.17, which allows a higher number of optimizations. If the optimization is
started with a lower orthogonal quality, negative cell volumes occur prematurely and the
calculation is aborted. The meshing is carried out with the “Fluent Meshing” program.
Following the optimization, re-meshing is performed again to eliminate the influence of
the mesh distortion following the optimization.

A total of four optimization directions are carried out with different weightings of
pressure loss and the area-averaged wall temperature; the weightings of the two optimiza-
tion values are listed in Table 6. A total of 10 iterations with a freeform scale factor of 25 are
carried out for each weighting pair. If the orthogonal quality falls below 0.12, the mesh is
optimized using Fluent’s “mesh improve” function, which raises the minimum orthogonal
quality again.

Table 6. Weight pairs for the 3D optimization.

Structure wTinner wdp

0dp1ht 0.845 0.155
04dp06ht 0.819 0.181
06dp04ht 0.765 0.235

1dp0ht 0.723 0.277

Figure 16 shows the trend of the mean internal wall temperature, the product of heat
transfer and surface area, as well as the pressure loss and its relative change for structure
0dp1ht.

The curves show that the average inner wall temperature decreases with increasing
design iteration while the product of the heat transfer coefficient and surface area increases
accordingly to a 3% improvement.

The analysis of the pressure loss shows that it increases slightly over the number of
iterations to a maximum of 0.15%.

Figure 17 shows the change from the initial structure to the final iteration step. The
comparison shows that there are changes to the fin root, fin flank and fin tip compared to
the initial structure. There are slight constrictions at the base of the fin in the area of the
stagnation point and the detachment area, which increases the flow cross-section in this
area and thus reduces the local pressure loss and simultaneously increases the heat transfer,
as part of the mass flow is shifted to the lower area of the fins. There are also corresponding
constrictions in the area of the fin tip; at these points, areas of the fins that are of secondary
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importance for heat transfer are removed, while this benefits the pressure loss due to the
larger flow cross-section. At the same time, this benefit of lower pressure loss can now be
used to optimize heat transfer at a more effective location. This occurs, for example, in the
lower area of the fin flank, where slight thickening occurs compared to the reference case.
This leads to higher velocities in this area and thus to higher heat transfer rates. Due to
the thickening, the heat-conducting cross-section of the fin also increases, which reduces
the average fin temperature. The constrictions in the area of the base of the fin are more
pronounced, and the thickening in the lower area of the fin flank is smaller. This leads to
larger flow cross-sections and, therefore, lower pressure losses, while the heat transfer is
reduced only minimally.
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The results for the different optimizations depending on the different weights, as
well as the different design iterations, are shown in Figure 18. The analysis of the design
iterations for 0dp1ht shows that an improvement in heat transfer can be achieved quickly
with the first design iterations 1–5, while the improvements are significantly smaller from
the 6th iteration onwards. An improvement of the heat transfer at constant pressure loss is
thus obviously increasingly difficult, which from an optimization point of view, indicates a
possible local optimum.

A similar result is determined for the weight-pair 04dp06ht. For the first seven design
iterations, the improvement of the heat transfer is almost equally distributed. For the last
three design iterations, the improvement in heat transfer decreases, and the reduction in
pressure loss is greater instead than for the first seven iterations. It appears there is also an
increasing difficulty in further optimization of the heat transfer. For the structures 06dp04ht
and 1dp0ht, with a focus on pressure loss optimization, this trend is not shown, and the
improvement for the different design iterations is equally distributed.

The Colburn j-factor and the Fanning f-factor for different Reynolds numbers are
shown in Figure 19.

The curve shows that the optimized variants also show a better heat transfer with
simultaneously reduced pressure loss than the reference structure at other Reynolds num-
bers apart from the optimized variant. The relative improvement or reduction continues to
match the values at the optimization point with a tolerance of around 10% for all Reynolds
numbers investigated.
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This results in the following coefficients in Table 7 for Equations (14) and (15) for the
Colburn j-factor and the Fanning f-factor, respectively.

Table 7. Coefficients for the Colburn j-factor and Fanning f-factor for the different optimized fins.

Structure Cj nj Cf nf

0dp1ht 0.786 −0.619 12.819 −0.844
04dp06ht 0.784 −0.619 12.411 −0.842
06dp04ht 0.782 −0.622 11.631 −0.838
1dp0ht 0.774 −0.623 11.08 −0.834

Two of these 3D-optimized structures are also examined experimentally in order to
investigate the accuracy of the calculation in this optimization test.
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3.3. Experimental Testing

The optimizations made in advance are to be verified by means of experiments.
Therefore, two versions with a focus on increased heat transfer (0dp1ht) and reduced
pressure loss (1dp0ht) are manufactured. The structure 1dp0ht will also be analyzed in
terms of surface roughness and manufacturing accuracy.
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The analysis of the surface roughness in Figure 20 yields values of approximately
25 µm on the top side of the fin structures and 63 µm on the bottom side on average.
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Figure 20. Surface topology of the top and bottom side of the fin.

Due to the small duct dimensions of 380 µm, the roughness leads to a recurring
constriction of the flow, which could result in a higher pressure loss.

This is further intensified by the general manufacturing deviation. An X-ray micro-
scope analysis shows that the deviation between the manufactured test object and the CAD
model is approximately +20–40 µm in all spatial directions (see Figure 21 for the X-ray
image). This leads to smaller channels and distances between the fins and thus to smaller
flow cross-sections.
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Figure 21. 3D-X-ray image of the structure 1dp0ht.

The smallest channel width between two rows of fins is approximately 350 µm for
0dp1ht and 380 µm for 1dp0ht in the 3D model, when considering the manufacturing
accuracies from the 1dp0ht X-ray analysis, this leads to 23% (0dp1ht) and 21% (1dp0ht)
smaller distances, resulting in 270 µm (0dp1ht) and 300 µm (1p0ht). This has a direct effect
on the flow cross-section and thus on the hydraulic diameter, which ultimately results in
higher pressure losses. Using an updated hydraulic diameter with the corrected minimum
flow cross-section, a corrected f-factor fcorr can be determined by applying Equation (20).

The X-ray analysis also reveals that the predicted missing geometry in Figure 12 is
present at the leading and trailing edge of the fins, which influences the heat transfer
coefficients, due to the changed stagnation point and the thermal boundary layer in this
region.

Figure 22 shows the relative deviation between the experiment and the numerical
calculation. For the structure 0dp1ht, the agreement between the experiment and the
calculation is between 0.9 and 1.07. This means there is an underestimation of small
Reynolds numbers and an overestimation of higher Reynolds numbers. Compared to other
investigations of additively manufactured heat exchangers (see introductory chapter), the
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agreement between the experiment and the calculation can be described as good to very
good. However, the fluctuation compared to the improvement in heat transfer is large,
meaning that the theoretical improvements in heat transfer can only be mapped to a limited
extent due to manufacturing inaccuracies in the manufacturing process. The analysis of the
f-factor initially shows a very large deviation of a factor of ~2.5.
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The analysis of the j-factor of the structure 1dp0ht shows a significantly better agree-
ment, which ranges between 0.97 and 1.03. As with 0dp1ht, there is a tendency to un-
derestimate small Reynolds numbers and overestimate larger Reynolds numbers. In the
experiment, the f-factor is initially overestimated by approximately 1.6.

The uncertainties of the Colburn j-factor and the Fanning f-factor are summarized in
Table 8 for both structures. For the Colburn j-factor the uncertainty ranges between 7% for
large and 12% for small Reynolds numbers, and for the Fanning f-factor between 4.4–10%
for large and small Reynolds numbers. The uncertainty of the Reynolds number is around
5.1–6.1%.

Table 8. Uncertainty range of the Colburn j-factor, the Fanning f-factor and the Reynolds number.

Structure ∆j [%] ∆f [%] ∆Re [%]

0dp1ht ±7.04–13.27 ±4.43–10.07 ±5.11–6.12
1dp0ht ±6.88–13.44 ±4.43–9.27 ±5.11–6.12

If the f-factors of the measurements are corrected for the new flow cross-section due to
manufacturing deviations (and not considering possible acceleration due to roughness),
the differences between the experimental and numerical values for 0dp1ht and 1dp0ht can
be reduced significantly to less than 10% on average.

This also indicates that possible deviations due to the difference between the optimiza-
tion (three rows of fins) and the fin arrangement in the heat exchanger (~14 rows of fins)
are not the main cause of the existing deviations and at most cause small differences.

The causes for the underestimation and overestimation of the j-factors cannot be
determined directly. However, it is assumed that the underestimation at low Reynolds
numbers is due to possible detachment areas caused by the surface roughness. If the
Reynolds number is increased, there is a slight overestimation, which could also be caused
by the roughness and the associated increase in turbulence.
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The experimental investigations show that although the optimizations made can be
reproduced by 3D printing, the limits of manufacturing accuracy are also reached, as the
fluctuations of the experiment sometimes exceed the potential for improvement, especially
in terms of heat transfer improvement.

4. Discussion

The numerical investigations show that a further increase in heat transfer with a simul-
taneous reduction in pressure loss is possible in principle using the Adjoint Optimization
Method. Performing the optimizations in 2D and subsequently transferring the structure
into three dimensions leads to a reduction in performance of 15–20% in the case of materi-
als with low thermal conductivities, such as stainless steel, as the resulting fin efficiency
drops to 60–80%. To compensate for this, materials with high thermal conductivity, such
as aluminum, must be used. However, the 2D-optimized structures transferred to three
dimensions still exhibit significantly reduced pressure losses compared to the reference
structure, as strong flow deflections are reduced.

To optimize materials with low thermal conductivity, such as stainless steel, a 3D
optimization is therefore carried out directly. Using a multi-objective optimization, a
reduction in pressure loss of 9% with a constant heat transfer rate or an increase in heat
transfer of 3.5% with a constant pressure loss for stainless steel after 10 design iterations
can be achieved, depending on the choice of weighting. The reduction in pressure loss
is mainly achieved by reducing flow-unfavorable areas in the area of the fin base. The
simultaneous increase in convective heat transfer is achieved by thickening the base of the
fin at the fin flank and shifting the leading edge of the fin into the area of higher velocities.
This leads to higher fin efficiencies and higher heat transfer coefficients at the stagnation
point of the fins close to the fin base.

The resulting correlations for the j- and f-factors based on the coefficients in Table 7
and the Equations (14) and (15) are summarized in Table 9.

Table 9. Correlations for the Colburn j-factor and the Fanning f-factor for different optimizations.

Structure Colburn j-Factor Fanning f-Factor

0dp1ht j = 0.786 Re−0.619 f = 12.819 Re−0.844

04dp06ht j = 0.784 Re−0.619 f = 12.411 Re−0.842

06dp04ht j = 0.782 Re−0.622 f = 11.631 Re−0.838

1dp0ht j = 0.774 Re−0.623 f = 11.08 Re−0.834

The subsequent experimental investigation using two structures confirms the mappa-
bility of the resulting geometry changes. The analysis of the j-factor generally shows good
agreement between the numerical and experimentally determined values. A consideration
of the f-factor shows a clear overestimation of the numerical data for both structures. This is
attributed to the increasing overlapping fin rows and the manufacturing deviations. These
lead to a reduced cross-section area between two rows of fins and thus to a locally increased
velocity, which has a negative effect on the pressure loss. This effect is further intensified by
the increased roughness on the underside of the fins, as roughness elevations can protrude
far into the flow and also reduce the cross-section area. If these manufacturing deviations
are taken into account in the calculation of the f-factor, a parallel shift of the experimental
f-factor curve can be observed, which leads to good agreement with the numerical data.
This behavior can be demonstrated for both structures investigated.

5. Conclusions

This article shows that further improvement in convective heat transfer with a simul-
taneous reduction in pressure loss is possible using a multi-objective adjoint optimization
as compared to a reference structure. For materials with high thermal conductivity, such
as aluminum, an optimization can be carried out in 2D and then simply be transferred to
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3D in order to achieve an improvement. If, on the other hand, materials with low thermal
conductivity (stainless steel or nickel-based alloys) are to be used, improvements in thermal
performance cannot be achieved, although there is still a lower pressure loss than in the
reference case.

In order to achieve an improvement here, a full 3D optimization must be used. This
requires a very high quality for the computational mesh used in order to be able to calculate
sufficient design iterations. The evaluation shows that an improvement in convective heat
transfer with a simultaneous reduction in pressure loss is also possible here and that a
corresponding focus can be placed through the choice of weighting.

The experimental investigations using two optimization directions show that the
optimizations made are not only numerical in nature but can also be mapped in terms of
production technology and have corresponding effects on heat transfer and pressure loss.
However, the experiments also show that the smaller the flow cross-sections, the greater the
deviations, particularly in terms of pressure loss. However, by considering these deviations,
the agreement in the present cases can be significantly improved.

Finally, correlations for the calculation of the Colburn j-factor and the Fanning f-factor
for the 3D adjoint-optimized fin structures are available, which enable a fast prediction in
design tools.
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Nomenclature

A∗ fin cross-section, mm2 nj/ f Parameter for Equations (14) and (15)
Aht,tot total heat transfer area, m2 p pressure, Pa
Aht, f in fin heat transfer area, m2 P Fin perimeter, mm
Ac, f flow cross-section, m2 Pr Prandtl-Number
Cj/ f Parameter for Equations (14) and (15)

.
Q heat flow, W

cp specific isobaric heat capacity, J/kg K R Design variable
dh hydraulic diameter, mm L Lagrange duality
f Fanning friction factor Re Reynolds Number
G equations of conservation s error function
hfin fin height, m S flow variables
j Colburn j-factor T Temperature, K
kAexp/th,i overall heat transfer coefficient, W/K u velocity in flow direction, m/s
L Lagrange duality w weight for cost function
L, l Length (domain or heat exchanger), m V Volume of domain (fluid, wall), m3
.

m mass flow rate, kg/s x, y, z coordinate, m
Ntest number of measuring points Z cost function
Greek Letters
α heat transfer coefficient, W/m2K η f in/0 fin/surface efficiency
∆p pressure loss, Pa λ thermal conductivity, W/mK
∆Tlog logarithmic temperature difference, K λT Lagrangian multiplier
ζ loss coefficient for Equation (19) µ dyn. Viscosity, Pa s

ρ density, kg/m3

Subscripts and Superscripts
a heat transfer In inlet
c cold log logarithmic
con contraction m mean
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Dist Distributor max maximum
ex expansion out outlet
exp experimental ref reference structure
f fin, fluid th theoretical
fric friction w wall
H hot
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