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ABSTRACT
Sequential sentence classification deals with the categorisation of
sentences based on their content and context. Applied to scientific
texts, it enables the automatic structuring of research papers and the
improvement of academic search engines. However, previous work
has not investigated the potential of transfer learning for sentence
classification across different scientific domains and the issue of
different text structure of full papers and abstracts. In this paper,
we derive seven related research questions and present several
contributions to address them: First, we suggest a novel uniform
deep learning architecture andmulti-task learning for cross-domain
sequential sentence classification in scientific texts. Second, we
tailor two common transfer learning methods, sequential transfer
learning and multi-task learning, to deal with the challenges of
the given task. Semantic relatedness of tasks is a prerequisite for
successful transfer learning of neural models. Consequently, our
third contribution is an approach to semi-automatically identify
semantically related classes from different annotation schemes and
we present an analysis of four annotation schemes. Comprehensive
experimental results indicate that models, which are trained on
datasets from different scientific domains, benefit from one another
when using the proposed multi-task learning architecture. We also
report comparisons with several state-of-the-art approaches. Our
approach outperforms the state of the art on full paper datasets
significantly while being on par for datasets consisting of abstracts.
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1 INTRODUCTION
To search relevant research papers for a particular field is a core
activity of researchers. Scientists usually use academic search en-
gines and skim through the text of the found articles to assess
their relevance. However, academic search engines cannot assist
researchers adequately in these tasks since most research papers
are plain PDF files and not machine-interpretable [9, 60, 74]. The
exploding number of published articles aggravates this situation
further [7]. Therefore, automatic approaches to structure research
papers are highly desired.

Sequential sentence classification targets the categorisation of
sentences by their semantic content or function. In research papers,
this can be used to classify sentences by their contribution to the
article’s content, e.g. to determine if a certain sentence contains
information about the research work’s objective, methods or re-
sults [18]. Figure 1 shows an example of an abstract with classified
sentences. Such a semantification of sentences can help to focus
on relevant elements of text and thus assist information retrieval
systems [50, 60] or knowledge graph population [51]. The task is
called sequential to distinguish it from the general sentence classifi-
cation task where a sentence is classified in isolation, i.e. without
using local context. However, in research papers the meaning of
a sentence is often informed by the context from neighbouring
sentences, e.g. sentences describing the methods usually precede
sentences about results.

Several approaches have been proposed for sequential sentence
classification (e.g. [2, 34, 65]), and several datasets were annotated
for various scientific domains (e.g. [18, 23, 28, 67]). The datasets con-
tain either abstracts or full papers and were annotated with domain-
specific sentence classes. However, research infrastructures usually
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Gamification has the potential to improve the quality of learning by better en-
gaging students with learning activities. Our objective in this study is to evaluate
a gamified learning activity along the dimensions of learning, engagement, and
enjoyment. The activity made use of a gamified multiple choice quiz implemented
as a software tool and was trialled in three undergraduate IT-related courses. A
questionnaire survey was used to collect data to gauge levels of learning, engage-
ment, and enjoyment. Results show that there was some degree of engagement
and enjoyment. The majority of participants (77.63 per cent) reported that they
were engaged enough to want to complete the quiz and 46.05 per cent stated they
were happy while playing the quiz...

Figure 1: An annotated abstract taken from the CSAB-
STRUCT dataset [15], in which sentences describing the back-
ground (green), objectives (yellow),methods (magenta), and
results (cyan) of the paper are coloured.

support multiple scientific domains. Therefore, stakeholders of dig-
ital libraries are interested in a uniform solution that enables the
combination of these datasets to improve the overall accuracy. For
this purpose, this paper explores the following research questions.

First, although some approaches propose transfer learning for
the scientific domain [5, 10, 29, 53], the field lacks a comprehen-
sive empirical study on transfer learning across different scientific
domains for sequential sentence classification. Transfer learning
enables the combination of knowledge from multiple datasets to
improve classification performance and thus to reduce annotation
costs. The annotation of scientific text is particularly costly since it
demands expertise in the article’s domain [3, 8, 26]. However, stud-
ies revealed that the success of transferring neural models depends
largely on the relatedness of the tasks, and transfer learning with
unrelated tasks may even degrade the performance [48, 52, 59, 64].
Two tasks are related if there exists some implicit or explicit rela-
tionship between the feature spaces [52]. On the other hand, every
scientific domain is characterised by its specific terminology and
phrasing, which yields different feature spaces. Thus, it is not clear
to which extent datasets from different scientific disciplines are
related. This raises the following research questions (RQ) for the
task of sequential sentence classification:
RQ1: To which extent are datasets from different scientific do-

mains semantically related?
RQ2: Which transfer learning approach works best?
RQ3: Which neural network layers are transferable under which

constraints?
RQ4: Is it beneficial to train a multi-task model with multiple

datasets?
Normally, every dataset has a domain-specific annotation scheme

that consists of a set of associated sentence classes. This raises the
second set of research questions with regard to the consolidation
of these annotation schemes. Prior work [45] annotated a dataset
multiple times with different schemes, and analysed the multivari-
ate frequency distributions of the classes. They found that the
investigated schemes are complementary and should be combined.
However, annotating datasets multiple times is costly. To support

the consolidation of different annotation schemes across domains,
we examine the following RQs:
RQ5: Can a model trained with multiple datasets recognise the

semantic relatedness of classes from different annotation
schemes?

RQ6: Can we derive a consolidated, domain-independent annota-
tion scheme and use that scheme to compile a new dataset
to train a domain-independent model?

Finally, current approaches for sequential sentence classification
are designed either for abstracts or full papers. One reason is that
these text types follow rather different structures: In abstracts,
different sentence classes directly follow one another normally.
The general paper text, however, exhibits longer passages without
change of the semantic sentence class. Typically, deep learning is
used for abstracts [15, 19, 28, 34, 65, 75] since presumably more
training data are available, whereas for full papers, also called zone
identification, hand-crafted features and linear models have been
suggested [2, 4, 23, 44]. However, deep learning approaches have
also been applied successfully to full papers in related tasks such as
argumentation mining [41], document summarisation [1, 16, 21, 27],
or n-ary relation extraction [25, 33, 36]. Thus, the potential of deep
learning has not been fully exploited yet for sequential sentence
classification on full papers, and no unified solution for abstracts
as well as full papers exists. This raises the RQ:
RQ7: Can a unified deep learning approach be applied to text types

with very different structures like abstracts or full papers?
In this paper, we investigate these research questions and present

the following contributions: (1) We introduce a novel multi-task
learning framework for sequential sentence classification. (2) Fur-
thermore, we propose and evaluate an approach to semi-automat-
ically identify semantically related classes from different annota-
tion schemes and present an analysis of four annotation schemes.
Based on the analysis, we suggest a domain-independent anno-
tation scheme and compile a new dataset that enables to classify
sentences in a domain-independent manner. (3) Our proposed uni-
fied deep learning approach can handle both text types, abstracts
and full papers, despite their structural differences. (4) To facili-
tate further research, we make our source code publicly available:
https://github.com/arthurbra/sequential-sentence-classification.

Comprehensive experimental results demonstrate that our multi-
task learning approach successfully makes use of datasets from
different scientific domains, with different annotation schemes, that
contain abstracts or full papers. In particular, we outperform state-
of-the-art approaches for full paper datasets significantly, while
obtaining competitive results for datasets of abstracts.

The remainder of the paper is organised as follows: Section 2
summarises related work on sentence classification in research
papers and transfer learning in NLP. Our proposed approaches are
presented in Section 3. The setup and results of our experimental
evaluation are reported in Section 4 and 5, while Section 6 concludes
the paper and outlines areas of future work.

2 RELATEDWORK
This section outlines datasets for sentence classification in scien-
tific texts and describes machine learning methods for this task.
Furthermore, we briefly review transfer learning methods. For a

https://github.com/arthurbra/sequential-sentence-classification
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more comprehensive overview about information extraction from
scientific text, we refer to Brack et al. [9] and Nasar et al. [49].

2.1 Sequential Sentence Classification in
Scientific Text

Datasets: As depicted in Table 1, annotated benchmark datasets
for sentence classification in research papers come from various
domains, e.g. PubMed-20k [18] consists of biomedical randomised
controlled trials, NICTA-PIBOSO [37] comes from evidence-based
medicine, Dr. Inventor dataset [23] from computer graphics, and
the ART/Core Scientific Concepts (CoreSC) dataset [45] from chem-
istry and biochemistry. Most datasets cover only abstracts, while
ART/CoreSC and Dr. Inventor cover full papers.

Approaches for Abstracts: Deep learning has been the preferred
approach for sentence classification in abstracts in recent years [15,
19, 28, 34, 65, 75]. These approaches follow a common hierarchical
sequence labelling architecture: (1) a word embedding layer encodes
tokens of a sentence to word embeddings, (2) a sentence encoder
transforms the word embeddings of a sentence to a sentence rep-
resentation, (3) a context enrichment layer enriches all sentence
representations of the abstract with context from surrounding sen-
tences, and (4) an output layer predicts the label sequence.

As depicted in Table 2, the approaches vary in different imple-
mentations of the layers. The approaches use different kinds of
word embeddings, e.g. Global Vectors (GloVe) [55], Word2Vec [47],
or SciBERT [6] that is BERT [20] pre-trained on scientific text.
For sentence encoding, a bidirectional long short-term memory
(Bi-LSTM) [31] or a convolutional neural network (CNN) with var-
ious pooling strategies are utilised, while Yamada et al. [75] and
Shang et al. [65] use the classification token ([CLS]) of BERT or
SciBERT. To enrich sentences with further context, a recurrent
neural network such as a Bi-LSTM or bidirectional gated recurrent
unit (Bi-GRU) [13] is used. Shang et al. [65] additionally exploit an
attention-mechanism across sentences; however, it introduces qua-
dratic runtime complexity that depends on the number of sentences.
A conditional random field (CRF) [40] is mostly used as an output
layer to capture the interdependence between classes. Yamada et al.
[75] form spans of sentence representations and Semi-Markov CRFs
to predict the label sequence by considering all possible span se-
quences of various lengths. Thus, their approach can better label
longer continuous sentences but is computationally more expensive
than a CRF. Cohan et al. [15] obtain contextual sentence represen-
tations directly by fine-tuning SciBERT and utilising the separation
token ([SEP]) of SciBERT. However, their approach can process
only about 10 sentences at once since BERT supports sequences of
up to 512 tokens only.

Approaches for Full Papers: For full papers, logistic regression,
support vector machines and CRFs with hand-crafted features have
been proposed [2, 4, 23, 44, 69, 70]. They represent a sentence with
various syntactic and linguistic features such as n-grams, part-of-
speech tags, or citation markers, which were engineered for the
respective datasets. Asadi et al. [2] also exploit semantic features
obtained from knowledge bases such as Wordnet [22]. To incor-
porate contextual information, each sentence representation also
contains the label of the previous sentence (“history feature”) and

the sentence position in the document (“location feature”). To better
consider the interdependence between labels, some approaches ap-
ply CRFs, while Asadi et al. [2] suggest fusion techniques within a
dynamic window of sentences. However, some approaches [2, 4, 23]
exploit the ground-truth label instead of the predicted label of the
preceding sentence (“history feature”) during prediction (as con-
firmed by the authors), which has a significant impact on the per-
formance.

Related tasks also classify sentences in full papers with deep
learning methods, e.g. for citation intent classification [14, 39], or
algorithmic metadata extraction [61] but without exploiting context
from surrounding sentences. Comparable to us, Lauscher et al. [41]
utilise a hierarchical deep learning architecture for argumentation
mining in full papers but evaluate it only on one corpus.

To the best of our knowledge, a unified approach for sequential
sentence classification for abstracts as well as full papers has not been
proposed and evaluated yet.

2.2 Transfer Learning
Transfer learning enables a target task to exploit knowledge from
another source task to achieve a better prediction accuracy. The
tasks can have training data from different domains and vary in
their objectives. According to Ruder’s taxonomy for transfer learn-
ing [59], we investigate inductive transfer learning in this study
since the target training datasets are labelled. Inductive transfer
learning can be further subdivided into multi-task learning, where
tasks are learned simultaneously, and sequential transfer learning
(also referred to as parameter initialisation), where tasks are learned
sequentially. Since there are many applications for transfer learn-
ing, we focus on the most relevant cases to our work here. For a
more comprehensive overview, we refer to [52, 59, 73].

Fine-tuning a pre-trained language model is a popular approach
for sequential transfer learning in NLP [11, 20, 30, 32]. Here, the
source task involves learning a language model (or a variant of it)
using a large unlabelled text corpus. Then, the model parameters
are fine-tuned with labelled data of the target task. Pruksachatkun
et al. [56] improve these language models by intermediate task trans-
fer learning where a language model is fine-tuned on a data-rich
intermediate task before fine-tuning on the final target task. Park
and Caragea [53] provide an empirical study on intermediate trans-
fer learning from the non-academic domain to scientific keyphrase
identification. They show that SciBERT in combination with related
tasks such as sequence tagging improves performance, while BERT
or unrelated tasks degrade the performance.

For sequence tagging Yang et al. [76] investigate multi-task learn-
ing in the general non-academic domain with a small and a big
dataset. Schulz et al. [63] evaluate multi-task learning for argumen-
tation mining with multiple datasets in the general domain. Lee
et al. [43] successfully transfer pre-trained parameters from a big
dataset to a small dataset in the biological domain. For coreference
resolution, Brack et al. [10] apply sequential transfer learning and
utilise a large dataset from the general domain to improve models
for a small dataset in the scientific domain.

For sentence classification, Mou et al. [48] compare (1) transfer-
ring parameters from a source dataset to a target dataset against (2)
training one model with two datasets in the non-academic domain.
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Table 1: Characteristics of benchmark datasets for sentence classification in research papers.

Dataset Domains # Papers Text Type Sentence Classes
PubMed-20k [18] Biomedicine 20,000 abstracts Background, Objective, Methods, Results, Conclusion
NICTA-PIBOSO [37] Biomedicine 1,000 abstracts Background, Intervention, Study, Population, Outcome, Other
CSABSTRUCT [15] Computer Science 2,189 abstracts Background, Objective, Method, Result, Other
CS-Abstracts [28] Computer Science 654 abstracts Background, Objective, Methods, Results, Conclusions

Emerald 100k [67] Management, Engineering,
Information Science 103,457 abstracts Purpose, Design/methodology/approach, Findings, Originality/value,

Social implications,Practical implications, Research limitations/implications

MAZEA [17] Physics, Engineering
Life and Health Sciences 1,335 abstracts Background, Gap, Purpose, Method, Result, Conclusion

Dr. Inventor [23] Computer Graphics 40 full paper Background, Challenge, Approach, Outcome, Future Work

ART/CoreSC [45] Chemistry
Computational Linguistic 225 full paper Background, Motivation, Goal, Hypothesis, Object, Model, Method,

Experiment, Result, Observation, Conclusion

Table 2: Comparison of deep learning approaches for sequen-
tial sentence classification in abstracts.

Approach Word
embedd.

Sentence
encoding

Context
enrichm.

Output
layer

Dernoncourt
and Lee (2016) [19]

Char. Emb.
+ GloVe

Bi-LSTM/
concat. - CRF

Jin and Szolovits
(2018) [34]

Bio
word2vec

Bi-LSTM/
att. pooling Bi-LSTM CRF

Cohan et al.
(2019) [15] SciBERT SciBERT-

[𝑆𝐸𝑃 ]
SciBERT-
[𝑆𝐸𝑃 ] softmax

Gonçalves et al.
(2020) [28] GloVe CNN /

max pooling Bi-GRU softmax

Yamada et al.
(2020) [75]

BERT from
PubMed

BERT-
[𝐶𝐿𝑆 ] Bi-LSTM Semi-

Markov CRF
Shang et al.
(2021) [65] SciBERT SciBERT-

[𝐶𝐿𝑆 ]
Bi-LSTM/
attention CRF

They demonstrate that semantically related tasks improve while
unrelated tasks degrade the performance of the target tasks. Su et al.
[68] study multi-task learning for sentiment classification in prod-
uct reviews from multiple domains. Lauscher et al. [42] evaluate
multi-task learning on scientific texts, however, only on one dataset
with different annotation layers. Banerjee et al. [5] apply sequential
transfer learning from the medical to the computer science domain
for discourse classification, however, only for two domains and on
abstracts, whereas Spangher et al. [66] explore this task on news
articles with multi-task learning using multiple datasets. Gupta
et al. [29] utilise a multi-task learning with two scaffold tasks to
detect contribution sentences in full papers, however, only in one
domain and with limited sentence context.

Several approaches also exist to train multiple tasks jointly: Luan
et al. [46] train a model on three tasks (coreference resolution,
entity and relation extraction) using one dataset of research papers.
Wei et al. [72] utilise a multi-task model for entity recognition and
relation extraction on one dataset in the non-academic domain.
Changpinyo et al. [12] analyse multi-task training with multiple
datasets for sequence tagging. In contrast, we investigate sequential
sentence classification across multiple science domains.

3 SEQUENTIAL SENTENCE CLASSIFICATION
On the one hand, the discussion of related work shows that several
approaches and datasets from various scientific domains have been
introduced for sequential sentence classification. On the other hand,
although transfer learning has been applied to various NLP tasks, it
is known that the success depends largely on the relatedness of the
tasks [48, 52, 59]. However, the field lacks an empirical study on

transfer learning between different scientific domains for sequential
sentence classification that cover either only abstracts or entire
papers. Furthermore, previous approaches investigated transfer
learning for one or two datasets only. To the best of our knowledge,
a unified approach for different types of texts that differ noticeably
by their structure and semantic context of sentences, as it is the
case for abstracts and full papers, has not been proposed yet.

In this section, we suggest a unified cross-domain multi-task
learning approach for sequential sentence classification. Our tai-
lored transfer learning approaches, depicted in Figure 2, exploit
multiple datasets comprising different text types in form of abstracts
and full papers. The unified approach without transfer learning is
described in Section 3.1 while Section 3.2 introduces our tailored
transfer learning approaches. Finally, in Section 3.3, we present an
approach to semi-automatically identify the semantic relatedness
of sentence classes between different annotation schemes.

3.1 Unified Deep Learning Approach
Given a paper with the sentences (𝑠1, ..., 𝑠𝑛) and the set of dataset
specific classes 𝐿 (e.g. Background, Methods), the task of sequential
sentence classification is to predict the corresponding label sequence
(𝑦1, ..., 𝑦𝑛) with 𝑦𝑖 ∈ 𝐿. For this task, we propose a unified deep
learning approach as depicted in Figure 2(a), which is applicable to
both abstracts and full papers. The core idea is to enrich sentence
representations with context from surrounding sentences..

Our approach (denoted as SciBERT-HSLN ) is based on the Hier-
archical Sequential Labeling Network (HSLN) [34]. In contrast to Jin
and Szolovits [34], we utilise SciBERT [6] as word embeddings and
evaluate the approach on abstracts as well as full papers. We have
chosen HSLN as the basis since it is better suited for full papers:
It has no limitations on text length (in contrast to the approach
of Cohan et al. [15]), and is computationally less expensive than
the more recent approaches [65, 75]. Furthermore, their implemen-
tation is publicly available. The goal of this paper is not to beat
state-of-the-art results but rather to provide an empirical study on
transfer learning and offer a uniform solution. Our SciBERT-HSLN
architecture has the following layers:

(a)Word embedding: input is a sequence of tokens (𝑡𝑖,1, ..., 𝑡𝑖,𝑚) of
sentence 𝑠𝑖 , and output a sequence ofword embeddings (𝑤𝑖,1, ...,𝑤𝑖,𝑚).

(b) Sentence encoding: input (𝑤𝑖,1, ...,𝑤𝑖,𝑚) is transformed via a
Bi-LSTM [31] into the representations (ℎ𝑖,1, ..., ℎ𝑖,𝑚) (ℎ𝑖,𝑡 ∈ R𝑑ℎ )
which are enrichedwith contextual informationwithin the sentence.
Then, attention pooling [34, 77] with 𝑟 heads produces a sentence
vector 𝑒𝑖 ∈ R𝑟𝑑

𝑢
. An attention head produces a weighted average
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Source task Target task 

word embedding 

sentence encoding 

output 

context enrichment 

output output 

shared 

task 1 task 2 

output 

task 3 task 4 

word embedding 

sentence encoding 

context enrichment 

output 

context enrichment 

output output 
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shared  for abstracts only shared for full articles 

task 1 task 2 
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task 3 task 4 (a) SciBERT-HSLN 

(b) Sequential Transfer Learning (INIT 1 and INIT 2) 

(c) Multi-Task Learning (MULT ALL) (d) Multi-Task Learning  (MULT GRP) 

INIT 1 

INIT 2 

word embedding Att-Pool 

𝑡𝑛,1 …  𝑡𝑛,𝑚 

       𝑒1           …           𝑒𝑛  

Linear 
CRF 

SciBERT word embedding 

sentence encoding 

context enrichment 

output 

Bi-LSTM 
Att-Pool 

𝑡1,1 …  𝑡1,𝑚 

SciBERT 

       𝑦 1           …           𝑦 𝑛  

… … 

      𝑠1           …          𝑠𝑛  

… 

… 

Figure 2: Proposed approaches for sequential sentence classification: (a) unified deep learning architecture SciBERT-HSLN for
datasets of abstracts and full papers; (b) sequential transfer learning approaches, i.e. INIT 1 transfers all possible layers, INIT 2
only the sentence encoding layer; (c) and (d) are the multi-task learning approaches, i.e. in MULT ALL all possible layers are
shared between the tasks, in MULT GRP the context enrichment is shared between tasks with the same text type.

over the token representations of a sentence. Multiple heads enable
the model to capture several semantics of a sentence.

(c) Context enrichment: sentence vectors (𝑒1, ..., 𝑒𝑛) are trans-
formed via a Bi-LSTM into (𝑐1, ..., 𝑐𝑛) with 𝑐𝑖 ∈ R𝑑ℎ . Thus, each
sentence vector 𝑐𝑖 is enriched with contextual information from
surrounding sentences.

(d) Output layer: transforms (𝑐1, ..., 𝑐𝑛) via a linear transforma-
tion to the logits (𝑙1, ..., 𝑙𝑛) with 𝑙𝑖 ∈ R |𝐿 | . Each component in 𝑙𝑖
contains a score for the corresponding label. A CRF [40] predicts the
labels (𝑦1, ..., 𝑦𝑛) with𝑦𝑖 ∈ 𝐿with the highest conditional joint prob-
ability 𝑃 (𝑦1, ..., 𝑦𝑛 |𝑙1, ..., 𝑙𝑛). In this way, it makes use of patterns
that appear in scientific papers (e.g.Methods are usually followed by
Results). During training the CRF maximises 𝑃 (𝑦1, ..., 𝑦𝑛 |𝑙1, ..., 𝑙𝑛)
of the ground-truth labels for all training samples. The Viterbi
algorithm [24] is used for efficient prediction and training.

For regularisation, we use dropout after each layer. We do not
fine-tune SciBERT embeddings, since it requires training of 110
Mio. additional parameters.

3.2 Transfer Learning Methods
For sequential sentence classification, we tailor and evaluate the
following transfer learning methods.

Sequential Transfer Learning (INIT):. The approach first trains
the model for the source task and uses its tuned parameters to
initialise the parameters for the target task. Then, the parameters are
fine-tuned with the labelled data of the target task. As depicted in
Figure 2(b), we propose two types of layer transfers. INIT 1: transfer
parameters of context enrichment and sentence encoding; INIT 2:
transfer parameters of sentence encoding. Other layers, except word
embedding, of the target task are initialised with random values.

Multi-Task Learning (MULT):. Multi-task learning (MULT) aims
for a better generalisation by simultaneously training samples in all
tasks and sharing parameters of certain layers between the tasks.
As depicted in Figure 2(c,d), we propose two multi-task learning
architectures. The MULT ALL model shares all layers between the
tasks except the output layers so that the model learns a common
feature extractor for all tasks. However, full papers are much longer
and have a different rhetorical structure compared to abstracts.
Therefore, it is not beneficial to share the context enrichment layer
between both dataset types. Thus, in the MULT GRP model, the
context enrichment layers are only shared between datasets with
the same text type. The objective functions are defined as:

𝐿MULT ALL =
∑
𝑡 ∈𝑇𝐴∪𝑇 𝐹 𝐿𝑡 (Θ𝑆 ,Θ𝐶 ,Θ𝑂

𝑡 ) (1)

𝐿MULT GRP =
∑
𝑡 ∈𝑇𝐴 𝐿𝑡 (Θ𝑆 ,Θ𝐶𝐴

,Θ𝑂
𝑡 ) +

∑
𝑡 ∈𝑇 𝐹 𝐿𝑡 (Θ𝑆 ,Θ𝐶𝐹

,Θ𝑂
𝑡 ) (2)

where 𝑇𝐴 and 𝑇 𝐹 are the tasks for datasets containing abstracts
and full papers; 𝐿𝑡 is the loss function for task 𝑡 ; the parameters Θ𝑆

are for sentence encoding, Θ𝐶 , Θ𝐶𝐴
, Θ𝐶𝐹

for context enrichment,
and Θ𝑂

𝑡 for the output layer of task 𝑡 .
Furthermore, we propose the variantsMULT ALL SHO andMULT

GRP SHO that are applicable if all tasks share the same (domain-
independent) set of classes.MULT ALL SHO shares all layers among
all tasks.MULT GRP SHO shares the context enrichment and output
layer only between tasks with the same text type. Formally, the
objective functions are defined as:

𝐿MULT ALL SHO =
∑
𝑡 ∈𝑇𝐴∪𝑇 𝐹 𝐿𝑡 (Θ𝑆 ,Θ𝐶 ,Θ𝑂 ) (3)

𝐿MULT GRP SHO =
∑
𝑡 ∈𝑇𝐴 𝐿𝑡 (Θ𝑆 ,Θ𝐶𝐴

,Θ𝑂𝐴 )

+∑𝑡 ∈𝑇 𝐹 𝐿𝑡 (Θ𝑆 ,Θ𝐶𝐹
,Θ𝑂𝐹 )

(4)
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3.3 Semantic Relatedness of Classes
Datasets for sentence classification have different domain-specific
annotation schemes, that is different sets of pre-defined classes.
Intuitively, some classes have a similar meaning across domains,
e.g. the classes Model and Experiment in the ART corpus are se-
mantically related to Methods in PubMed-20k (PMD) (see Table 3).
An analysis of semantic relatedness can help consolidate differ-
ent annotation schemes. We propose machine learning models to
support the identification of semantically related classes accord-
ing to the following idea: If a model trained for PMD recognises
sentences labelled with ART:Model as PMD:Method, and vice versa,
then the classes ART:Model and PMD:Method can be assumed to be
semantically related.

Let 𝑇 be the set of all tasks, 𝐿 the set of all classes in all tasks,
𝑚𝑡 (𝑠) the label of sentence 𝑠 predicted by the model for task 𝑡 , and
𝑆𝑙 the set of sentences with the ground truth label 𝑙 . For each class
𝑙 ∈ 𝐿 the corresponding semantic vector 𝑣𝑙 ∈ R |𝐿 | is defined as:

𝑣𝑙,𝑙 ′ =

∑
𝑡 ∈𝑇,𝑠∈𝑆𝑙 1(𝑚𝑡 (𝑠) = 𝑙 ′)

|𝑆𝑙 |
(5)

where 𝑣𝑙,𝑙 ′ ∈ R is the component of the vector 𝑣𝑙 for class 𝑙 ′ ∈ 𝐿

and 1(𝑝) is the indicator function that returns 1 if 𝑝 is true and 0
otherwise. Intuitively, the semantic vectors concatenated vertically
to a matrix represent a “confusion matrix” (see Figure 4 as an exam-
ple). Now, we define the semantic relatedness of two classes 𝑘, 𝑙 ∈ 𝐿

using cosine similarity:

semantic_relatedness(𝑘, 𝑙) = cos(𝑣𝑘 , 𝑣𝑙 ) =
𝑣
⊺
𝑘
· 𝑣𝑙

| |𝑣𝑘 | | · | |𝑣𝑙 | |
(6)

4 EXPERIMENTAL SETUP
This section describes the experimental evaluation of the proposed
approaches, i.e. used datasets, implementation details, and evalua-
tion methods.

4.1 Investigated Datasets
Table 3 summarises the characteristics of the investigated datasets,
namely PubMed-20k (PMD) [18], NICTA-PIBOSO (NIC) [37], ART
[45], and Dr. Inventor (DRI) [23]. The four datasets are publicly
available and provide a good mix to investigate the transferability:
They represent four different scientific domains; PMD and NIC
cover abstracts and are from the same domain but have different
annotation schemes; DRI and ART cover full papers but are from
different domains and have different annotation schemes; NIC and
DRI are rather small datasets, while PMD and ART are about 20
and 3 times larger, respectively; ART has a much finer annotation
scheme compared to other datasets. As denoted in Table 3, the
state-of-the-art results for ART are the lowest ones since ART has
more fine-grained classes than the other datasets. In contrast, best
results are obtained for PMD: It is a large dataset sampled from
PubMed, where authors are encouraged to structure their abstracts.
Therefore, abstracts in PMD are more uniformly structured than in
other datasets, leading to better classification results.

4.2 Implementation
Our approaches are implemented in PyTorch [54]. The Adaptive
Moment Estimation (ADAM) optimiser [38] with 0.01 weight decay

Table 3: Characteristics of the benchmark datasets. The row
"SOTA" depicts the best results for approaches that do not
exploit the ground-truth label of the preceding sentence dur-
ing prediction: for PMD [75], for NIC [65], for DRI [4] (cf.
Table 7), and for ART [44].

PMD NIC DRI ART
Domains Biomedicine Biomedicine Computer Chemistry,

Graphics Comp.
Linguistic

Text Type Abstract Abstract Full article Full article
# Articles 20.000 1.000 40 225
# Sentences 235.892 9.771 8.777 34.680
∅ # Sent. 12 10 219 154
# Classes 5 6 5 11
Classes Background Background Background Background

Objective Intervention Challenge Motivation
Methods Study Approach Hypothesis
Results Population Outcome Goal

Conclusion Outcome FutureWork Object
Other Experiment

Model
Method

Observation
Result

Conclusion
SOTA [75] 93.1 [65] 86.8 [4] 72.5 [44] 51.6
metric weighted F1 weighted F1 weighted F1 accuracy

and an exponential learning rate decay of 0.9 after each epoch is
used for training. To speed up training, sentences longer than 128
tokens are truncated since the computational cost for the attention
layers in BERT is quadratic in sentence length [71]. To reproduce
the results of the original HSLN architecture, we tuned SciBERT-
HSLN for PMD and NIC with hyperparameters as proposed in other
studies [20, 34]. The following parameters performed best on the
validation sets of PMD and NIC: learning rate 3e-5, dropout rate
0.5, Bi-LSTM hidden size 𝑑ℎ = 2 · 758, 𝑟 = 15 attention heads of size
𝑑𝑢 = 200. We used these hyperparameters in all of our experiments.

For each dataset, we grouped papers to mini-batches without
splitting them, if the mini-batch does not exceed 32 sentences.
Thus, for full papers a mini-batch may consist of sentences from
only one paper. During multi-task training we switched between
the mini-batches of the tasks by proportional sampling [62]. After
a mini-batch, only task-related parameters are updated, i.e. the
associated output layer and all the layers below.

4.3 Evaluation
To be consistent with previous results and due to non-determinism
in deep neural networks [57], we repeated the experiments and aver-
aged the results. According to Cohan et al. [15] we performed three
random restarts for PMD and NIC and used the same train/valida-
tion/test sets. For DRI and ART, we performed 10-fold and 9-fold
cross-validation, respectively, as in the original papers [23, 44].
Within each fold the data is split into train/validation/test sets with
the proportions 𝑘−2

𝑘
/ 1
𝑘
/ 1
𝑘
where 𝑘 is the number of folds. For multi-

task learning, the experiment was repeated with the maximum
number of folds of the datasets used, but at least three times. All
models were trained for 20 epochs. The test set performance within
a fold and restart, respectively, was calculated for the epoch with
the best validation performance.



Cross-Domain Multi-Task Learning for Sequential Sentence Classification in Research Papers JCDL ’22, June 20–24, 2022, Cologne, Germany

Table 4: Experimental results for the proposed approaches:
our SciBERT-HSLN model without transfer learning, param-
eter initialisation (INIT), and multi-task learning (MULT
ALL and MULT GRP). Previous state of the art (see Table 3),
SciBERT-[CLS], and the approaches of Jin and Szolovits [34]
and Cohan et al. [15] are the baseline results. For PMD (P),
NIC (N), and DRI (D) we report weighted F1 score and for
ART (A) accuracy. The average of all scores is denoted by ∅.
Italics depicts whether the result is better than the baseline,
bold whether the transfer method improves SciBERT-HSLN,
underline the best overall result.

PMD NIC DRI ART ∅
Prev. SOTA [75] 93.1 [65] 86.8 [4] 72.5 [44] 51.6 76.0
SciBERT-[CLS] [6] 89.6 78.4 69.5 51.5 72.3
Jin and Szolovits [34] 92.6 84.7 75.3 49.3 75.5
Cohan et al. [15] 92.9 84.8 74.3 54.3 76.6
SciBERT-HSLN 92.9 84.9 78.0 58.0 78.5
INIT 1 PMD to𝑇 - 84.8 81.2 57.7
INIT 2 PMD to𝑇 - 84.8 80.1 58.0
INIT 1 NIC to𝑇 92.9 - 81.9 57.6
INIT 2 NIC to𝑇 92.9 - 79.6 57.2
INIT 1 DRI to𝑇 92.9 83.5 - 57.8
INIT 2 DRI to𝑇 92.9 83.8 - 57.6
INIT 1 ART to𝑇 93.0 84.7 82.2 -
INIT 2 ART to𝑇 92.9 84.7 81.0 -
MULT ALL 93.0 86.0 81.8 57.7 79.6
PMD, NIC 93.0 86.1 - -
PMD, DRI 92.9 - 80.6 -
PMD, ART 93.0 - - 58.0
NIC, DRI - 84.2 80.7 -
NIC, ART - 84.4 - 57.9
DRI, ART - - 82.0 57.6
PMD, NIC, DRI 93.0 86.2 81.0 -
PMD, NIC, ART 93.0 86.3 - 58.0
PMD, DRI, ART 93.0 - 82.7 57.8
NIC, DRI, ART - 84.7 82.0 57.7
MULT GRP 93.0 86.1 83.4 58.8 80.3
P,N,D,A 92.9 85.4 84.4 58.0 80.2
(P,D),(N,A) 93.0 86.0 81.1 58.5 79.7
(P,A),(N,D) 92.9 85.8 83.6 58.0 80.1
(P,N,D),(A) 92.9 86.0 80.6 58.2 79.4
(P,N,A),(D) 93.0 86.0 84.1 58.1 80.3
(P,D,A),(N) 92.9 85.5 82.2 58.0 79.6
(N,D,A),(P) 92.9 85.9 83.3 58.5 80.1

We compare our results only with approaches which do not
exploit ground-truth labels of the preceding sentence as a feature
during prediction (see Section 2.1). This has a significant impact
on the performance: Using the ground truth label of the previous
sentences as a sole input feature to a SVM classifier already yields an
accuracy of 77.7 for DRI and 55.5 for ART (compare also results for
the “history” feature in [4], cf. Table 5). Best reported results using
ground truth labels as input features have an accuracy of 84.15 for
DRI and 65.75 for ART [2]. In contrast, we pursue a realistic setting
by exploiting the predicted (not ground truth) label of neighbouring
sentences during prediction.

Moreover, we provide additional results for three strong deep
learning baselines: (1) fine-tuning SciBERT using the [CLS] token
of individual sentences as in [20] (referred to as SciBERT-[CLS]), (2)
original HSLN implementation of Jin and Szolovits [34], and (3) the
SciBERT-based approach of Cohan et al. [15]. We cannot provide
baseline results for DRI and ART of the approaches [65, 75] since
their implementations are not publicly available.

Table 5: Experimental results for 𝜇PMD, NIC, DRI and 𝜇ART
with our SciBERT-HSLN model and our proposed multi-task
learning approaches.

𝜇PMD NIC DRI 𝜇ART ∅
SciBERT-HSLN 90.9 84.9 78.0 52.2 76.5
MULT ALL 91.1 85.7 81.0 53.8 77.9
MULT GRP 91.1 85.9 82.2 55.1 78.6

5 RESULTS AND DISCUSSION
In this section, we present and discuss the experimental results
for our proposed cross-domain multi-task learning approach for
sequential sentence classification. The results for different vari-
ations of our approach, the respective baselines, and for several
state-of-the-art methods are depicted in Table 4. The results are dis-
cussed in the following three subsections with regard to the unified
approach without transfer learning (Section 5.1), with sequential
transfer learning (Section 5.2), and multi-task learning (Section 5.3).
Section 5.4 analyses the semantic relatedness of classes for the four
annotation schemes.

5.1 Unified Approach without Transfer
Learning (SciBERT-HSLN)

For the full paper datasets DRI and ART, our SciBERT-HSLN model
significantly outperforms the previously reported best results, and
the deep learning baselines SciBERT-[CLS], Jin and Szolovits [34],
and Cohan et al. [15]. The previous state of the art approaches for
DRI and ART [4, 44] require feature engineering and a sentence is
enriched only with the context of the previous sentence. In SciBERT-
[CLS], each sentence is classified in isolation. The original HSLN
architecture [34] uses shallow word embeddings pre-trained on
biomedical texts. Thus, the incorporation of SciBERT’s contextual
word embeddings into HSLN helps improve performance for the
DRI andART datasets. The approach of Cohan et al. [15] can process
only about 10 sentences at once since SciBERT supports sequences
of up to 512 tokens only. Thus, long text has to be split into multiple
chunks. Our deep learning approach can process all sentences of a
paper at once so that all sentences are enriched with context from
surrounding sentences.

For the PMD dataset, our SciBERT-HSLN results are equiva-
lent [75] to the current state of the art, while for NIC, they are
below [65]. Thus, our proposed approach is competitive with the
current approaches for sequential sentence classification in ab-
stracts. Our unified deep learning approach is applicable to datasets
consisting of different text types, i.e. abstracts and full papers, without
any feature engineering (RQ7).

5.2 Sequential Transfer Learning (INIT)
Using the INIT approach, we can only improve the baseline results
for the DRI dataset in all settings. The approach INIT 1 performs
better than INIT 2 in most cases which indicates that transferring
all parameters is more effective. However, the results suggest that
sequential transfer learning is not a very effective transfer method for
sequential sentence classification (RQ2).
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Figure 3: F1 scores per class for the datasets PMD, NIC, DRI,
and ART for SciBERT-HSLN, MULT ALL, MULT GRP, and
the best combination for the respective dataset. Numbers
at the bars depict the F1 scores of the best classifiers and in
brackets the number of examples for the given class. The
classes are ordered by the number of examples.

5.3 Multi-Task Learning (MULT)
Next, we discuss the results of ourmulti-task learning approach, and
the effects of multi-task learning on smaller datasets and individual
sentence classes.

MULT ALL model: All tasks were trained jointly sharing all pos-
sible layers. Except for the ART task, all results are improved using
the SciBERT-HSLN model. For the PMD task, the improvement is
marginal since the baseline results (F1 score) were already on a
high level. Pairwise MULT ALL combinations show that the models
for PMD and NIC, respectively, benefit from the (respective) other
dataset, and the DRI model especially from the ART dataset. The
PMD and NIC datasets are from the same domain, and both contain
abstracts, so the results are as expected. Furthermore, DRI and ART
datasets both contain full papers, and DRI has more coarse-grained
classes. However, ART is a related large dataset with fine-grained

classes and presumably therefore the model for ART does not ben-
efit from other datasets. In triple-wise MULT ALL combinations
the models for PMD and DRI, respectively, benefit from all datasets,
and the model for NIC only if the PMD dataset is present. The re-
sults suggest that sharing all possible layers between multiple tasks
is effective except for bigger datasets with more fine-grained classes
(RQ3, RQ4).

MULT GRP model: In this setting, the models for all tasks were
trained jointly, but only models for the same text type share the
context enrichment layer, i.e. (PMD, NIC) and (DRI, ART). Here, all
models benefit from the other datasets. In our ablation study, we
also provide results for sharing only the sentence encoding layer,
referred to as MULT GRP P,N,D,A, and all pairwise and triple-wise
combinations sharing the context enrichment layer. Other combi-
nations also yield good results. However, MULT GRP is effective
for all tasks. Our results indicate that sharing the sentence encoding
layer between multiple models is beneficial. Furthermore, sharing the
context enrichment layer only between models for the same text type
is an even more effective strategy (RQ3, RQ4).

Effect of Dataset Size: The NIC and DRI models benefit more from
multi-task learning than PMD and ART. However, PMD and ART
are bigger datasets than NIC and DRI. The ART dataset has also
more fine-grained classes than the other datasets. This raises the
following question: How would the models for PMD and ART benefit
from multi-task learning if they were trained on smaller datasets?

To answer this question, we created smaller variants of PMD
and ART (i.e. 𝜇PMD and 𝜇ART) with a comparable size with NIC
and DRI. The training data was truncated to 1

20 for 𝜇PMD and
1
3 for 𝜇ART while keeping the original size of the validation and
test sets. As shown in Table 5, all models benefit from the other
datasets, whereas MULT GRP again performs best. The results indi-
cate that models for small datasets benefit from multi-task learning
independent of the difference in the granularity of the classes (RQ1).

Effect for each Class: Figure 3 shows the F1 scores per class
for the investigated approaches. Classes, which are intuitively
highly semantically related (*:Background, *:Results, *:Outcome),
and classes with few examples (DRI:FutureWork, DRI:Challenge,
ART:Hypothesis, NIC:Study Design) tend to benefit significantly
frommulti-task learning. The classes ART:Model, ART:Observation,
and ART:Result have worse results than SciBERT-HSLN when us-
ing MULT ALL, but MULT GRP yields better results. This can be
attributed to sharing the context enrichment layers only between
datasets with the same text type. The analysis suggests that especially
semantically related classes and classes with few examples benefit
from multi-task learning (RQ1).

5.4 Semantic Relatedness of Classes
In this section, we first evaluate our proposed approach for the
semi-automatical identification of semantically related classes in
the datasets PMD, NIC, DRI, and ART. Based on the analysis, we
identify six clusters of semantically related classes. Then, we present
a new dataset that is compiled from the investigated datasets and
is based on the identified clusters. As a possible down-stream ap-
plication, this multi-domain dataset with a generic set of classes
could help to structure research papers in a domain-independent
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Figure 4: Each row represents a semantic vector as described in Section 3.3 for a class computed with MULT ALL classifier.

manner, supporting, for instance, the development of academic
search engines.

Analysis of Semantic Relatedness of Classes: Based on the anno-
tation guidelines of the investigated datasets PMD [18], NIC [37],
DRI [23], and ART [45], we identified six clusters of semantically
related classes, which are depicted in Figure 5. The identification
process of the clusters followed the intuition, that most research pa-
pers independent of the scientific domain (1) investigate a research
problem (Problem), (2) provide background information for the prob-
lem (Background), (3) apply or propose certain methods (Methods),
(4) yield results (Results), (5) conclude the work (Conclusions), and
(6) outline future work (Future Work).

Figure 5 shows the semantic vectors for each label, which were
computed with MULT ALL and projected to 2D space using princi-
pal component analysis [35]. Each label is assigned to one of the
generic clusters for semantically related labels. Except Problem,
all clusters for semantically related classes are well identifiable in
Figure 5. The semantic vector for ART:Hypothesis is an outlier in
the Problem cluster because ART:Hypothesis is confused mostly
with ART:Conclusion and ART:Result (see Figure 4) and has also
a very low F1 score (see Figure 3). Table 6 shows the Silhoutte
scores [58] for each cluster. A positive score indicates that objects
lie well within the cluster, and a negative score that the objects

PMD:Background

NIC:BackgroundDRI:Background

ART:Background

ART:Motivation

PMD:Objective

DRI:Challenge

ART:Hypothesis

ART:Goal

ART:Object

PMD:Methods

NIC:Intervention NIC:Study Design

NIC:Population
NIC:Other

DRI:Approach

ART:Experiment

ART:Model
ART:Method

PMD:Results

NIC:Outcome

DRI:Outcome

ART:Observation

ART:Result

PMD:Conclusions

ART:Conclusion

DRI:Futurework

Background Problem Methods Results Conclusions Future Work

Figure 5: Semantic vectors of labels computed with MULT
ALL, and projected to 2D space via PCA. The semantic vectors
are assigned to generic clusters of semantically related labels.

are merely somewhere in between clusters. As a distance metric,
we use semantic_relatedness as defined in Equation 6. The silhou-
ette coefficients show that MULT ALL forms better clusters than
SciBERT-HSLN andMULTGRP, althoughMULTGRP performs best.
We hypothesise that MULT ALL can better capture the semantic
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Table 6: Silhouette scores per cluster and overall computed
for the semantic vectors of SciBERT-HSLN, MULT GRP and
MULT ALL classifiers.

SciBERT-HSLN MULT GRP MULT ALL
Background 0.45 0.18 0.48
Problem -0.27 -0.04 -0.29
Methods 0.19 -0.03 0.31
Results -0.38 0.01 0.32
Conclusions 0.92 -0.49 0.02
Future Work 0.00 0.00 0.00
Overall 0.10 -0.02 0.20

Table 7: Characteristics of the domain-independent dataset
G-PNDA that was compiled from the original datasets PMD,
NIC, DRI, and ART.

G-PMD G-NIC G-DRI G-ART
Text Type Abstract Abstract Full paper Full paper
# Papers 1.000 1.000 40 67
# Sentences 11.738 9.771 8.777 9.528
∅ # Sentences 11 10 219 142
Background 1.220 2.548 1.760 1.657
Problem 953 0 449 529
Methods 3.927 2.700 5.038 2.752
Results 3.760 4.523 1.394 3.672
Conclusions 1.878 0 0 918
Future Work 0 0 136 0

relatedness of labels than the other approaches since it is enforced
to learn a generic feature extractor across multiple datasets. The
multi-task learning approach sharing all possible layers is able to
recognise semantically related classes (RQ5).

Domain-Independent Sentence Classification: Based on the identi-
fied clusters, we compile a new dataset G-PNDA from the investi-
gated datasets PMD, NIC, DRI, and ART. The labels of the datasets
are collapsed according to the clusters in Figure 5. Table 7 sum-
marises the characteristics of the compiled dataset. To prevent a
bias towards bigger datasets, we truncate PMD to 1

20 and ART to 1
3

of their original size.
Table 8 depicts our experimental results for the generic dataset

G-PNDA. We train a model for each dataset part, and the multi-
task learning models MULT ALL and MULT GRP. Since we have
common sentence classes now, we train also models that share
the output layers between the dataset parts, referred to as MULT
ALL SHO and MULT GRP SHO (see Section 3.2). For training and
evaluation, we split each dataset into train/validation/test sets with
the portions 70/10/20, average the results over three random restarts
and use the same hyperparameters as before (see Section 4.2).

Table 8 shows that the proposed MULT GRP model outperforms
all other settings. Surprisingly, sharing the output layer impairs the
performance in all settings. We can attribute this to the fact that the
output layer learns different transition distributions between the
classes. Thus, in a domain-independent setting a separate output layer
per dataset part helps the model to capture the individual rhetorical
structure present in the domains (RQ3, RQ6).

6 CONCLUSIONS
In this paper, we have presented a unified deep learning architec-
ture for sequential sentence classification. The unified approach

Table 8: Experimental results (F1 scores) for our proposed
approaches for the dataset G-PNDA: baseline model SciBERT-
HSLNwith one separatemodel per dataset and themulti-task
learning models MULT ALL SHO, MULT ALL, MULT GRP
SHO, and MULT GRP. Bold depicts whether the approach
improves the baseline, underline the best overall result.

G-PMD G-NIC G-DRI G-ART ∅
SciBERT-HSLN 90.1 89.3 81.7 70.8 83.0
(one model per dataset)
MULT ALL SHO 89.8 89.1 83.5 67.1 82.4
(shared output layer)
MULT ALL 90.5 89.8 84.9 70.5 83.9
(separate output layer)
MULT GRP SHO 90.0 89.9 86.1 70.4 84.1
(shared output layer)
MULT GRP 90.6 89.7 87.2 71.0 84.6
(separate output layer)

can be applied to datasets that contain abstracts as well as full arti-
cles. For datasets of full papers, the unified approach significantly
outperforms the state of the art without any feature engineering.

Furthermore, we have tailored two common transfer learning
approaches to sequential sentence classification and compared their
performance. We found that training a multi-task model with mul-
tiple datasets works better than sequential transfer learning. Our
comprehensive experimental evaluation with four different datasets
offers useful insights under which conditions transferring or shar-
ing of specific layers is beneficial or not. In particular, it is always
beneficial to share the sentence encoding layer between datasets
from different domains. However, it is most effective to share the
context enrichment layer, which encodes the context of neigh-
bouring sentences, only between datasets with the same text type
(abstracts vs. full papers). This can be attributed to different rhetor-
ical structures in abstracts and full papers. Our tailored multi-task
learning approach makes use of multiple datasets and yields new
state-of-the-art results for two full paper datasets. In particular,
models for tasks with small datasets and classes with few labelled
examples benefit significantly from models of other tasks.

Our study suggests that the classes of the different dataset anno-
tation schemes are semantically related, even though the datasets
come from different domains and have different text types (e.g.
abstract or full papers). This semantic relatedness is an important
prerequisite for transfer learning in NLP tasks [48, 52, 59],

Finally, we proposed an approach to semi-automatically iden-
tify semantically related classes from different datasets to support
manual comparison and inspection of different annotation schemes
across domains. We demonstrated the usefulness of the approach
with an analysis of four annotation schemes. This approach can
support the investigation of annotation schemes across disciplines
without re-annotating datasets. From the analysis, we derived a
domain-independent consolidated annotation scheme and compiled
a domain-independent dataset. This allows for the classification of
sentences in research papers with generic classes across disciplines,
which can support, for instance, academic search engines.

In future work, we plan to integrate other tasks (e.g. scientific
concept extraction) into the multi-task learning approach to exploit
further datasets. Furthermore, we intend to evaluate the domain-
independent sentence classifier in an information retrieval scenario.
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