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a b s t r a c t 

Recent research has revealed that image-based methods can enhance accuracy and safety in laser micro- 

surgery. In this study, non-rigid tracking using surgical stereo imaging and its application to laser ablation 

is discussed. A recently developed motion estimation framework based on piecewise affine deformation 

modeling is extended by a mesh refinement step and considering texture information. This compensates 

for tracking inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate online 

application of the method, computational load is reduced by concurrent processing and affine-invariant 

fusion of tracking and refinement results. The residual latency-dependent tracking error is further mini- 

mized by Kalman filter-based upsampling, considering a motion model in disparity space. Accuracy is as- 

sessed in laparoscopic, beating heart, and laryngeal sequences with challenging conditions, such as partial 

occlusions and significant deformation. Performance is compared with that of state-of-the-art methods. 

In addition, the online capability of the method is evaluated by tracking two motion patterns performed 

by a high-precision parallel-kinematic platform. Related experiments are discussed for tissue substitute 

and porcine soft tissue in order to compare performances in an ideal scenario and in a setup mimicking 

clinical conditions. Regarding the soft tissue trial, the tracking error can be significantly reduced from 

0.72 mm to below 0.05 mm with mesh refinement. To demonstrate online laser path adaptation during 

ablation, the non-rigid tracking framework is integrated into a setup consisting of a surgical Er:YAG laser, 

a three-axis scanning unit, and a low-noise stereo camera. Regardless of the error source, such as laser- 

to-camera registration, camera calibration, image-based tracking, and scanning latency, the ablation root 

mean square error is kept below 0.21 mm when the sample moves according to the aforementioned 

patterns. Final experiments regarding motion-compensated laser ablation of structurally deforming tissue 

highlight the potential of the method for vision-guided laser surgery. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Surgery on delicate anatomical structures often demands high-

resolution imaging and microinstruments for precise soft tissue

manipulation. More advanced tools, such as medical lasers, facil-

itate contactless treatment of the pathology and minimize tissue

trauma. A state-of-the-art clinical application is transoral laser mi-

crosurgery (TLM) for resection of benign or cancerous tissue on

vocal cords ( Rubinstein and Armstrong, 2011 ). Regarding the sur-

gical treatment, a direct line-of-sight is established by inserting

a laryngoscope in the throat of the patient. Precise resection of

the lesion is achieved using a stereo microscope providing a mag-

nified view of the surgical site and an ablation laser manually

steered with a micromanipulator attached to the setup. Since the
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urgeon operates at a large distance from the patient, long and in-

ensive training is required to master this task. Furthermore, soft

issue deformation induced by respiration artifacts and manipula-

ion strongly affects the accuracy of laser ablation. Furthermore,

isalignment of the laser path and loss of focus are evoked by

he non-stiff mechanical fastening of the laser system to the pa-

ient; thus, motion externally applied to the microscope head most

ikely results in positional deviation of the laser spot. Deformations

nd camera motion are difficult to cope with, especially when the

im is function preservation with resection margins of less than

 mm. To overcome this limitation, vision-based tracking of tis-

ue motion and its application to motion-compensated laser abla-

ion is addressed in this study as a continuation of our recently

iscussed method ( Schoob et al., 2016 ) for image stabilization dur-

ng incision planning. Moreover, the proposed method is not solely

estricted to laser microsurgery. Further vision-guided, robot-

ssisted interventions or augmented reality concepts involving
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Workflow for application of motion compensation in laser phonomicrosurgery. While exposing the vocal fold lesion (oval structure) by pulling with the grasping 

forceps, tissue motion is tracked to adapt online the ablation scan pattern (red line). Vision-guided laser control, as considered in this study, is intended to be integrated into 

a surgical framework with intuitive, stylus-tablet-based planning and augmented reality visualization as developed in the μRALP-project. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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uperimposing tracking results directly to stereoscopic displays are

onceivable. 

Advances in laser surgery have been achieved regarding tablet-

ased planning interfaces ( Tang et al., 2006; Mattos et al., 2014;

choob et al., 2015c ) and vision-guided laser control and micro-

obotic scanning units for beam deflection ( Dagnino et al., 2015;

enevier et al., 2016 ). Except for recent developments in the field

f laser photocoagulation in retinal surgery, where tissue motion

racking performs adequately when rigid, affine or similarity trans-

orms are used ( Yang et al., 2015; Prokopetc and Bartoli, 2016 ),

nline estimation of larger tissue deformation during ablation has

ot been addressed so far. In particular, respiratory motion arti-

acts and tissue manipulation with surgical forceps as well as cam-

ra movements can lead to unintended injury of risk structures

urrounding the lesion. To overcome this limitation, deformation

racking for online adaptation of laser spot positioning on the tis-

ue surface is required (see Fig. 1 ). 

Recently, vision-based tracking has been focused on minimally

nvasive surgery due to advances in medical imaging, augmented

eality and robotics. Early studies discussed motion tracking, par-

icularly in the field of beating heart surgery, considering match-

ng of salient feature points ( Ortmaier et al., 2005; Stoyanov et al.,

0 05; Sauvée et al., 20 06 ). Intensive research has been conducted

o improve robustness of feature-based tracking by including geo-

etrical constraints for spatial consistency ( Yip et al., 2012 ), multi-

ffine clustering of the target region ( Puerto-Souza and Mariot-

ini, 2013 ), affine-invariant feature descriptors ( Giannarou et al.,

013 ), or online tracking-by-detection for surgical site retargeting

 Ye et al., 2016 ). 

By contrast, physical or geometric models can be incorporated

nto the non-rigid tracking framework. Associated optimization

hen aims at minimizing the shape bending energy and the match-

ng error between the current frame and its template model. If

hape priors are available or acquired preoperatively, organ defor-

ation can be accurately estimated in real time depending on the

omplexity of the mechanical model and its intraoperative regis-

ration ( Suwelack et al., 2014; Haouchine et al., 2015; Collins et al.,

016 ). If tracking of local deformations without knowledge of the

natomical shape is intended, stereo-based methods considering

ree-Form Deformation (FFD) (e.g., piecewise bi-linear maps or B-

plines) or Radial Basis Functions (RBF) (e.g., Thin Plate Splines

TPS)) have been shown to perform well for beating heart motion

stimation ( Lau et al., 2004; Stoyanov et al., 2004; Richa et al.,

010 ). In order to reduce the computational load when TPS is
sed, tracking can be split into intra-frame shape registration and

nter-frame motion estimation ( Yang et al., 2014 ). If a deformation

s small, primitive models, such as quasi-spherical triangles, can

erform as accurately as TPS-based methods ( Wong et al., 2013 ).

o further accelerate tracking, inverse compositional optimization

 Brunet et al., 2011 ) or learning of non-linear template transforma-

ion provide promising solutions ( Tan et al., 2014 ). 

In contrast to RBF-based models, which are mainly limited to

mooth and continuous deformations, alignment to local geometric

hanges can be efficiently achieved with piecewise warps provid-

ng local support and invertibility ( Sotiras et al., 2013 ). A notewor-

hy method in the field of vision-based, non-rigid tracking ( Pilet

t al., 2008 ) estimates deformations with a triangular mesh of

exagonal elements. In this case, a quadratic energy term is for-

ulated penalizing local surface curvature, whereas outliers are

etermined with a coarse-to-fine robust estimator function. In ad-

ition to considering progressive finite Newton (PFN) optimization

 Zhu et al., 2009b ), application to soft tissue motion estimation for

hite light and multispectral imaging has been recently discussed

 Stoyanov and Yang, 2009; Stoyanov et al., 2012; Du et al., 2015 ).

iecewise affine warps have been considered not only for endo-

copic vision but also for online ultrasound image registration, due

o their reduced computational complexity ( Preiswerk et al., 2014;

oyer et al., 2017 ). 

Most model-based, non-rigid tracking methods cannot operate

t image-acquisition rates of 30 Hz and higher. In particular, di-

ect methods often require a non-deterministic, Gauss-Newton-like

ptimization scheme. Thus, convergence is not ensured until the

amera acquires the next frame. In this regard, tracking with a

xed number of iterations or using general purpose graphics pro-

essing units (GPGPU) provide only a limited solution to the prob-

em. In particular, if the image alignment error is large and the

inimization process requires several frames, tracking might fail if

he tissue concurrently undergoes significant motion or deforma-

ion. 

This study presents a novel method for stereoscopic track-

ng of soft tissue motion. Extending our recent work ( Schoob

t al., 2016 ), we follow the idea of splitting the optimization into

1) robust, quasi-deterministic tracking and (2) appearance-based

esh refinement to compensate for tracking inaccuracies such as

rift. Instead of sequential processing, as described in the origi-

al work ( Zhu et al., 2009b ), concurrent computation of both steps

s proposed. Once convergence is reached for the mesh refine-

ent, affine-invariant fusion with respect to the current tracking
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Fig. 2. Hexagonal element of the triangular mesh in (a) undeformed state and (b) 

deformed, penalized state. 
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Fig. 3. Rectified stereo configuration illustrating the epipolar constraint for left- 

right consistency of the mesh model. 
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estimate is performed at minimal computational cost. Even though

concurrent processing significantly reduces the latency-dependent

tracking error, further reduction is required if application in online

laser ablation control is intended. To provide output at control loop

frequency, Kalman filter-based upsampling of the motion measure-

ments is used. 

A major contribution of this work is that an epipolar constraint-

based linear parametrization is applied throughout the entire

framework of tracking, mesh refinement and motion upsampling.

In contrast to the single-view approach combining tracking and re-

finement ( Zhu et al., 2009b; Du et al., 2015 ), our method fully ex-

ploits stereoscopic constraints to estimate soft tissue motion, in-

cluding changes in depth. Stereo-optical triangulation allows ef-

ficient computation of mesh structure and flow in task space.

This enables real-time vision guidance. Moreover, stereoscopic aug-

mented reality is feasible by directly superimposing the tracking

results to the left and right camera view. 

The proposed method is evaluated on in vivo image data. To as-

sess the latency-dependent tracking error, an evaluation methodol-

ogy with ground truth for each frame is presented. A comparative

study considering tracking with and without mesh refinement as

well as concurrent processing and motion upsampling is discussed.

Finally, ablation trials on moving tissue samples demonstrate the

potential of online tracking in laser-assisted surgery on soft tissue. 

2. Material and methods 

In this section, non-rigid tracking with a piecewise affine model

is presented for motion compensation in laser surgery (see Fig. 1 ).

Initially, non-rigid tracking for mono and stereo vision, as recently

discussed, are briefly revisited. Subsequently, mesh refinement and

related concurrent processing as well as fusion with the tracking

result are described. With regard to integration into laser ablation

control, filter-based motion upsampling is used. 

2.1. Monoscopic non-rigid tracking 

Tracking in mono view requires a triangular mesh, as illustrated

in Fig. 2 a. The area of interest is approximated by a triangular

mesh of N vertices s j = 

(
u j , v j 

)T 
concatenated to form the vector

S = ( u 1 , . . . , u N , v 1 , . . . , v N ) T ∈ R 

2 N . (1)

A point p m 

inside this region can be described by the barycentric

coordinates ( ξ j , ξ k , ξ l ) 
T of its adjacent vertices ( s j , s k , s l ) with the

piecewise affine warp function 

 ( p m 

, S ) = 

(
u j u k u l 

v j v k v l 

)⎛ ⎜ ⎝ 

ξ j 

ξk 

ξl 

⎞ ⎟ ⎠ 

. (2)

Common feature matching techniques can be used to locally track

motion. In this study, correspondence between consecutive frames
s established with the pyramidal Lucas–Kanade (LK) method

 Bouguet, 20 0 0 ). With the tracked features and the triangular mesh

odel, the non-rigid tracking problem can be formulated by the

nergy term 

( S ) = ε C ( S ) + λD ε D ( S ) (3)

ith εC defining the mesh correspondence energy and εD the

esh deformation energy weighted by λD . The correspondence

nergy εC is computed from local feature matches, whereas out-

iers are rejected in a coarse-to-fine scheme taking a penalty func-

ion with an iteratively decreasing confidence radius r into account

 Zhu et al., 2009b ). The deformation energy εD regularizes the

eformation by considering the second-order derivatives of every

ollinear connected triplet ( s i , s j , s k ) of each hexagon element (see

ig. 2 b). Finally, the energy term (3) can be reformulated as an un-

onstrained quadratic optimization problem 

( S ) = S T U S − 2 b 

T 
S + c, (4)

here U ∈ R 

2 N×2 N , b ∈ R 

2 N , and c is constant. For further descrip-

ion of the matrix U and the vector b , the reader is referred to our

revious study ( Schoob et al., 2016 ). Finally, Eq. (4) is minimized

ith respect to S applying the quasi-deterministic, progressive fi-

ite Newton (PFN) scheme ( Zhu et al., 2009b ). 

.2. Stereoscopic non-rigid tracking 

Endoscopic stereo imaging facilitates metric surface measure-

ents by triangulation of image points from the left and right

amera view. Common methods for stereo-based motion estima-

ion often consider projective camera geometry ( Richa et al., 2010;

ong et al., 2013; Yang et al., 2014 ). Consequently, the compu-

ation of the Jacobian and the Hessian matrix is complex due to

he non-linearity of the projective functions. Instead of considering

rojective geometry, a computationally more efficient solution was

ound by formulating the problem in disparity space ( Schoob et al.,

016 ). When the epipolar constraint for a rectified stereo configu-

ation with coplanar image planes (see Fig. 3 ) is applied, a linear

arametrization can be defined as follows 

 = ( u 1 , . . . , u N , v 1 , . . . , v N , d 1 , . . . , d N ) 
T 
, (5)

here the stacked vertex coordinates and the associated dispari-

ies d = ( d 1 , . . . , d N ) 
T 

describe the horizontal pixel shift between

orrespondences in both views. Reference is given with respect to

he left camera frame (CF) L such that 
(
u L , j , v L , j 

)T = 

(
u j , v j 

)T 
. For

 rectified stereo view, as shown in Fig. 3 , corresponding points

re enforced to have the same vertical coordinate v . Based on the
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Algorithm 1: Stereoscopic non-rigid tracking. 

pre-compute: 

(1) Initialize S { L , R } according to (Schoob et al., 2016) 

(2) Concatenate S L and S R to form parameter vector q 

for each stereo image pair do 

input: Parameter vector q from previous time step 

(3) Initialize PFN confidence radius r ← r start 

repeat 

(4) Reject outliers for confidence region r 

(5) Compute gradient ∇ε( q ) (Schoob et al., 2016) 

(6) Compute Hessian H ( q ) (Schoob et al., 2016) 

(7) q ← q + �q according to Eq. (13) 

(8) Update S { L , R } ( q ) 
(9) r ← ηr with 0 < η < 1 

until r ≤ r end 

output: Updated stereo mesh S { L , R } ( q ) 
end 
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ε  
arametrization q , the mesh coordinates in the left and right view,

enoted by S L and S R , respectively, are defined by 

 i = S i ( q ) with i ∈ { L , R } (6)

ith j -th mesh point 

 i, j ( q ) = 

{ 

(u j , v j ) T if i = L 

(u j + d j , v j ) T if i = R 

. (7) 

onsequently, the piecewise affine warping of the point p m 

in the

eft or right view is given by 

 i ( p m 

, q ) = W ( p m 

, S i ( q )) = 

⎛ ⎝ 

ξ
T 
m 

0 N 

0 N ξ
T 
m 

⎞ ⎠ S i ( q ) , (8)

here 0 N ∈ R 

1 ×N is the zero vector and ξ
T 
m 

∈ R 

1 ×N the vector con-

aining the non-zero barycentric coordinates ( ξ j , ξ k , ξ l ) 
T with re-

pect to the adjacent mesh vertices of the point p m 

. The remaining

lements in ξm 

are set to zero. 

In comparison with the monoscopic approach ( Zhu et al.,

009b ), stereo-based motion estimation aims at minimizing the

esh alignment error in both the left and right views. Initially,

eatures are matched independently between consecutive frames.

hen, left-right consistency is achieved by minimizing the function

( q ) = 

∑ 

i ∈{ L , R } 
ε C ( S i ( q )) + λD 

∑ 

i ∈{ L , R } 
ε D ( S i ( q )) (9)

ombining the correspondence energy ε C ,i = ε C ( S i ( q )) 

 C ,i = S i ( q ) T A i S i ( q ) − 2 b 

T 
i S i ( q ) + c i (10)

nd the deformation energy ε D ,i = ε D ( S i ( q )) 

 D ,i = S i ( q ) T K i S i ( q ) (11)

f the left and right view, respectively. The matrices A i ∈ R 

2 N×2 N 

nd b i ∈ R 

2 N are obtained from the residuals for the inlier corre-

pondences in the penalty function ( Zhu et al., 2009b ). The sparse

atrix K i ∈ R 

2 N×2 N consists of the squared second-order deriva-

ives of the vertex coordinates. The total energy in Eq. (9) can be

ummarized as 

( q ) = 

∑ 

i ∈{ L , R } 

[
S i ( q ) T U i S i ( q ) − 2 b 

T 
i S i ( q ) + c i 

]
, (12) 

ielding an unconstrained quadratic optimization problem similar

o Eq. (4) . Thus, the PFN method can be used to minimize the en-

rgy term (12) by computing each Newton step 

q = −H 

−1 ( q ) ∇ε( q ) (13)

n a coarse-to-fine scheme with a decreasing confidence radius r .

lgorithm 1 summarizes the non-rigid tracking. For further de-

ails on the stereo extension and derivation of the gradient ∇ε( q )

nd the Hessian matrix H ( q ), the reader is referred to our previous

tudy ( Schoob et al., 2016 ). 

In addition to each triangle center, salient gradient-based land-

arks (usually 5 to 7 points) are selected as mesh support points

 Shi, 1994 ). After establishing initial correspondence between con-

ecutive frames using the LK method, the point positions are cor-

ected by the PFN-based mesh deformation and the refinement

resented in the next section. In addition, the endoscopic images

re rank-encoded, providing increased robustness to nonlinear il-

umination changes ( Zabih and Woodfill, 1994 ). Adopting the idea

f identifying local multivariate outliers ( Filzmoser et al., 2013 ), a

ross-channel, pairwise Mahalanobis distance considering the spa-

ial context of the image texture facilitates consistent temporal de-

ection of occlusions ( Schoob et al., 2016 ). 
.3. Epipolar constraint-based mesh refinement 

In this section, mesh refinement (MR) taking texture informa-

ion into account is described. In particular, the epipolar constraint

utlined above is incorporated into the deformable Lucas-Kanade

ramework (DLK) ( Zhu et al., 2009b ). As in Eq. (9) , the refinement

tep considers a regularization term εD . The total energy for the

tereo view is defined as follows 

 MR ( q ) = 

∑ 

i ∈{ L , R } 
ε A ( S i ( q )) + λD 

∑ 

i ∈{ L , R } 
ε D ( S i ( q )) . (14)

he inverse compositional framework is adopted to minimize the

esidual between the current image I i and the warped template T i 
y the data term ε A ,i = ε A ( S i ( q )) 

 A ,i = 

∑ 

p m ∈ �
ρ
([ 

T i ( W i ( p m 

, �q )) − I i ( W i ( p m 

, q )) 
] 2 )

, (15)

here we use the warping function (8) of the pixel p m 

with m ∈
 

1 , . . . , M } in the image region � represented by the mesh. In order

o provide increased robustness against tracking outliers, Eq. (15) is

ormulated in an iteratively re-weighted least squares framework

ased on the norm-like Huber function 

(u ) = 

{ 

u if u ≤ σ 2 
H 

(2 

√ 

u − σH ) σH if u > σ 2 
H 

. (16) 

or small residuals, ρ( u ) behaves as the standard unweighted least

quares estimator. However, challenging conditions, such as occlu-

ions or specular highlights on glossy tissue, require a robust cost

unction, as that deployed in Eq. (16) , to reduce the weight of out-

iers. In this case, the norm-like Huber function switches to linear

ehavior for large residuals. This has been proven to perform well

n image-based structure and motion estimation ( Hager and Bel-

umeur, 1998; Zhu et al., 2009a; Chang et al., 2013 ). Our stereo

pproach will take adaptive cost re-weighting into account in order

o increase tracking robustness for laser ablation on soft tissue. 

Applying the first order Taylor expansion, we obtain the follow-

ng linearization of the mesh coordinates 

 i ( q ) → S i ( q ) + �S i ( q ) = S i ( q ) + 

∂ S i 
∂ q 

�q . (17)

his allows reformulating the deformation energy (11) , yielding 

 D ,i ≈ ( S i ( q ) + �S i ( q )) T K i ( S i ( q ) + �S i ( q )) . (18)
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Analogously to Eq. (18) , the appearance-based energy (15) can be

linearized to 

ε A ,i ≈
∑ 

p m ∈ �
ρ
([ 

�I i,m 

+ J i,m 

�q 

] 2 )
(19)

with residual 

�I i,m 

= T i ( W i ( p m 

, q 0 )) − I i ( W i ( p m 

, q )) (20)

describing the photometric error. The identity warp W i ( p m 

, q 0 ) is

evaluated at the initial parameter set q 0 . The Jacobian J i,m 

at the

point p m 

is defined by steepest descent image 

J i,m 

= 

∂T i 
∂ q 

∣∣∣
p m 

= ∇T i 
∂ W i 

∂ q 

∣∣∣
p m 

∈ R 

1 ×3 N , (21)

where ∇T i = 

(
∂T i 
∂u 

, 
∂T i 
∂v 

)
denotes the image gradient at p m 

. The Ja-

cobian of the warp is obtained by the product of the derivative of

Eq. (8) 

∂ W i 

∂ S i 

∣∣∣
p m 

= 

⎛ ⎝ 

ξ
T 
m 

0 N 

0 N ξ
T 
m 

⎞ ⎠ ∈ R 

2 ×2 N (22)

and the derivative of the mesh coordinates 

∂ S i 
∂ q 

= 

( 

I N 0 N ∗i 

0 N I N 0 N 

) 

∈ R 

2 N×3 N (23)

with respect to stereoscopic parametrization q . According to i , ∗i is

∗i = 

{
0 N if i = L 

I N if i = R 

∈ R 

N×N . (24)

Hence, ∗i is either the zero matrix 0 N or the identity matrix I N .

Consequently, the Jacobian of the warp is given by 

∂ W i 

∂ q 

∣∣∣
p m 

= 

∂ W i 

∂ S i 

∂ S i 
∂ q 

= 

⎛ ⎝ 

ξ
T 
m 

0 N � i 

0 N ξ
T 
m 

0 N 

⎞ ⎠ ∈ R 

2 ×3 N , (25)

where the placeholder 

� i = 

{ 

0 N if i = L 

ξ
T 
m 

if i = R 

∈ R 

1 ×N (26)

is either the zero vector 0 N or the barycentric coordinates ξ
T 
m 

of

the point p m 

, as described in Eq. (8) . Due to the inverse compo-

sitional algorithm and the linearity of S i ( q ), the Jacobian matrix

(21) is constant and can be computed offline. 

As the gradient of the linearized energy function vanishes for

optimality, the parameter update �q is attained by Gauss-Newton

optimization as follows 

�q = −H 

−1 
MR 

∑ 

i ∈{ L , R } 

(
J T S ,i W i �I S ,i + λD 

∂ S i ( q ) T 

∂ q 

K i S i ( q ) 
)

(27)

with stereo-based Hessian matrix 

H MR = 

∑ 

i ∈{ L , R } 

(
J T S ,i W i J S ,i + λD 

∂ S i ( q ) T 

∂ q 

K i 

∂ S i ( q ) 

∂ q 

)
(28)

and diagonal matrix of the weights 

 i = diag 

(
ρ ′ (�I 2 i, 1 

)
, . . . , ρ ′ (�I 2 i,M 

))
. (29)

In Eqs. (27) and (28) , the pointwise residuals and the Jacobians

form the matrices 

�I S ,i = ( �I i, 1 , . . . , �I i,M 

) 
T (30)
nd 

 S ,i = 

(
J T i, 1 , . . . , J 

T 
i,M 

)T 
, (31)

espectively. As outlined in the previous section, Mahalanobis

istance-based (MHD) outlier detection is deployed taking the spa-

ial distribution of texture information into account. Specifically,

mage pixels are classified as occluded if the MHD between the

nitial template and the current image exceed a predefined thresh-

ld β . Consequently, the indicator function 

MHD = 

{
1 if MHD ≥ β

0 otherwise 
(32)

auses the modified weight 

′ (u ) = 

(
1 − δMHD 

) ∂ρ
(
u 

)
∂u 

(33)

o be set to zero in case of occlusion. Thus, the associated pixel

oes not contribute to the mesh refinement process. 

To reduce the computational load of the iteratively re-weighted

east squares method, the H-algorithm is implemented ( Dutter and

uber, 1981 ). Due to the inverse compositional approach, the un-

eighted Hessian matrix can then be computed offline. To avoid

low convergence or even divergence, the Huber weights are nor-

alized to compensate for influences on the step size of the iter-

tive optimization ( Baker et al., 2003 ). In addition, parameter es-

imation is implemented hierarchically in a coarse-to-fine scheme,

educing the computational load and robustly tracking large dis-

lacements caused by rapid scene and camera motion. Algorithm 2

summarizes the stereo-based mesh refinement outlined above. 

Algorithm 2: Stereoscopic mesh refinement. 

pre-compute: 

(1) Initialize gradient ∇T { L , R } of template image T { L , R } 
(2) Initialize Jacobian J S , { L , R } according to Eq. (31) 

(3) Initialize unweighted Hessian H MR according to Eq. (28) 

for each stereo image pair do 

input: Parameter vector q from tracking(Algorithm 1) 

repeat 

(4) Warp image I { L , R } according to Eq. (8) 

(5) Compute residuals �I S , { L , R } acc. Eq. (20),(30) 

(6) Compute weightings W { L , R } acc. Eq. (29),(33) 

(7) q ← q + �q according to Eq. (27) 

(8) Update S { L , R } ( q ) 
until ‖ �q ‖ ≤ ε
output: Refined stereo mesh S { L , R } ( q ) 

end 

.4. Concurrent tracking and mesh refinement 

Stereoscopic tracking without mesh refinement (noMR) accord-

ng to Algorithm 1 provides high update rate; however, it may lead

o drift over time, since appearance is not considered (see Fig. 4 a).

o compensate for drift, the mesh refinement step according to

lgorithm 2 can be invoked, once Algorithm 1 has finished. This

s called sequential mesh refinement (sMR) strategy (see Fig. 4 b). 

When online assistance for laser surgery is intended, the pro-

essing rate of the image pipeline, including image undistortion,

racking and mesh refinement as well as the surgical tool con-

rol loop (e.g. of the ablation laser), should be at least in the or-

er of the image acquisition rate. To accelerate the mesh refine-

ent, heterogeneous programming on general purpose graphics

rocessing units (GPGPU) is deployed. However, it provides only a
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Fig. 4. Computational pipeline considering (a) tracking by Algorithm 1 without mesh refinement (noMR), (b) sequential (sMR) and (c) concurrent mesh refinement (cMR), 

both deploying Algorithms 1 and 2 . In (c), tracking runs in Thread 1 (CPU) and the refinement in Thread 2 (GPU). Subsequently, the proposed fusion method (F) is called by 

Thread 1. For online laser control, a Kalman filter for motion upsampling (cMRKF) is running in Thread 3 (CPU), as shown in (d). 
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Fig. 5. Mesh in (a) initial configuration at time t τ and (b) subsequently tracked 

position at time t τ+ n . If drift occurs for vertex s j, τ , the proposed mesh refinement 

yields the corrected position s MR, j, τ . Fusion of delayed mesh refinement with respect 

to t τ is achieved at subsequent time t τ+ n even if the mesh concurrently undergoes 

deformation, here exemplarily shown for rotation and scale change between (a) and 

(b). 
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v  
imited solution due to the non-deterministic optimization scheme.

f mesh misalignment is large, subsequent camera images cannot

e processed on time when sMR is used; thus, they need to be

iscarded until the mesh refinement of the prior frame has con-

erged (see Fig. 4 b). This may lead not only to significantly de-

ayed measurements but also to tracking failure if the scene con-

urrently undergoes rapid motion or large local deformation. Thus,

oncurrent tracking and mesh refinement (cMR) with subsequent

ffine-invariant fusion, as illustrated in Fig. 4 c, is discussed (see

ext section). This method is compared with noMR (equivalent to

 Schoob et al., 2016 )) and sMR. The latter method corresponds to

he monoscopic DLK-algorithm ( Zhu et al., 2009b; Du et al., 2015 )

hat, in this study, has been extended to stereo vision by incorpo-

ating the epipolar constraint. Additionally, upsampling of the mo-

ion measurements using Kalman filtering (cMRKF) is considered,

s shown in Fig. 4 d. 

.5. Affine-invariant fusion of tracking and mesh refinement 

Regarding sMR, motion is initially estimated according to

lgorithm 1 . Subsequently, Algorithm 2 is initiated at time t τ to

ompensate for mesh misalignment caused, for instance, by drift

see Fig. 4 b). Since the refinement processes dense texture in-

ormation in a non-deterministic optimization framework, con-

ergence cannot be ensured until acquisition of the next camera

rame. Assuming the refinement result to be available at time t τ+ n 
ith a delay of n frames, concurrent computation of tracking and

esh refinement (cMR), as shown in Fig. 4 c, is required to achieve

nline capability for vision-guided interventions. 

The fusion of both steps required for cMR is presented in the

ollowing. Let us exemplarily consider motion tracking from time

 τ to t τ+ n with mesh vertex s j, τ being subject to drift (see Fig. 5 a).

ue to computational delay, fusion of the refinement result s MR, j, τ

eferring to t τ cannot be achieved until t τ+ n . To compensate for

imultaneous deformation (see Fig. 5 b), affine-invariant fusion of

he corrected mesh vertex position s MR, j, τ is performed by 

fi  
 MR , j,τ+ n = W i ( s MR , j,τ , q τ+ n ) 

= 

(
s j,τ+ n s k,τ+ n s l,τ+ n 

)⎛ ⎜ ⎝ 

ξMR , j,τ

ξMR ,k,τ

ξMR ,l,τ

⎞ ⎟ ⎠ 

, (34) 

here the parametrization q τ+ n is obtained from stereo-based

racking with Algorithm 1 running in Thread 1. After Thread 2 fin-

shes Algorithm 2 at time t τ+ n yielding s MR, j, τ , a triangle inlier test

etermines adjacent mesh vertices ( s j , s k , s l ) 
T . Specifically, s MR, j, τ

s considered to be inlier if its barycentric coordinates ( ξMR, j, τ ,

MR, k, τ , ξMR, l, τ ) T satisfy the condition 

 ≤ ξMR , { j,k,l} ,τ ≤ 1 . (35) 

f the refined vertex is located outside mesh boundaries, the trian-

le with the shortest distance to s MR, j, τ is selected. 

Using barycentric coordinates in Eq. (34) , instead of cartesian

ertex positions, allows affine-invariant fusion of tracking and re-

nement at t τ+ n , independent of concurrent deformation. The
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entire mesh coordinates in the left and right camera view can be

corrected in one step by computing 

S MR ,i,τ+ n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ξ
T 
MR , 1 ,τ 0 N 

. . . 
. . . 

ξ
T 
MR ,N,τ 0 N 

0 N ξ
T 
MR , 1 ,τ

. . . 
. . . 

0 N ξ
T 
MR ,N,τ

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

S i ( q τ+ n ) (36)

considering the pixelwise warp function (34) in a stacked formu-

lation of Eq. (8) . Since the epipolar constraint is satisfied for both

tracking and mesh refinements, it implicitly applies to Eq. (36) . 

While Algorithm 1 runs on the CPU in Thread 1 (Core i7-3770,

Intel Corporation, Santa Clara, CA, USA), Algorithm 2 is computed

asynchronously in Thread 2 deploying the CUDA framework and

a GeForce GTX Titan GPU (NVIDIA, Santa Clara, CA, USA). Once

Thread 2 finishes, fusion according to Eq. (36) is performed. In con-

trast to Algorithm 1 , inlier check (35) and the subsequent matrix

multiplication (36) are computed at negligible costs. 

2.6. Upsampling of the motion measurements 

To further reduce the latency-dependent tracking misalignment,

the epipolar constraint-based parameter set (5) is incorporated

into filter-based motion upsampling. This is denoted by cMRKF.

Adopting the idea of an iconic (pixelwise) representation of the

Kalman filter for predicting changes in depth ( Vaudrey et al.,

2008 ), we propose each vertex s j to be tracked individually with

state vector 

x j,τ = 

(
u j,τ , v j,τ , d j,τ , ˙ u j,τ , ˙ v j,τ , ˙ d j,τ

)T 
, (37)

where the first subscript j indicates the vertex index and the sec-

ond subscript τ time step t τ . Instead of modeling the entire mesh

within a single state space model, representation (37) minimizes

the size of the associated filter matrices; thus, it increases compu-

tational efficiency. The state vector is defined in disparity space,

taking spatial and temporal information of the mesh vertex s j ,

i.e., its position ( u j , v j ) 
T and motion vector 

(
˙ u j , ˙ v j 

)T 
, into account.

Changes in depth are considered by the inversely related disparity

d j and the associated disparity rate ˙ d j between the left and right

camera view. Kalman filtering enables us to find an optimal state

estimate, taking process and measurement noise into account. The

three motion directions { u, v, d } can be considered as independent;

thus, state representation (37) can be separated into the following

three state vectors 

x u , j,τ = 

(
u j,τ , ˙ u j,τ

)T 

x v , j,τ = 

(
v j,τ , ˙ v j,τ

)T 

x d , j,τ = 

(
d j,τ , ˙ d j,τ

)T 
, (38)

further reducing the computational complexity of the motion up-

sampling algorithm. Each vector deploys the same linear Kalman

filter model, which is exemplarily explained for x d, j, τ in the re-

mainder of this section. 
A dynamic system is modeled by the discretized state and mea-

urement equation 

 d , j,τ = F τ x d , j,τ−1 + w τ

z d , j,τ = H τ x d , j,τ + v τ , (39)

here the process and measurement noise are represented by

ormal probability distributions w τ ∝ N (0 , Q τ ) and v τ ∝ N (0 , R τ )

ith covariance matrix Q τ ∈ R 

2 ×2 and variance R τ , respectively.

he state transition and measurement matrices are denoted by

 τ ∈ R 

2 ×2 and H τ ∈ R 

1 ×2 , respectively. The disparity measurement

 d , j,τ = d j,τ is obtained from the stereoscopic tracking method

MR. For the system model deployed in this work, the state tran-

ition matrix is given as follows 

 τ = 

(
1 �T 

0 1 

)
, (40)

here �T is the sample time between t τ and t τ−1 . Since the

isparity rate is not measured directly, the measurement matrix

 τ = [ 1 0 ] is constant. Consequently, the disparity process up-

ate of the Kalman filter is defined by the state and covariance

stimate 

 

−
d , j,τ

= F τ x d , j,τ−1 

P −τ = F τ P τ−1 F 
T 
τ + Q τ . (41)

he measurement update equations taking the disparity observa-

ion into account are as follows 

 d , j,τ = x −
d , j,τ

+ K τ

(
z d , j,τ − H τ x −

d , j,τ

)
K τ = P −τ H 

T 
τ

(
H τ P −τ H 

T 
τ + R τ

)−1 

P τ = 

(
I − K τ H τ

)
P −τ , (42)

here P τ ∈ R 

2 ×2 denotes the state covariance and K τ ∈ R 

2 ×1 is the

alman gain. 

The process noise is assumed to have zero mean and covariance

atrix 

 τ = 

⎛ ⎝ 

�T 4 

4 

�T 3 

2 

�T 3 

2 
�T 2 

⎞ ⎠ σ 2 
Q , (43)

epending on the uncertainty σ Q . Since only position is measured,

he related noise variance is defined as R τ = σ 2 
R . For all three mo-

ion directions, process and measurement uncertainties are empir-

cally set to (σQ , σR ) = (1 . 0 , 0 . 001) . 

The Kalman filtering scheme is applied according to Fig. 4 d.

f no measurement is available, only state prediction (41) is per-

ormed to upsample the previous measurement with the un-

erlying motion model and to reduce the latency-dependent

isalignment. Once an image-based tracking result is available,

q. (42) corrects the motion estimate. 

. Experimental 

Initially, the methodology for accuracy assessment on in vivo

issue (IVT) is presented. Subsequently, the system design for on-

ine performance evaluation of the tracking with two motion pat-

erns is illustrated. Based on integration into a surgical framework

ccording to Fig. 1 , laser ablation trials conducted on tissue substi-

ute and porcine ex vivo tissue (EVT) are described. 
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Table 1 

Scenarios for tracking on in vivo tissue (IVT). 

No. Frames Description 

SEQ1 350 Hamlyn-sequence with scale change 

SEQ2 650 Hamlyn sequence with simulated occlusion 

SEQ3 140 Hamlyn sequence with large deformation 

SEQ4 338 Hamlyn sequence of beating heart #1 

SEQ5 630 Hamlyn sequence of beating heart #2 

SEQ6 600 μRALP sequence with deformation 

SEQ7 448 μRALP sequence with partial occlusion 

SEQ8 368 μRALP sequence with large deformation 
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.1. Tracking accuracy assessment on IVT 

Tracking performance is assessed on laparoscopic, beating heart

nd laryngeal in vivo tissue (IVT) datasets. Five reference points

 m ,GT with m ∈ { 1 , . . . , 5 } , mostly located on distinctive blood ves-

els, representing the ground truth (GT) were manually selected

eforehand by an experienced observer. For each sequence, eleven

rames with GT were defined (equally distributed along the se-

uence). The pointwise error is then given by 

 Track ( p m 

) = 

∥∥
(L) p m, Track − (L) p m, GT 

∥∥
2 
, (44) 

onsidering the back-projected points with reference to frame

CF) L . 

In total, eight stereo sequences are considered (see Table 1 ).

equences SEQ1–5 are obtained from the laparoscopic Hamlyn

ataset 1 ( Mountney et al., 2010; Stoyanov et al., 2005 ). The first

hree videos, denoted by SEQ1–3, are adopted from a laparoscopic

orcine procedure including a scale change, a simulated occlusion

n a nearly static scene, and significant deformation, respectively.

atasets SEQ4 and SEQ5 describe more challenging beating heart

racking scenarios that have already been considered ( Stoyanov

t al., 2005; Richa et al., 2010 ). The last three videos, denoted by

EQ6–8, are captured with a stereo endoscope (VSii, Visionsense,

etach-Tikva, Israel, stereo baseline of 1 mm) in an in vivo laryn-

eal intervention in the μRALP project 2 . To summarize, the pre-

ented method is evaluated in three different surgical scenarios

roviding scenes with and without occlusion as well as significant

eformation and changes in illumination. In the laparoscopic Ham-

yn dataset, the tracked region is located at a distance of 170 mm

camera baseline ∼ 5 mm). For the beating heart and the laryn-

eal μRALP sequences, the distance amounts to 40 mm (baseline

5 mm) and 20 mm (baseline ∼ 1 mm) on average, respectively.

he analyzed sequences are listed in Table 1 . 

During the evaluation study, Algorithm 1 was parametrized

ith λD = 0 . 01 , β = 0 . 03 and a triangle width of 35 pixels. Regard-

ng Algorithm 2 , the Huber threshold for the rank-transform resid-

als is set to σH = 10 . The number of pyramidal levels has been

xed to three with a maximum of 20 iterations per level and a

ermination criterion of ε = 0 . 03 . 

Regarding the tracking performance of cMRKF on the in vivo

ata, results are compared with not only those of noMR and

MR but also those of state-of-the-art algorithms, namely, an im-

lementation of the TPS-based non-rigid tracking as a further

irect method ( Richa et al., 2010 ), and the hierarchical multi-

ffine (HMA) feature-matching toolbox ( Puerto-Souza and Mariot-

ini, 2013 ). The stereoscopic TPS method was reimplemented in-

luding specular highlight filtering as well as CUDA optimization.

or providing an acceptable tradeoff between accuracy and run-

ime, a set of 3 × 3 control points was used. The HMA algorithm

s discussed for two different strategies. Features are matched ei-
1 http://hamlyn.doc.ic.ac.uk/vision/ 
2 http://www.microralp.eu/ 

n  

l  

m  

t  
her with respect to the initial frame (HMAi) or between consec-

tive frames of the image sequence (HMAc). In order to establish

eft-right correspondence for the monoscopic HMA algorithm and

o initialize the TPS model in the right view, dense surface recon-

truction was employed ( Schoob et al., 2015a ). 

.2. Assessment of the latency-dependent tracking error 

In addition to the IVT trials, an in-depth validation of the

atency-dependent tracking misalignment should demonstrate the 

uperior performance of cMR(KF) compared with noMR and sMR.

o provide accurate ground truth (GT) for each frame, a tissue sam-

le is positioned on a high-precision, parallel-kinematic platform

Hexapod H-824.G11, Physik Instrumente (PI), Karlsruhe, Germany)

nd translated with a repeatability of ± 0.5 μm. Stereo images are

cquired with a stereo camera (2 × UI-3370-CP-C-HQ, IDS Imag-

ng Development Systems GmbH, Obersulm, Germany) equipped

ith C-mount lenses (FL-HC0614-2M, Ricoh Company, Ltd., Tokyo,

apan). The two cameras are mounted slightly converged with a

aseline of 37 mm at a distance of 60 mm to the sample surface.

 schematic overview of the setup is shown in Fig. 6 a. 

For simplicity, tissue deformation is not considered in this part

f the evaluation, since acquiring ground truth in real time is com-

lex. Instead, rigid movements of the sample are performed while

T is measured from the hexapod encoder data. An incision line

efined by points p m ,GT is planned in sample frame (CF) S . The po-

ition with respect to the hexapod home frame (CF) H,0 can be cal-

ulated by 

 H , 0 ) ̃  p m, GT = 

S T −1 
H , 0 (S) ̃  p m, GT , (45) 

here position 

˜ p m, GT is represented in homogeneous coordinates.

ransform 

S T H,0 maps the incision line from frame (CF) S to frame

CF) H,0 and is given by 

 T H , 0 = 

S T H 
H T H , 0 , (46) 

here H T H,0 is measured from the hexapod encoders. The un-

nown but constant transform 

S T H between the sample and hexa-

od frame is obtained by 

 T H = 

L T −1 
S , init 

L T H , 0 
H , init T −1 

H , 0 , (47) 

ssuming an arbitrary initial pose H,init T H,0 that may differ from the

exapod home pose. Transform 

L T S,init is assumed to have its origin

t the first point of the planned incision, whereas its orientation is

onsidered to be equal to the initial hexapod rotation with respect

o (CF) L . The image-based tracking result is finally mapped by 

 H , 0 ) ̃  p m, track = 

L T −1 
H , 0 (L) ̃  p m, track (48) 

o hexapod frame (CF) H,0 , whereas the camera-to-hexapod trans-

orm 

L T H,0 is computed offline by hand-eye calibration ( Tsai and

enz, 1989 ). The latency-dependent misalignment (LD) is then as-

essed with respect to GT by the error function 

 LD ( p m 

) = 

∥∥
( H , 0 ) p m, track − ( H , 0 ) p m, GT 

∥∥
2 

. (49) 

uring the experiments, two motion patterns were considered in

rder to assess (1) the drift when noMR is used, (2) the online

erformance of sMR as well as cMR in compensating for the afore-

entioned drift, and (3) the capability of the proposed motion up-

ampling cMRKF to further reduce the latency-dependent tracking

isalignment. The first scenario, which is called lateral, considers

ovements in the lateral direction (along the y -axis of (CF) H,0 ), i.e.,

erpendicular to the optical axis of the laser. In a clinical scenario,

uch a motion can be induced by camera motion or tissue ma-

ipulation with grasping forceps to expose the tissue during ab-

ation. To point out performance differences when tracking with

esh refinement, concurrent processing and motion upsampling,

he trajectory is repeated 10 times with an amplitude of 3 mm and

http://hamlyn.doc.ic.ac.uk/vision/
http://www.microralp.eu/
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Fig. 6. Experimental design is shown in (a) with a rigid setup deploying a stereo camera, a surgical laser, and a parallel robot for positioning tasks to assess tracking 

performance. Motion estimation and laser ablation trials conducted on tissue substitute (MDF) and ex vivo tissue (EVT) samples are shown in (b,c). For both specimens, the 

surface has to be positioned properly in the cubic laser workspace. 
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a maximum velocity of 2.1 mm/s. The second scenario, which is

called axial, is defined by movements with an amplitude of 4 mm

at 1 mm/s in the depth direction (along the z -axis of (CF) H,0 ), which

is perpendicular to the optical axis. Hereby, a clinical scenario with

changing distance between the tissue surface and the laser is sim-

ulated. Tracking such a motion enables continuous adjustment of

the laser focus for optimal ablation characteristics ( Schoob et al.,

2015b ). 

For each motion pattern, two types of tissue are considered in

the experimental study. As illustrated in Fig. 6 b, tracking is ini-

tially performed on a highly textured, non-reflective medium den-

sity fiberboard (MDF) to demonstrate tracking under ideal condi-

tions. To mimic clinical conditions, porcine ex vivo tissue (EVT)

is tracked in an additional scenario to assess the performance on

glossy and weakly textured environment (see Fig. 6 c). The active

sensor area of the camera was cropped to 400 × 400 pixels en-

abling an image acquisition frame rate of 80 Hz. The stereo cam-

era system was calibrated with a re-projection error of 0.1 pixel.

To achieve online-capability of tracking, a mesh of 6 × 4 triangles

with an edge length of 75 pixels was chosen. Motion upsampling

rate was set to 200 Hz in accordance with the hexapod encoder

sampling rate. 

3.3. Laser ablation framework 

To demonstrate vision-guided laser control, ablation trials were

conducted on MDF and EVT. Therefore, the experimental setup

in Fig. 6 a additionally comprises a surgical Er:YAG laser ( λ =
2 . 94 μm, DPM-15, Pantec Engineering AG, Ruggell, Liechtenstein)

and a three-axis scanning unit (VarioScan and HurryScan, SCAN-

LAB, Puchheim, Germany). The camera field of view is optimized
ith respect to the area of intersection between tissue surface

nd laser scanning range, which is defined by a cube of 10 mm

n each direction. To estimate the laser-to-camera transform 

L T A 
see Fig. 6 a), circle grids are ablated onto a planar surface and de-

ected in the stereo view. After back-projection to object space, the

aser axis is computed by principal component analysis (PCA) and

aser workspace orientation is estimated by point-based registra-

ion ( Schoob et al., 2015b ). 

The results of ablating a straight and a curved line when cMRKF

s used are discussed. Such scan patterns are commonly employed

n transoral laser microsurgery and are provided by state-of-the-art

ystems, e.g., the Digital AcuBlade TM Scanning Micromanipulator

Lumenis, Yokneam, Israel). During the experiments, the laser set-

ings were set to constant pulse duration τP = 150 μs, diode current

 D = 150 A, and pulse frequency f P = 220 Hz. Multiple passes with

 scanning velocity of v S = 200 mm s −1 were performed, minimiz-

ng the risk of local thermal damage of the tissue. The entire image

rocessing and control software was implemented on a nodelet-

ased, high-level control layer deploying C++ and the Robot Oper-

ting System (ROS) 3 ( Quigley et al., 2009 ). 

.4. Laser ablation trials on MDF 

Straight and curved lines were stamped with green ink onto the

DF sample surface that was positioned in the laser focal range

sing the hexapod platform (see Fig. 6 b). Tracking and ablation

ere simultaneously performed considering both the lateral and

xial motion patterns. The root mean square error (RMSE) of path

http://www.ros.org/
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Fig. 7. Tracking error (RMSE) in mm for analyzed methods and IVT sequences SEQ1–8 (a–h). Accuracy is evaluated with respect to ground truth measured for eleven 

particular frames per sequence (distributed equally along each sequence). 
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racing was computed between the initial shape and associated ab-

ation, both segmented by thresholding. Additionally, laser ablation

n a static sample was performed to quantify the impact of the

aser-to-camera registration error. 

.5. Laser ablation trials on EVT 

Path tracing on the EVT was conducted to demonstrate online

aser control on biological tissue. In contrast to the MDF sam-

le, the straight and curved incision lines were manually defined

nd segmented after ablation deploying a stylus-based tablet in-

erface ( Schoob et al., 2015c ). Laser ablation accuracy was assessed

or comparing (1) the two strategies sMR and cMRKF under lat-

ral motion, and (2) non-focused and focused ablation while the

issue sample is moved in the axial direction. Finally, the ablated

aths were analyzed under microscopic imaging in terms of abla-

ion quality, shape, and carbonization. 

Qualitative validation of motion compensation is provided for

blation on tissue manipulated with a surgical forceps (Serpent Ar-

iculating Grasping Forceps 3 mm, Smith & Nephew plc, London,

K). As shown in Fig. 6 c, a tissue sample mimicking a vocal fold

as prepared, and push-pull movements were induced to expose

he tissue in the laser workspace. Moreover, the trials included de-

ormation in the axial direction to simulate respiratory motion ar-

ifacts. Due to the limited laser workspace, only small movements

ere feasible. 

. Results 

.1. Tracking accuracy assessment on IVT 

Fig. 7 illustrates the error plots for each sequence. The associ-

ted mean and standard deviation (SD) as well as the root mean

quare error (RMSE) are listed in Table 2 . 

In comparison with TPS, HMAi, HMAc, and noMR, the results

emonstrate superior performance of the tracking with mesh re-

nement when either sMR or cMRKF is applied. Since we observed

o differences between cMR and cMRKF during the IVT validation,

e skip presenting the results of cMR in this section. A compari-
on of the two methods is provided in the next section, where the

T hexapod motion is taken into account. 

According to the results listed in Table 2 , the TPS method is

ble to adequately track tissue deformation in most cases; how-

ver, it fails in sequences SEQ2 and SEQ7 due to partial occlu-

ion and rapid motion, respectively. The feature matching strat-

gy HMAi provides high accuracy in scenes with smooth de-

ormation, as in the beating heart sequences SEQ4–5, and un-

er partial occlusions, as illustrated by SEQ2 and SEQ7. However,

MAi-based tracking of large tissue deformation, as in SEQ3 as

ell as SEQ8, shows poor performance and even tracking fail-

re (see Fig. 7 ). In addition, as the supplemental video high-

ights, there is no temporal consistency when HMAi (flickering,

.g., in SEQ6) is used. These limitations can be successfully ad-

ressed by matching features on subsequent frames employing

MAc alternatively; however, this method fails at partial occlusions

nd suffers from drift, as illustrated by SEQ2 and SEQ4, respec-

ively. By contrast, tracking with sMR or cMRKF performs accu-

ately in all scenarios, without tracking failure. The norm-like Hu-

er function penalizes partial occlusions to some extent, as shown

n Fig. 8 a, where the instrument tip enters the tracked region.

hen the MHD-based detection scheme (see Fig. 8 b) is incorpo-

ated into the reweighting process according to Eq. (33) , robust-

ess to partial occlusions, such as those caused by instruments

r laser ablation with significant carbonization, can be improved.

n comparison with method noMR (i.e. SEQ3–5), drift is success-

ully eliminated. Decomposing the RMSE for the cMRKF method

eveals that the error in z -direction predominates. For sequence

EQ1, the RMSE amounts to (e x , e y , e z ) = (0 . 22 , 0 . 26 , 1 . 31) mm , re-

ealing that the z -error is approximately five times higher com-

ared with that in the other two spatial directions. Since the

epth resolution increases with the baseline-to-distance ratio, a re-

uced predominance in the z -direction is revealed for SEQ4 and

EQ6, yielding (e x , e y , e z ) = (0 . 10 , 0 . 10 , 0 . 22) mm and (e x , e y , e z ) =
(0 . 08 , 0 . 12 , 0 . 25) mm , respectively. 

Computation time is exemplarily discussed for SEQ8, which ex-

ibits significant deformation, and is depicted in Fig. 9 and Table 3 .

nitially, the TPS method runs at almost constant 13 ms per frame,

ince only slight motion occurs, which can be tracked within a few

terations. Since tracking of tissue deformation requires a higher
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Table 2 

Tracking error in mm measured for the IVT sequences. Accuracy values are valid until tracking failure (F). Bold numbers represent the best performance, whereas italic 

numbers denote the second best performance. 

TPS HMAi HMAc noMR sMR cMRKF 

Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE 

SEQ1 1.91 ± 1.54 2.44 1.82 ± 1.10 2.12 2.07 ± 0.89 2.25 3.00 ± 1.67 3.42 1.07 ± 0.79 1.33 1.14 ± 0.73 1.35 

SEQ2 5.61 ± 11.4 (F) 12.5 (F) 1.98 ± 1.36 2.39 5.42 ± 6.05 (F) 8.05 (F) 4.40 ± 2.66 5.13 2.20 ± 1.53 2.67 2.48 ± 1.38 2.83 

SEQ3 3.66 ± 6.08 7.05 4.19 ± 6.40 7.60 1.43 ± 1.03 1.75 3.25 ± 3.71 4.91 2.13 ± 2.63 3.37 2.21 ± 3.07 3.77 

SEQ4 0.36 ± 0.25 0.43 0.22 ± 0.17 0.27 0.50 ± 0.33 0.60 1.04 ± 0.67 1.24 0.24 ± 0.16 0.28 0.23 ± 0.12 0.26 

SEQ5 0.48 ± 0.54 0.72 0.26 ± 0.17 0.31 1.50 ± 1.09 1.85 1.65 ± 1.27 2.08 0.36 ± 0.21 0.42 0.40 ± 0.24 0.47 

SEQ6 0.25 ± 0.24 0.35 0.65 ± 1.26 1.41 0.42 ± 0.33 0.54 0.48 ± 0.33 0.59 0.17 ± 0.16 0.23 0.22 ± 0.18 0.29 

SEQ7 0.59 ± 0.44 (F) 0.73 (F) 0.38 ± 0.58 0.69 0.64 ± 0.54 0.83 1.97 ± 1.00 2.20 0.66 ± 0.36 0.75 0.75 ± 0.38 0.84 

SEQ8 0.49 ± 0.84 0.96 0.66 ± 1.02 (F) 1.20 (F) 0.43 ± 0.51 0.66 0.72 ± 0.91 1.16 0.33 ± 0.38 0.50 0.38 ± 0.38 0.54 

Fig. 8. Instrument-induced partial occlusion in SEQ7 penalized by implementing (a) 

norm-like Huber function and (b) MHD-based detection scheme. 

Fig. 9. Runtime in milliseconds for SEQ8 (8 × 4 triangle mesh). 

 

 

 

 

Table 3 

Runtime in milliseconds for SEQ8 (mean ± standard deviation (SD)). 

TPS noMR sMR cMRKF 

Mean ± SD 21.5 ± 15.6 13.5 ± 1.8 43.7 ± 14.5 13.6 ± 1.8 
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number of iterations to converge, the computation time drastically

increases up to 70 ms. Even though it is more accurate, the sMR

method is as non-deterministic as the TPS approach. This observa-

tion is substantiated by the high standard deviation of 14.5 ms (see

Table 3 ). 
Fig. 10. Comparison of tracking results in laparoscopic sequence SEQ2. For each sequenc

tracked with respect to ground truth. A partial occlusion is simulated with a synthesized

TPS and HMAc. (For interpretation of the references to color in this figure legend, the rea
Even though no restriction on the computation time was im-

osed to ensure convergence, the available runtime of the cM-

KF method was limited to 50 ms (framerate of 20 Hz) in or-

er to demonstrate the fusion of tracking and delayed mesh re-

nement. On this condition, cMRKF shows a constant run-time of

3.6 ± 1.8 ms for the entire sequence SEQ8. Consequently, cMRKF

ombines the computational efficiency of noMR with the drift-free

racking accuracy of sMR. 

Unfortunately, we were not able to reproduce the HMA runtime

eported in the original work; thus, we assume an average time

f 50 ± 20 ms per frame, as presented in ( Puerto-Souza and Mar-

ottini, 2013 ). Considering the additional time of 35 ms required

o establish stereo correspondence, an overall matching time of at

east 85 ms reveals that real-time capability similar to TPS and

MR cannot be achieved. Thus, online laser control can only be ad-

ressed by cMRKF. 

The results of the deformation tracking are exemplarily illus-

rated in Figs. 10 , 11 , 12 . Due to the complexity and limited res-

lution of manually acquiring ground truth data, the IVT results

o not provide quantitative evidence for the entire sequence, espe-

ially between consecutive frames. Thus, the next section provides

 more detailed analysis on the delay-dependent tracking error in

rder to assess the real-time capability of the presented mesh re-

nement strategies. 

.2. Assessment of the latency-dependent tracking error 

Two cyclic motion trajectories were carried out on the MDF and

VT sample to assess the latency-dependent tracking error. The
e, frame 2 (left) and frame 254 (right) are shown. Five landmarks (green dots) are 

 vertical bar moving from left to right. Tracking failure was detected for methods 

der is referred to the web version of this article.) 
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Fig. 11. Comparison of tracking results in beating heart sequence SEQ4. For each sequence, frame 2 (left) and frame 323 (right) are shown. Five landmarks (green dots) are 

tracked with respect to ground truth. Drift of certain landmarks was observed for methods HMAc and noMR. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 12. Comparison of tracking results in laryngeal sequence SEQ8. For each sequence, frame 2 (left) and frame 216 (right) are shown. Five landmarks (green dots) are 

tracked with respect to ground truth. Drift was observed for method HMAc. Tracking failure was detected for method HMAi. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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2  
esults of tracking the lateral MDF motion are shown in Fig. 13 ,

ncluding the position over time, the associated ground truth and

he tracking error. Even though this scenario can be regarded as

racking under ideal conditions (significant texture, no specular

ighlights or occlusions), a remaining misalignment due to drift

s observed at the end of the trajectory when noMR is used (see

ig. 13 a,b). By contrast, tracking with subsequent mesh refinement

sMR) compensates for drift; however, it drastically increases the

racking error (see Fig. 13 c,d). Since the motion estimate is com-

uted with significant delay, the error grows to 0.78 mm when the

ample is moved in the lateral direction at the maximum veloc-

ty of 2.1 mm/s. If the mesh refinement is processed concurrently

cMR), real-time performance for noMR whith simultaneous com-

ensation for drift is achieved (see Fig. 13 e,f). The maximum de-

iation of the lateral position does not exceed 0.09 mm. Further

eduction of the latency-dependent misalignment is attained with

lter-based motion upsampling (cMRKF), as shown in Fig. 13 g,h. 

The error curves of Fig. 13 are summarized in the form of box

lots (see Fig. 14 a) ( Mc Gill et al., 1978 ). The interquartile range

IQR), defined from the bottom to the top of the box, contains

ata points between the 25th and the 75th percentile, respectively,

hereas the error median is represented by the notch. The up-

er whisker includes data within 1.5 IQR of the upper quartile,

hereas the lower whisker contains data within 1.5 IQR of the

ower quartile. Outliers are marked by a cross if they are not be-

ween the whiskers. For each strategy, two box plots are shown.

he left and right plot represent the lateral and axial tracking re-

ult, respectively. The red-colored circle defines the remaining mis-

lignment at the end of the motion pattern. The related error val-

es are listed in Table 4 . 

Regarding motion estimation on the EVT sample, the influence

f drift is significantly more distinct when noMR is used. The max-

mum error is 0.505 mm and 1.29 mm in the lateral and axial di-

ection, respectively. As in the trials outlined above, concurrent
esh refinement cMR drastically reduces the temporal misalign-

ent compared with the sequential method sMR. cMRKF outper-

orms all other methods, providing an RMSE of below 0.05 mm for

ateral and axial movements. Since tracking on the glossy tissue

ample is affected by specular highlights and reduced texture, the

elated error values, as listed in Table 4 , are higher than those in

he case of tracking on the MDF specimen. 

Compared with the IVT validation, the IDS cameras enable

ighly accurate tracking due to not only the low-noise CMOS sen-

or but also the higher baseline-to-distance ratio. For instance,

ompared with the μRALP setting, which has a ratio of 1 / 20 =
 . 05 , the IDS stereo setup provides a much higher depth resolution

t a ratio of 37 / 60 = 0 . 62 , resulting in highly accurate tracking. 

The computational load mainly depends on the number of

esh vertices and the size of the tracked region. Given an im-

ge area of 200 × 200 pixels, the associated computation time

or tracking is listed in Table 5 . In particular, for the PFN opti-

ization scheme ( Algorithm 1 ), iteration time drastically increases

ith the number of model parameters. The overhead of the affine-

nvariant fusion and the additional motion upsampling with less

han a millisecond can be neglected. During the laser ablation tri-

ls discussed in the next section, a mesh with 6 × 4 triangles with

n edge length of 75 pixels was chosen to estimate tissue motion.

onsequently, the entire processing pipeline, including image rec-

ification, cMRKF-based tracking, and laser ablation control, runs at

 chosen image acquisition rate of 80 Hz. 

.3. Laser ablation trials on MDF 

The results of path tracing on the MDF specimen are listed

n Table 6 . Regarding the static scenario, the ablation misalign-

ent is below 0.07 mm, which correlates with the laser-to-camera

egistration error reported in our previous study ( Schoob et al.,

015b ). In accordance to the cMRKF-based tracking error presented
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GT
Tracking
Error

Fig. 13. Results of tracking the MDF sample for the lateral motion pattern. The position and associated ground truth (GT) trajectory plotted over time for methods (a) noMR, 

(c) sMR, (e) cMR, and (g) cMRKF. The latency-dependent tracking error is additionally shown in the associated zoomed view. 

Fig. 14. Box plot illustrating the tracking error measured for (a) the MDF specimen and (b) the porcine EVT sample. For each method, the results of the lateral and axial 

motion pattern are shown. The final misalignment (drift) after returning to the hexapod home position is indicated by a red circle. Outliers are marked by the symbol × . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Tracking error in mm measured for the MDF and EVT samples moved by the hexapod robot. Lateral movements were performed at 2.1 mm/s and axial movements at 

1 mm/s, respectively. Bold numbers represent the best performance, whereas Italic numbers denote the second best performance. 

noMR sMR cMR cMRKF 

Mean ± SD RMSE Max. Mean ± SD RMSE Max. Mean ± SD RMSE Max. Mean ± SD RMSE Max. 

MDF Lateral 0.029 ± 0.018 0.034 0.115 0.279 ± 0.143 0.313 0.777 0.019 ± 0.014 0.023 0.087 0.015 ± 0.010 0.018 0.063 

Axial 0.075 ± 0.034 0.082 0.161 0.125 ± 0.050 0.135 0.301 0.024 ± 0.013 0.028 0.077 0.015 ± 0.008 0.017 0.046 

EVT Lateral 0.189 ± 0.122 0.225 0.505 0.438 ± 0.202 0.483 0.888 0.091 ± 0.038 0.098 0.189 0.038 ± 0.021 0.044 0.111 

Axial 0.626 ± 0.347 0.716 1.290 0.203 ± 0.082 0.219 0.404 0.071 ± 0.026 0.076 0.156 0.043 ± 0.020 0.047 0.128 
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Fig. 15. Laser ablation of the curved scan pattern. In the first row, results of ablation onto the MDF specimen while moving into lateral direction are shown by (a) the left 

camera view including segmented incision (red line) and by (b) three snapshot images of the motion sequence acquired with an external, high-resolution video camera. 

In comparison, ablation on porcine EVT considering the same motion pattern is illustrated in the second row (c,d). Online laser path adaption on tissue manipulated with 

surgical grasping forceps is shown in the third row (e,f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 5 

Computation time in ms as a function of the horizontal triangle edge 

length when tracking an image region of 200 × 200 pixels. 

Triangle edge length (px) 25 50 75 100 

Mesh dimension 16 × 12 8 × 6 6 × 4 4 × 3 

Tracking ( Alg. 1 ) 751.1 28.6 9.3 6.3 

Refinement ( Alg. 2 ) 112.9 38.7 20.5 16.7 

Tracking with sMR 864.0 67.3 29.8 23.0 

Tracking with cMR(KF) 751.8 28.9 9.6 6.5 

Table 6 

Ablation accuracy (RMSE) in millimeters. 

Specimen MDF EVT 

Motion pattern static lateral axial lateral axial 

Straight line 0.067 0.080 0.077 0.129 0.117 

Curved line 0.068 0.089 0.084 0.206 0.173 
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Table 7 

Videos demonstrating tracking on MDF and soft tissue (IVT, EVT). 

Name Description 

IVT Tracking on IVT datasets 

MDF Ablation on MDF under lateral and axial motion 

EVT–1 Ablation on EVT under lateral and axial motion 

EVT–2 Ablation on EVT comparing sMR and cMRKF 

EVT–3 Ablation on EVT comparing w/o and w/ laser focusing 

EVT–4 Ablation on EVT while manipulating with forceps 
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n Table 4 , a slightly increased ablation error of 0.089 mm and

.084 mm is observed when the sample is moved in the lateral

nd axial direction, respectively, whereas the difference between

he motion patterns is not significant. Regarding ablation of the

urved incision line, as shown in Fig. 15 a, three snapshot images

f acquired video sequence are depicted in Fig. 15 b, clearly illus-

rating the progressively ablated incision. Microscopic images of

he straight and curved line, demonstrating precise path tracing,

re provided in Fig. 16 a. The aforementioned ablation trials are in-

luded in the supplemental video material (see Table 7 ). 

.4. Laser ablation trials on EVT 

The results of path tracing on porcine EVT are listed in Table 6 .

he associated snapshots of the lateral motion sequence are shown

n Fig. 15 c,d. Compared with the MDF trials, the increase in the ab-

ation error correlates with the larger tracking deviation, as listed

n Table 4 . In particular, for the lateral scenario, the path tracing
rror of 0.206 mm is slightly higher than that for the axial mo-

ion (0.173 mm). Due to the inhomogeneous structure of soft tis-

ue, heat exposure causes inevitable, anisotropic shrinking effects;

hus, it can lead to distorted path tracing measurements. There-

ore, this effect is assumed to be more distinct for the curved in-

ision line. Nevertheless, microscopic examination of both shapes

eveals high incision quality when cMRKF-based tracking is used

or online laser control (see Fig. 16 b,c). To summarize, the abla-

ion error is kept below 0.21 mm regardless of its source, such as

aser-to-camera registration, camera calibration, image-based track- 

ng, scanning latency, and tissue shrinking effects. In com parison,

eploying sMR leads to poor incision quality, as highlighted in

ig. 16 d. Due to significant delay of the motion estimate, the de-

ired incision path is clearly fanned out; hence, it is only superfi-

ially ablated. 

The benefit of vision-guided laser control is further demon-

trated by comparing our tracking-based results in Fig. 16 c with

aser ablation without image-based focus adjustment when mov-

ng in the axial direction. As illustrated in Fig. 16 e, carbonization

t the incision edges can be observed as a result of non-optimal

nergy exposure to the tissue. This may significantly influence the

esired incision quality and lead to increased trauma and healing

uration of the tissue. Thus, proper focusing by maintaining con-

tant distance to the tissue is mandatory for laser surgery in a dy-

amic soft tissue environment. 



94 A. Schoob et al. / Medical Image Analysis 40 (2017) 80–95 

Fig. 16. Qualitative results of the laser ablation trials on the MDF and the EVT sample under lateral (a,b) and axial movements (c) deploying concurrent tracking scheme 

cMRKF. In comparison with (b), sequential mesh refinement (sMR), as depicted in (d), leads to poor incision quality characterized by widened, superficial ablation due to the 

tracking latency. In particular, for axial movements, as shown in (c), slight carbonization occurs at the incision edges, as illustrated in (e), if the tracking-based adaptation of 

the laser focus is disabled. 
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Finally, to demonstrate tracking in a clinically motivated sce-

nario, tissue manipulation with surgical grasping forceps is per-

formed simulating both motion in the depth direction and push-

pull movements in the lateral direction (see Fig. 15 e–f). Exem-

plary sequences are captured and included in the supplemental

video material (see Table 7 ). The associated microscopic examina-

tion clearly indicates that improved incision quality can be repro-

duced even on tissue undergoing deformation. 

5. Conclusion 

In this article, non-rigid tracking based on a linear, straightfor-

ward parametrization enabling left-right consistency for stereo vi-

sion has been presented. In contrast to computationally expensive,

direct methods discussed in the literature, dense texture informa-

tion is processed concurrently to correct tracking misalignment.

Thus, highly accurate, online-capable motion estimation, which is

a prerequisite for intraoperative assistance such as vision-guided

ablation control in laser microsurgery, is enabled. Tracking robust-

ness is enhanced by incorporating efficient outlier rejection in the

robust estimator-based mesh refinement step. Experimental results

on in vivo data demonstrate enhanced accuracy compared with

that of the approach presented previously ( Schoob et al., 2016 ). In

addition, an experimental design is described to assess the latency-

dependent tracking misalignment. Among the strategies discussed

in this work, highest accuracy is achieved by concurrent tracking

and mesh refinement as well as upsampling of the motion mea-

surements. The entire image processing pipeline has been inte-

grated into a control framework for laser microsurgery. The results

reveal that tissue motion estimation can be successfully integrated

into the visual feedback loop, facilitating online adjustment of the

desired ablation path. 

Even though the parameter set is optimized in disparity space,

only back-projection of the tracked mesh is required in order to

map the motion estimate to task space and to enable laser posi-

tioning and focusing on the target surface. In general, control of
ther surgical or even robotic tools is conceivable. Future work will

ocus on the investigation of different online-capable feature de-

ection and matching techniques extending our method and allow-

ng for global retargeting of the tracked region after total occlu-

ion or re-entering into the field of view. Furthermore, transfer of

he framework from the presented lab setup to an endoscopic laser

ystem is required for clinical trials. 
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