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Abstract: In the context of simulating precision laser interferometers, we use several examples to
compare two wavefront decomposition methods—the Mode Expansion Method (MEM) and the
Gaussian Beam Decomposition (GBD) method—for their precision and applicability. To assess the
performance of these methods, we define different types of errors and study their properties. We
specify how the two methods can be fairly compared and based on that, compare the quality of
the MEM and GBD through several examples. Here, we test cases for which analytic results are
available, i.e., non-clipped circular and general astigmatic Gaussian beams, as well as clipped circular
Gaussian beams, in the near, far, and extremely far fields of millions of kilometers occurring in
space-gravitational wave detectors. Additionally, we compare the methods for aberrated wavefronts
and their interaction with optical components by testing reflections from differently curved mirrors.
We find that both methods can generally be used for decomposing non-Gaussian beams. However,
which method is more accurate depends on the optical system and simulation settings. In the given
examples, the MEM more accurately describes non-clipped Gaussian beams, whereas for clipped
Gaussian beams and the interaction with surfaces, the GBD is more precise.

Keywords: optical simulation; diffraction; space interferometry

1. Introduction

In classic optics textbooks, e.g., [1–4], diffraction is defined as the phenomenon that
occurs when a wave is obstructed while propagating. This, for example, is the case
when a Gaussian beam is clipped by an aperture. This phenomenon has been known for
centuries, and there are various methods for computing diffracted wavefronts and their
propagation. The most classic approach is the evaluation of diffraction integrals, such as the
Fresnel–Kirchhoff diffraction formula or the Fraunhofer diffraction equation, as described
in, e.g., [5].

The propagation of diffracted light closely relates to the propagation of arbitrary wave-
fronts for which there exists no analytic propagation equation. Such arbitrary wavefronts
include all clipped and diffracting beams, as well as aberrated wavefronts. Therefore, the
same methods are used for diffracted-light and aberrated wavefronts.
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Even though we have known about diffraction and aberration for a long time, there
seems to be no suitable method at hand that allows propagating diffracting beams with
high precision through complex optical setups, where the beam repeatedly reflects and
refracts at various tilted or even curved surfaces. Given our particular context of space-
based interferometry for gravitational wave detection, i.e., the gravitational wave detectors
LISA (Laser Interferometer Space Antenna) [6] and Taiji [7], our simulation methods are
required to provide at least picometer resolution.

This precision needs to be achieved for the propagation of the light received from a
remote spacecraft, i.e., a beam that is clipped by the mirrors of a telescope, followed by an
optical bench carrying in the order of 50–100 components, where the beam may be clipped
at various points as it propagates through the three-dimensional optical layout until it
interferes with a reference beam on a photodiode [8]. Furthermore, this precision needs to
be achieved for the beam transmitted toward a remote spacecraft. This entails a laser beam
traveling through a three-dimensional layout, potentially with clipping causing diffraction,
until it reflects from the final telescope mirror and propagates over a distance of 2.5 × 109

to 3 × 109 m (cf. for instance [8–10]). Ideally, both cases can be combined, resulting in
optical end-to-end simulations and enabling a rich set of necessary simulations, which are
currently not possible in the described complexity and are solved only through simplifica-
tion. Examples include straylight simulations, particularly the simulation of the coupling
of jitter into the interferometric phase noise, better known as the tilt-to-length coupling
noise [11–14]. However, the method comparison described in this manuscript is applicable
to a wide range of fields, and the described application in space-based gravitational wave
detection is provided only as context for the requirements that motivate this comparison.

Diffraction integrals are not ideal for this type of application since they are designed
for free-space propagation and need non-trivial adaptation for propagation through the
described complex three-dimensional layouts. However, alternative approaches allow a
comparably simple propagation of diffracting wavefronts through such setups.

These alternatives are based on a decomposition into fundamental or higher-order
Hermite– or Laguerre–Gaussian beams. Once the diffracting beam is decomposed, it can be
easily propagated using well-known and fast algorithms (e.g., as described in [15]). These
methods involve simple ray tracing for the beam axis and the use of the ray transfer matrix
formalism [4] for the propagation of the Gaussian q-parameter in wavefront propagation.

These decomposition methods are well established but are used under a variety of
different names. The decomposition into higher-order Hermite– or Laguerre–Gaussian
modes, which all share the same beam axis and beam parameters, was first proposed
in [16]. Like [17–19], we refer to this method as the Mode Expansion Method (MEM). It
is also known as modal decomposition [20] or truncated orthogonal-series expansion [21].
If Laguerre–Gaussian modes are used for the decomposition, the method is referred to as
the Laguerre–Gauss expansion [22], Laguerre–Gaussian series expansion method [23], or
Laguerre–Gaussian mode decomposition [24], and if Hermite–Gaussian modes are used, it is
referred to as the truncated Hermite–Gauss series expansion [25].

Another decomposition method, which involves the concept of decomposing an arbi-
trary wavefield into Gaussian beams, was proposed by Popov in 1982 for acoustics [26].
A similar idea was conceived by Graynolds in 1981 [27], when he began developing a
ray-tracing code that eventually became the commercial software ASAP (version number
1.0) and published his paper on the subject in 1985 [27,28]. In the original description, the
fundamental Gaussians were all parallel, all had the same waist size, and the waist was
positioned in the decomposition plane. We refer to this original version of the method pro-
posed by Graynolds as the Gaussian Beam Decomposition (GBD) and use this terminology
throughout this paper. The original method was adapted over time, for instance, with non-
parallel grid beams or grid beams with an initial wavefront curvature, and implemented in
several common commercial software tools, including ASAP [29], FRED, and Code V [30].
It is, unfortunately, proprietary, and it is unknown in which form or adaptation the method
was implemented in the different software tools; however, this shows that the method
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is well established. The method of decomposing wavefronts into Gaussian beams and
its adaptations are also often referred to as Gaussian beam summation [31,32], Gaussian
beam superposition [33], Gaussian beamlet decomposition [30], and Gaussian beamlet
summation [34], and in Code V, the method is known as Beam Synthesis Propagation
(BSP) [35]. Code V’s BSP decomposes the wavefront into Gaussian beams emitted from a
single point but in various directions, as opposed to decomposing the wavefront into Gaus-
sian beams on a grid. Additionally, there are some adaptations made without changing the
name. An improved GBD technique was suggested by Tanushev et al. for decomposing
high-frequency wavefields into a sparse set of Gaussian beams. The selection principle
used to determine the Gaussian beam parameters aims to minimize the energy difference
between the original wavefield and the superimposed Gaussian beams [36]. In order to
compute the scalar diffraction field of a two-dimensional field specified on a curved surface,
Şahin et al. proposed an improved Gaussian Beam Decomposition (GBD) method. The
three-dimensional field is expressed as a summation of Gaussian beams, each propagating
in a different direction, with waist positions located at discrete points on the curved surface,
obtained through regular sampling [37]. Worku et al. introduced a revised Gaussian Beam
Decomposition (GBD) method that enables the computation of vectorial field propagation
through high numerical aperture (NA) objectives. In their study, the decomposed Gaussian
beams were polarized [38]. Worku et al. [39] presented a modified GBD that decomposes
arbitrary fields with smooth wavefronts into fundamental Gaussian beams with initial
curvatures. Finally, half- or quarter-Gaussian beams have been proposed for application
in the GBD to optimize the simulation of sharp beam edges after passing through a hard
aperture with an arbitrary shape [40].

Despite the numerous publications that utilize these methods, few publications describe
and compare the MEM and GBD in detail. Therefore, the optimal settings for the methods
are often unknown, and the limitations of these methods are unclear.

For the MEM, Borghi et al. [22] derived the optimal decomposition parameters using
Laguerre–Gaussian (LG) modes for circular symmetric fields of a 1 mm radius, particularly
for top-hat beams. Yan Rong et al. [41] extended Borghi’s optimal rule to an arbitrary radius
of aperture. Liu et al. [25] presented the optimal decomposed beam waist for plane waves
clipped by an arbitrary radius of the aperture with Hermite–Gaussian (HG) modes.

Regarding the GBD, the publication status seems fairly sparse. About 30 years after
the proposal of the basic concept of decomposing arbitrary electric fields into fundamental
Gaussian beams, in Graynolds’ overview article [27], he revisited the GBD, described the
method’s history and development over time, and provided detailed implementation steps
for the field decomposition, tracing, and computation of the resulting field in the target
plane. In [42], various examples of modeling complex optical phenomena using the GBD
were demonstrated, including interference and diffraction. However, none of these papers
included a discussion of parameter settings, i.e., what waist size or waist location should
be chosen for the grid beams, what overlap the grid beams should have, or what type of
grid would be ideal.

As previously mentioned, recent publications have further advanced the development
of the GBD method. However, again, they have neither addressed the question of parameter
settings nor compared the performance of the GBD method to that of the MEM.

In this paper, we specify our experience values for parameter settings in the GBD
when it is used to simulate simple cases, such as non-clipped and clipped Gaussian beams,
for which we have analytical results available for comparison. We then directly compare
the performance of the MEM and the original GBD method as introduced by Graynolds.
This comparison is performed for propagation distances that vary significantly, ranging
from the common case of a few millimeters in the very near field to millions of kilometers.
With this exceptionally large propagation distance, we test the applicability of the methods
in the context of space interferometry, particularly space-gravitational wave detectors like
LISA and Taiji, for which the properties of the electric field need to be characterized for
distances up to 3 million kilometers. Additionally, we qualitatively test the MEM and
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GBD in decomposing and propagating aberrated wavefronts, for which we do not have an
analytic result for comparison. Finally, we test the propagation through an optical setup by
reflecting the decomposed fields from curved mirrors with different curvatures.

Following the introduction, we summarize the properties of the MEM and GBD in
Section 2, define the errors for judging deviations of the decomposed representation of
the beam from the exact one, and test the methods individually using analytically known
cases. In Section 3, we prepare the direct comparison of both methods, first by defining
what we deem to be a fair comparison and then by testing which settings of the methods
result in such a fair comparison. In Section 4, we perform the direct comparison of the
two methods using various test cases, i.e., for non-clipped and clipped Gaussian beams,
aberrated wavefronts, and the reflection of a Gaussian beam from a spherical mirror. Finally,
we provide a summary and our conclusions in Section 5.

2. Wavefront Decomposition Methods

In this section, we introduce the MEM and GBD in detail and individually test their
performance using a simple exemplary case.

2.1. Properties and Individual Test of the Mode Expansion Method
2.1.1. MEM: Method Description

The MEM is a well-known method, defined, for instance, in [4], which describes
the decomposition of an arbitrary wavefront into higher-order Laguerre–Gaussian (LG)
modes or Hermite–Gaussian (HG) modes. LG modes are radially symmetric and are,
therefore, defined in cylindrical coordinates, whereas HG modes are defined in rectangular
coordinates due to their axial symmetry. A conversion between both types of modes is
known and described in detail, for instance, in [43,44]. Throughout this paper, we focus on
decompositions using HG modes, which are defined as

HGmn(x, y, z; w0d) =
cmn

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)

· exp
(
− x2 + y2

w2(z)

)
exp

(
−ik

x2 + y2

2R(z)
+ i(m + n + 1)ζ(z)

)
exp(−ikz),

(1)

where w0d is the waist of the fundamental mode HG00, which is used as a parameter for
all HG modes, and the beam radius w(z), the radius of the curvature R(z), and the Gouy
phase ζ(z) have the same definitions as for fundamental Gaussian beams. The coefficients
cmn are normalization constants:

cmn =

√
2
π

1√
m!2m

1√
n!2n

, (2)

where the function Hm(•) is the mth Hermite polynomial, provided in [4],

Hm(x) = (−1)mex2 dm

dxm e−x2
. (3)

An important property of these HG modes is that they are orthonormal and complete and,
therefore, form a basis [4]:∫∫

HG∗mn(x, y, z; w0d)HGkl(x, y, z; w0d) dxdy = δmkδnl , (4)

where HG∗mn(x, y; w0d) is the complex conjugated Hermite–Gaussian mode, and w0d is the
waist of the fundamental mode HG00, which is used as a parameter for all HG modes. The
Kronecker delta function δmk equals 1 for m = k and equals 0 if m 6= k. This implies that
any wavefront E(x, y) can be decomposed into a superposition E∞(x, y) of these modes [4]:
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E∞(x, y) :=
+∞

∑
m=0

+∞

∑
n=0

amnHGmn(x, y; w0d) , (5)

where E∞(x, y) is a mathematically exact representation of E(x, y):

E∞(x, y) ≡ E(x, y) , (6)

where ≡ indicates that the functions are equivalent for every point (x, y). The complex
coefficients amn with |amn|2 = Pmn are usually referred to as mode overlap and describe
how much beam power Pmn is stored in each mode. They can be calculated using the inner
product [4]

amn =
∫∫

HG∗mn(x, y; w0d)E(x, y)dxdy . (7)

In real computations, it is not possible to use either an infinite number of modes in
the decomposition (Equation (5)) or an infinite overlap integral (Equation (7)) to determine
the mode overlap. Replacing the infinite surface integral in Equation (7) with a finite one
is uncritical, provided that the surface is chosen to be sufficiently large because electric
fields of interest usually fade out toward higher radial distances. Therefore, by choos-
ing appropriately large integration boundaries, the introduced error becomes negligible.
However, the error made by working with a finite mode order N is often non-negligible.
Consequently, the decomposed field is no longer an exact representation of the input field
E(x, y) and is only an approximation:

E(x, y) ≈ EN(x, y, w0d) =
N

∑
m=0

N−m

∑
n=0

amnHGmn(x, y; w0d) . (8)

Here, we refer to N as the maximum mode order of the MEM. In Equation (8), we use a
triangular summation of the modes by summing n only up to N −m rather than N [44].
This ensures that within any decomposition, all polynomials up to the given order N are
considered and no polynomial orders larger than N are included. Consequently, in any
MEM with mode order N, there are (N + 1)(N + 2)/2 HG modes superimposed. For
radially symmetric fields E(x, y), the overlap amn is set to zero if either the index m or n is
odd. This means that for any mode order N, the number ν of modes used in the MEM is
given by

ν =

{
(N + 1)(N + 2)/2 if the E(x, y) is non-symmetric
(bN/2c+ 1)(bN/2c+ 2)/2 if the E(x, y) is symmetric.

(9)

where the notation b•c represents the floor of the value.

2.1.2. Error Definitions for the MEM

The finite mode order decomposition provided in Equation (8) is not exact and will,
therefore, have an error. It can be learned that for any given mode order, the decomposition
error of the MEM depends on the mode order and the waist size w0d chosen for the modes
in the decomposition. Using the norm

‖ f (x, y)‖2 =
∫∫

R2
| f (x, y)|2dxdy , (10)

the normalized mean-squared error (NMSE) is given by

εNMSE(N, w0d) :=

∥∥EN(x, y, w0d)− E(x, y)
∥∥2

‖E(x, y)‖2 (11)

=
‖E(x, y)‖2

‖E(x, y)‖2 − 2<EN(x, y, w0d)E∗(x, y)

‖E(x, y)‖2 +

∥∥EN(x, y, w0d)
∥∥2

‖E(x, y)‖2
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= 1− 2<
(

N

∑
m=0

N−m

∑
n=0

amn

∫∫
R2

E∗(x, y)HGmn(x, y; w0d)dxdy

)
/‖E(x, y)‖2

+

(
N

∑
m=0

N−m

∑
n=0

a2
mn

∫∫
R2

HG2
mn(x, y; w0d)dxdy

)
/‖E(x, y)‖2

= 1− ∑N
m=0 ∑N−m

n=0 a2
mn

P
, (12)

using ‖E(x, y)‖2 = P, where P is the power of the initial beam. For any input field E(x, y),
this normalized mean-squared error εNMSE(N, w0d) depends solely on the mode order N
and waist size w0d chosen during the decomposition, and it has the property of being
propagation distance-independent (cf. Equation (7), and [22]).

The NMSE is defined via infinite surface integrals, which are replaced by numerical
integrals over finite surfaces in optical simulations. This means that in simulations, a
discretized NMSE (DNMSE) εDNMSE

o (NR, R, z) is evaluated. For radial surfaces and assuming
radially symmetric beams, this is given by

εDNMSE
◦ (NR, R, z) :=

∑NR
i=0 2π

∣∣EN(ri, z, w0d)− E(ri, z)
∣∣2ri∆r

‖E(x, y, z)‖2

=
∑NR

i=0 2π
∣∣EN(ri, z, w0d)− E(ri, z)

∣∣2ri∆r
P

, (13)

and for non-radially symmetric beams on rectangular surfaces, it is given by

εDNMSE
� (NX , NY, X, Y, z) :=

NX

∑
i=1

NY

∑
j=1

∣∣EN(xi, yj, z, w0d)− E(xi, yj, z)
∣∣2∆x∆y

P
. (14)

Here, r =
√

x2 + y2 denotes the radial distance; NR, NX, and NY are the numbers of
sampling points; and ∆r, ∆x, and ∆y are the step sizes in the different directions, such that
the maximal distances are R = NR∆r, X = NX∆X, and Y = NY∆Y. Due to the assumed
radial symmetric beams, we substituted

∫∫
R2 dxdy with ∑ 2πr∆r in Equation (13). Only

the numerator is discretized in the DNMSE because the NMSE is normalized by the initial
beam’s total power P, which is usually known.

The discretized NMSE is a numerical representation of the NMSE; therefore, the
propagation distance is independent, provided that enough sampling points are chosen
and the radial distance R is sufficiently large. However, this implies that with non-ideal
settings, such as too few sampling points or too small a radial range, the error is indeed
propagation distance-dependent, which we highlight in Equation (13) by the explicitly
stated z-dependency.

One disadvantage of all the shown errors is that they provide only integrated informa-
tion and no distribution over a plane. We, therefore, define a sampling point-dependent
error εrel(xi, yi, z), which we name the relative error:

εrel(xi, yi, z) :=

∣∣EN(xi, yi, z, w0d)− E(xi, yi, z)
∣∣

|E(xi, yi, z)| . (15)

For radially symmetric beams, we sample along the x-axis by setting y = 0. Therefore,
the reduced 1D version of Equation (15) can be written as:

εrel(ri, z) = εrel(xi, 0, z) =

∣∣EN(xi, 0, z, w0d)− E(xi, 0, z)
∣∣

|E(xi, 0, z)| . (16)

Throughout this paper, we use these relative errors to visualize the performance of
the MEM, as well as for a qualitative comparison of the MEM and GBD. To quantify the
resulting information and assess the total error in the finite surface of interest, we define



Sensors 2023, 23, 9024 7 of 44

the summed relative error, for rectangular target surfaces and no assumed symmetry, or
circular symmetric beams on a circular surface as

εrel
∑ (NX , NY, X, Y, z) =

NX

∑
i=1

NY

∑
j=1

∣∣EN(xi, yj, z, w0d)− E(xi, yj, z)
∣∣∣∣E(xi, yj, z)

∣∣ ∆x∆y

=
NX

∑
i=1

NY

∑
j=1

εrel(xi, yj, z)∆x∆y , (17)

εrel
∑ (NR, R, z) :=

NR

∑
i=0

2π
∣∣EN(ri, z, w0d)− E(ri, z)

∣∣ri∆r
|E(ri, z)| . (18)

This summed error definition is, for typical settings in optical simulations, fairly indepen-
dent of the chosen number of sampling points, since Equations (17) and (18) are representa-
tions of a discretized integral and, therefore, represent the surface under the given function.
However, the summed relative error is, unfortunately, not normalized.

This error condenses the findings of the relative error through a simple sum and
allows a quick comparison of different simulation settings for the same setup. However,
this summed relative error is only a useful measure in regions where the electric field does
not vanish. Therefore, it should be interpreted and used with care. We use all introduced
error types throughout this paper to study the performance of the MEM and compare it to
the GBD.

2.1.3. MEM Settings

When a wavefront is decomposed using the MEM, there are only two parameters
that need to be chosen: the waist w0d of the modes used in the decomposition and the
maximum mode order N. For any maximum mode order, the choice of w0d directly affects
the magnitude of the mode overlap amn and hence the resulting error εNMSE(N, w0d). One
can then, for instance, choose the decomposition waist w0d such that the mode overlap of
a specific mode is maximal (e.g., as used in [19]) or the error made in the decomposition
is minimal. Throughout this paper, we use the latter criterion, minimizing the error
εNMSE(N, w0d) by following the examples of [22,25,41].

Which waist is optimal for the decomposition depends on the properties of the initial
wavefront E(x, y, z). Therefore, for an arbitrary wavefront, the optimal decomposition
waist is unknown. However, for the common special case of circular symmetric wavefronts
originating from clipping at an aperture of radius Ra, the optimal waist was found to be
[22,25,41,45]:

w0d = Ra

√
2
N

. (19)

This choice results in the minimum NMSE εNMSE(N, w0d) in Equation (12) for a given mode
order N [22,25,41,45].

2.1.4. Example: MEM Performance for a Clipped Gaussian Beam

We now demonstrate the performance of the MEM using an example, for which the
electric field is analytically known. It should be noted that the examples here meet the
assumptions of the paraxial approximation, where the Gaussian beam waist is significantly
larger than the wavelength, so the analytical methods are considered reliable and are used
as references. In this example, we investigate a clipped Gaussian beam. We assume that a
Gaussian beam impinges orthogonally and is perfectly aligned to a circular aperture with a
radius of Ra = 0.5 mm. The waist of the incident Gaussian beam has a radius of w0 = 2 mm,
which is located in the aperture plane. The resulting circular symmetric clipped Gaussian
beam is decomposed using the MEM with varying mode orders: N = 10, 20, . . . 50. For
every mode order, the waist size w0d of the modes is calculated using Equation (19). We
compute the electric field’s amplitude and phase at various propagation distances and
compare the results with the numerical evaluation of an analytic formula developed by
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Campbell in [46] for clipped Gaussian beams in the Fresnel region. Analogously, we use the
analytical method of Tanaka et al. (cf. Equations (1)–(6) in [47]) for the Fraunhofer region.
The distinction between the Fresnel and Fraunhofer regions is determined using the Fresnel
number F, given by

F :=
R2

a
λd

, (20)

where λ denotes the wavelength of the beam, d is the propagation distance after the clipping
aperture, and Ra is the radius of the aperture. The near field refers to propagation distances
that make F larger than 1. If the Fresnel number is smaller than 1, the beam has propagated to
the far field. In this example, we use propagation distances d of 5 mm, 20 mm, and 100 mm,
i.e., F is 46.9925, 11.7481, and 2.3496 in the near field, and d = 1000 mm with F = 0.2350 in
the far field. The number of sampling points for requesting the complex electric field is set
to 3001. For convenience, all parameters in this example are listed in Table 1.

The amplitude, phase, and relative error distributions calculated using Equation (16)
are shown in Figure 1 for different propagation distances after the clipping aperture with
different mode orders. The lateral ranges chosen for this figure are unusually large. The
corresponding results for a smaller lateral range are shown in Figure 2. All of the introduced
error types have been calculated for both choices of lateral ranges and are listed in Table 2.

Table 1. Parameter list for the MEM example.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 2 mm
z0 distance from the waist 0 mm
Ra aperture radius 0.5 mm
N mode order of the MEM 10, 20, 30, 40, 50
w0d waist of the modes used in the MEM 0.2236 mm, 0.1581 mm, 0.1291 mm, 0.1118 mm, 0.1 mm
d propagation distance 5 mm, 20 mm, 100 mm, 1000 mm
X number of sampling points 3001

Table 2. The MEM errors, including the NMSE, discretized NMSE, and summed relative error, defined
in Equation (12), Equation (13), and Equation (18), respectively, are calculated for increasing mode
orders at different propagation distances. The NMSE and discretized NMSE, which are propagation
distance-independent, are numerically equivalent when the lateral ranges R are large enough. For
smaller lateral ranges R, the discretized NMSE is propagation distance-dependent. The summed
relative error decreases with increasing mode order for any propagation distance, and for a given
mode order, it increases (but not consistently) with increasing propagation distance. The number of
sampling points X is 3001.

Propagation
Distance

(mm)

Mode
Order

NMSE
εNMSE(N, w0d)

DNMSE
(for Larger Lateral Ranges)

εDNMSE
◦ (NR, R, z)

DNMSE
(for Smaller Lateral Ranges)

εDNMSE
◦ (NR, R, z)

The Summed Relative Error
(for Larger Lateral Ranges)

εrel
∑ (NR, R, z)

The Summed Relative Error
(for Smaller Lateral Ranges)

εrel
∑ (NR, R, z)

5

10 0.0527 0.0519 0.0436 13.6 0.964
20 0.0275 0.0268 0.021 12.8 0.731
30 0.0186 0.0178 0.0116 12.5 0.486
40 0.0139 0.0132 0.0077 12.3 0.344
50 0.0112 0.0105 0.0057 12.2 0.247

20

10 0.0527 0.0517 0.0444 99.1 2.54
20 0.0275 0.0265 0.0192 98.3 1.75
30 0.0186 0.0175 0.0101 97.7 1.12
40 0.0139 0.013 0.0057 97.1 0.535
50 0.0112 0.0102 0.0042 96.5 0.463

100

10 0.0527 0.0517 0.0323 2.51 × 103 5.11
20 0.0275 0.0265 0.0083 2.51 × 103 2.46
30 0.0186 0.0175 0.0035 2.5 × 103 2.28
40 0.0139 0.013 8.85× 10−4 2.5 × 103 1.22
50 0.0112 0.0103 1.95× 10−4 2.49 × 103 0.538

1000

10 0.0527 0.0516 0.0051 2.04 × 105 28.4
20 0.0275 0.0264 6.08× 10−4 2.03 × 105 8.48
30 0.0186 0.0174 1.86× 10−4 2.03 × 105 4.56
40 0.0139 0.0129 6.94× 10−5 2.03 × 105 2.77
50 0.0112 0.0102 2.57× 10−5 2.02 × 105 1.68
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Figure 1. Performance of the MEM with different maximum mode orders of N = 10, 20, 30, 40, and
50 for an incoming circular Gaussian beam with a 2 mm waist being clipped by a 0.5 mm radius
circular aperture. The amplitude (absolute value), phase, and relative error εrel(NR, R, z) are shown at
different propagation distances of z = 5 mm, 20 mm, and 100 mm (near field) and 1000 mm (far field)
after the clipping aperture. The analytical methods used for the near and far fields were those of
Campbell [46] and Tanaka et al. [47], respectively. The lateral distances for each propagation distance
are chosen to be large enough to cover all the power. For these large lateral ranges, the MEM is
effectively failing, generating zero amplitudes and phases from lateral ranges that are about 3 times
the spot size of the highest mode in the decomposition.
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Figure 2. MEM performance for the same test case shown in Figure 1 but for smaller lateral ranges.
The performance of the MEM with different maximum mode orders of N = 10, 20, 30, 40, and 50 is
shown for an incoming circular Gaussian beam with a 2 mm waist being clipped by a 0.5 mm radius
circular aperture. The amplitude (absolute value), phase, and relative error εrel(NR, R, z) are shown at
different propagation distances of z = 5 mm, 20 mm, and 100 mm (near field) and 1000 mm (far field)
after the clipping aperture. The analytical methods used for the near and far fields were those of
Campbell [46] and Tanaka et al. [47], respectively. One can see that the further the beam propagates
or the higher the mode order, the better the performance of the MEM.

The large lateral ranges used in Figure 1 were chosen so that they were large enough
to make the DNMSE propagation distance-independent. In this case, the deviation between
the input beam power and the MEM beam power was less than 2%. The incident beam
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power P is calculated simply from the Gaussian beam power passing through the aperture
radius Ra:

P = P0[1− exp
(
−2R2

a/w2
0

)
] , (21)

with Ra = 0.5 mm, w0 = 2 mm, and P0 being the full power of the Gaussian beam prior to
clipping. The resulting normalized power (P/P0) of the clipped Gaussian beam is 0.12.
The power of the MEM beams were computed by the numerical sum ∑R

i=0 2π|E(ri)|2ri∆r,
which is a numerical representation of the denominator of Equation (13). This procedure
resulted in a slight variation of the MEM beam power at the different propagation distances.
The deviations between the input beam power and the MEM beam power were 1.16%,
1.16%, 1.17%, and 1.66% for propagation distances of 5 mm, 20 mm, 100 mm, and 1000 mm,
respectively. Ideally, the lateral range would be chosen from the spot size of the clipped
beam at the various propagation distances. However, particularly for clipped and diffracted
beams, there is not one uniquely defined spot size, but rather a number of different
concurring options, which are often not analytically known. Although a detailed discussion
of the spot sizes of clipped beams is beyond the scope of this paper, we want to compare
the beam’s spot size with the chosen lateral ranges. In the near field behind the aperture,
i.e., with a Fresnel number F � 1, the spot size of the clipped beam is still roughly equal
to the aperture radius, and so in our example (F = 47.0), the spot size is approximately
0.5 mm. Therefore, in row one in Figure 1, the lateral range we show is 1.5 mm, which is
approximately three times the spot size. For a propagation distance of 1000 mm, which is
in the far field, we can use Equation (8) in [48] to estimate that the spot size of the clipped
beam is 0.875 mm. This is consistent with the spot size of a Gaussian beam with a 0.5 mm
waist at a propagation distance of 1000 mm, which is 0.842 mm, and, therefore, slightly
smaller than the clipped beam, as expected. Yet, in our computation, 3 times 0.875 mm by
no means met the requirement of propagation distance-independent DNMSE, so we had to
extend the lateral range to 180 mm instead.

These large lateral distances, with a constant MEM beam power, result in the ex-
pected propagation distance Independence of the discretized normalized mean-square
error εDNMSE, as shown in the fourth column of Table 2, with only minor variations ob-
served. We can see from Figure 1 that for propagation distances of 20 mm and beyond,
there is a maximum lateral range wherein the phase is correctly approximated by the MEM
(indicated by the zero lines for larger lateral distances). This is due to the finite size of
the modes used in the decomposition. For a propagation distance z, the spot size of the
higher-order modes along x and y is [49]

wx,mn(z) =
√

2m + 1w(z) =
√

2m + 1w0d

√
1 + (z/zr)2 (22)

wy,mn(z) =
√

2n + 1w(z) =
√

2n + 1w0d

√
1 + (z/zr)2 (23)

with w(z) being the spot size of the fundamental mode HG00 used in the decomposition
and the Rayleigh zr = πw2

0d/λ. Using these equations, we can estimate the spot size of
the highest mode used in the MEM. The MEM can, in turn, only resolve fields within a
range of up to three times the spot size of this highest mode. We can show this with the
example of a propagation distance of 1000 mm (lowest row in Figure 1) and a mode order
of 50. For this, we find wx,50 0 = wy,0 50 = 32 mm, resulting in a maximal resolvable range
of approximately 96 mm, which precisely fits the observation in the phase graph.

It may be expected that a higher mode order automatically implies that a larger lateral
range can be resolved. However, this is not necessarily the case, as can be seen in Figure 1
for a propagation distance of 20 mm. Here, the situation is reversed: the higher the mode
order, the smaller the resolvable lateral range. This is a consequence of using Equation (19)
to compute the optimal waist size, which decreases with increasing mode order.

Outside the maximal resolvable lateral range, the MEM fails and generates zero
amplitudes and phases. Consequently, the relative error is approximately 1 outside the
maximal resolvable lateral range. This is clearly visible in Figure 1. However, the large
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lateral range is not a choice usually taken in simulations since the spot properties are
barely visible in these lateral ranges. Instead, simulations are usually performed with
smaller lateral ranges in the target plane, as shown in Figure 2. Here, the lateral ranges
cover only 0.4, 0.2, 0.06, and 0.022 times the ranges shown in Figure 1. For instance, for a
propagation distance of 5 mm, the lateral distance shown in Figure 2 is 0.6 mm compared
to the calculated spot size of 0.5 mm. For a propagation distance of 1000 mm, the computed
spot size is 0.875 mm, in comparison to the 4 mm lateral distance shown in Figure 2. These
lateral changes were chosen simply for good visualization of the amplitude and phase
profiles without any hard criterion.

In the first row in Figure 2, one can see that the MEM with the given settings and mode
orders of up to N = 50 insufficiently resolves the high-frequency spatial oscillation in the
very near field behind the aperture. However, the further the beam propagates, the better
the performance of the MEM, such that after 1000 mm (i.e., at F = 0.235), the wavefront is
well represented, even with a mode order of 10. So, although the NMSE is propagation
distance-independent and, therefore, constant for any choice of N, we can see in the left
and center columns in Figure 2 how the precision of the MEM increases with increasing
propagation distances. This means that the error radially transmits outwards and, therefore,
may be in a radial distance of no interest to the application. This also shows that it is
not always necessary to choose high mode orders, particularly in far-field simulations.
Instead, the mode order should be chosen as a compromise between different criteria. The
primary criterion is the increasing computational effort with increasing mode order. A
second criterion is that the evaluation of the sum of Hermite–Gaussian modes with high
polynomial orders is a typical mathematical challenge, resulting in numerical errors for
high mode orders. Finally, the optimal decomposed beam waist calculated according to [22]
and Equation (19) decreases with increasing mode order and needs to be sufficiently large
to not violate the paraxial approximation. Consequently, the mode order should be chosen
carefully under consideration of the intended precision and the costs and risks if the mode
order chosen is too high.

We can now compare the different errors for the case of large lateral ranges. In
these cases, the DNMSE (fourth column of Table 2) is propagation distance-independent
and deviates from the analytically computed NMSE (third column) only slightly, with
a maximum deviation of 9.32% (at 1000 mm with mode order 50). It can be seen that
both the NMSE and DNMSE decrease with increasing mode orders for all propagation
distances, as expected. In contrast to the DNMSE, the summed relative error εrel

∑ shown in
column 6 is not propagation distance-independent but increases for any mode order with
the propagation distance. However, for any propagation distance, the summed relative
error decreases with increasing mode orders. For smaller lateral ranges, the DNMSE
(fifth column of Table 2) is propagation distance-dependent, as indicated previously, but
decreases with increasing mode orders for any given propagation distance, similar to the
NMSE. Generally, it also decreases with increasing propagation distances for a given mode
order but not strictly monotonously. Similarly, the summed relative error shown in column
7 is also propagation distance-dependent and decreases with increasing mode orders for
any propagation distance. For any given mode order, it increases as the beam propagates
due to the increasing step sizes ∆r.

Concerning the various error definitions, we find that the DNMSE is not propagation
distance-independent in typical simulation scenarios because the lateral range chosen is
too small. The relative error we have introduced here is a useful quantity that allows
for the qualitative evaluation of the performance of the MEM directly from a graph. For
instance, it allows us to directly see in Figure 2) that the accuracy of the MEM increases
with increasing mode orders. This aligns with the findings from the DNMSE and NMSE,
but only in numbers that cannot be visualized comparably. In cases where the relative
errors cannot be clearly distinguished from the graph, e.g., in the first row in Figure 2, the
summed relative error can help quantify the physical dependencies (like the performance
change with the mode order or propagation distance). However, one should always keep
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in mind the non-ideal properties of the summed relative error, especially its dependence on
the selected lateral range (see Figures 1 and 2).

In conclusion, we find that all the defined types of errors have their strengths and
weaknesses, such that a comparison of the performance of the MEM with the different error
types can be helpful. Concerning the MEM itself, we find that it does not ideally resolve
the high spatial oscillations of the diffracted beam in the near field but accurately describes
the beam in the far field, even when only low mode orders are used.

2.2. Properties and Individual Test of the Gaussian Beam Decomposition
2.2.1. GBD: Method Description

Similar to the MEM, the GBD is a wavefront decomposition method. However, it
decomposes any wavefront into fundamental Gaussian beams on a grid, as illustrated in
Figure 3. There are currently two supported shapes for the decomposition grid: square or
hexagonal. Both grid shapes are depicted in Figure 3. The quantities that define the grid are
the edge length L, known as the window size, and the number of fundamental Gaussian
beams along each dimension g. The lattice constant dg, known as the grid distance, is
defined as dg = L

g . The images show the grid of fundamental Gaussian beams, depicted
here by dashed circles that denote their waist radius w0g. The waist radius is defined as

w0g = fws ·
dg

2
= fws ·

L
2g

, (24)

where fws is the so-called waist scaling factor. For fws = 1, the waists exactly touch each
other. For larger fws, the overlap of the fundamental Gaussian beams increases; for smaller
fws, it decreases, as shown in Figure 4. The number of grid beams along each dimension
is denoted as g, with g× g = G being the total number of grid beams placed within the
window, as shown in Figure 3. We refer to this total number of grid beams as the grid size.
The definitions of the window size and waist scaling factor shown here are the same as
those in the IfoCAD; however, other software could use different definitions.

The hexagonal grid can be directly constructed from the square grid without changing
the number of points or underlying math. Therefore, the algorithm used to compute the
GBD can remain unchanged when switching between grid geometries. To construct the
hexagonal grid, columns with an even index are shifted up by dg

4 relative to the square grid
position, and columns with an odd index are shifted down by the same amount to create a
hexagonal point structure. A rescaling by a factor of

√
3

2 along the horizontal direction is
required to create an equidistant separation between the nearest neighbors of points, thus
forming equilateral triangles. The mapping can be described by the function

x′ij =
√

3
2
(
xij − x0

)
+ x0

y′ij =

{
yij +

dg
4 if i is even,

yij −
dg
4 if i is odd

(25)

where x′ij and y′ij are the coordinates of the ij-th grid point, calculated from the coordinates
of the square grid point xij and yij, and x0 is the x-coordinate of the grid center. However,
this transformation shrinks the window size in the x-direction due to the rescaling, resulting
in a new window size of

√
3

2 L× L. The waist size w0g is the same as for the square grid
because the nearest neighbor distance remains dg in both cases.
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Figure 3. Illustration of the GBD method. On the left is the square grid structure, and on the right is
the hexagonal grid structure, for even and odd g, respectively. One can see the (virtual) grid in blue,
with the center marked in red. The origin points of the individual grid beams are marked in cyan,
and their waists with radius w0g are shown as dashed circles. The waist scaling factor fws was set to
1.2 in the diagrams.

fws = 1

  the circles touch precisely

fws = 4/3

  the circles intersect

fws = 2

  waist and grid distance are equal

fws = 0.5

  the circles do not touch

dg 

dg 

dg 

dg 

Figure 4. Illustration of the waist scaling factor fws. If fws = 0.5, the grid beams do not touch. If
fws = 1, the grid beams precisely touch. If fws = 4

3 , the grid beams intersect. If fws = 2, the grid
beams’ waist radii and grid distances are equal.
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In this paper, we mostly use the square grid and only use the hexagonal grid in one
particular case in Section 2.2.4. Therefore, the mathematical description below focuses on
the square grid because the basic theory remains the same for both grids. The goal of the
GBD is to represent the wavefront as a superposition of the fundamental Gaussian grid
beams weighted by coefficients:

E(x, y) ≈
g

∑
i=0

g

∑
j=0

bijEij(x− xij,0, y− yij,0), (26)

where E is the continuous wavefront to be decomposed, Eij are the electric fields of the
grid beams with unity intensity, (xij,0, yij,0) are their origin points, and bij are the complex
weighting coefficients. To determine the coefficients, the above equation is evaluated at a
discrete set of sampling points (xk, yl), where k and l describe the location on the grid: one
is the column, and the other is the row. The resulting linear equation system is then solved
for bij. There must be at least as many sampling points as there are coefficients, which is G,
one sampling point per grid beam. For better precision, one can also choose more sampling
points. But because only the minimal number of required sampling points was used in the
simulations in this paper, we focus our explanations on this case.

Both pairs of indices are compressed into a single sequential index to be able to write
the linear equation system in matrix form. E(xk, yl) and the bij can be written as column
vectors, ~Ws and ~b, respectively. Eij(xk − xij,0, yl − yij,0) := mijkl can be interpreted as a
matrix M, with each row corresponding to a sampling point containing the electric fields of
each grid beam at this sampling point. These matrix entries describe how strongly each
grid beam influences the value of the superimposed electric field in the sampling point.
Therefore, the GBD can be expressed as

~Ws = M~b, (27)

which can be solved using well-understood methods such as QR decomposition, which
is adopted in IfoCAD. The following equations show in detail how ~Ws, ~b, and M are
composed for an equal number of grid beams and sampling points of G.

~Ws =



E(x1, y1)
...

E(x1, yg)
...

E(xk, yl)
...

E(xg, y1)
...

E(xg, yg)



, ~b =



b11
...

b1g
...

bij
...

bg1
...

bgg



. (28)

M =



m1111 · · · mij11 · · · mgg11
... · · ·

... · · ·
...

m11kl · · · mijkl · · · mggkl
... · · ·

... · · ·
...

m11gg · · · mijgg · · · mgggg

 (29)

The GBD can be computationally expensive if large grid sizes are chosen. For example,
if G = 1000× 1000, 106 beams will be superimposed, so both ~Ws and~b have 106 entries,
which makes M of size 106 × 106. Another approximation is employed to further reduce
the complexity of the problem. Gaussian beam intensities drop off rapidly with increasing
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distances from the center. At points a few waist sizes apart, their contribution is near zero.
Therefore, if the distance between the sampling point and the grid beam origin is larger than
3w0g, the beam’s contribution to the electric field at the sampling point is negligible. The
corresponding element in M can be set to zero. Consequently, M becomes a sparse matrix,
and a software implementation making use of this can reduce both memory consumption
and computational effort. Nonetheless, the high dimensionality of the equations should
be kept in mind when choosing the grid size of a GBD. The mathematical form of the
sparsification can be expressed by

mijkl =

{
mijkl if dijkl ≤ 3w0g

0 else ,
(30)

where dijkl is the distance between the grid beam origin (xij,0, yij,0) and the sampling point
(xk, yl).

2.2.2. GBDs and Their Errors

To assess the quality and performance of the GBD, we define a comparable set of
errors, similar to the MEM. An NMSE for the GBD, the same as in Equation (11), can be
defined but not evaluated analytically as in the MEM (Equation (12)):

εNMSE,GBD :=

∥∥EGBD − E
∥∥2

‖E‖2 =

∥∥EGBD −
(
EGBD + Eerr)∥∥2

‖E‖2 =
Perr

P
. (31)

Here, we assume that the exact field E = E(x, y, z) can be split into the GBD representation
EGBD = EGBD(x, y, z, w0g, L, fws) and a residual field Eerr = Eerr(x, y, z), and we assume
that this residual field comprises a power of Perr. Unlike in the MEM case, we cannot
evaluate Perr, particularly because Eerr is not orthogonal to EGBD, which means that these
fields interfere. However, we can assume that Perr is independent of the propagation
distance, provided that propagation through a vacuum is assumed, where no losses and no
energy exchange with a medium occur. Likewise, the power of the entire field is conserved
during propagation, such that we see in Equation (31) that the NMSE of the GBD is as
propagation distance-independent as the NMSE of the MEM.

Additionally, we can define the discretized NMSE similarly to the MEM error defined
in Equations (13) and (14), as follows

εDNMSE
◦ (NR, R, z) :=

∑NR
i=0 2π

∣∣∣M~b(ri, z, L, w0g, fws)− ~Ws

∣∣∣2ri∆r

P
. (32)

εDNMSE
� (NX , NY, X, Y, z) :=

∑NX
i=1 ∑NY

j=1

∣∣∣M~b(xi, yj, z, L, w0g, fws)− ~Ws

∣∣∣2∆x∆y

P
. (33)

Similarly, we define the 2D and 1D versions of the relative error, as well as the summed
relative error for the GBD:

εrel(xi, yi, z) :=

∣∣∣M~b(xi, yi, z, L, w0g, fws)− ~Ws

∣∣∣∣∣∣ ~Ws

∣∣∣ , (34)

εrel(ri, z) =

∣∣∣M~b(xi, 0, z, L, w0g, fws)− ~Ws

∣∣∣∣∣∣ ~Ws

∣∣∣ , (35)
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εrel
∑ (NX , NY, X, Y, z) : =

NX

∑
i=1

NY

∑
j=1

∣∣∣M~b(xi, yj, z, L, w0g, fws)− ~Ws

∣∣∣∣∣∣ ~Ws

∣∣∣ ∆x∆y

=
NX

∑
i=1

NY

∑
j=1

εrel(xi, yj, z)∆x∆y , (36)

εrel
∑ (NR, R, z) :=

NR

∑
i=1

2π
∣∣∣M~b(ri, z, L, w0g, fws)− ~Ws

∣∣∣ri∆r∣∣∣ ~Ws

∣∣∣ , (37)

We have now defined the same type of errors for the GBD as for the MEM, and we can
use these for comparison. However, we do not know any major characteristics of the given
errors when applied to a GBD. Therefore, we study and discuss their characteristics in the
examples provided throughout this paper.

2.2.3. GBD Settings

For the MEM, it is known that for the stated set of applications, the relation defined in
Equation (19) can be used to achieve minimal error in the decomposition. For the GBD, we
could not find any comparable information. Since it is unclear how the parameters of the
GBD should be chosen for minimal error, we can only state fairly general information and
the typical settings we chose in our simulations.

For the current implementation of the GBD in IfoCAD, the parameters that can be
chosen explicitly are the waist scaling factor fws, the number g of grid beams along each
primary axis of the square grid, and the window size L. The waist radius w0g of the grid
beams and grid distance dg are then determined using Equation (24). Therefore, there are
three parameters that influence the precision of the decomposition, among which the one-
dimensional number g of grid beams roughly compares with the mode order N of the MEM.
One intuitively expects that for a fixed window size, the larger the number of grid beams
g, the higher the precision, although this is valid only within a certain range. We discuss
this property in Section 2.2.4. Furthermore, in Section 3, we investigate how to choose the
grid length g and mode order N if both methods are being directly compared. Therefore,
we understand the number g of grid beams as the primary handle for the precision of the
GBD. The remaining two parameters (the waist scaling factor fws and the window size L)
are secondary handles, and we discuss their settings below.

In this paper, we use two different types of examples: a non-clipped Gaussian beam
being decomposed or a wavefront clipped by an aperture. In the first example, the window
size needs to be at least three times larger than the waist size; otherwise, the beam would be
clipped by the window during the decomposition, resulting in unintended and unphysical
diffraction. On the other hand, the window should not be chosen too large to avoid an
unnecessarily high number of grid beams with zero amplitudes and no influence on the
final result. Comparable arguments hold for the second type of example. Here, the window
size needs to be sufficiently larger than the aperture. If the window is chosen to be smaller
than the aperture size, the beam would obviously be clipped by the window rather than
the aperture. If the window size is chosen to be equal to the aperture size or only slightly
larger than it, the GBD would not be able to resolve the step function in the electric field,
resulting in a GBD beam with a considerable residual electric field amplitude outside the
window. Only if the window is sufficiently oversized (compared to the aperture) can the
grid beams resolve the step function in the electric field amplitude that originates from
the clipping aperture and thereby accurately decompose the entire wavefront of interest.
For the examples in this paper, the window size is chosen to be between 1 to 1.5 times
the diameter of the aperture. A window size equal to the diameter of the aperture is only
used in the examples of non-clipped Gaussian beams (see Section 4.1), as in these cases, the
diameter of the aperture is already sufficiently large and does not clip the beam. Please note
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that the window size is defined as a full width, rather than comparing it to the diameter of
the aperture.

The waist scaling factor should be chosen such that the grid beams have a non-
negligible overlap. If the waist scaling factor is chosen to be too small, the GBD could
accurately resolve the incident electric field in the grid points, but due to the lack of overlap
of the grid beams, the GBD beam would effectively have ‘holes’ between the grid points. On
the other hand, if the waist scaling factor is chosen to be very large, a high number of grid
beams would contribute to the electric field in every sampling point, thereby significantly
increasing the computational effort. In this paper, for all examples, the range of fws is
chosen to be between 3/2 and 10/3.

Unfortunately, we do not know of an analytic relation between grid size, window size,
and waist scaling factor that forms an ideal choice for typical decompositions. The waist
scaling factors and window sizes chosen in this paper are not strictly optimized for the
given examples but simply follow the given logic.

2.2.4. Example: GBD Performance for a Clipped Gaussian Beam

In this subsection, we illustrate two examples of the performance of the GBD. In both
cases, we decompose a Gaussian, which is clipped by a circular aperture. We assume
normal incidence and the Gaussian beam to be optimally centered on the aperture. In the
first example, we investigate the performance of the GBD with increasing grid size and
compare and test the different error definitions. The second example illustrates the behavior
of square and hexagonal grid shapes for the same grid size. Like the MEM example, the
two examples here meet the assumption of the paraxial approximation.

Example 1: Comparing Different Grid Sizes

For the MEM, it is known from analytic equations that the precision of the decompo-
sition increases monotonously with increasing mode order N. Consequently, this is also
observed in the simulations, as long as the numerical errors are sufficiently small. For
the GBD, one may likewise want to assume that for a fixed window size, the precision
of the GBD increases with an increasing number of grid beams. However, as we showed
in Section 2.2.1 and Equation (24), the waist w0g of the grid beams scales inversely with
the number g of grid beams. This means that the more grid beams are used, the smaller
the grid beams’ waists will become, provided that the waist scaling factor is not adapted.
Therefore, an increasing number of grid beams can quickly result in a violation of the
paraxial approximation. Therefore, it cannot be generally expected that an increasing
number of grid beams will increase the precision of the decomposition.

In this example, we intentionally work with a fixed window size L and a fixed waist
scaling factor fws and increase the grid size G up to values that cause the waist sizes to be
in the order of the wavelength, thereby violating the paraxial approximation assumption.
With this, in one simple example, we test how the precision changes with the grid size, and
we test slightly beyond settings that would normally be chosen.

The parameter settings of this example are listed in Table 3. In this example, the beam
parameter, aperture size, shape and alignment, propagation distances, and sampling points
are all chosen to be the same as in the MEM example in Section 2.1.4. The grid sizes are
100× 100, 200× 200, 500× 500, and 1000× 1000, respectively, using a square grid with a
window size of 1.5 mm and a waist scaling factor of fws = 1.5. The grid beam waist w0g is
calculated using Equation (24). As shown in Table 3, the resulting waist sizes are critically
small and up to a clear violation of the paraxial approximation in the case of 1000× 1000
grid beams.

The amplitude, phase, and relative errors are plotted for large and small lateral ranges
in Figure 5 and Figure 6, respectively. The corresponding errors are summarized in Table 4.
Since the electric field of interest is the same as in the MEM example, we use the same
lateral ranges as in Section 2.1.4.
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Table 3. Parameter list for the GBD example.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 2 mm
z0 distance from the waist 0
Ra aperture radius 0.5 mm
G grid size of the GBD 100× 100, 200× 200, 500× 500, 1000× 1000
L window size of the GBD 1.5 mm
fws waist scaling factor of the GBD 1.5
w0g grid beam waist of the GBD 11.2µm, 5.6µm, 2.2µm, 1.1µm
grid shape grid shape of the GBD square
d propagation distance 5 mm, 20 mm, 100 mm, 1000 mm
X the number of sampling points 3001

Like in the MEM example shown in Figure 1, the GBD results with the large lateral
ranges shown in Figure 5 are not very descriptive because the lateral ranges are simply
too large to assess the quality of the decomposition. However, Figure 6 shows that the
GBD effectively describes the beam, particularly in the far field, even if only 100× 100 grid
beams are used. Additionally, it can be seen that the further the beam propagates, or the
larger the grid size, the better the performance of the GBD. This is also reflected in both
the DNMSE (in column 4) and the summed relative error (in column 6), as they decrease
with increasing grid sizes, although not strictly monotonously for increasing propagation
distances with a given grid size in column 6. This is particularly interesting, given that
the large grid sizes imply that unadvisably small waist sizes were used. The observed
increasing precision of the GBD with these large grid sizes is, therefore, not naturally given.
Additionally, the summed relative error in column 6 also changes nonmonotonically as the
diffracted beam propagates.

Table 4. The GBD errors, including the discretized NMSE and the summed relative error, defined
in Equation (32) and Equation (37), respectively, are calculated for increasing grid sizes at different
propagation distances. The discretized NMSE for both lateral ranges are propagation distance-
dependent. The summed relative errors for smaller, lateral ranges decrease with increasing grid sizes
at any propagation distance. The number of sampling points X is 3001.

Propagation Distance
(mm) Grid Size

DNMSE
(for Larger Ranges)
εDNMSE
◦ (NR, R, z)

DNMSE
(for Smaller Ranges)

εDNMSE
◦ (NR, R, z)

The Summed Relative Error
(for Larger Ranges)

εrel
∑ (NR, R, z)

The Summed Relative Error (for Smaller Ranges)εrel
∑ (NR, R, z)

5

100× 100 0.0158 0.0134 11.83 0.471
200× 200 0.0196 2.57 × 10−3 15.7 0.189
500× 500 1.95 × 10−3 5.84 × 10−4 12.0 0.0886

1000× 1000 3.69 × 10−4 5.84 × 10−5 5.72 0.0304

20

100× 100 0.0126 6.78 × 10−3 96.2 0.967
200× 200 5.38 × 10−3 8.57 × 10−4 97.6 0.381
500× 500 1.20 × 10−4 6.92 × 10−5 81.81 0.111

1000× 1000 1.93 × 10−5 5.98 × 10−6 40.54 0.0253

100

100× 100 9.80 × 10−3 8.39 × 10−4 2.49 × 103 1.15
200× 200 5.26 × 10−3 9.53 × 10−5 2.59 × 103 0.273
500× 500 1.22 × 10−3 1.50 × 10−6 2.89 × 103 0.040

1000× 1000 1.94 × 10−4 6.82 × 10−7 1.45 × 103 0.0251

1000

100× 100 9.87 × 10−3 4.64 × 10−5 2.08 × 105 2.38
200× 200 5.14 × 10−3 8.25 × 10−6 2.32 × 105 1.55
500× 500 1.10 × 10−3 1.40 × 10−7 3.33 × 105 0.141

1000× 1000 1.47 × 10−4 7.55 × 10−8 1.37 × 105 0.0780
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Figure 5. Performance of the GBD for large lateral ranges with different grid sizes (G = 100× 100,
200× 200, 500× 500, and 1000× 1000) for an incoming circular Gaussian beam with a 2 mm waist
being clipped by a 0.5 mm radius circular aperture. The amplitude (absolute value), phase, and
relative errors εrel(NR, R, z) are shown at different propagation distances of z = 5 mm, 20 mm,
100 mm (near field) and 1000 mm (far field) after the clipping aperture. The analytical methods used
for the near and far fields were those of Campbell [46] and Tanaka et al. [47], respectively. The lateral
distances for each propagation distance were chosen to be large enough to cover all the power. For
any propagation distance, the performance of the GBD improves with the increasing grid size.
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Figure 6. Same as Figure 5 but for smaller lateral ranges. The performance of the GBD with
different grid sizes is shown for an incoming circular Gaussian beam with a 2 mm waist being clipped
by a 0.5 mm radius circular aperture. The amplitude (absolute value), phase, and relative errors
εrel(NR, R, z) are shown at different propagation distances of z = 5 mm, 20 mm, 100 mm (near field)
and 1000 mm (far field) after the clipping aperture. The analytical methods used for the near and far
fields were those of Campbell [46] and Tanaka et al. [47], respectively. One can see that the further
the beam propagates or the larger the grid size, the better the performance of the GBD.

As mentioned above, the NMSE of the GBD is propagation distance-independent
when the power of the entire field is conserved during propagation (see Equation (31)).
However, in column 3 in Table 4, it can be seen that the DNMSE of the GBD is propagation
distance-dependent in the case of large lateral ranges, and the reason for this behavior
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comes from the non-ideal choice of the lateral ranges. Additionally, it can be seen that
the DNMSE decreases with increasing grid sizes for any given propagation distance. This
holds for both choices of lateral ranges. However, it is not consistently given that for any
choice of grid size, there is a strictly monotonous decrease in the DNMSE with increasing
propagation distances. This again differs from the behavior of the MEM. However, it is
currently unclear whether this originates from the method itself or its implementation.
Likewise, the summed relative error εrel

∑ does not show a strictly monotonous decrease with
increasing grid sizes. For example, the summed relative error in column 5 at a propagation
distance of 5 mm increases in the step from a grid size of 100 × 100 to 200 × 200, and
decreases for any further increase in the grid size. Finally, the summed relative error
in column 5 increases with the propagation distance, unlike the DNMSE, which mostly
decreases with the propagation distance. The reason for these observations could again
be due to the method itself, numerical precision, implementation problems, or the nearly
zero-valued denominator in the error computation. Despite the nonmonotonous behavior
of the DNMSE and the summed relative error, we still used both for the total performance
evaluation of the GBD to facilitate a direct comparison with the MEM.

Example 2: Comparing Grid Shapes

The shape of the grid can affect the accuracy of the GBD. Therefore, we repeat the
previous example with the same settings and a grid size of 500× 500 beams but this time,
we compare the performance of the GBD to a square and a hexagonal grid. As introduced
in Section 2.2.1, the window size in the horizontal direction is rescaled by a factor of

√
3/2

for the hexagonal grid, which is 1.5 mm×
√

3/2 in this example. We use the same waist
scaling factor fws = 1.5 and waist radius w0g for both the square and hexagonal grids in
IfoCAD. The resulting amplitude, phase, and relative errors of the square and hexagonal
grids are plotted in Figure 7. The corresponding DNMSE and summed relative error are
listed in Table 5.

Both Figure 7 and Table 5 show that at propagation distances of 5 mm and 20 mm,
the simulations performed using the hexagonal grid gradually show slightly better results
compared to the simulations performed using a square grid. However, at larger distances
of 100 mm or 1000 mm, the square grid resulted in higher accuracy. However, this is only
one example, and we cannot draw a generalized conclusion from it.

Table 5. The DNMSE and the summed relative error for different grid shapes at different propagation
distances, given a grid size of 500× 500. It can be seen that the hexagonal grid caused smaller errors
for short propagation distances of 5 mm and 20 mm, whereas the square grid generated more precise
results at higher propagation distances. The number of sampling points X is 3001.

Propagation Distance
(mm) Grid Shape

DNMSE
εDNMSE
◦ (NR, R, z)

The Summed Relative Error
εrel

∑ (NR, R, z)

5 square 5.84 × 10−4 0.0886
hexagonal 2.41 × 10−4 0.0603

20 square 6.92 × 10−5 0.111
hexagonal 3.12 × 10−5 0.0641

100 square 1.50 × 10−6 0.0396
hexagonal 3.82 × 10−6 0.0583

1000 square 1.40 × 10−7 0.141
hexagonal 2.50 × 10−7 0.167
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Figure 7. Performance of the GBD with hexagonal and square grid shapes. The amplitude (absolute
value), phase, and relative error distributions are shown at different propagation distances from a
circular aperture with a radius of 0.5 mm. The incoming circular-symmetric Gaussian beam was
centered to the aperture and had its 2 mm waist located in the aperture plane. The analytical methods
used for the near and far fields were those of Campbell [46] and Tanaka et al. [47], respectively. The
number of sampling points X is 3001.

3. Fair Comparison

Thus far, the MEM and GBD have been introduced, their settings discussed, and their
performance individually tested using an example. In the next step, we aim to directly
compare the two methods. To do so, we need to establish criteria for evaluating their
performance and determining if one method outperforms the other or if they perform
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equally well. Specifically, we need to define which mode order of the MEM should be
compared to which grid size of the GBD, and provide the rationale for this choice. This is
discussed below.

Criteria for a fair comparison

There are two aspects that should be considered when comparing the MEM and GBD:
accuracy and computational effort. We assess accuracy based on the introduced errors and
computational effort by the runtime of the simulation. We consider a fair comparison to
be a case where either both methods achieve the same accuracy, and then the runtime is
used to assess the performance, or, both methods are set to have approximately the same
runtime, and the performance is assessed by the achieved accuracy. In this study, we use
the latter criterion and choose the elapsed real time (not the CPU time) as the runtime.

From the basic principles of the two methods, the computational effort comprises
three parts: decomposition time, propagation time, and superposition time. For the MEM,
the decomposition time is the time spent on the integration to calculate the coefficients
of the higher-order modes. For the GBD, it is the time needed for the QR decomposition
to solve Equation (27). Therefore, the decomposition time depends not only on the mode
order and grid size but also on the properties of the input field. The propagation time
is very short in comparison because ray-tracing methods, including the propagation of
the Gaussian beam parameters with the ABCD matrix formalism, are highly efficient and
computationally undemanding. For the MEM, all modes even share the same axis, such
that only one ray needs to be traced, which then represents the beam axis of all modes.
Finally, the superposition time depends on the number of sampling points in the target
plane, as well as the number of modes or grid beams. Therefore, the computational effort is
dominated by the decomposition and superposition times but is also naturally affected by
other criteria, such as the efficiency of the original implementation of the methods in the
software tool used, the computational power of the computer used, and possibly even the
operating system used.

In this study, we compare the performance of the MEM to that of the GBD using Ifo-
CAD (version 2022/10, git commit adf19a5b) to find mode orders and grid sizes that result
in similar computational efforts. All simulations shown here for testing the computational
efforts were performed on a MacBook Pro 2020 with 8 GB of RAM and a 2.3 GHz processor
with 8 cores.

Computational effort of the MEM and GBD

In order to find settings that result in comparable computational efforts for both
methods, we performed a dedicated simulation where we varied the mode order and grid
size while keeping the number of sampling points in the target plane constant. For this
simulation, we once again chose the case of a clipped Gaussian beam, using the same
settings as in the previous examples: a circular Gaussian beam with a waist of 2 mm located
at the aperture center, incident onto this circular aperture with a radius of 0.5 mm. We set
N to range from 10 to 100 in increments of 10 for the MEM and set g to range from 100 to
1000 in increments of 100. The target plane was 5 mm away from the aperture, and we used
3001 sampling points to compute the electric field for x ∈ −3, 3, y = 0. In this case, both
the MEM and GBD were run with parallelization. Therefore, we distinguish between two
different times: the elapsed real time, which is the time the user needs to wait for a result,
and the CPU time, which is the actual computation time and is longer than the elapsed real
time due to the used parallelization. Here, we focus on the elapsed real time and use it as
the primary criterion. The computational efforts of the MEM and GBD are summarized in
the graph on the left in Figure 8, which contains information about the elapsed times (wall
clock time) for decomposition, propagation, and superposition.
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Figure 8. (Left) Computational efforts of the MEM and GBD describing the electric field of a clipped
Gaussian beam propagated to a target plane, sampled along 3001 points along the x-axis (y = 0),
where the total CPU time of the GBD is around 1.23 times that of the MEM. (Right) Computational
efforts of the MEM and GBD, using the same settings as in the graph on the left, except for the use of
101× 101 sampling points in the xy-plane, where the total CPU time of the GBD is around 3.53 times
that of the MEM. Both graphs indicate that the MEM is better parallelized compared to the GBD
in IfoCAD.

For the MEM, the decomposition time was by far the dominant time consumer in the
given example, consuming more than 95% of the total elapsed real time. For the GBD,
the situation was different: the superposition time was dominant over the decomposition
time by a factor of more than 3. The propagation time, as expected, was insignificant.
For GBDs with large grid sizes, some computational efforts accumulated due to the large
number of grid beams that needed to be traced. For instance, for a grid size of 1000× 1000,
1 million grid beams needed to be propagated. Finally, the different superposition times
are noteworthy. We understand this was a consequence of the different numbers of beams
that needed to be computed and evaluated at every target grid point. For instance, a mode
order of 100 implies that 51× 52/2 = 1326 modes were used in the MEM (cf. Equation (9)).
In the case of the GBD, a grid size of 500× 500 grid beams implies that in every sampling
point of the target plane, 250,000 beams were being tested, whether or not they contributed
to the electric field. Even though only a few electric fields were indeed being superimposed
in the end, the test itself for the high number of grid beams cost considerable time in the
current implementation.

If we compare the total elapsed real time for different settings of the MEM and
GBD, we can see several pairings of grid size G and mode order N that can be used
to achieve comparable computational efforts. For instance, {N = 10, G = 100× 100},
{N = 20, G = 200× 200}, and {N = 50, G = 400× 400}. In this paper, we chose {N = 50,
G = 400× 400} for all comparisons using 3001 sampling points.

However, this choice depends on the number of sampling points used in the target
plane, as the computational effort of the GBD is primarily influenced by the superposition
time (which significantly depends on the number of sampling points in this plane), whereas
this is not the case for the MEM. Therefore, the illustrated comparison should be repeated
if a different number of sampling points is used. In this paper, we used 3001 sampling
points for all two-dimensional cross-sections of the electric field. However, we also show
figures for the full cross-sections (x and y for a fixed propagation distance z) and used
101× 101 sampling points in these cases. Therefore, we repeated the above simulation for
x ∈ −3, 3, y =∈ −3, 3 with 101 points on each axis, i.e., 10201 sampling points in total. The
results are shown in the graph on the right in Figure 8. Based on the computational analyses
of the MEM and GBD conducted in this scenario, we selected N = 50 and G = 300× 300 for
simulations with 10201 sampling points, particularly when y was not set to 0 in this paper.

Indeed, these parameters resulted only in roughly comparable computational efforts,
and better matching could be achieved if intermediate values were used. However, this
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was not necessary and was not the aim here since the computational effort depends on
additional simulation parameters and will vary for other setups, particularly with regard to
the properties of the wavefront that is to be decomposed, as well as the sampling grid in the
target plane. However, our experience has shown that the configurations used consistently
yielded comparable computational efforts for all simulations discussed in this paper.

Finally, we can compare the elapsed real times and CPU times, thereby achieving the
parallelization of both methods. For comparable parameters, i.e., {N = 50, G = 400× 400}
and {N = 50, G = 300× 300}, the CPU time of GBD was longer. This shows that the GBD
was more strongly parallelized compared to the MEM in the IfoCAD version used.

4. Method Comparison

In this section, we directly compare the performance of the MEM and GBD for various
scenarios, which include non-clipped and clipped Gaussian beams in free space (Section 4.1),
aberrated wavefronts (Section 4.2), and reflection from optical components (Section 4.3).

4.1. Non-Clipped Gaussian Beams and Clipped Gaussian Beams in Free Space

In all comparisons in this subsection, we compute the introduced errors to evaluate
the quality of each method. Unfortunately, this requires the electric field E to be known in
every target plane, which strongly restricts the number of possible test cases. Therefore, in
Section 4.1.1, we test the performance of the MEM and GBD for non-clipped circular and
general astigmatic Gaussian beams, for which the analytic representation of the electric
field is widely known. In Section 4.1.2, we further investigate the case of circular symmetric
clipped Gaussian beams in the near, far, and extremely far fields, for which again, we
can use the analytic representations provided by Campbell [46] and Tanaka et al. [47] in
the Fresnel and Fraunhofer regions. For the extremely far field, we refer to propagation
distances of a few million kilometers, which occur in space-gravitational wave detectors
such as LISA [6] and Taiji [7].

4.1.1. Non-Clipped Gaussian Beams
Circular Gaussian Beam

The simplest case used to compare the MEM and GBD is that of non-clipped Gaussian
beams, for which the electric field is analytically known in any propagation distance.
Therefore, we first perform a comparison of the MEM and GBD for the example of a
non-clipped circular-symmetric Gaussian beam with the parameters listed in Table 6. It
should be noted that we defined an aperture here. This is due to the IfoCAD version used,
which requires an aperture to be defined for both methods. However, with the radius being
four times larger than the Gaussian waist radius, it was effectively not clipping the beam,
given that the clipped power was approximately 1.3× 10−12 % of the full beam power.
Instead, the aperture radius effectively defined the lateral range used in the numerical
evaluation of the integral in Equation (7). In the GBD, we then used the same aperture
radius to decompose the same input field as in the MEM case. We chose not to overscale
the window further, and we set the window size (which is a full width) to be equal to
the aperture diameter so as not to place an unnecessary number of grid beams in regions
without field amplitudes.

Concerning the optical setup, we defined a circular Gaussian beam with a waist
radius of 1 mm, which was centered in this aperture. The mode order, grid size, and
sampling points were chosen, as described in Section 3. The waist w0d of the modes
used in the MEM was calculated using Equation (19); the GBD grid beam waist w0g was
correspondingly calculated using Equation (24). After the decomposition, the MEM beam
and GBD beam were propagated for zr/1000, zr, 1000 zr, and 3 million kilometers (3 Gm),
with zr = 2.9526 m, where zr refers to the Rayleigh range of the incident Gaussian beam.
We refer to the far field when z � zr [4]. The resulting amplitude, phase, and relative
errors are shown in Figure 9, and the corresponding discretized NMSE and the summed
relative errors are summarized in Table 7. The chosen lateral ranges of three times the
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local spot sizes caused all amplitude shapes to appear identical. This was also the case
for the shapes of the phase profiles. However, this was not immediately visible due to
phase wrapping, particularly in the far and extremely far fields, which could be resolved by
using a phase-tracking algorithm. Figure 10 shows the unwrapped phase for a propagation
distance of about 3 km, i.e., 1000 zr.

In Figure 9, it can clearly be seen that both the MEM and GBD accurately represent the
circular Gaussian beam. However, for all shown propagation distances, the MEM is more
accurate than the GBD (column on the right-hand side in the graphs), which is also reflected
in the discretized NMSE εDNMSE (column 3) and summed relative error εrel

∑ (column 4) in
Table 7. The DNMSE error of the MEM is notably small, considering that the waist of the
modes used in the MEM determined using Equation (19) was 0.8 mm, which closely aligns
with the waist of the non-clipped Gaussian beam. While it is possible to obtain an error
of 0 by choosing the waist of the modes equal to the non-clipped beam waist of 1 mm,
such a comparison would be meaningless in this particular scenario. However, this agrees
with the analytically calculated NMSE (Equation (12)), which was 1.3989 × 10−14. The
discretized NMSE of the MEM result was found to be slightly smaller than this, with a
residual propagation distance dependency. Both of these properties originate from the
finite radial range used in the decomposition and error computation.

In conclusion, we find that in this example, both methods accurately resolved the
incident wavefront. The MEM exhibited exceptional precision and was, therefore, more
accurate compared to the GBD.

Table 6. Parameter list for non-clipped circular Gaussian beam.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 1 mm
z0 distance from the waist 0 mm
Ra aperture radius 4 mm
N mode order of the MEM 50
w0d waist of the modes used in the MEM 0.8 mm
G grid size of the GBD 400 × 400
L window size of the GBD 8 mm
fws waist scaling factor of the GBD 10/3
w0g grid beam waist of the GBD 0.0333 mm
grid shape grid shape of the GBD square
d propagation distance 0.001zr, zr, 1000zr, 3 Gm
X number of sampling points 3001

Table 7. The discretized NMSE and the summed relative error of the MEM and GBD, respectively,
for different propagation distances. The number of sampling points X is 3001.

Propagation Distance Method
DNMSE
εDNMSE
◦

The Summed Relative Error
εrel

∑

2.95 mm MEM 1.31 × 10−17 5.00 × 10−5

GBD 1.38 × 10−8 7.06 × 10−3

2.95 m MEM 4.16 × 10−15 0.0011
GBD 1.02 × 10−11 0.0019

2.95 km MEM 5.11 × 10−15 371
GBD 1.02 × 10−11 518

3 Gm MEM 1.35 × 10−14 3.89 × 1014

GBD 1.02 × 10−11 2.23 × 1015
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Figure 9. The amplitude (absolute value), phase, and relative error distributions at propagation
distances of zr/1000 , zr (near field), 1000 zr (far field), and 3 million kilometers (extremely far field).
The simulation parameters are listed in Table 6. The analytical results refer to the complex electric
field of the non-clipped Gaussian beam in this case. It can be seen that the MEM behaved better
than GBD.
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Figure 10. The wrapped and unwrapped phases of a propagation distance od 2.9526 km for the
non-clipped circular Gaussian beam.

A particular challenge in this simulation was the ultra-large propagation distance of
3 million kilometers. This naturally gave rise to numerical precision problems. Additionally,
it was a major concern and one of the initial reasons for why we tested this extremely far
field, which is relevant for space-based gravitational wave detectors. The given example
shows no apparent signs of numerical limitations. This was achieved by a separation of
the optical pathlength (i.e., the ikz-term in the Gaussian beam), from the residual phase
contributions [50].

Additionally, it was expected by our community that the GBD could not propagate
the beam into this extremely far field without a re-decomposition in an intermediate plane.
This expectation originated from the chosen small grid in the original decomposition
plane compared to the very large spot size in the target plane. The concern was that a
combination of small and large numbers would result in limitations due to numerical
precision. After all, in the given example, the spot size of the total beam was 1 mm in
the decomposition plane, for which we chose a window size of 8 mm. Since the beam
was not re-decomposed, this was also used in the target plane, where the Gaussian beam
radius increased to 1.0160 × 103 km (cf. Figure 9). Yet, despite the grid being unfit for
the target plane, it is clearly visible in Figure 9 that the beam was well represented. A
re-decomposition was not needed in the given example.

General Astigmatic Gaussian Beam

After testing the performance in the case of a non-clipped circular symmetric Gaussian
beam, we now test the performance of these methods on a general astigmatic Gaussian
beam. In this case, two beam waists and a complex angular orientation θ need to be
defined [51]. The parameters used for this performance comparison are listed in Table 8.
In this case, the lateral parameter y was not set to 0. As shown in Section 3, we used a
mode order of N = 50 and compared this with a GBD grid size of 300× 300. The resulting
electric field profiles of the MEM were plotted, as shown in Figure 11, as were those of
the GBD, as shown in Figure 12, for three different propagation distances of zr1/100, zr1,
and 100zr1, with zr1 = 2.9526 m being the XZ-plane Rayleigh range. We do not present
the results for 3 Gm in this case because the sampling points of 101× 101 were too low for
such an extremely far distance, and we have already demonstrated the accuracy of both
the MEM and GBD at 3 Gm for the non-clipped circular Gaussian beam. We computed
the electric field in lateral distances (x, y) up to twice the spot size. This provided good
visibility of the amplitude profiles; however, it slightly masked the magnitude of ellipticity
in the resulting images.

In the first column of both figures, one can see the well-known characteristic of a
general astigmatic Gaussian beam: its elliptical amplitude pattern, which undergoes a
rotating orientation during propagation. Both methods equally captured this characteristic.
The phase of the general astigmatic beam, as shown in the second column, is mostly smooth
at propagation distances less than 3 m (top and central row), except for two lines of phase
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jumps. In the far field (lowest row), there is a pattern of circular shapes. This pattern is
an aliasing effect resulting from the high wavefront curvature, and the consequent high
number of phase jumps in combination with the low sampling rate. We demonstrate this
effect and how it can be resolved for a cross-section of the phase profile in Figure 13. Finally,
the third column of Figures 11 and 12 shows the accuracy of each method. The DNMSE
and summed relative error of the MEM and GBD at different propagation distances are
shown in Table 9.

Table 8. Parameter list for non-clipped general astigmatic Gaussian beam.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w01 beam waist in XZ plane 1 mm
z01 distance from the waist in XZ plane 0 mm
w02 beam waist in YZ plane 2 mm
z02 distance from the waist in YZ plane 0 mm
θ tilt angle 0.1 + 0.2i
Ra aperture radius 8 mm
N mode order of the MEM 50
w0d waist of the modes used in the MEM 1.6 mm
G grid size of the GBD 300 × 300
L window size of the GBD 16 mm
fws waist scaling factor of the GBD 10/3
w0g grid beam waist of the GBD 0.0444 mm
grid shape grid shape of the GBD square
d propagation distance 0.01 zr1, zr1, 100 zr1
X number of sampling points 101× 101 = 10, 201
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Figure 11. MEM representation of a general astigmatic Gaussian beam at different propagation
distances. From left to right: amplitude (absolute value), phase, and relative error distributions of
the MEM. From top to bottom: propagation distances of 29.526 mm, 2.9526 m, and 295.26 m. All the
simulation parameters are listed in Table 8. It can be seen in the third column of this figure that the
MEM demonstrated good agreement with the initial general astigmatic Gaussian beam.
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Figure 12. GBD representation of a general astigmatic Gaussian beam at different distances. From left
to right: amplitude (absolute value), phase, and relative error distributions of the GBD. From top to
bottom: propagation distances of 29.526 mm, 2.9526 m, and 295.26 m. All the simulation parameters
are listed in Table 8. It can be seen in the third column of this figure that the GBD demonstrated good
agreement with the initial general astigmatic Gaussian beam.
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Figure 13. Cross-section of the phase obtained using the MEM along y = 0 and z = 295.26 m. The
image on the left shows the phase using 101 sampling points, the image in the center shows the phase
using 3001 sampling points, and the image on the right shows the phase using 3001 sampling points
after a phase-tracking algorithm unwrapped the data. One can see that the small side maxima, which
are seen as circles in Figures 11 and 12, disappear when a higher sampling rate is used, and indeed a
smooth but strongly curved phase profile is restored in the far field.
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Table 9. The DNMSE and summed relative error of the MEM and GBD for the non-clipped general
astigmatic Gaussian beam at different propagation distances. The number of sampling points X
is 10201.

Propagation Distance Method
DNMSE
εDNMSE
�

The Summed Relative Error
εrel

∑

29.5 mm MEM 6.25 × 10−17 1.96 × 10−5

GBD 6.79 × 10−9 0.005

2.95 m MEM 2.34 × 10−16 3.57 × 10−5

GBD 4.74 × 10−12 2.63 × 10−4

295 m MEM 1.11 × 10−14 0.465
GBD 4.75 × 10−12 0.629

It can be seen in this table, as well as in the third column of both Figures 11 and 12,
that the MEM was again, consistently more accurate compared to the GBD. Additionally,
one can see that both the DNMSE and summed relative error of the MEM increased with the
propagation distances, whereas for the GBD, the DNMSE nonmonotonically decreased with
the propagation distances, and the summed relative error again changed inconsistently.

4.1.2. Clipped Gaussian Beam

In this subsection, we directly compare the performance of the MEM and GBD for
a circular Gaussian beam clipped by a circular aperture. For convenience, the parameter
settings are summarized in Table 10.

Table 10. Parameter list for circular Gaussian beam clipped by a circular aperture centered in the
beam waist.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 2 mm
z0 distance from the waist 0 mm
Ra aperture radius 0.5 mm
N mode order of the MEM 50
w0d waist of the modes used in the MEM 0.1 mm
G grid size of the GBD 400 × 400
L window size of the GBD 1.5 mm
fws waist scaling factor of the GBD 3/2
w0g grid beam waist of the GBD 0.0029 mm
grid shape grid shape of the GBD square
d propagation distance 5 mm, 100 mm, 1000 mm, 3 Gm
X number of sampling points 3001

In this case, the diffracted beam propagated 5 mm and 100 mm in the near field,
1000 mm in the far field, and 3 Gm in the extremely far field, with Fresnel numbers of
46.9925, 2.3496, 0.2350, and 7.83208× 10−11, respectively. The resulting amplitude, phase,
and relative error profiles are depicted in Figure 14, and the corresponding errors are
summarized in Table 11. We chose lateral ranges that allowed for good visibility of the
amplitude profiles. For 3 Gm, we provided two lateral ranges: approximately twice the
spot size and a smaller lateral range of 400 m. In fact, we did not attempt to compute the
exact spot size of the clipped Gaussian beam but simply estimated it from two boundary
cases: the spot sizes of a top hat beam and a Gaussian beam. The spot size of a top hat beam
with a radius of 0.5 mm can be estimated using Equation (8) in [48], resulting in 2625.3 km
after 3 Gm. For a Gaussian beam with a waist of 0.5 mm, the spot size at a propagation
distance of 3 Gm would be 2032.1 km, and the spot size of the clipped Gaussian beam is
expected to be between these two values. Here, for simplicity, we used the spot size of the
top-hat beam for the lateral ranges.



Sensors 2023, 23, 9024 33 of 44

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

lateral distance [mm]

Amplitude [a.u.]

-4

-3

-2

-1

 0

 1

 2

 3

 4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

lateral distance [mm]

Phase [rad]

10
-4

10
-3

10
-2

10
-1

10
0

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

lateral distance [mm]

Relative Error (log scaling)

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.5  0  0.5  1

lateral distance [mm]

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5  0  0.5  1

lateral distance [mm]

10
-4

10
-3

10
-2

10
-1

10
0

-1 -0.5  0  0.5  1

lateral distance [mm]

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -3 -2 -1  0  1  2  3  4

lateral distance [mm]

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1  0  1  2  3  4

lateral distance [mm]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-4 -3 -2 -1  0  1  2  3  4

lateral distance [mm]

0
1.0×10

-11
2.0×10

-11
3.0×10

-11
4.0×10

-11
5.0×10

-11
6.0×10

-11
7.0×10

-11
8.0×10

-11
9.0×10

-11
1.0×10

-10

-4000 -2000  0  2000  4000

lateral distance [km]

-4

-3

-2

-1

0

1

2

3

4

-4000 -2000  0  2000  4000

lateral distance [km]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-4000 -2000  0  2000  4000

lateral distance [km]

9.30×10
-11

9.35×10
-11

9.40×10
-11

9.45×10
-11

9.50×10
-11

9.55×10
-11

9.60×10
-11

9.65×10
-11

9.70×10
-11

-400 -200  0  200  400

lateral distance [m]

Analytical
MEM
GBD

-4

-3

-2

-1

0

1

2

3

4

-400 -200  0  200  400

lateral distance [m]

Analytical
MEM
GBD

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-400 -200  0  200  400

lateral distance [m]

MEM GBD

Figure 14. Amplitude (absolute value), phase, and relative error distributions of a clipped circular
Gaussian beam with propagation distances of 5 mm and 100 mm in the near field, 1000 mm in the far
field, and 3 Gm in the extremely far field (from top to bottom). The lateral range in the fourth row is
twice the local spot size. The simulation parameters are listed in Table 10. The analytical methods
used for the near and far fields were those of Campbell [46] and Tanaka et al. [47], respectively. The
graphs in the third column show the relative error, which indicates that the GBD performed better
than the MEM.
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Table 11. The DNMSE and the summed relative error of the MEM and GBD, respectively, for different
propagation distances. The number of sampling points is 3001.

Propagation Distance Method
Discretized NMSE

εDNMSE
◦

The Summed Relative Error
εrel

∑

5 mm MEM 0.0057 0.247
GBD 9.58× 10−4 0.132

100 mm MEM 1.9470× 10−4 0.538
GBD 6.97× 10−6 0.086

1000 mm MEM 2.57× 10−5 1.68
GBD 6.68× 10−7 0.328

3 Gm (2 times spot size) MEM 5.58× 10−6 8.77 × 1017

GBD 7.50× 10−8 3.06 × 1017

3 Gm (400 m) MEM 7.22× 10−13 4.34 × 109

GBD 2.43× 10−15 2.52 × 108

In Figure 14, it can be seen that both methods effectively described the clipped Gaus-
sian beam; however, in all the shown propagation distances, the GBD behaved better
compared to the MEM. Quantitatively, we can also draw the same conclusion based on
the discretized NMSE and summed relative errors listed in Table 11. Particularly in the
near field with propagation distances of 5 mm and 100 mm, the differences in the errors of
the MEM and GBD were significant. This aligns with the findings in Section 2.1.4, which
showed that the MEM insufficiently resolved the high-frequency spatial oscillation in the
very near field. With the increase in the propagation distance, at 1000 mm (third row), the
differences between both methods became smaller, and in the extremely far field 3 Gm
(fourth and lowest row), they narrowed even further. We can also see that both methods
became more accurate with increasing propagation distances. As before, the extremely far
electric field was computed by the GBD in one step and did not require a re-decomposition
in an intermediate plane.

An aperture radius of 0.5 mm is a typical value used in laboratory experiments and,
therefore, fits well with the shown near-field propagation distances. However, it is not a re-
alistic value for the extremely far-field simulation case originating from space-gravitational
wave detectors. The aperture diameter in LISA-like missions is usually between 20 cm and
40 cm. Therefore, here, we illustrate another example, where both the beam waist diameter
and aperture diameter are 30 cm for a propagation distance of 3 Gm. Other parameters
are chosen from Table 10, except for the window size, which is 35 cm in this case, and the
lateral range was chosen to be 3 times the spot size estimated using Equation (8) in [48].
The resulting amplitude, phase, and relative errors are shown in Figure 15.
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Figure 15. Amplitude (absolute value), phase, and relative error distributions of a clipped circular
Gaussian beam at propagation distances of 3 Gm. Both the beam waist diameter and aperture
diameter are 30 cm. The image on the right shows the relative error, indicating that the GBD
performed better than the MEM.
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In this figure, it can be seen that the order of magnitude of the amplitude was 10−8

(image on the left), and the relative error shown in the image on the right indicates that the
GBD was again more accurate compared to the MEM.

4.2. Aberrated Wavefronts

An aberration is a typical phenomenon in optics and results in a case where the beam
cannot be propagated analytically through the setup. For instance, in LISA-like missions,
an aberration occurs when the beam propagates through the telescope. The beam that
is launched toward the remote spacecraft is, therefore, not a perfectly clipped Gaussian
beam but has additional wavefront distortions. Likewise, the received beam is not a
perfect top-hat beam. These aberrations can affect the readout noise and, therefore, need to
be studied.

Here, we study how the MEM and GBD decompose and propagate aberrated wave-
fronts. Unfortunately, we do not have an analytic solution to compare the results with. We
can, therefore, only qualitatively compare the results of both methods without being able to
directly assess which one is more accurate. Instead, we test whether the methods generate
qualitatively agreeable results.

Mathematically, a wavefront aberration can be described by adding an additional
phase term Ωa in the complex electric field of the original beam, i.e.,

Ea(r; 0) = E(r; 0) exp(ikΩa) , (38)

where Ea is the complex electric field of the beam with aberration, E is the complex electric
field of the original beam, and Ωa is the additional phase distribution caused by the
aberration. Such a phase term is usually described using Zernike polynomials [52]:

Ωa(x, y) =
N

∑
n=0

n

∑
m=−n

cm
n Zm

n (x, y), (39)

where cm
n represents the coefficients and Zm

n are the Zernike polynomials, where n−m ≥ 0
is an even number.

To demonstrate that both the MEM and GBD can describe wavefront aberrations, we
present the results for the well-known effects caused by individual Zernike polynomials
up to the fourth order (cf. Figure 4 in [53], Figure 3 in [54], and Figure 9.8 in [55]). The
impact of optical aberrations is often represented by calculating the point-spread function
(PSF) [53], i.e., the intensity profile at a distance z, which is usually computed through
Fourier transformation:

PSF(r; z) = |FTz(Ea(r; 0))|2 , (40)

which is also known as the response of the pupil function after Fourier transform (FT) at
a certain distance z [56]. In the far field, the beam source can usually be regarded as a
point source compared to the propagation distance, and the PSF equals the intensity profile
computed by Fraunhofer diffraction. In this section, we use the MEM and GBD to represent
the effect of optical aberrations by calculating the amplitude profile of a diffracted Gaussian
beam with aberrations at the Fraunhofer region, rather than directly calculating the PSF.

In this example, we calculated the amplitude profiles of the first four orders of Zernike
polynomials using the MEM and GBD for an aperture with a radius of 1 mm at λ = 1064 nm,
and the coefficients of the Zernike polynomials cm

n for all m and n were set to 10. The
parameter settings for this example are listed in Table 12. The propagation distance was
5 km (F = 1.8797× 10−4) and, therefore, in the Fraunhofer region.

For a good resolution of our results, we used 201× 201 = 40,401 sampling points. For
the MEM, we chose a mode order of N = 50, and for the GBD, we used a grid size of
G = 150× 150. The results computed using the GBD are shown in Figure 16, showing the
expected amplitude profiles (compare e.g., (cf. Figure 4 in [53], Figure 3 in [54], and Figure
9.8 in [55]).
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Table 12. Parameter list for the wavefront aberration.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 1 mm
z0 distance from the waist 0
Ra aperture radius 1 mm
N mode order of the MEM 50
w0d waist of the modes used in the MEM 0.2 mm
G grid size of the GBD 150× 150
L window size of the GBD 3 mm
fws waist scaling factor of the GBD 8/3
w0g grid beam waist of the GBD 0.0267 mm
grid shape grid shape of the GBD square
cm

n coefficient of Zernike polynomials 10
d propagation distance 5 km
X number of sampling points 201× 201 = 40,401

Figure 16. Amplitude profile for the first 4 orders of wavefront aberrations described by Zernike
polynomials, generated using the GBD method. Aberrations of order n = 1 are called tilt; n = 2 are
called astigmatism and defocus; n = 3 are called coma and trefoil; and n = 4 are called tetrafoil, 2nd
astigmatism, and spherical aberration. The images each cover 200 m × 200 m each.
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The MEM results were almost identical and are not shown here to avoid unnecessary
duplication. Instead, we illustrate the difference between the MEM and GBD results in
Figure 17. It can be seen in this figure that the difference between the MEM and GBD was in
the order of 10−7 to 10−6. If this was related to the individual amplitudes of approximately
10−5 to 10−4, we would speak of relative deviations in the order of a few percent. Even
though we cannot assess which of the two methods was more accurate, we can conclude
that generally, either method can be used for decomposing and propagating aberrated
wavefronts. Please note that we intentionally only plotted here the difference between
the results and performed a qualitative relative deviation because the computation of a
relative difference like |EGBD − EMEM|/|EMEM| caused divisions by zero with the shown
lateral ranges.

Figure 17. Differences between the amplitude profiles of the MEM and GBD for the first 4 orders of
wavefront aberrations described by Zernike polynomials. The images each cover 200 m × 200 m.

4.3. Reflection from Optical Components

In the previous subsections, the behavior of the MEM and GBD in free space propaga-
tion was compared. However, a major difference between both methods arose when the
decomposed beams were propagated through an optical setup. This is an important test
case because of the differences in the decomposition methods: while all MEM modes share
the same axis, the GBD grid beams are distributed on a grid. To compute the interaction
of a beam with a surface, the usual implementations, especially the implementation in
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IfoCAD, compute the second fundamental form of the surface at the intersection point.
Consequently, when an MEM beam reflects or refracts, it effectively interacts only with
the intersection point and its local curvature, whereas the GBD beam probes the surface
at multiple intersection points. We illustrate this difference with a simple test case: the
reflection of a Gaussian beam from a spherically curved mirror with varying curvatures.
We expected the GBD method to show increasing levels of spherical aberration with in-
creasing mirror curvature, whereas the MEM was not expected to resolve the occurring
spherical aberrations. This means that we decomposed a Gaussian beam with the MEM
and GBD and reflected the original Gaussian, as well as the MEM and GBD representations
of this Gaussian, from a spherically curved mirror. We then expected an increasing level
of deviation between the GBD beam and the reference Gaussian for increasing mirror
curvatures, whereas the MEM was not expected to show this behavior. The results of this
simple test are illustrated in Figure 18, and the results for a stronger curvature case are
shown in Figure 19, confirming the expected behavior.

For this simulation, we assumed a Gaussian beam with a 1 mm waist radius located at
its origin, propagated by z = 10 mm before it impinged orthogonally and centered onto
the spherically curved mirror, which had a diameter of x mm. The mirror was, therefore,
sufficiently oversized to reflect the full beam. After reflection, the complex electric field was
calculated at an observation plane, which was 5 mm away from the mirror and orthogonal
to the beam. All simulation parameters are summarized in Table 13.

Please note that we use the term ‘relative error’ in Figure 18 for consistency with the
previous sections. However, this should be seen as a relative deviation, given that the
Gaussian beam, which served as a reference, could not be trusted to be physically correct
in this example because it was insensitive to spherical aberrations.

Table 13. Parameter list for reflection from optical components. Like in the comparison for the
non-clipped Gaussian beam, we define the aperture only for implementation reasons. However, the
beam is effectively not being clipped. Therefore, the complex electric fields of the MEM and GBD in
the observation plane can be directly compared to the results for a fundamental Gaussian beam.

Parameter Description Value

λ wavelength 1064 nm
P0 beam power 1 W
w0 beam waist 1 mm
z0 distance from the waist 0
Ra aperture radius 4 mm
N mode order of the MEM 50
w0d waist of the modes used in the MEM 0.8 mm
G grid size of the GBD 400 × 400
L window size of the GBD 8 mm
fws waist scaling factor of the GBD 10/3
w0g waist of the grid beam used in the GBD 0.0333 mm
grid shape grid shape of the GBD square
C curvatures of the mirror 0 mm−1, −0.002 mm−1, −0.02 mm−1 , −0.1 mm−1

size the diameter of the mirror 1 cm × 1 cm
X number of sampling points 3001



Sensors 2023, 23, 9024 39 of 44

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

−3 −2 −1  0  1  2  3C
u

rv
at

u
re

 o
f 

m
ir

ro
r 

=
 0

 m
m

−
1 Amplitude [a.u.]

−4.000

−3.000

−2.000

−1.000

0.000

1.000

2.000

3.000

4.000

−3 −2 −1  0  1  2  3

Phase [rad]

10
−10

10
−8

10
−6

10
−4

10
−2

−3 −2 −1  0  1  2  3

Relative Error (log scaling)

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

−3 −2 −1  0  1  2  3

C
u

rv
at

u
re

 o
f 

m
ir

ro
r 

=
 −

0
.0

0
2

 m
m

−
1

−4.000

−3.000

−2.000

−1.000

0.000

1.000

2.000

3.000

4.000

−3 −2 −1  0  1  2  3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−3 −2 −1  0  1  2  3

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

−2−1.5−1−0.5  0  0.5  1  1.5  2

C
u

rv
at

u
re

 o
f 

m
ir

ro
r 

=
 −

0
.0

2
 m

m
−

1

lateral distance [mm]

analytical
MEM
GBD

−4.000

−3.000

−2.000

−1.000

0.000

1.000

2.000

3.000

4.000

−2−1.5−1−0.5  0  0.5  1  1.5  2

lateral distance [mm]

analytical
MEM
GBD

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−2−1.5−1−0.5  0  0.5  1  1.5  2

lateral distance [mm]

MEM GBD

Figure 18. Amplitude, phase distribution, and relative error after the beam was reflected from mirrors
with different curvatures. The graphs in each row represent the amplitude, phase, and relative errors,
respectively, from left to right, and each row represents a different curvature of the mirrors of 0 mm−1,
−0.002 mm−1, and −0.02 mm−1 from top to bottom. The simulation parameters are listed in Table 13.
The relative deviation of the GBD method from the Gaussian beam and the MEM increased as the
curvature of the mirror increased.
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Figure 19. Amplitude profile of the initial Gaussian beam, the MEM, and the GBD through longi-
tudinal sections near the focal point after being reflected from a concaved spherical mirror with a
curvature of −0.1 mm−1. The amplitude was scaled by log(Amplitude + 1). Only the GBD showed
signs of spherical aberrations.

5. Summary and Conclusions

In this paper, we have compared two wavefront decomposition methods—the MEM
and GBD—for different test cases. To assess the performance of the methods and allow a
direct comparison of both, several different types of error estimates were introduced: the
normalized mean-square error (NMSE), its discrete analog counterpart (DNMSE), and the
relative error and its sum. The properties of all these errors were discussed and compared.

For the MEM, we found that even though the well-known NMSE is propagation
distance-independent, the DNMSE is usually not because the lateral ranges chosen in the
target plane are too small. To achieve the propagation independence of the DNMSE, the
lateral ranges in the given example were so large that the MEM with mode orders up
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to 50 was unable to resolve the necessary lateral range due to the finite spot sizes of the
involved modes.

While the NMSE and its discretized analog counterpart are commonly known and
used errors, they do not enable visualizing the error distribution over the cross-section of the
field of interest. For this, the relative error can be used. Finally, the summed relative error
is a useful addition to the relative error, providing quantification of the graphical findings.

To perform a direct comparison, we tested the simulation runtime for different set-
tings in a typical test case. We showed that the runtime of the GBD heavily depends on
the number of sampling points in the target plane, unlike the MEM. Therefore, a direct
comparison of the precision of these methods for comparable runtimes heavily depends on
the number of sampling points chosen in the target plane. Naturally, this finding depends
on the chosen software tool and the implementation of the methods. All simulations in
this paper were performed using the software library IfoCAD (runtime tests with version
2022/10, git commit adf19a5b). However, the introduced method of determining settings
that facilitate a fair comparison remains independent of computer systems, software choices,
and implementation details. Additionally, these findings underline that in any software
implementation, the GBD method should not only be optimized for the decomposition but
also for the superposition in the target plane.

For the individual performance of the MEM, we found that it does not ideally resolve
the high-frequency spatial oscillations in the near field but accurately resolves the far-field
wavefronts, even with small mode orders. The accuracy of the MEM naturally improves with
higher mode orders, but also with the usual ranges of interest and propagation distance.

For the individual performance of the GBD method, we likewise found that the
high-frequency spatial oscillations in the near field are insufficiently resolved with the
typical settings. The comparably smooth far fields, in comparison, are resolved with higher
accuracy. Naturally, the accuracy of the GBD method improves with increasing grid sizes.
However, this can quickly result in grid beam waists that are so small that they violate the
paraxial approximation. We intentionally tested the performance of the GBD method in
such an imperfect case and found that the precision was not impaired by the non-ideal,
extremely small waist sizes. This means that the relative error and its sum decreased for
GBDs with increasing grid sizes, despite the use of increasingly smaller waist sizes that
violated the paraxial approximation.

We directly compared the MEM and GBD for cases where the electric field’s amplitude
and phase were analytically known in different propagation distances. We performed
this test for typical propagation distances in the near and far fields, as well as in the
extremely far field spanning millions of kilometers, as needed for space-gravitational wave
detectors. We showed that both methods can resolve the field at this extremely far distance
without the need for a re-decomposition at an intermediate distance. The direct method
comparison showed the superior performance of the MEM for the decomposition and
free-beam propagation of non-clipped circular and general astigmatic Gaussian beams. In
the cases of clipped circular Gaussian beams, the GBD method exhibited higher accuracy.
However, these findings may depend on the settings and the software used to implement
both methods, as well as the computer, operation system, and compilers utilized.

Both methods (the MEM and GBD) performed decompositions into beams derived
under the paraxial approximation assumption. Therefore, it is rather significant that the
limited accuracy we described for the MEM in the near field behind an aperture matched a
case where the paraxial approximation did not apply. In this specific case, diffraction caused
beam elements with a high angle to the principal optical axis to contribute significantly to
the overall wavefront. In comparison, the GBD achieved a higher accuracy and may be
better suited for resolving the field closely behind an aperture. This is because the grid
beams are distributed over a given surface, resulting in smaller angles relative to the grid
beam axes.

Additionally, we compared the MEM and GBD representations of aberration and
showed a qualitative agreement between the results. Finally, in one example, we illustrated
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that the GBD method is a superior method for propagation through an optical setup,
especially when interactions with surfaces occur. While the MEM decomposed the initial
field into modes that all share the same beam axis, the GBD method decomposed it into
fundamental Gaussian beams on a grid. Consequently, the MEM beam probed the curvature
of a surface only at one intersection point between its beam axis and the surface, whereas
the GBD grid beams probed the surface curvature at multiple intersection points. We
demonstrated this difference through a qualitative comparison of the electric fields of a
Gaussian beam and its MEM and GBD representations after reflection from a curved mirror.
Moreover, we showed that the GBD beam exhibited the expected spherical aberration,
unlike the Gaussian or MEM beams.

We can generally conclude that both methods are useful for decomposing and propa-
gating non-Gaussian beams. Once the fields are decomposed, propagation in free space
or through an optical setup is computationally trivial. The method that proves more accu-
rate depends on the specific test case and simulation settings. However, for propagation
through optical layouts, especially when the beam interacts with surfaces, and particularly
if non-spherical surfaces exist in the setup, the GBD method, with its grid of beams, holds a
clear advantage over the MEM.
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