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Abstract  

Regionalization methods have been effectively used in many hydrological studies, such as 

regional flood frequency analysis and low flows. However, there is no study to estimate the 

instantaneous peak flow (IPF) from maximum mean daily flow (MDF) using hydrological 

models with regionalized parameters. In this paper, the semi-distributed conceptual 

hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) is operated on a 

daily time step for 18 catchments in the Aller-Leine basin, Germany.  The model is calibrated 

on four different flow statistics, including winter/summer extremes distribution and flow 

duration curves. The model parameter values are predefined with the associated catchment 

descriptors by a transfer function. Two different regionalization schemes are investigated: 

one is carried out for all the catchments in the study area; the other one is only performed for 

several catchments within a cluster. The k-means algorithm is used to 12 different catchment 

characteristics from all 18 catchments as the partitional clustering algorithm. Subsequently, 

the General Extreme Value (GEV) distributions are fitted to the modeled MDFs, which are 

then transferred into IPF quantiles using a multiple regression model.  
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The results show that: (1) the uncertainty resulted from model parameter regionalization for 

the estimation of IPFs is much smaller than the error when using MDFs instead of IPFs (2) 

the hydrological responses of the clustered catchments located in the flat areas are, in general, 

not as homogeneous as the ones in high elevated regions; (3) the model with the parameters 

derived from the same regionalization coefficients within a cluster performs better using the 

corresponding parameters estimated through all the catchments. 

 

Key words: hydrological modeling; regionalization; instantaneous peak flow (IPF); 

maximum mean daily flow (MDF) 

 

1         Introduction  

Estimates of the design instantaneous peak flow (IPF) are important for solving a number of 

engineering and environmental problems, such as flood design and water resources 

management. Our previous study has shown that the often recorded maximum mean daily 

flow (MDF) data can be used to derive the design peak flow when no IPFs records of 

sufficient length are available at the target site (see Ding et al., 2015a). Concerning the 

impact of land use and climate change on extreme runoffs, the flow time series data cannot be 

used without consistency check. Hydrological modeling with local calibrated parameters has 

been proven to be a more robust and reliable approach to estimate IPFs from the modeled 

MDFs when taking into account the dynamic changes in the catchments of interest (see Ding 

et al., 2015b). However, both of the strategies cannot be carried out to predict the IPFs in 

ungauged areas due to the lack of hydrological data. 

 

The most commonly adopted methods for estimation of design floods in ungauged areas 

include Index Flood Method by Hosking and Wallis, (1993), the Quantile Regression 
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Technique (Haddad and Rahman, 2012; Tasker and Stedinger, 1989) and Probabilistic 

Rational Method (Rahman et al., 2011; Young et al., 2009). The rainfall-based Design Event 

Approach has been recommended by many countries around the world, e.g. Australia and 

England(Hill and Mein, 1996). In this approach, the probabilistic nature of rainfall depth is 

considered for rainfall-runoff modeling, but the probabilistic behavior of temporal patterns of 

rainfall and runoff is ignored. 

 

With the enhanced computational power nowadays, hydrological models have been 

commonly used to estimate the design flood in ungauged catchments given the model 

structures to be representative of the rainfall-runoff relationship (Athira et al., 2016; Cibin et 

al., 2014; Razavi and Coulibaly, 2013b). An important aspect of hydrological modeling is the 

ability to consider the dynamic changes of the properties of the target basins. Besides, the 

digital spatial datasets obtained by modern techniques could be utilized by the hydrological 

models to improve their capability of predicting water resource dynamics in ungauged areas. 

The concept of hydrological similarity assumes that the runoff response to a given rainfall 

input in two different basins would be similar if similar rainfall-runoff processes occur, 

therefore, the model parameters for the ungauged area can be estimated using regional 

information derived from the neighboring gauged catchments (Merz and Blöschl, 2004; 

Seibert, 1999). This has been proven feasible for regionalization of model parameters on the 

basis of catchment characteristics (Sellami et al., 2014). Regionalization techniques including 

the parameter regression approach (Fernandez et al., 2000; Merz and Blöschl, 2004; Seibert, 

1999; Servat and Dezetter, 1993) and nearest neighbor approach (Bárdossy and He, 2006; 

Chiew and Siriwardena, 2005; Merz and Blöschl, 2004) are implemented to transfer model 

parameters from gauged catchments with calibrated parameters to ungauged catchments of 

similar hydrological characteristics. McIntyre et al., (2005) doubted the regression-based 
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approach and suggested investigating the relationship between model parameter and the 

catchment descriptor to produce a joint distribution of model parameters.  However, it 

requires a large number of gauged catchments. Parajka et al., (2005) reviewed the 

applications of regionalization methods in a number of studies including their successes and 

failures. 

 

As the main-stream method, there are two steps involved in the regression-based regional 

approaches: (1) estimation of watershed model parameters at each individual catchment 

independently, followed by (2) attempts to relate the model parameters to catchment 

characteristics. Examples of this method can be found in Abdulla and Lettenmaier (1997) and 

Sefton and Howarth (1998). However, the transfer of parameters is difficult due to the non-

uniqueness of the model parameters (see Beven and Freer, 2001). To improve this, an one-

step approach is proposed by Hundecha and Bárdossy, (2004). In this approach, calibration is 

performed without making any direct reference to the model parameters but to the 

coefficients of the predefined regression function. Model parameters are then regionalized 

through simultaneous calibration of the same hydrological model on different catchments. 

This one step regionalization method would be beneficial for estimating IPFs in ungauged 

catchments.  

 

In this study, a methodology for the regionalization of a lumped conceptual hydrological 

model is applied. It involves calibration for different catchments simultaneously by using a 

predefined functional form of the relationship between the model parameters and catchment 

characteristics. With daily hydrologic data from 18 catchments over a period of more than 30 

years, the same hydrological modeling strategy is used as the way we have applied in Ding et 

al., (2015b). Specifically, we address the following research questions: (a) how the regional 
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relationships between model parameters and catchment characteristics impact the ability of 

the hydrological model to estimate IPFs in ungauged area, while the parameter transfer tends 

to cause deterioration of model performance; (b) how the model performs for the estimation 

of IPFs in ungauged areas with and without clustering. Note that comparison of different 

clustering strategies is beyond the scope of this study. (c) is there any spatial pattern of the 

model performance with the regionalized parameters. 

 

2  Methodology 

 

2.1 Hydrological model and calibration strategy 

 

HBV is a semi-distributed conceptual hydrological model with lumped parameters. It is used 

in this manuscript to simulate daily streamflow with daily precipitation, air temperature, 

potential evaporation and monthly estimates of crop coefficients as input. The HBV model 

has been proven to be an effective and useful tool for flood simulations in many studies 

(Hlavcova et al., 2005; Velasco et al., 2013; Wallner et al., 2013).  A more detailed 

description of the HBV model can be found in SMHI, (2008).  

 

The optimization technique Dynamically Dimensioned Search (DDS) proposed by Tolson 

and Shoemaker, (2007) is utilized to calibrate the model parameters. DDS is a stochastic, 

single objective search algorithm that has been applied in many hydrological studies for 

model calibration (Arsenault et al., 2014; Muleta, 2012). Compared with the traditional 

hydrograph calibration, calibrating directly on flood distributions is more favorable for the 

purpose of design flood simulation (Cameron et al., 1999; Ding et al., 2015b; Haberlandt and 
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Radtke, 2014). In this study, the objective function is a combination of the Nash-Sutcliffe 

Coefficient (NSC):  

 

0.275 0.275 0.2 0.25CDF SUM CDF WIN FDC MDFSC SC SC SCOF N N N N                                          (1) 

where CDF SUMSCN   and CDF WINSCN   is NSC of the cumulative distribution function of daily 

extremes for summer and winter, respectively; FDCSCN  indicates NSC of the flow duration 

curves (FDC); and MDFSCN  denotes NSC of the annual maximum mean daily flow series. 

 

Those four goodness-of-fit measures are used to give more robust parameter estimation for 

high flows simulation. The weights associated with the above four stream flow statistics are 

determined by observing the NSC and bias values with a trial-and-error approach. Here, the 

same values are used as those in our previous work (see Eq. (2) in Ding et al., 2015b). The 

sum of weights for summer (May-October) and winter (November-April) flood distribution 

curves is set to 55%. The remaining 45% is portioned between flow duration curve (20%) and 

annual maximum mean daily flow series (25%). It indicates that the objective function 

applied here focus more on the extremes. Noted that the model is calibrated for several 

catchments simultaneously, and the sum of the individual objective functions corresponding 

to all the catchments is considered in the DDS program. 

 

2.2 Parameter transfer schemes 

 

The transfer function implemented in this study is inspired by the linear transfer function 

approach applied successfully by Wallner et al., (2013) and Hundecha and Bárdossy, (2004). 

In this transfer function, the model parameters are linked with the catchment characteristics 
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and can be estimated uniformly for all catchments based on the selected catchment 

characteristics. It can be described in a linear form as: 

 

, , , , ,

1 1

I J

p b p i b i p j b j p b
i j

S L slope  
 

                                                                     (2) 

where 
,p b  is the transferred value of hydrological model parameter p for basin b; ,b iS  and 

,b jL  represents the ith soil property and jth land use characteristics for basin b, respectively; 

bslope  denotes the basin slope; ,p i , ,p j  and p  are regression coefficients.  

 

After establishing the relationship between model parameters and catchment characteristics, 

the model is calibrated by simultaneous calibration of the regression coefficients of the 

transfer function instead of the model parameters. The regression coefficients of the transfer 

function keep unique for all the study catchments, while different catchments have different 

parameter sets. Following our previous research (Ding et al., 2015b), the same six parameters 

of HBV model (Table 1) are selected for model calibration. The transfer functions with the 

same catchment characteristics as derived by Wallner et al., (2013) for the same study area 

are used here. Table 2 shows the six model parameters and their corresponding linked 

catchment descriptors. The definition of the catchment descriptors can be found in Table 1. 

 

Table 1.  Definition for the symbols and abbreviations 

 

Table 2. Relationship between model parameters and their corresponding catchment 

descriptors for the linear transfer function  
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2.3 Two regionalization schemes: Rall and Rclusters 

 

There are two different parameter regionalization schemes explored for estimation of IPFs 

from MDFs using hydrological modeling. In the first regionalization scheme, model 

parameters of one specific catchment are obtained from simultaneous calibration of all 

catchments in the whole study area (referred as “Rall”). In the second regionalization scheme, 

model parameters of one catchment are derived from calibration of a cluster of catchments 

with similar catchment characteristics of their flow regime (referred as “Rcluster”).  

 

A variety of cluster analysis techniques are available to arrange catchments into groups with 

similar characteristics. However, none of them has been proven universally outperforming 

the others (Hannah et al., 2005). To identify homogeneous regions with similar flood 

response characteristics, k-means method and the principal component analysis (PCA) are 

used. K-means method is one of the simplest unsupervised learning algorithm and its 

procedure follows a fast and robust way to classify a given data set into a certain number of 

clusters (Burn and Goel, 2000; Isik and Singh, 2009; Kahya and Demirel, 2007). The main 

function of PCA is to reduce the dimensionality of a data set that consists of a large number 

of interrelated variables, while retaining most of the variation in the data set (Jolliffe, 2004). 

This is realized by transforming variables into a smaller set of principal components which 

are not correlated. Here, ten watershed attributes, one flow characteristic and one climatic 

variable are incorporated into the PCA to derive the significant components in pooling 

homogeneous regions. Since the stream flow data are quite limited in ungauged areas, some 

easily measurable watershed attributes, such as mean elevation, catchment area, and mean 

annual rainfall, are used for the cluster analysis of catchments (see Table 1). The leading 
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principal components with both eigenvalues greater than 1 and cumulative variance greater 

than 80% are selected for subsequent clustering processes. Then, k-means clustering is 

carried out with a predefined optimum number of clusters.  

 

For both regionalization schemes, the simulated annual maximum mean daily flows (MDFs) 

are subsequently fitted to the GEV distribution with L-moments (see Hosking and Wallis, 

(1997)). Quantile values (
MDFHQ ) for four return periods (T = 10, 20, 50, 100 yrs) can be 

computed. The simulated MDF quantiles are then transformed into instantaneous peak flow 

quantiles (
IPFHQ ) through a multiple regression model:  

 

1 2 3 0_ _IPF MDFHQ HQ lst fp Elv ds                                                                          

(3) 

where lst_fp denotes the longest flow path; Elv_ds indicates the minimum elevation; 0 , 1 , 

2  and 3  are regression coefficients. We have verified the GEV distribution in fitting the 

extreme flows and testified the multiple regression model for post correction of MDFs in 

Ding et al., (2015a). 

 

Four goodness-of-fit measures (as shown in Table 3), namely, the Nash-Sutcliffe Coefficient 

(NSC), root mean square error (RMSE), Bias of total runoff (Bias) and Bias of simulated 

quantile of peak flow (Bias-1), are used to evaluate performance of the two regionalization 

approaches Rall and Rcluster for estimation of IPFs. 

 

 

Table 3. Goodness-of-fit measures 
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3 Study area and data 

The investigations are carried out for 18 catchments within the Aller-Leine River basin in 

northern Germany (Figure 1). The 18 study catchments are located in different 

geomorphologic areas. 11 catchment descriptors (Table 4 from column 2 to 12) are used for 

clustering. The first six characteristics (Area – aspR) are derived from a Digital Elevation 

Model (DEM) with a resolution of 10 meters. The main orientation (aspR) ranges between 0 

and 1, the bigger the value, the greater the portion of the basin orient to the north. The soil 

properties of effective field capacity (FC), saturated hydraulic conductivity (Kf) and total 

pore volume (TPV) are estimated from the German digital soil data base BÜK1000 

(Hartwich et al., 1995). The portion of the forest land use type is derived from the land cover 

map CORINE2000 (EUR, 1994). Based on the observed runoff with an automatic base flow 

filter, the recession constants are calculated in different hydrogeological units (HGUs) 

(Arnold et al., 1995). The mean recession constants for each catchment are weighted 

according to the contributing area of the HGUs.  

 

 

 

Figure 1. The locations of 18 catchments of Aller-Leine in northern Germany 

 

 

Table 4.  Catchment descriptors of the 18 catchments 

 

Observed discharge is available as daily flows and monthly peak flow series within the period 

from 1965 to 2008 for all the 18 catchments. Other meteorological data applied to force the 

hydrological model, such as temperature and evaporation, are available for longer time 
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periods, between 1951 and 2008. The inverse distance weighting (IDW) method is used to 

estimate the rainfall distribution based on the daily rainfall data from 34 rain gauge stations. 

An optimal power value of 2.3 for the power parameter is determined by minimizing the 

lowest RMSE. 

 

4 Results and discussion 

4.1 Distinction between groups 

Prior to clustering, PCA is first employed to reduce the dimensionality of the data set which 

gives the Principal Components (PCs). The data set consists of the selected twelve variables 

shown in Table 4. 

 

Table 5 demonstrates that the first three PCs explain 45.269, 20.89 and 14.48%, respectively, 

and their cumulative variances account for 80.639% of the total variance of the data set. 

Besides, their eigenvalues are all greater than 1. Lowest elevation (Elv_ds), Mean elevation 

(Melv), basin slope (Bslop), ratio of forest (LUF) and annual precipitation (P) have a high 

correlation with the first principal component. Area (Area), longest flow path (Lst_fp) and 

soil conductivity (Kf) are correlated with the second and third principal. Therefore, more 

effect from these attributes is expected in the cluster analysis procedure. The first PC shows a 

contrast between shape factor of the catchment (with negative coefficients) and soil 

parameters (positive coefficients). The main contrast for the second component lies between 

the mean recession constant (BFR) and basin aspect (aspR). The last PC is a trade-off 

between Area (Area) and soil conductivity (Kf). 

 

Table 5. Summary of PCA for the twelve catchment characteristics 
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As shown in Figure 2, there is a break (elbow) started at number four which implies 4 clusters 

for this case. This number will be adjusted further using k-means algorithm by comparing 

other clusters situations (from 2 to 5 groups). In the end, the entire catchment has been 

grouped into three homogeneous groups to retain a reasonable number of objects in each 

group (Figure 3).  

  

As shown in Figure 3, there are four catchments in Group 1, ten catchments in Group 2 and 

four catchments in Group 3. Some geographic trends could be noticed and the location 

distribution is the strongest distinguishing feature of the groups. Group 1 is situated in the 

northern flat area while the other two groups are distributed over the midlands and southern 

mountainous area, respectively. 

 

Figure 2.  Percentage of variance explained as a function of the number of principal 

components 

Figure  3. Spatial distribution of the three groups in Aller-Leine, Germany  

 

 

More details regarding the catchment characteristic distribution in each cluster are illustrated 

in Figure 4. Catchments in the northern part of Aller-Leine basin (Group 1) are characterized 

by lower annual precipitation (733mm/year -872mm/year). Due to the relatively low 

elevation (less than 100m) and high pore volume (35%), the catchments in Group 1 have 

slower flow processes than the other two groups. Group 2 is composed of some small 

catchments covered with high proportion of forest (medians of Area and LUF are 110 km
2
 

and 40%, respectively). High flows occurring during spring and early summer season from 

freezing soils and snow cover can be found in these mountainous catchments. Group 3 shows 
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the smallest range of most catchment characteristics, such as mean conductivity (120mm/h) 

and total pore volume (27%). 

 

 

 

  

Figure 4. Box plots of the catchment characteristics of the three groups. Thick black line is 

the median value. The box shows the inter-quantile range between 25
th

 and 75
th

 quantiles of 

the data. The ends of the whiskers represent 1.5 times the inter-quantile range. 

 

4.2 Comparison of model performances using two different regionalization schemes 

 

Figure 5 shows the comparisons between fitted probability distributions of the observed and 

simulated annual daily extremes in winter and summer for three selected catchments Br, Pi 

and De. These catchments are randomly selected from the three classified groups to give a 

more detailed descriptions. The overall results for all the 18 catchments are shown in Figure 6. 

In Figure 5, the black solid line denotes the fitted GEV distribution on the observed annual 

daily extremes (black dots). The black dashed lines enclose the 90% confidence interval for 

the observations obtained by using a bootstrap method after Efron and Tibshirani, (1986). 

The purple lines represent distributions of simulated daily extremes, which are generated by 

the Rall parameter regionalization scheme, whereas the green lines correspond to the Rclusters 

parameter regionalization scheme. 

 

It is apparent that the distributions of the simulated extremes generated by Rclusters (the green 

lines) are closer to the distributions of the observations (the black solid lines) than that 
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generated by Rall (the purple lines) in both seasons, especially in winter. This indicates that 

the simulation of the extreme flows can be significantly improved when calibration is 

performed separately on catchments of homogeneous clusters rather than on the whole study 

area. For both regionalization schemes, the simulated distribution curves (green and purple 

lines) lie below the observed distribution curve (black solid line) at high return periods, 

which in fact indicates some underestimations of the peak flows. It could be explained that 

the extremes (caused by intense rainfall) are hard to be well modeled with inaccurate rainfall 

data. The uncertainty bands of the observed annual extreme values show a considerable 

scatter with the flow records about 30 years.  

 

Figure 5. CDFs of observed and simulated daily extremes in winter and summer for the three 

randomly selected sample catchments (Br, Pi & De); the black dots are the observed annual 

daily extremes; black dashed lines enclose the 90% confidence interval against observed peak 

flows 

 

The results of goodness-of-fit Chi-square test at 5% significance level for all 18 catchments 

are presented in the form of violin plots (Figure 6). Performances of the hydrological model 

using two regionalization schemes are compared between clusters and for the entire 

catchments. The p value is used for assessing the agreement between the observed and 

simulated extreme flow frequencies. Larger value of p indicates a better fit. 

 

The benefits of clustering can be seen in the final overall performance („all‟) with higher 

median p values and larger quantile ranges than the corresponding results without clustering 

for both winter and summer season. It means that aggregating the catchments into groups 

helps improving prediction of flood quantiles. However, the distributions of p values are 
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quite different for both schemes in the three clusters. The catchments in Group 2 show the 

lowest level of agreement between the observed and simulated extreme flow frequencies 

while the catchments in Group 3 have the highest level. This may indicate the transforming 

equation for estimating the model parameters is more limited in low elevation areas as 

compared with its performance in high elevation areas. The prediction results of flood 

frequencies in winter season are better than in summer season for the three clusters, which is 

consistent with the results presented in Figure 5.  

 

Figure 6. Violin plots of the p value over all catchments for the fitted GEV distribution 

between observed and simulated daily extremes in winter and summer respectively. The 

middle black solid line is the median value and the red dashed line is the 5% significance line; 

the middle black rectangle enclose the 25% and 75% quantile values. The left purple half is 

Rall approach and the right green half is Rclusters approach. The width of each violin plot 

represents the probability distribution 

 

To assist the interpretation of results in Figure 5, statistical analysis (paired t-test at α=0.05) is 

used to determine if the p values derived from Rall and Rclusters schemes are significantly 

different. Table 6 shows the results for all 18 catchments and three clusters in both summer 

and winter seasons. As can be seen, for summer season, the p values calculated from the two 

regionalization schemes are proved to be significantly different for “all”, Group 1 and Group 

3. Nevertheless, for winter season, this is only true for Group 3.  

 

Table 6. Results of paired t-test on the p values for both regionalization schemes. 

 

The flow duration curves (FDCs) are constructed using average daily flows in terms of 6 

quantile values (0.05, 0.25, 0.5, 0.75, 0.95, 0.975 Quantile). Figure 7 shows a summary of the 
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assessment results of FDCs in all three clusters and 18 catchments by using the two different 

regionalization schemes. For the three clusters, Rall and Rclusters perform well with the median 

values of the Nash-Sutcliffe Coefficient (NSC) around 0.8. However, both schemes show 

some overestimation with positive median values of bias around 20% and 35% for Rall and 

Rclusters, respectively.  

 

Overall, the assessment results of all 18 catchments („all‟) in Figure 7 show that there is no 

significant improvement for predicting the FDCs in ungauged areas using the regional 

calibration with clustering. Moreover, Figure 7 illustrates an opposite pattern across the three 

groups when compared with the assessment results of flood frequency curves presented in 

Figure 6. For Group 1, the model performance regarding flow duration curves is best 

compared with the other two clusters, whereas the model gives the worst results for 

predicting the flood distributions. This inconsistency is probably because (1) the objective 

function (Eq. (1)) treats flood frequency curves with higher weight, as compared to the flow 

duration curves; (2) the interaction between these two different flow statistics (extremes 

distribution and FDCs) might affect the model performance during optimization procedure. 

 

 

Figure 7. Regional Calibration results of flow duration curve (FDC) using the Nash-Sutcliffe 

Coefficient (NSC) and the Bias for two different regionalization schemes. The middle black 

solid line is the median value; the middle black rectangle enclose the 25% and 75% quantile 

values. The left purple half is Rall approach and the right green half is Rclusters approach. The 

width of each violin plot represents the probability distribution 
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As above, Table 7 shows the results of paired t-test on the flow duration curve (FDC) using 

the Nash-Sutcliffe Coefficient (NSC) and bias, before and after clustering for all cases. It 

shows the simulated FDC results derived from the two different regionalization schemes are 

not significantly different with p values larger than significance level 0.05. Namely, the 

regionalization approach with clustering (Rclusters) has less advantage of simulating FDC than 

simulating extreme flow distribution.   

 

Table 7. Results of paired t-test on the flow duration curve (FDC) using the Nash-Sutcliffe 

Coefficient (NSC) and bias for both regionalization schemes. 

 

The pairwise comparison results of daily flows with 97.5% non-exceedance probability (Pnon) 

for Rall and Rclusters are shown in the form of a parallel coordinates plot (Figure 8). The 

criterion used to formulate the plot is Bias-1 (see Table 3). The estimation is more accurate if 

the lines ends closer to 0 (Bias-1=0). It is interesting to observe that there is no obvious 

increase or decrease in the relationship between the estimation error and area for both 

regionalization schemes. The average absolute values of Bias-1 obtained from all 18 

catchments are 13.1% and 10.3% for Rall and Rclusters, respectively. For both regionalization 

schemes, Bias-1 is within a range from -20% to 20% for most catchments.  

 

Figure 8. The values of Bias-1 for daily flow duration curve (FDC) at non-exceedance 

probability Pnon= 0.975 

 

Figure 9 gives the relationships between multiple regression coefficients (see Eq. (3)) and 

return periods for all 18 catchments in winter and summer seasons. The first three 

coefficients (a1, a2, a3) in the upper part of Figure 9 are the correlation coefficients between 
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the IPFs and MDFs, longest flow path and minimum elevation, respectively. It can be noticed 

that the sign of all these three partial regression coefficients is the same for the two different 

regionalization schemes. This conformity with physical principles agrees with the findings of 

Ding et al., (2015a). It shows a positive relationship between IPFs and MDFs and minimum 

elevation, whereas IPFs have a negative relationship with longest flow path.  

 

Figure 9. The values of multiple regression coefficients for the two regional calibration 

schemes 

 

To better understand the differences between Rall and Rclusters, the frequently considered 

recurrence interval of 100-year design flood is selected here as an exemplary result. Relative 

errors between the observed and simulated quantile values over all 18 catchments are shown 

in Figure 10. The observed 100-year flood is estimated from the monthly peak flow 

discharges between 1965 and 2008. As above, the parallel coordinates plots are used to 

present the Bias-1 results for winter season (Figure 10a) and summer season (Figure 10b). 

This plot visualizes relationships between the relative error and area. 

 

In general, the estimations of 100-year flood resulted from the Rclusters scheme are slightly 

better than from the Rall scheme for all cases. The randomness of relative error and catchment 

area patterns is in agreement with the findings in Figure 8 for both schemes. Considerable 

differences between these two regionalization schemes are found in catchments of Group 2 

and Group 3. Accordingly, it can be seen that some catchments in Group 2 contribute 

considerably larger error in both summer and winter seasons, than the others. This could be 

due to the uncertainties associated with model inputs and observed flow statistics or bad 

prediction from the multiple regression model. 
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Considering the seasonal performance, the model tends to spread errors more widely in 

winter season than in summer season for both schemes. This can be attributed to less 

predictors‟ effects in controlling the prediction of design flood in winter than in summer 

season. Furthermore, the simulations of Group 2 are generally worse than for the other two 

groups for both Rall and Rclusters. These findings are in consistent with the results in Figure 6.  

 

 

Figure 10(a). Comparison between the two regionalization calibration schemes at a return 

period of 100-year in terms of Bias-1 for winter season for all 18 catchments 

 

Figure 10(b). Comparison between the two regionalization calibration schemes at a return 

period of 100-year in terms of Bias-1 for summer season for all 18 catchments 

 

 

 

4.3 Comparison of two regionalization schemes 

 

Finally, to sum up the IPFs estimation results over the whole study area for four different 

return periods (T=10, 20, 50, 100yrs) in summer and winter seasons, respectively, the RMSE 

and bias criteria, are applied to check the overall estimation quality of the design IPFs by 

calibration on the flow statistics. Figure 11 summarizes the results from both Rall and Rclusters. 

The first column (MDF-IPF) shows the differences between the observed IPFs and the 

corresponding observed MDFs without correction. The second column (CDF_d) shows the 

estimation results by calibrating the HBV model individually for each catchment based on the 
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same calibration strategy as in this study. We discussed the details of the first two types of 

results in Ding et al. 2015b. They are used here as the benchmark error to compare with the 

results from Rall (the third column) and Rclusters (the fourth column). 

 

The upper section of Figure 11 shows the RMSE values from all 18 catchments in a bar-plot. 

Compared with directly using observed MDFs, both of regionalization schemes (Rall and 

Rclusters) show advantages of estimating IPFs regarding smaller RMSE and Bias values. As 

expected, the local calibration approach (CDF_d) outperforms the two regionalization 

schemes. However, it can be noticed that the discrepancies of RMSE between the CDF_d and 

Rclusters are smaller than 6% for the four return periods in both seasons. This reveals that the 

clustering of catchments is useful to improve the model performance using regionalized 

parameters. 

 

On average, the Rclusters gives a RMSE of 23% in both winter and summer season, which is 

smaller than the corresponding results from Rall with a RMSE of 30%. As to the Rall method, 

the prediction of IPFs for high return periods is not significantly improved. The RMSE value 

showing in winter season at T=100 yrs (30%) is even a little higher than directly using the 

observed MDFs (28%). It means that the parameter set calculated simultaneously from all the 

18 catchments is not as accurate as the one deduced by Rclusters method.  

 

As can be seen from the lower part of Figure 11, immediate replacement of IPFs with 

observed MDFs (MDF-IPF) can lead to significant underestimation of IPFs in both seasons 

for all return periods. In contrast, the regionalization schemes with additional post correction 

of simulated MDFs reduce the bias noticeably with slight over estimation for winter and 

summer seasons. 
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Figure 11. Comparison of root mean square error (RMSE) and Bias using regionalized 

parameter sets for clusters (Rclusters) and the whole study area (Rall) in both winter and summer 

season 

 

4.4 Comparison of leave one out cross validation (LOOCV) performance of Rall and 

Rclusters 

 

The reliability of the two parameter regionalization schemes is assessed through LOOCV for 

estimation of IPFs in ungauged area. During the LOOCV procedure, the site of interest is left 

out to be treated as an ungauged site and the hydrological model is calibrated concurrently 

using the remaining sites. This step is repeated for all selected catchments in this study. The 

simulated MDFs will be corrected by the multiple regression model and compared with the 

observed IPFs. As before, the RMSE and bias are used to assess the model efficiency. 

 

 Figure 12 presents the LOOCV comparison results of Rall and Rcluster for both winter and 

summer seasons. The black lines representing the overall results for 18 catchments using Rall 

and Rclusters, are found to be similar with the corresponding calibration results in Figure 11. 

However, it shows somewhat higher error due to the cross validation. The overall validation 

results of both schemes are similar in winter and summer season with an average values of 

RMSE 28% and bias 5% for the four return periods. Group 2 contributes the most error with 

RMSE values between 30-40% in winter and 40-50% in summer, which is consistent with the 

calibration results of flood frequency curves shown in Figure 6. It suggests: (1) Rclusters 

provides better estimation results than Rall in both summer and winter season, which implies 

clustering is necessary for the regionalization in ungauged areas for flood quantile predictions; 
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(2) the similarity of hydrological responses from the catchments in Group 2 are hardly 

identified by their similar physical catchment characteristics, such as the elevation, land cover 

properties and soil properties; (3) the model performance is found to be satisfactory in Group 

1 and Group 3 with low values of RMSE and bias values suggesting the regionalization with 

clustering approach is a useful tool for prediction of IPFs in ungauged basins. In addition, 

there is a significant improvement noted in the validation results of Group 3 for summer 

season, which suggests the hydrological responses in these catchments is more similar for 

summer flooding than for the snowmelt induced winter flooding. 

 

Figure 12. RMSE and bias results by cross-validating both Rall and Rclusters schemes for the 

three groups.  

 

5 Conclusions  

Estimation of design peak flow in ungauged areas based on daily flow data is essential for 

hydraulic infrastructures, flood management and planning for future development. In this 

paper, we have compared two different parameter regionalization schemes to estimate IPFs 

from MDFs, namely, Rall without clustering and Rclusters with clustering. The lumped 

conceptual hydrological model HBV combined with flow statistic calibration strategy is 

operated on a daily basis for 18 catchments across Aller-Leine, Germany. The model 

efficiencies for the estimation of flood quantiles are acceptable given the model structure is 

adequate for the purpose of this paper. The objective function applied in this study is more 

robust than other ways to measure high flows. The assessment of model performance using 

Rall and Rclusters schemes is based on LOOCV comparison results for all 18 catchments. This 

assessment is a measure of how well the regionalization schemes can be applied for 

estimation of IPFs in ungauged catchments. The main findings are summarized as follows: 



 

This article is protected by copyright. All rights reserved. 

 

The overall calibration results in Figure 11 shows that the model using the Rclusters strategy 

performs better than using Rall strategy. The hydrologic cluster analysis is found to play a 

central role in estimation of IPFs and different combinations of the catchment predictors may 

result in quite different results. The Rclusters strategy also shows more advantages with respect 

to extremes distribution compared with the flow duration curve simulation. This may suggest 

that the impacts of clustering on hydrological modeling are dependent on the chosen flow 

statistics. Thus, different calibration strategies could influence the predictive performance 

which is independent of the selection of regionalization scheme.  

 

The average RMSEs for the four different return periods are 30% and 26% by using Rall and 

Rclusters, respectively. This suggests inclusion of information on catchment similarity before 

regionalization of the model parameters helps the prediction performance of IPFs. The scatter 

of the performances among the three clusters indicated the ability of HBV model for 

predicting IPFs is higher for clusters with smaller number of catchments (Group 1 and Group 

3) than for the ones with larger group members (Group 2). The relatively poor performance in 

Group2 can be explained as that, the classified catchments in Group 2 have similar watershed 

attributes but with hydrologically heterogeneous response. Additionally, the predictive 

performance of Rclusters method shows obvious seasonality across the three different clusters, 

especially for Group 2 and Group 3. It decreases in summer for mountainous regions 

dominated in Group 2 and 3, while keeps constant in Group 1 characterized with flat areas for 

both summer and winter season. However, for these two regionalization schemes, the bias is 

relatively small and the random errors from three different clusters are substantial. It means 

the spatial transposition of the model parameters for flood quantile estimation is sensitive to 

the clustering results. 
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Figure 12 demonstrates that based on the established function between model parameters and 

readily available information of catchment attributes, regionalization of the HBV model 

parameters combined with post correction technique is capable of estimating the IPFs from 

simulated MDFs in ungauged areas. The catchment attributes as used in this paper represent 

the physiographic and hence hydrologic characteristics of catchments well. In general, 

regionalization method combined with clustering yields better predictive model performance 

in both summer and winter season.  

 

For both Figure 11 and Figure 12, it appears that those selected attributes are good predictors 

of the hydrological dynamics at least for environments such as the study region of this paper. 

In addition, most of the selected catchment attributes are static attributes while dynamic 

indicators, such as seasonality measures and storm type indicators, are suggested by some 

hydrologists for application in ungauged basins (see Merz and Blöschl, 2004). Therefore, 

more efforts are needed in future to find better predictive variables and similarity measures 

than those currently used catchment predictors for parameter regionalization. 
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Table 1. Definition for the symbols and abbreviations 

 

 
Abbreviation Descriptions Units 

Optimized 

HBV model 

parameters 

tt threshold temperature for snowmelt [°C] 

fc the maximum soil moisture storage [mm] 

β a shape coefficient [-] 

hl a threshold value of water content in the upper reservoir [mm] 

K0 the storage coefficient of the surface runoff [d] 

Perc storage coefficient of the percolation [d] 

Catchment 

descriptors 

related with 

model 

parameter 

Melv Mean elevation [m] 

aspR Main aspect [-] 

FC Field capacity [vol.%] 

TPV Total Pore Volume [vol.%] 

Bslop Basin slope [‰] 

LUF Ratio of Forest [%] 

Lst_fp Longest flow path [km] 

Kf Conductivity [mm h
-1

] 

BFR Mean recession constant [d] 

Other 

catchment 

descriptors 

Area Catchment areas [km
2
] 

Elv_ds Minimum elevation [m] 

P annual precipitation [mm/year] 
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Table 2. Relationship between model parameters and their corresponding catchment 

descriptors for the linear transfer function  

 

Model parameter Combination of catchment descriptors 

tt Melv aspR 
 

fc FC TPV 
 

β Bslop FC LUF 

hl Bslop FC LUF 

K0 Bslop Lst_fp Kf 

Perc Bslop Kf BFR 
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Table 3. Goodness-of-fit measures 

 

Evaluation 

criterion 
  Calculation 

 

Value of a 

 'perfect' fit 

NSC 

 

 

 

2

2
1

obs sim

obs obs

HQ HQ

HQ HQ

 
 

 
 
  




 

 

1 

RMSE     

2

sim obs

obs

HQ HQ

HQ

 
 
 


  

 

0 

Bias 
 

sim obs

obs

HQ HQ

HQ

 
  
 

  
 

 

0 

 

Bias-1 
 

sim obs

obs

HQ HQ

HQ


 

 
0 

     
  

            (HQsim and HQobs are the observed and simulated flows) 
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Table 4.  Catchment descriptors of the 18 catchments 

 

Clusters 
Name Area Elv_ds Melv lst_fp Bslop aspR LUF FC Kf TPV BFR P 

(-) (Km
2
) (m) (m) (km) (‰) (-) (%) (vol.%) (mm h

-1)
 vol.% (d) (mm/year) 

Group 1 

Br 285 41 58.9 41.8 76.5 0.43 51.9 12.3 282.1 35.7 102 872.3 

Lh 100 24.8 54.9 26 53.6 0.52 41.8 13.9 239 32.6 102 854.3 

BP 116 67.5 90.6 25.7 95.4 0.85 6.3 20.8 62.8 33.9 37 733.9 

NP 334 55.5 65 40.6 77.1 0.67 34.4 14 248.7 43.4 56 737.2 

Group 2 

BS 127 96.8 156.9 19.7 199.1 0.65 27.4 18.3 82.5 24.3 63 840.2 

Gr 125 129.4 208.4 23.9 269.3 0.56 43.2 15.9 92.6 29.5 56.4 1004.7 

Ha 104 74.8 93.4 25.2 152.6 0.42 38 19.2 66.5 37.7 42.1 838.6 

Ku 61.8 130.2 219.9 13.5 238 0.38 27.7 14.3 110 37.8 37.5 910.9 

Ma 45 196.2 275.6 12 312.6 0.56 31.5 12.3 126 19.9 34 835.9 

Mt 242 36.6 61.8 36.7 53.8 0.63 16.7 14.4 206.3 36.7 64.6 749 

Ol 149 128.6 284.6 25.3 328 0.63 66.4 17.4 130.9 30.5 56 1004.2 

Pi 44.5 339.6 586.1 17.1 634.7 0.32 99.1 7.8 166.9 20.4 35 1537.9 

VR 57.5 133.1 467 22.2 435.9 0.79 65.2 14 145.3 20.1 35 1136.4 

Me 136 81.9 395.5 27.9 199.9 0.75 35.3 17.4 84.3 36.3 38 889.2 

Group 3 

De 309 90.9 258 49.1 208.9 0.56 38.1 17.3 84.4 29.5 56.4 899.6 

RH 184 154.7 206.1 24.9 254.4 0.56 20.8 17 150.8 26.5 100 781.7 

Re 321 182.9 273.7 43.4 341.5 0.49 28.6 16 127.1 27.3 100 793.7 

Go 633 141.5 315.8 62.9 299.3 0.49 26 16.6 117.4 27.3 100 791.6 
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Table 5. Weightings of the variables and summary of characteristics on the three principal 

components  

  

Original variables 

 

Principal components 

      PC1 PC2 PC3 

Area 

  

0.195  0.399  -0.429  

Elv_ds 

  

-0.377  0.072  -0.203  

Melv 

  

-0.368  -0.004  -0.283  

lst_fp 

  

0.205  0.389  -0.387  

Bslop 

  

-0.399  0.042  -0.249  

aspR 

  

0.136  -0.364  -0.122  

LUF 

  

-0.342  0.176  0.179  

FC 

  

0.258  -0.344  -0.347  

Kf 

  

0.056  0.441  0.451  

TPV 

  

0.298  0.004  0.295  

BFR 

  

0.181  0.449  -0.125  

P 

  

-0.396  0.060  0.100  

Eigenvalues 

  

5.432  2.506  1.738  

Variance (%) 

 

45.269  20.890  14.480  

Cumulative Variance (%)   45.269  66.159  80.639  
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Table 6. Results of paired t-test on the p values for both regionalization schemes. 

 

  

      

  Std.error mean 

95% confidence interval  

t df p-value 
Lower upper 

All 
Winter 0.034 -0.054 0.12 0.823 17 0.422 

Summer 0.067 0.021 0.115 3.065 17 0.007
*
 

        

Group 1 
Winter 0.172 -0.182 0.525 1.542 3 0.221 

Summer 0.086 0.01 0.161 3.608 3 0.036
*
 

        

Group 2 
Winter -0.113 -0.113 0.091 -0.24 9 0.816 

Summer 0.079 -0.008 0.166 2.062 9 0.069 

        

Group 3 
Winter 0.037 0.007 0.067 3.921 3 0.029

*
 

Summer 0.022 0.005 0.038 4.303 3 0.023
*
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Table 7. Results of paired t-test on the flow duration curve (FDC) using the Nash-Sutcliffe 

Coefficient (NSC) and bias for both regionalization schemes. 

 

      

  
Std.error 

mean 

95% confidence interval  
t df p-value 

Lower upper 

All 
NSC 0.007 -0.041 0.056 0.312 17 0.758 

bias 0.04 -0.043 0.123 1.008 17 0.327 

        

Group 1 
NSC -0.04 -0.119 0.039 -1.61 3 0.205 

bias 0.012 -0.145 0.17 0.252 3 0.817 

        

Group 2 
NSC 0.01 -0.071 0.091 0.278 9 0.787 

bias 0.05 -0.098 0.198 0.762 9 0.465 

        

Group 3 
NSC 0.047 -0.096 0.191 1.051 3 0.37 

bias 0.042 -0.182 0.267 0.6 3 0.59 
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Figure 1. The locations of 18 catchments of Aller-Leine in northern Germany 
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Figure 2. Percentage of variance explained as a function of the number of principal components 
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Figure 3. Spatial distribution of the three groups in Aller-Leine, Germany 
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Figure 4. Box plots of the catchment characteristics of the three groups. Thick black line is the 

median value. The box shows the inter-quantile range between 25th and 75th quantiles of the data. 

The ends of the whiskers represent 1.5 times the inter-quantile range. 
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Figure 5. CDFs of observed and simulated daily extremes in winter and summer for the three 

randomly selected sample catchments (Br, Pi & De); the black dots are the observed annual daily 

extremes; black dashed lines enclose the 90% confidence interval against observed peak flows 
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Figure 6. Violin plots of the p value over all catchments for the fitted GEV distribution between 

observed and simulated daily extremes in winter and summer respectively. The middle black 

solid line is the median value and the red dashed line is the 5% significance line; the middle black 

rectangle enclose the 25% and 75% quantile values. The left purple half is Rall approach and the 

right green half is Rclusters approach. The width of each violin plot represents the probability 

distribution 
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Figure 7. Regional Calibration results of flow duration curve (FDC) using the Nash-Sutcliffe 

Coefficient (NSC) and the Bias for two different regionalization schemes. The middle black solid 

line is the median value; the middle black rectangle enclose the 25% and 75% quantile values. 

The left purple half is Rall approach and the right green half is Rclusters approach. The width of each 

violin plot represents the probability distribution 
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Figure 8. The values of Bias-1 for daily flow duration curve (FDC) at non-exceedance probability 

Pnon= 0.975 
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Figure 9. The values of multiple regression coefficients for the two regional calibration schemes 
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Figure 10(a). Comparison between the two regionalization calibration schemes at a return period 

of 100-year in terms of Bias-1 for winter season for all 18 catchments 

 

 

 

 

 

Figure 10(b). Comparison between the two regionalization calibration schemes at a return period 

of 100-year in terms of Bias-1 for summer season for all 18 catchments 
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Figure 11. Comparison of root mean square error (RMSE) and Bias using regionalized parameter 

sets for clusters (Rclusters) and the whole study area (Rall) in both winter and summer season 
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Figure 12. RMSE and bias results by cross-validating both Rall and Rclusters schemes for the three 

groups. 

 


