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Abstract 

Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in 

primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarisation-induced action 

potentials were characterised by duration of 60 ms, a minimal peak-to-peak distance of 180 

ms, a threshold value of -20 mV and a repolarisation between the spikes to -45 mV. 

Expressed channels were characterised by application of voltage pulses between -150 mV 

and 90 mV in 10 mV steps, from a holding potential of -40 mV. Voltages below -60 mV 

induced an inward current. Depolarising voltages above -30 mV evoked two currents: (i) a 

fast activated and inactivated inward current at voltages between -30 and 30 mV, and (ii) a 

delayed-activated outward current that was induced by voltages above -30 mV. 

Electrophysiological and pharmacological parameters indicated that hyperpolarisation 

activated strongly rectifying K+ (Kir) channels, whereas depolarisation activated 

tetrodotoxin sensitive voltage gated Na+ (Nav) channels as well as delayed, slowly 

activated, non-inactivating, and tetraethylammonium sensitive voltage gated K+ (Kv) 

channels. In addition, RT-PCR showed expression of Nav1.3, Nav1.4, Nav1.5, Nav1.6, 

Nav1.7, and Kir2.1, Kir2.3, and Kir2.4 as well as Kv2.1. We conclude that osteoblasts 

express channels that allow firing of action potentials.  
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Introduction 

Repetitive action potentials, in response to a long lasting membrane depolarisation, are a 

characteristic of excitable cells, such as neurons, muscle cells or endocrine cells. The 

generation of action potentials is possible when cells express special types of voltage-gated 

channels (Bezanilla, 2007; Clay, 2005; Hodgkin and Huxley, 1952). These channels are 

closed when the membrane potential is maintained near the resting membrane potential and 

they open sequentially in response to membrane depolarisation above a defined threshold 

value. Voltage-gated Na+ (Nav) channels are the first channels that are opened by 

depolarisation. These channels allow an inward flow of Na+, which in turn, produces 

further depolarisation of the membrane. This effect causes more Nav channels to open and 

produces an even greater electrical current. The process proceeds explosively, which 

results in a large increase in the membrane potential toward the equilibrium potential for 

Na+ ( ), before the Na+ channels rapidly inactivate. Parallel to the Nav inactivation, the 

delayed voltage-activated K+ (Kv) channels open, which gives rise to an outward K+ 

current. The increase in the membrane permeability to K+ repolarises the membrane toward 

the equilibrium potential for K+ ( ). After an action potential has occurred, there is a 

transient negative shift of the membrane potential, referred to as afterhyperpolarisation. 

The afterhyperpolarisation activates inwardly rectifying K+ (Kir) channels. The Kir
+

 

channels reset the membrane potential to the resting value by allowing a flux of K+ ions 

through the membrane. All of the different channels have specific activation and 

pharmacological properties, which allow their identification. 

Na
E

K
E

The Nav channels, which are responsible for the rising phase of the action potential, are 

formed at the molecular level by the association of a set of pore-forming α and subsidiary β 

(β1, β2 or β3) subunits (Catterall et al., 2003; Hanck and Fozzard, 2007). The pore-forming 

α subunit is a product of a gene family with nine members from the NaV1 gene family. The 

channels are denominated as NaV1.x, where x is a number and denotes the specific channel 
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isoform and corresponds approximately to the order that each gene was identified. 

Accordingly, the channels are named NaV1.1-1.9. The pore-forming subunits are formed 

by four large regions, each comprising six transmembrane (TM) domains and a P-loop 

between the fifth and the sixth TM helices. The association of the four P-loops form a pore 

through the membrane.  

At the pharmacological level, the NaV channels are characterised by their sensitivity to 

tetrodotoxin (TTX) and saxitoxin (STX). The channels are classified as either TTX 

sensitive or TTX resistant, depending on the TTX concentration that is necessary to inhibit 

the NaV channels (Bosmans and Tytgat 2007; Koopmann et al., 2006; Lei et al., 2004; 

Narahashi, 2008). The TTX sensitive Nav channels are inhibited by TTX concentrations of 

10-100 nM, while the TTX resistant channels are blocked by TTX concentrations in the 

µM ranges (Lei et al., 2004). The TTX sensitivity is related to the presence of an aromatic 

amino acid residue (Y or F) at position 401 in the P-loop of the first large region (Fozzard 

and Lipkind, 2010; Lee and Ruben, 2008; Lipkind and Fozzard, 1994; Penzotti et al., 

2001). Genetic and pharmacological studies have shown that NaV1.1-1.4, 1.6, and 1.7 are 

TTX sensitive, while NaV1.5, 1.8, and 1.9 are TTX resistant (Goldin, 2003; Koopmann et 

al., 2006; Lei et al., 2004; Narahashi, 2008). 

The KV channels are responsible for the repolarisation of the membrane. They are formed 

by association of four pore-forming α and four β auxiliary subunits. The pore-forming α 

subunits of the KV channels have six transmembrane domains. They are produced by the 

Kv channel gene subfamily, which comprises four members, named shaker, shab, shaw, 

and shal, or Kv1, Kv2, Kv3, and Kv4, respectively. Each subfamily has characteristic 

activation and inactivation kinetic, as well as pharmacological sensitivity (Heitzmann and 

Warth, 2008; Nerbonne, 2000; Song, 2002). Despite contradictory observations, it is 

generally accepted that the members of the Kv1 channels have a fast activation, a slow 

inactivation and are sensitive to 4-aminopyridine (4-AP). The Kv3 channels activate very 
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quickly but inactivate slowly and are sensitive to tetraethylammonium (TEA). The Kv4 

channels are fast activated and inactivated, and are sensitive to 4-AP. The Kv2 channels 

activate slowly and do not inactivate, and are inhibited by high TEA concentrations 

(Nerbonne, 2000). The fast activating channels, Kv1, Kv3, and Kv4, are responsible for 

brief action potentials (Korn and Trapani, 2007) because they repolarise the membrane 

very quickly.  

The Kir channels belong to the family of two transmembrane domain (2 TM) K+ channels 

with a pore forming region between the transmembrane domains (Heitzmann and Warth, 

2008). Despite originating from 16 different genes, all Kir channels share common 

properties. Each Kir channel is formed by four α subunits assembled as homomer or 

heteromer. In all cases, the inward current increases with increasing external K+ 

concentration ([K+]o), which indicates high specificity for K+. The most defining feature 

shared by all of the Kir channels is the reversible blockage by externally applied Ba2+ 

(Olsen and Sontheimer, 2008). As the name implies, the Kir channels preferentially 

conduct an inward current, although some subunits allow for outward currents. It is 

noteworthy that Kir channels, while rectifying, are not voltage dependent. The apparent 

voltage sensitivity of these channels is related to a blockage of the channels by intracellular 

Mg2+ or polyamine ions, which are pushed into the channel pore by voltages above the 

 (Oliver et al., 2000; Panama and Lopatin, 2006; Ruppersberg, 2000). This effect 

increases with membrane potentials that are more positive than , resulting in a 

reduction of outward K+ currents through the Kir channels. While all Kir channels rectify 

and pass K+ ions into the cell more readily than they allow for K+ efflux, the degree of 

rectification varies between the channel subtypes. The Kir1, Kir4, Kir5, and Kir7 subfamilies 

are weak inward rectifiers that permit considerable outward K+ currents, while the Kir2 and 

Kir3 subfamilies rectify strongly, permitting little K+ efflux (Bichet et al., 2003; de Boer et 

al., 2010; Hibino et al., 2010; Ruppersberg, 2000). Moreover, the different Kir channels 

K
E

K
E
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have specific pharmacology. The Kir1 and Kir4 channels are sensitive to pH. Internal 

acidification to pH values below 6.5 closes the channels (Dahlmann et al., 2004; Pearson et 

al., 1999). The Kir3 channels are activated by G protein-coupled receptors (Hibino et al., 

2010). The Kir6 proteins form the KATP channels that are closed by internal ATP (Flagg et 

al., 2010; Hibino et al., 2010). A feature that is common to all vertebrate Kir currents is a 

slow time-dependent inactivation, which increases with the hyperpolarisation and creates 

the negative bend in the current/voltage (I(V)) plot. While this could be interpreted as 

voltage-dependent gating, it actually reflects a voltage-dependent block of these channels 

by external Na+ ions (Lee et al., 2007).  

In this report, we show that primary osteoblasts and the osteoblast-like MG-63 cell line 

express sequentially activated Nav, Kv and Kir channels, which allow the cells to generate 

repetitive action potentials in response to a long lasting depolarisation. Herein, we discuss 

a potential role for the action potential in osteoblasts in processes such as differentiation, 

bone formation, and pathology.  
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Materials and Methods 

Chemicals  

If not otherwise stated, all chemicals and cell culture media were obtained from Sigma-

Aldrich (Taufkirchen, Germany). 

  

Cell culture 

Primary human osteoblasts were cultured from bone chips obtained from patients 

undergoing total hip arthroplasty, following the protocol set by Gallagher (2003). The 

isolation protocol was approved by the local ethics committee of the Institute of Materials 

Research in Geesthacht, Germany. Briefly, cancellous bone was cut into 5-mm pieces. 

After removal of bone marrow, the bone chips were cultured in Dulbecco’s modified eagle 

medium (DMEM) supplemented with 10% foetal bovine serum (PAA Laboratories GmbH, 

Linz, Austria), 100 U/ml penicillin, and 100 µg/ml streptomycin. The culture was 

maintained for approximately 10 days without medium change. Thereafter, the medium 

was changed every three days and cells were passaged after reaching 70-80% confluency. 

The human osteosarcoma cell line, MG-63, was obtained from the European collection of 

cell cultures (ECACC, Salisbury, UK). They were cultured in DMEM supplemented with 

10% foetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin. The cultures 

were maintained at 37°C in a humidified atmosphere containing 5% CO2 and 95% air. The 

culture medium was replaced every two to three days.  

For patch-clamp experiments, cover slips (Ø 10 mm) were placed into dishes containing 

4 ml of DMEM culture medium. The cells were seeded at a density of 1×105 cells/dish. 

The cells were used one to three days after seeding. For the primary cells, the cover slips 

were coated with collagen. The primary cells were cultured and used for up to five 

passages. For the MG-63 osteoblast-like cells, the cells were used up to passage 30. 
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For the RT-PCR experiments, the cells were cultured for two to five days and harvested 

when they were at least 80% confluent. 

  

Functional identification of the expressed channels  

The whole-cell patch-clamp technique was used to measure the different currents of the 

cells. All experiments were performed at room temperature. A cover slip with the cells was 

placed in a perfusion chamber containing 0.5 ml of a bath solution composed of (in mM): 

145 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 5 glucose, and 10 HEPES, (pH 7.4, 295 mosmol/l). 

The perfusion chamber was mounted onto an inverted microscope (Zeiss, Oberkochen, 

Germany). The cells were washed with 10 ml of bath solution at 1 ml/s. To visualise the 

cells, a CCD camera (Sony, Japan) and a video monitor was used. To navigate the patch-

clamp capillaries onto the cells, a micromanipulator (Merzhäuzer, Wetzlar-Steindorf, 

Germany) was used. The patch-clamp capillaries were filled with a pipette solution that 

contained (in mM): 145 K-gluconat, 5 KCl, 0.5 Na2ATP, 2.5 MgATP, 0.5 CaCl2, 1 EGTA, 

1 glucose, and 10 HEPES (pH 7.4, 295 mosmol/l). To induce action potentials, 

depolarising currents were injected into the cells under a current-clamp modus with the 

patch-clamp amplifier EPC-7 (List Medical, Darmstadt, Germany) connected to a 

computer through an ITC-16 interface (Instrutech, Port Washington, USA). The currents 

were measured in voltage-clamp modus. From a constant holding voltage of -40 mV, test 

voltage pulses were applied from -150 mV to 90 mV for 1 s in 10 mV steps. The evoked 

currents were filtered at 3 kHz and sampled at 10 kHz. Pulse protocols, data acquisition, 

and analysis were performed using Pulse/PulseFit (HEKA, Lambrecht/Pfalz, Germany), 

Excel 2004 (Microsoft, Redmond, USA) and OriginPro 7.5 (Microcal Software, Inc., 

Northampton, USA).  

 8



Data analysis  

The voltage-dependent channels were analysed between -150 mV and -60 mV with the 

amplitudes of the instantaneous current (I(inst)) at the beginning of the voltage pulses 

measured and plotted against the corresponding voltage in an I(V) plot. To describe the 

voltage dependence of the conductance of the channels, the macroscopic conductance (G) 

was calculated from the instantaneous current amplitudes, normalised to the maximal 

conductance (Gmax). The corresponding values were plotted against the voltage in a 

G(V)/Gmax diagram. To estimate the activation parameters of the channels, the data points 

were fit with a simple Boltzmann distribution as given by the equation: 

)1/(1/
).(

max

2/1 RT

zF
UU

eGG


 , where R, T, F have their usual meanings, U1/2 represents the 

half-activation voltage at the point where 50% of the maximal conductance was reached, 

and z represents the number of apparent gating charges. Additionally, the steady state 

currents (I(ss)) at the end of the voltage pulses were measured and plotted against the 

corresponding voltage in an Iss(V) plot. To account for the inactivation of the channels, the 

current-time relaxation between the instantaneous amplitude I(inst) and the steady state 

amplitude I(ss) was fit to the following single exponential function: 

)()()()( ).( ssssinstt IeIII i

t


 , where τi gives the voltage-dependent inactivation time.  

Between -30 mV and 30 mV, the maximum amplitude of the voltage-activated inward 

current was measured and plotted against the corresponding voltage in an I(V) plot. To 

describe the voltage dependence of the conductance of the channels, the macroscopic 

conductance (G) was calculated from the maximal amplitudes of the currents and plotted in 

a G(V)/Gmax diagram, and the activation parameters of the channels were obtained by 

fitting the data points with a simple Boltzmann distribution as described above. 

Between -30 mV and 90 mV, the activated, delayed-activated outward currents were 

analysed in two steps. First, the amplitudes of the steady state currents (I(ss)) at the end of 

the voltage pulse were measured and plotted against the corresponding voltage in an I(V) 
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plot. As described above, the macroscopic conductance (G) was calculated from the steady 

state current amplitudes, a G(V)/Gmax diagram was produced, and the data points were fit to 

a simple Boltzmann distribution to estimate the activation parameters of the channels. 

Second, the activation kinetics were estimated for each voltage pulse by fitting the time 

dependent increase of the current using the following simple exponential function: 

)()()()( ).( ssssinstt IeIII a
t

  , where I(inst) and I(ss) are the instantaneous and the steady state 

current amplitudes, respectively, and τa gives the voltage dependent activation time. 

 

Channel screening by RT-PCR 

Total RNA from MG-63 cells (about 2 million cells) was extracted using the Qiagen 

RNeasy Mini Kit (Qiagen, Hilden, Germany). Genomic DNA was removed by digestion 

with RNase-free DNase (Fermentas, St. Leon-Rot, Germany) for 60 minutes at 37°C. First 

strand cDNA synthesis of the total RNA using the M-MLV reverse transcriptase 

(Invitrogen GmbH, Karlsruhe, Germany) was performed according to the manufacturer’s 

protocol with a hexamer primer. cDNA fragments of the various Kir, Kv, and Nav channel 

subtypes were amplified using a set of designed sense and antisense primers (Primer-

BLAST, http://www.ncbi.nlm.nih.gov), as shown in Table 1. PCR experiments were run 

on a 96 Universal Gradient PeqStar Thermocycler (PeqLab, Erlangen, Germany) in a final 

volume of 25 μl containing 45 ng of first strand cDNA as the template. The amplification 

was performed in 44 cycles (15 sec at 94°C, 15 sec at 53  2°C, and 15 sec at 72°C). The 

PCR products were separated on 1.5% agarose gels and stained with GelRed (Biotium, 

Hayward, CA, USA). 
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Results 

The firing of repetitive action potentials (Fig. 1) were induced in the primary isolated 

osteoblasts  and in the osteoblast-like MG-63 cell line by injecting a depolarising current 

under the current-clamp modus of the whole-cell patch-clamp configuration. The action 

potentials were characterised by a long duration (60 ms), a high threshold (-20 mV), a non-

complete repolarisation between the spikes, and a low frequency (a maximum of 5-6 Hz). 

The generation of repetitive action potentials in cells such as neurons or muscle cells is 

related to the concomitant expression and sequential activation of voltage-gated sodium 

(Nav) and potassium (Kv) channels (Hodgkin and Huxley, 1952). Additionally, the 

inwardly rectifying potassium channels (Kir) can participate in the generation of action 

potentials by controlling the resting membrane potential. Because we observed that the 

osteoblasts were able to generate action potentials, we analysed the voltage-dependent 

activation of the currents within the cells. In the primary osteoblasts, as well as in the MG-

63 cells, we found a resting membrane potential of approximately -60 mV. To evaluate the 

ion channels expressed in the membranes of the cells, the cells were maintained at a 

holding potential of -40 mV and voltage pulses from -150 mV to 90 mV were applied for 1 

s in 10 mV steps. Three distinct currents could be observed (Fig. 2): (i) an inward current 

activated by hyperpolarising voltages below -60 mV, (ii) an inward current activated by 

depolarising voltages between -30 mV and 30 mV, and (iii) a delayed-activated outward 

current evoked by depolarising voltages above -30 mV. Because these currents were 

observed in primary osteoblasts and in the osteoblast-like MG-63 cell line, the MG-63 cells 

were used for the further functional characterisation of the currents. In following, the 

electrical and pharmacological behaviour of these currents will be described.  
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The hyperpolarisation activated inward current 

The hyperpolarisation-activated inward current was instantaneously activated between -60 

mV and -150 mV in a voltage dependent manner. The instantaneous current was followed 

by a steady-state current (Fig 2a). The steady-state current increased with hyperpolarisation 

until -100 mV (Fig. 2B). At larger hyperpolarising voltages, an inactivation of the current 

was observed (Fig. 2A and B). The hyperpolarisation-activated inward current, which was 

observed at very low Cl- concentrations in the internal solution, presented the following 

pharmacology: it was not significantly affected by the Cl- channel inhibitor, 4,4'-

diisothiocyano-2,2'-stilbene disulphonic acid (DIDS), it was inhibited by Ba2+ (Fig. 3A), 

and it was enhanced by an increased [K]o. In addition, the increase in [K]o suppressed the 

inactivation of the channel (Fig. 3B). The reverse potential of the current was estimated to 

be -70 mV and -10 mV at 5 mM and 55 mM of [K+]o, respectively (Fig. 3B). To determine 

the voltage-dependent characteristics of the hyperpolarisation-dependent currents, we 

analysed the voltage-dependent activation of the instantaneous currents and the voltage-

dependent kinetics of the current relaxation from the instantaneous current to the steady-

state amplitudes. For the instantaneous current, macroscopic conductance-voltage (G(V)) 

curves were determined (Fig. 3C). The G(V)/Gmax diagrams show that the channels opened 

at hyperpolarising voltages. The half-maximal voltage of activation (U1/2) of-73 mV and 

the apparent equivalent gating charge (z) of3 were derived by fitting the G(V)/Gmax 

curve with a simple Boltzmann function (Fig. 3C). The kinetic of inactivation was voltage 

dependent. At -100 mV, the inactivation was very slow and the steady-state current could 

not be achieved during the duration of the pulse (1 s). The inactivation was very rapid at 

voltages below -120 mV and the steady-state current, representing 10% of the 

instantaneous current, was achieved within 400 ms (Fig. 2). The relaxation of the 

inactivated current could be fit by an exponential function, as described in the Materials 

and Methods (Fig. 3E insert). We found that the inactivation time decreased with 
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hyperpolarisation, from 330 ms at -100 mV to 163 ms at hyperpolarising voltages below -

120 m (Fig. 3D). 

 

The depolarisation-activated inward current. 

In 70% of the cells, depolarisation of the membrane to voltages above -30 mV induced an 

inward current (Fig. 1 A and Fig. 4) with the following characteristics: (i) the maximal 

amplitude of the current was achieved at 10 mV, (ii) the activation and the inactivation of 

the currents were very fast, and (iii) the current was abolished by depolarisations above 30 

mV (Fig. 4A). In addition, the depolarisation-activated inward current showed a sensitivity 

to the internal Na+ concentration ([Na+]i). At 10 mM internal Na+, the inward current was 

continuously reduced to achieve a complete run down within 5-10 min after establishment 

of the whole-cell configuration (results not shown). The run down was avoided at [Na+]i of 

1 mM. Additionally, the depolarisation-activated inward current was reversibly inhibited 

by 50 nM TTX (Fig. 4B).  

To determine the voltage-dependent characteristics of the depolarisation-activated inward 

current, relative macroscopic conductance-voltage (G(V)/Gmax) curves were determined 

(Fig. 4C). The G(V)/Gmax curves show that the currents were induced at voltages above -30 

mV. The conductance increased with increasing depolarisation to achieve a maximum at a 

depolarisation between 0 and 10 mV. The half-maximal activation voltage (U1/2) of-9 mV 

and the equivalent gating charge (z) of were derived by fitting the G(V)/Gmax curve 

with a simple Boltzmann distribution.  

 

The depolarisation-activated outward current 

The delayed-activated outward current was observed in all cells when depolarising 

voltages above -30 mV were applied. The current showed a slow activation followed by a 

steady-state current, I(ss), which increased with increasing voltages (Fig. 2). The 
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depolarisation-activated outward current presented the following pharmacology: (i) the Cl- 

channel inhibitor DIDS reduced the current by 20-30%, and (ii) TEA, the inhibitor of the 

voltage-dependent K+ channels, reduced the current by 70-80% (Fig. 5A). To determine 

the voltage-dependent characteristics of the hyperpolarisation-dependent currents, we 

analysed the voltage-dependent activation of the steady-state current and the kinetics of 

voltage-dependent activation of the current. The relative steady-state macroscopic 

conductance-voltage (G(V)/Gmax) curves were determined (Fig. 5B). The G(V)/Gmax 

diagrams show that the channels opened at depolarizing voltages above -30 mV. The 

conductance increased with the voltage to achieve a maximum at 20 mV. The half-

maximal voltage of activation (U1/2) of-8 mV and the equivalent gating charge (z) of8 

were derived by fitting the G(V)/Gmax curves with a simple Boltzmann distribution.  

The activation kinetic was characterised by fitting the currents during the activation time 

with the single exponential function (Fig. 5C insert) described previously. At very low 

voltages (-30 mV to 0 mV), the activation was very slow and could not be fit by the 

exponential equation. This was not due to the depolarisation-activated inward current 

described above because the inhibition of the current with TTX did not affect the activation 

kinetics of the channels (Fig. 5C). Considering the voltage dependency of the activation, 

we found that the activation time (τa) decreased with the depolarisation. A maximal value 

of 90 ms for τa was estimated at 0 mV, and it decreased to reach a minimal value of 13 ms 

at 50 mV (Fig. 5C).  
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Discussion 

We were able to show, for the first time, that osteoblasts are able to generate repetitive 

action potentials (Fig. 1). Action potentials in neurons and muscle cells have been 

correlated with the sequential opening of voltage-gated Na+ and K+ channels (Hodgkin and 

Huxley, 1945; 1952). In primary osteoblasts and in the osteoblast-like MG-63 cells, we 

discovered a membrane potential of approximately -60 mV. The region between -60 mV 

and -40 mV was characterised by non-activation of specific currents flanked by two 

distinguishable regions where voltage pulses activated different currents (Fig. 2). On the 

left side, the voltage pulses (-150 mV to -60 mV) activated an inward current. On the right 

side, the voltages pulses between -30 mV and 30 evoked a rapid activated and inactivated 

inward current and the pulses from -30 mV to 90 mV induced a delayed-activated current 

(Fig. 2).  

 

The hyperpolarisation-activated inward currents  

The hyperpolarisation between -150 mV and -60 mV induced an inward current 

characterised by voltage-dependent inactivation (Fig. 2, Fig. 3A). The inactivation could 

be suppressed by reducing the external Na+ concentration (results not shown). Inward 

currents, induced by hyperpolarisation of the cell, are due to an influx of cations (K+) or to 

an efflux of anions (Cl-). The observed inward current was registered in the absence of the 

internal Cl-, was not affected by DIDS and was completely abolished by an external 

application of Ba2+ (Fig. 3A). Moreover these channels were inactivated by external Na+ 

(Data not shown), a characteristic feature of Kir channels (Lee et al., 2007). Additionally, 

the density of the current increased with increasing [K+]0, and its reversal potential 

followed the  from -70 mV to -10 mV at [K+]0 of 5 mM and 55 mM, respectively (Fig. 

3B). These properties indicate that the hyperpolarisation-activated inward current was due 

to the opening of the Kir channels. The current could be measured at an internal pH of 6.5, 

K
E
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indicating that it was not related to the pH sensitive channel Kir1 or the Kir4 subfamily 

(Dahlmann et al., 2004; Pearson et al., 1999). The current was measured without the 

activation of G protein-coupled receptors, which suggests that the current does not rely on 

the G protein-activated Kir3 channels (Flagg et al., 2010; Hibino et al., 2010). Finally, the 

current was measured in the presence of internal ATP, which shows that the ATP-sensitive 

Kir6 channels (Hibino et al., 2010) were not involved. The hyperpolarisation-activated 

inward current was observed at voltages below -60 mV (Fig. 2 and Fig. 3), indicating a 

strong rectification. These results suggest that the current was related to the channels of the 

Kir2 subfamily (Hibino et al., 2010). This conclusion was confirmed by RT-PCR 

experiments, which show clear mRNA expression of the Kir2.1, Kir2.3, and Kir2.4 channels, 

the prototypes of the strongly rectifying Kir channels (Fig. 6). 

We found that the current was characterised by a half-activation voltage of -73 mV and an 

apparent gating charge of 2.3. As for the apparent gating charge, it has been shown that in 

cultivated cells, the inward K+ channels have a z value between four and six (Hille, 2003). 

Experiments in expression systems, such as Xenopus oocytes, estimate the z value of the 

Kir channels to 11-17. These values correspond to the charges of the S4 domain of the 

channel subunits. The fact that they are not found in the cultivated cells was interpreted as 

an indication of a reduced population of the channels in the membrane (Hille, 2003). This 

interpretation can be applied to our experiments. We can assume that the MG-63 cells, as 

well as the primary osteoblasts, express a low density of the Kir2.x channel family. This 

conclusion is supported by the reduced current density measured, with a maximum of -31 

pA/pF (Fig. 2B and Fig. 3A).  

 

The depolarisation-activated inward current  

Depolarisation of the cells between -30 mV and 30 mV correlated with a rapid activation 

followed by an inactivation (Fig. 1 and Fig. 4). These are properties of Nav channels as 
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they have been defined by Hodgkin and Huxley (1952). The measured currents were 

characterised by a half-activation voltage of -8 mV and by an apparent gating charge of 4.8. 

These parameters were also found for the Na+ channels in the giant axon of the crayfish 

(Hodgkin and Huxley, 1952). Therefore, we assume that the depolarisation-activated 

inward current was related to activation of Nav channels (Fig. 4C). New data from Xenopus 

oocytes show a z value of 11-16 for the Nav channels (Hille, 2003). As with the Kir 

channels, the discrepancy between the values obtained from the original cells and from 

expression systems has been interpreted as an indication of a reduced channel density in 

the original cells in comparison to the expression systems (Hille, 2003). Therefore, we 

assume that we have a reduced density of the Nav channels, which correlated with the 

observed, reduced maximal current density of -9 pA/pF (Fig. 4A). The conclusion that 

depolarisation opened the Nav channels is supported by the observation that an increase in 

internal [Na+], or by an increase in the external Ca2+ concentration, inhibited the current 

(results not shown). The current was completely suppressed by the application of 50 nM 

TTX (Fig. 4B), which indicates that the cells are expressing TTX sensitive channels. The 

pore forming α subunits of the Nav channels are produced by a gene family with the nine 

members, named Nav1.1-1.9, which evolved from a single gene by gene duplication 

(Goldin, 2002). The genetic differences correlate to differences in the sensitivity of the 

channels to TTX. The channels, Nav1.1-1.4, 1.6 and 1.7, are classified as TTX sensitive 

because they are inhibited by low concentrations of TTX (10-100 nM), while the TTX 

resistant channels (Nav1.5, 1.8 and 1.9) are inhibited by higher TTX concentrations (10-

100 µM) (Goldin, 2003; Koopmann et al., 2006; Lei et al., 2004; Narahashi, 2008). In our 

experiments, we found that the depolarisation-activated inward current was suppressed by 

50 nM TTX (Fig. 4B). We hypothesized that the osteoblasts expressed the TTX sensitive 

channels, Nav1.1-1.4, 1.6, and 1.7. This hypothesis was verified by RT-PCR experiments, 

which showed an expression of the TTX sensitive Nav1.3, 1.4, 1.6, and 1.7 channels both 
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in the primary osteoblasts and in the MG-63 osteoblast-like cells (Fig. 6A, B, and C). 

Additionally, we found mRNA of the TTX-resistant Nav1.5 channel (Fig. 6). However, 

because we observed that the Na+ current was completely abolished at very low TTX 

concentrations, we predict that the mRNA of Nav1.5 is not translated into functional 

channels. Further, we were not able to determine whether Nav1.3, 1.4, 1.6, and 1.7 equally 

participate in the formation of the observed channels. Biochemical and cell imaging 

experiments, beyond the present scope of this paper, should clarify this issue. 

 

The delayed, depolarisation-activated outward current  

Depolarisation above -30 mV gave rise to a delayed-activated outward current, which 

increased with the increasing depolarisation (Fig. 2 and Fig. 5A). The Cl- channel inhibitor, 

DIDS, reduced the currents by 20-30% and the K+ channel inhibitor suppressed 70-80% of 

the current (Fig. 5). These results indicate that the major portion of the outward current 

was related to the opening of the voltage-activated K+ channels (Kv). The activation 

parameters of this current, given by the Boltzmann fitting, had a half-activation of 8 mV 

and an apparent gating charge of 4.2 (Fig. 5B). The half-activation and the gating charge 

values indicate that there was a reduced population of Kv channels (Hille, 2003). The 

channels displayed a slow activation, however, an inactivation was not observed (Fig. 2A 

and Fig. 5C insert). At the pharmacological level, the channels were inhibited by TEA (Fig. 

5A) and were insensitive to Ba2+ and 4-AP (results not shown). The voltage-activated 

outward K+ channels are responsible for the membrane repolarisation after an action 

potential. They belong to the family of the six TM Kv channels. This family is divided into 

four subfamilies, Kv1-4. Each subfamily is characterised by unique activation and 

inactivation kinetic as well as by a specific pharmacology (Heitzmann and Warth, 2008; 

Nerbonne, 2000; Song, 2002). The members of the Kv1 and Kv4 subfamilies are 

characterised by fast activation, a fast inactivation mechanism, and are sensitive to 4-AP. 
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The Kv3 channels activate very fast, have a slow inactivation, and are sensitive to TEA. 

The Kv2 channels have a slow activation mechanism, are sensitive to TEA, and do not 

inactivate (Nerbonne, 2000). Taken together, this implies that the primary cells, as well as 

the MG-63 cells, express channels of the Kv2 subfamily. This conclusion was reached 

because the channels observed displayed slow activation and did not inactivate, and were 

inhibited by TEA. This assumption is also supported by the voltage-dependent activation 

kinetic of the channels. We show that the channels have a voltage-dependent activation 

time (τa) with a minimal value of 10 ms, which was achieved at 40 mV (Fig. 5C). A 

comparable activation time was observed for the Kv2.1 channels expressed in Xenopus 

oocytes (Consiglio and Korn, 2004). Furthermore, the RT-PCR analysis confirmed the 

expression of Kv2.1 (Fig. 6).  

 

Cellular consequences of the expression of the voltage-activated channels  

The concomitant presence of Nav, Kv, and Kir channels in the neurons, as well as their 

sequential activation during the depolarisation and repolarisation process, was postulated 

as the basis of the action potential (Hodgkin and Huxley, 1952). In this report, we observed 

that MG-63 cells and primary osteoblasts expressed Kir, Nav and Kv channels, which were 

sequentially activated upon depolarisation. In addition, the cells were able to generate 

action potentials (Fig. 1). The pharmacology and the electrophysiological parameters of the 

channels suggests that different types of Kir, Nav and Kv channels are present, however at a 

low density compared to excitable cells, such as neurons. We observed that the cells 

exclusively expressed the slowly activated Kv2 channel subtype. The low channel density 

and the slow activation of Kv channels are likely responsible for the long duration of the 

action potential. In the same way, the low density of the Nav channels could explain the 

low maximal frequency of the action potential (5 Hz) observed in the cells (Fig. 1). The Kir 

channels are responsible for setting the resting membrane potential and controlling the 
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excitation threshold. In osteoblasts, we observed the expression of the strongly rectifying 

Kir2.1, Kir2.3, and Kir2.4 channels. This finding correlates with the polarisation (-60 mV). 

Moreover the strongly rectifying Kir channels and the low density of slow activating Kv 

channels could explain the non-complete repolarisation observed (Fig. 1). 

The significance of the action potentials in the osteoblasts is not clear. In excitable cells, 

the firing of action potentials is a marker of differentiation. We can assume that the 

presented action potentials and the expressed ion channels in the MG-63 osteoblasts and in 

the isolated primary osteoblasts could be a characteristic of a developmental state of 

osteobalst during osteogenesis, which has not been described so far. Moreover, osteoblasts 

isolated from different persons are variable with respect to the capacity to generate action 

potentials (result not shown). This may be related to the developmental and pathological 

state of the isolated cells, for example, whether cells were isolated from healthy or 

pathogenic (mainly osteoporotic) tissues. Alterations during pathological or developmental 

changes in bone tissue are mainly analysed on the genetic level (signalling pathways), and 

the hormonal regulation of the ion channels has not been of great interest as of yet (Zaidi, 

2004). Evidence has accumulated that ion channels such as melastatin like transient 

receptor potential 7 (TRPM7), chloride channels, or voltage-operated calcium channels 

(VOCCs) are involved in development, proliferation and differentiation of osteoblasts 

(Abed and Moreau, 2009; Wang et al 2010; Zahanich et al, 2005). The present report 

shows for the first time action potentials and characterises the expressed voltage dependent 

channels responsible for the generation the action potentials in the osteoblasts. This report 

represents therefore a further attempt to characterise the functional physiology of 

developing osteoblasts. 
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Table and Figure Legends 

Table 1 

List of the primers used for the RT-PCR. 

 

Figure 1 

Depolarisation induced action potentials. The injection of currents between 50 and 100 pA 

generates action potentials in the cells. The frequency increased with the intensity of the 

depolarising current to a maximum of six spikes during the depolarisation period (1 s). 

 

Figure 2 

The current elicited by different voltage pulses. (A) Original traces of the currents evoked 

by voltage pulses as indicated. Hyperpolarising voltages between -150 mM and -60 mV 

induced inward currents. (B) The I(V) diagram of the observed currents. The current 

voltage relationship (I(V)) of the instantaneous current amplitude and the steady state 

current amplitude were measured in the first and in the last 10 ms of the voltage pulses. 

The results are given as an average, and the error bars represent the SEM for eight 

experiments. In addition, similar currents could be measured in the cultivated primary 

osteoblasts. 
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Figure 3 

Pharmacological and electrical characterisations of the hyperpolarisation-activated currents. 

(A) A voltage/current density plot is shown. With respect to the control conditions, the 

diagram shows that the current was significantly reduced by DIDS and was completely 

inhibited by Ba2+. The results are averages of 20 (control), nine (Ba2+) and eight (DIDS) 

cells, the error bars represent the SEM. (B) The current density was potentiated by [K+]o 

increase. The results of each curve are an average of five cells, and the error bars represent 

the SEM. (C) The voltage-dependent membrane conductance G(V)/Gmax. The solid line 

represents a fit of the data points with a simple Boltzmann distribution. This allowed us to 

estimate a half-activation voltage of -73 mV and an apparent gating charge of 2.3. Each 

point represents an independent experiment (n = 10). (D) The voltage-inactivation kinetics 

of the hyperpolarisation induced currents. The current relaxation observed at each voltage 

pulse was fitted with a simple exponential function (insert). The voltage-dependent 

inactivation time, τi, decreased with increasing hyperpolarisation. From a maximal value of 

330 ms at -100 mV, τi reached the minimal value of 164 ms for voltages below -120 mV. 

The results are given as an average, and the error bars represent the SEM for 29 cells 

 

Figure 4 

The depolarisation-activated inward current. (A) The diagram shows the maximal current 

density evoked by the different voltage pulses. These currents were observed in 73% of the 

cells (16 out of 22). The resulting curve is an average of 16 cells, the error bars represent 

the SEM. (B) The current could be suppressed by 50 nM TTX. The TTX inhibition was 

reversible (not shown). (C) The voltage-dependent membrane conductance G(V)/Gmax. The 

solid line represents a fit of the data points with a simple Boltzmann function. A half-

activation voltage, U1/2,, of -8 mV and an apparent gating charge, z, of 4.2 were estimated 

(n = 9).  
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Figure 5 

The pharmacological and electrical properties of the delayed outward current. (A) The 

currents were activated at depolarisation voltages above -30 mV. TEA reduced the current 

amplitude by more than 70%. DIDS reduced the current by 20-30% (result not shown). 

The results are averages of 20 cells and eight cells, respectively, for the control 

experiments and the blockage with TEA. The error bars represent the SEM. (B) The 

normalized voltage-dependent conductance G(V)/Gmax. The solid line represents a fit of the 

data points with a simple Boltzmann function. This allowed an estimation of the half-

activation voltage, U1/2, of -8 mV and an apparent gating charge, z, of 4.8. The results are 

an average of 11 cells. (C) The activation kinetics of the current was estimated by fitting 

the time course of the voltage-activated currents (insert) with a single exponential function. 

The activation time, τa, decreased with increasing voltage from a maximal value of 90 ms 

at 0 mV and reached a minimal value of 13 ms at 50 mV. The results are given as an 

average and the error bars represent the SEM for 29 cells 

 

Figure 6 

The channels expressed in the cells as determined by RT-PCR.  
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