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A B S T R A C T

In the scope of developing a bonded iron-based shape memory alloy (Fe-SMA) strengthening
solution, nonlinear deformation in the adherends upon joint failure due to phase transformation
and high adhesive toughness is unavoidable. The effect of this nonlinear deformation has not
been studied in the case of Mode I failure. In this study, the first experimental and theoretical
investigation on Mode I failure of Fe-SMA bonded joints is presented. A new analytical model
is proposed and validated using experimental results to gain an in-depth understanding of the
influence of Fe-SMA nonlinear material deformation on the joint failure process. The proposed
model is shown to be significantly faster than traditional elasto-plastic finite elements using
cohesive zone modeling with a minimum compromise to the accuracy. These are observed to
result in lower bond strength and a shorter fracture process zone than that of linear elastic
adherends using the same adhesive. Neglecting the nonlinear behavior of the Fe-SMA bonded
joints can lead to an unconservative joint design, jeopardizing safety. The developed model is
aimed at facilitating the development of adhesively bonded Fe-SMA strengthening systems.

. Introduction

An adhesively bonded and self-prestressed fatigue strengthening solution using an iron based shape memory alloy (Fe-SMA), as
epicted in Fig. 1, has been substantiated to be highly effective in retarding fatigue crack growth in metallic structures [1,2].
dhesive bonding is preferred over mechanical joining for a more even stress distribution and prolonged fatigue life. In addition, the
restressing offered by the Fe-SMA material and the bridging mechanism owning to the adhesive bonding technique are synergistic
n retarding the fatigue crack growth in metallic structures [1,3,4].

The Fe-SMA has been recently developed at Empa for upgrading vast deteriorating metallic infrastructures owing to increasingly
evere service loads. A recovery stress of 350 MPa attributed to the shape memory effect (SME) of this alloy makes it highly favorable
o realize a desirable compressive stress in parent structures [1]. The SME of the Fe-SMA is attributed to the phase transformation
etween austenite and martensite, which also results in a premature nonlinear stress–strain behavior [1,5]. Several research projects
ave exploited the SME of the Fe-SMA for fatigue strengthening of metallic structures [6–8]. The joining method in these research
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Fig. 1. Adhesively-bonded Fe-SMA patch and a potential failure in the repair system.

projects was limited to mechanical joining due to the lack of in-depth understanding of the debonding failure behavior of the
adhesively bonded Fe-SMA joints.

Given the great potential of the bonded and prestressed Fe-SMA solution for fatigue strengthening of metallic structures, it is
essential to study the failure behavior of the bonded Fe-SMA joints to ensure a safe design. More recent studies [9,10] have focused
on Mode II failure of Fe-SMA bonded joints and shown that the Fe-SMA undergoes nonlinear material deformation and negatively
affects the failure process. However, no work so far has investigated Mode I or mixed-mode failure. Yet, Fig. 1 depicts a potential
mixed-mode failure initiating at the patch tip, which includes of Mode I fracture component. While mixed-mode can be considered
to be the failure mode in the vast majority of application cases, it is also the most complex. To gain a better understanding of
the failure of such joints, it is reasonable to continue investigations on pure Mode I fracture behavior. The importance of Fe-SMA
nonlinear material behavior was established in earlier works on Mode II fracture behavior and it is therefore expected to play a role
in Mode I failure of bonded Fe-SMA joints. This is the topic of the present study.

Conventional fracture analysis methods in open literature usually use beam-like specimens, such as double cantilever beam (DCB),
end-notched flextural specimens (ENF) and mixed mode bending (MMB) to extract the fracture toughness and cohesive constitutive
behavior [11]. These assume that adhesive failure is the sole energy dissipation mechanism. To accurately perform the failure
analysis, no energy dissipation resulting from the nonlinear behavior of the adherends is allowed.

Solutions to prevent nonlinear material deformation in adherends during tests have been proposed, such as the use of a backing
beam as a stiffener [12]. However, this method poses several problems. First of all, it needs special consideration for mode
mixity [13] as well as tedious specimen preparation. Furthermore, samples can become unreasonably thick and require a significant
load when tough adhesives are tested. Last but not least, circumventing the problem by avoiding nonlinear deformation in laboratory
fracture tests can lead to overlooking the potential influence of adherend material behavior on the failure behavior in a practical
case. The fracture test is not an authentic representation of the fracture process in practice and the experimental results may not be
conservative for safety design. For Fe-SMA bonded joints this has been shown in Mode II [10].

To develop a bonded and prestressed fatigue strengthening solutions using Fe-SMA, it is crucial to develop analysis tools that
consider both the adherend and adhesive nonlinearities for fracture analysis of bonded Fe-SMA joints. Attempts have been made
to consider the nonlinearity of bonded joint fracture behavior. The J-integral method accounts for all material nonlinearities in the
fracture test [14]. More accurate values for the energy release rate were obtained for beam-like specimens [15,16]. However, this
method has not been applied to study the effect of the nonlinearity of adherend materials on the fracture process. A more direct
consideration of plastic deformation in the adherends during peel tests can also be found in open literature [17,18], but it is limited
to thin strips with bilinear stress–strain material behavior. This work was not extended to fracture tests involving general material
nonlinearities of both adherends and adhesives.

To elucidate the effect of the adherend nonlinear material behavior on the Mode I fracture behavior, DCB tests of Fe-SMA bonded
joints as well as steel bonded joints carefully designed to prevent nonlinear material deformation upon testing are carried out. Based
on the experimental observations and tests results, a beam on foundation model [19] considering adherend nonlinear material
deformation is proposed and validated against the experimental results. The proposed model is then compared to a conventional
finite element (FE) model to evaluate the benefits of using the proposed theoretical model. Finally a parametric study shows the
effects of the Fe-SMA nonlinear material deformation on the Mode I failure process.

2. Experimental investigation

Two series of tests were executed, a series of steel to steel bonded DCB joints and another series of Fe-SMA to Fe-SMA DCB
joints. The same adhesive and adhesive thickness was used. The steel to steel bonded joints used 3 mm thick high-strength steel
such that the adherends remained in the elastic range throughout the experiment as the thickness was enough to avoid plastic
deformation. This allowed for the experimental measurement of the traction separation relationship (TSR) according to established
methods [16,20,21]. The samples are referred to as TS for thick steel. The second series of experiment involved thinner, Fe-SMA
joints. Due to the thinness and nonlinear material behavior of the adherends, the fracture behavior was influenced by the material
2
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Table 1
Material properties and sample dimension.

Sample 𝐸 modulus Yield strength Thickness Precrack Adhesive
type [MPa] 𝜎𝑌 [MPa] ℎ [mm] 𝑎 [mm]

TS 181’946 923.2 3 50 SikaPower 1277
Fe-SMA 176’827 530.4 1.5 25 SikaPower 1277

Fig. 2. Schematic of the sample preparation.

2.1. Materials and method

2.1.1. Materials
Fe-SMA was provided by re-fer AG with nominally ℎ = 1.5 mm thick plates while the high-strength steel was provided by Notz

etall AG with 𝑡 = 3 mm thick AISI 301 plates. The thickness of the Fe-SMA was constrained by the maximal plate thickness
he provider could supply. It is noted that the tested Fe-SMA thickness is identical to its thickness in real application cases. Both
aterials were tested in tensile tests, the measured material properties are summarized in Table 1. While both materials are steels,

he significant amount of alloying elements reduced the Young’s modulus from usually expected values. The adhesive used was
ikaPower 1277 [22].

.1.2. Sample preparation
The sample geometry was based on ASTM D5528 [23]. The TS samples had a long precrack 𝑎 and the Fe-SMA samples had shorter

recrack 𝑎. This prevented geometrical nonlinear effects and isolated the influence of the material nonlinearity. Using simple beam
heory, the length was chosen such that the two sample types would have a similar initial bending stiffness. The samples were
repared by bonding wider plates together then cutting by waterjet to sample size, as shown in Fig. 2. This manufacturing method
as selected to limit as much as possible the heating of the Fe-SMA which can induce partial reverse phase transformation. Prior

o bonding, each plate was gritblased and cleaned with acetone soaked cotton wipes. A precrack was created by inserting a 0.3 mm
3
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Fig. 3. Experimental setup.

Fig. 4. Typical Load–displacement curve and tested sample deformation after test for TS and Fe-SMA joints.

the precrack to ensure a controlled adhesive thickness, as shown in Fig. 2. The plates were placed in a vacuum bag for 24 h to apply
a constant and distributed pressure on the bonded plates and ensured the final adhesive thickness (vaccum pressure was 0.8 bar).
The bonded specimens were then cured at room temperature for two weeks prior to cutting the samples by waterjet. The inserts
were removed at this stage. The sides of every sample were polished with sandpaper to remove irregularities caused by waterjet
cutting. A section of the side centered around the precrack was painted with a black speckeled pattern on white background for the
DIC measurement as shown in Figs. 2 and 3. Finally loading blocks were bonded to the sample.

2.1.3. Test method
The tests were carried out on a Zwick–Roell testing machine with a 2 kN loadcell and a displacement controlled rate of 0.1 mm∕s.

As the tests aim at measuring the TSR, no precracking is done in order to measure the entire development of the damage region
governed by cohesive behavior [16,24–26]. Two cameras were used, one was placed close to the crack tip to measure the crack
tip opening displacement (CTOD) and the second captured a wider frame to track targets bonded to the loading blocks as shown in
Fig. 3. The cameras acquisition rate was 1 Hz. The pictures were processed with Vic-2D 7.

During the test, the load, 𝑃 , machine displacement, 𝛥, CTOD, 𝛿, and loading blocks rotations, 𝜃1 and 𝜃2, were measured. Typical
load–displacement curves for both sample types are shown in Fig. 4 along with the sample after testing. Permanent deformation is
visible for both sample types. The plasticity remained limited in the TS samples as the permanent opening angle was one order of
magnitude smaller than that of the Fe-SMA samples. Even in the presence of limited plasticity, the data reduction method used in
the following section remains valid [20]. In the following, TS samples will be modeled as linear elastic as the loading branch of the
load–displacement shows no sign of adherend yielding.
4
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Fig. 5. Experimentally obtained TSRs with the TS samples.

2.1.4. Data reduction
To compute the fracture energy, the J-integral was used. This method was first proposed in [14] and applied for various

cases [20,27–29]. In the DCB case:

𝐽 = 𝑃
𝑏
𝜃 (1)

where 𝑏 is the specimen width and 𝜃 = 𝜃2 − 𝜃1 the relative rotation of the arms at the loading points, as depicted in the view of
Camera 1 in Fig. 3. Note that this formulation is strictly correct only if no plastic unloading occurs [16], its application in processing
the TS joints is valid but questionable for the Fe-SMA joints. Therefore, the following was carried out only for the TS samples. The
TSR can be obtained from:

𝜎 = 𝑑𝐽
𝑑𝛿

(2)

Further details on the derivation can be found in [16].
As all three quantities, 𝑃 , 𝜃, and 𝛿 were measured continuously during the test, Eq. (1) was applied directly and Eq. (2) was

applied after a filtering step using a Gaussian window of 𝐽 vs. time and 𝛿 vs. time and fitting a cubic spline through both signal.
This prevented noise artifacts from appearing as Eq. (2) essentially consists of two time differentiation and a division. Only values
for 5 × 10−4 mm ≤ 𝛿 ≤ 0.2 mm were kept.

2.2. Experimental TSR

Three experimental TSRs obtained from the TS samples are shown in Fig. 5 and show an stiff initial slope reaching to a maximal
stress of 50 MPa followed by a sharp decrease until 𝛿 ≈ 0.05 mm and a tail reaching 0 MPa.

3. Formulation

To model an adhesively bonded Fe-SMA DCB joint considering nonlinear material deformation as depicted in the upper schematic
in Fig. 6, the beam on foundation model is used. The adherend Fe-SMA material can deform nonlinearly (see Fig. 4) and the adhesive
reaction depends nonlinearly on the opening separation (see Fig. 5). The two nonlinearities are coupled by considering the adhesive
action as a distributed loads on the beam, as shown in the lower schematic in Fig. 6.

3.1. Bending of a nonlinear elastic beam

A nonlinear material deformation beam model is developed first. The experimentally measured stress–strain relation of the Fe-
SMA is used for the nonlinear material behavior of the beam. Classic Euler–Bernoulli beams are used to consider plastic deformation
and their effects on beam behavior. The main assumption in the Euler–Bernoulli theory is that the cross-sections remain planar and
normal to the beam axis after deformation [30]. Considering a short section of the beam as illustrated in Fig. 7, the relation between
the horizontal displacement, 𝑢1, and the vertical displacement, 𝑢2, can be expressed as follows:

𝑢1 = 𝑥2
𝑑𝑢2
𝑑𝑥1

⇒ 𝜀11 = 𝑥2
𝑑2𝑢2
𝑑𝑥21

(3)

where 𝜀11 represents strain of a material point on the beam. 𝑥1 and 𝑥2 represent the Cartesian coordinate system as shown in Fig. 7.
For simplicity, the notation 𝑑𝑛𝑓

𝑛 is replaced with 𝑓 (𝑛). The strain is assumed to be linearly distributed with respect to 𝑥 [30].
5
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Fig. 6. Simplification of an adhesively bonded DCB to a beam on foundation model.

Fig. 7. Linear and nonlinear mapping between strain and stress profile.

To compute the bending moment per unit depth applied on the cross-section of height ℎ, the stress contribution can be integrated
over the beam height. When linear elasticity is assumed, as shown in the linear mapping in Fig. 7, the moment is:

𝑀 = ∫

ℎ∕2

−ℎ∕2
𝑥2𝜎11𝑑𝑥2 = ∫

ℎ∕2

−ℎ∕2
𝑥2𝐸𝜀11𝑑𝑥2 = ∫

ℎ∕2

−ℎ∕2
𝑥22𝐸𝑢(2)2 𝑑𝑥2 = 𝐸𝐼𝑢(2)2 (4)

where 𝐸 is the Young’s modulus and 𝐼 = ℎ3

12 is the 2nd order moment of inertia. This results in a well-known differential equation
escribing a linear elastic bending beam neglecting shear loads.

When nonlinear material deformation is considered, the relationship between 𝜀11 and 𝜎11 is defined by a nonlinear function
11 = 𝑆(𝜀11) [30,31]. This leads to a nonlinear mapping of the stress, as shown in Fig. 7. Using the strain defined in Eq. (3), the
esulting moment acting on a cross section of height ℎ is:

𝑀 = ∫

ℎ∕2

−ℎ∕2
𝑥2𝑆(𝜀11)𝑑𝑥2 = ∫

ℎ∕2

−ℎ∕2
𝑥2𝑆(𝑥2𝑢

(2)
2 )𝑑𝑥2 (5)

where 𝑀 has therefore only 𝑢(2)2 as a variable. The relationship between the local bending moment per unit depth and local curvature
𝑢(2)2 is entirely defined by ℎ and 𝜎11 = 𝑆(𝜀11). This is expressed as follows:

𝑀 = 𝐹 (𝑢(2)2 ) (6)

In the present case, 𝑆(𝜀11) is measured experimentally rather than described by an analytic expression. The nonlinear stress–strain
relationship of Fe-SMA measured in a tensile test is employed to represent 𝑆(𝜀11), as shown in Fig. 8(a). The tension and compression
behavior are assumed to be the same as shown in Fig. 8(a).

In a strain controlled loading–unloading of the material, the function 𝑆(𝜀11) will give the same stress response in both loading
and unloading stages. The physical Fe-SMA will retain part of its deformation if unloaded and thus should be described with an
elasto-plastic material behavior. However, in a pure loading stage, elasto-plasticity and nonlinear elasticity are indistinguishable
6

and the treatment of the material behavior as a function facilitates further developments of the model. In a DCB test, the loading is
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Fig. 8. (a) 𝜎11 = 𝑆(𝜀11) represented by experimental Fe-SMA tensile test data. (b) The associated 𝑀 = 𝐹 (𝑢(2)2 ) function.

Fig. 9. Infinitesimal beam cross-section.

not monotonic and the adherend is subjected to unloading as the critical load reduces with crack propagation, as shown in Fig. 4.
It is assumed that up to crack initiation, the unloading in the adherends is limited, therefore limiting the influence of the simplified
material behavior treatment.

Linear interpolation and trapezoidal integration is used to compute 𝑀 = 𝐹 (𝑢(2)2 ) from the experimental 𝜎11 − 𝜀11 data. The
ntegrand 𝑥2𝑆(𝑥2𝑢

(2)
2 ) is obtained for every −ℎ∕2 ≤ 𝑥2 ≤ ℎ∕2 by linear interpolation in the experimental data representing 𝑆(𝜀11)

or a range 𝑢(2)2 by discretization of the integration domain [−ℎ∕2, ℎ∕2]. Finally, the trapezoidal integration of the integrand over
the domain [−ℎ∕2, ℎ∕2] allows the evaluation of bending moment per unit depth associated with 𝑢(2)2 . An example of the resulting
function is presented in Fig. 8(b) for ℎ = 1.4 mm.

As 𝜎11 = 𝑆(𝜀11) is assumed to be strictly monotonic and increasing, 𝑀 = 𝐹 (𝑢(2)2 ) is as well, it implies that 𝑢(2)2 = 𝐹−1(𝑀) exists. If
the bending moment in the beam is known, so is its local curvature. This is the case for the unbonded region of the DCB specimen.
Given a precrack length 𝑎 and an applied load 𝑃 , the bending moment per unit depth is 𝑀 = 𝑃 (𝑎 − 𝑥1), neglecting nonlinear
geometrical effects. Because 𝑀(𝑥1) is known the curvature 𝑢(2)2 (𝑥1) = 𝐹−1(𝑃 (𝑎 − 𝑥1)) can be calculated.

Integrating this twice from 0 to 𝑎,

𝑢2(𝑎) = ∫

𝑎

0 ∫

𝜉

0
𝑢(2)2 (𝜂)𝑑𝜂𝑑𝜉 + 𝑎𝑢(1)2 (0) + 𝑢2(0) (7)

here 𝑢(1)2 (0) and 𝑢2(0) are the boundary conditions representing the root rotation and 𝛿, respectively.

.2. Nonlinear elastic beam on foundation

In the bonded region, the adhesive layer is continuously bonded to the beam. To couple the adhesive and the layer, an externally
istributed load on the nonlinear beam is considered and this distributed load is then associated to the layer reaction force. First,
he infinitesimal element depicted in Fig. 9 is considered.

Static equilibrium must be maintained; thus, the following conditions must to be met:
𝑑𝑀
𝑑𝑥1

= 𝑃 (8)

𝑑𝑃
𝑑𝑥1

= −𝑞 ⇒
𝑑2𝑀
𝑑𝑥21

= −𝑞 (9)
7
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Fig. 10. Schematic of studied problem with prescribed boundary conditions.

Recalling Eq. (6):

𝑑𝑀
𝑑𝑥1

=
𝑑𝐹 (𝑢(2)2 )
𝑑𝑥1

=
𝑑𝐹 (𝑢(2)2 )

𝑑𝑢(2)2

𝑢(3)2 = 𝑃 (10)

𝑑2𝑀
𝑑𝑥21

=
𝑑2𝐹 (𝑢(2)2 )

𝑑(𝑢(2)2 )2
(𝑢(3)2 )2 +

𝑑𝐹 (𝑢(2)2 )

𝑢(2)2

𝑢(4)2 = −𝑞 (11)

For simplicity, the notation �̇� = 𝑑𝐹
𝑑𝑢(2)2

is used hereafter. Until here no assumptions have been made regarding the distributed load
. If the modeled problem is meant to represent the debonding of an adhesive layer, the normal stress should first increase with the
pening 𝑢2, reach a maximum, and then decrease until the adhesive is completely damaged as in Fig. 5. This relationship is denoted
s 𝜎(𝑢2). Therefore,

𝑀 (2) = 𝐹 (𝑢(2)2 )(𝑢(3)2 )2 + �̇� (𝑢(2)2 )𝑢(4)2 = −𝜎(𝑢2) (12)

Eq. (12) is the general equation describing the deflection of a nonlinear beam on a foundation described by a TSR with any
hape. Two nonlinearities, the beam material nonlinearity via 𝐹 (𝑢(2)2 )(𝑢(3)2 )2 and the adhesive nonlinearity via 𝜎(𝑢2) are combined. If

linear elasticity in the beam and the foundation is assumed, then 𝐹 (𝑢(2)2 ) = 𝐸𝐼𝑢(2)2 and 𝜎(𝑢2) = 𝑘𝑢2, and Eq. (12) reduces to

𝐸𝐼𝑢(4)2 + 𝑘𝑢2 = 0 (13)

which is a form found in [19]. Eq. (12) is a generalization of the augmented cantilever beam that takes two nonlinear behaviors
into account.

3.3. Boundary conditions

External load on the beam is applied through the means of boundary conditions. It is preferable to express the boundary
conditions in terms of displacement to represent a stable, displacement-controlled fracture test. These boundary conditions are
essential for solving the developed differential equation.

The representative loading case illustrated in Fig. 10 is investigated. The beam is fully bonded from 𝑥1 = 0 to the end. A
displacement and the corresponding reacting moment 𝑀 = 𝑃𝑎 are applied at 𝑥1 = 0. This loading scenario represents a DCB test
with a precrack length of 𝑎.

The beam is not loaded from the crack tip but rather from a precrack length 𝑎 and a non-zero bending moment is applied at the
crack tip at 𝑥1 = 0. The transversely reacting load at the crack tip is given by

𝑃 = 𝑀 (1) = �̇� (𝑢(2)2 )𝑢(3)2 (14)

In the unbonded region of the beam, the transverse load 𝑃 is constant; thus, the bending moment 𝑀 applied at the crack tip is
𝑃𝑎 if small displacements are assumed. The following continuity condition must fulfilled.

𝑃 (0)𝑎 = 𝑀(0) ⟺ �̇� (𝑢(2)2 (0))𝑢(3)2 (0)𝑎 = 𝐹 (𝑢(2)2 (0)) (15)

Eq. (15) gives a boundary condition if the problem modeled is a beam loaded from a distance 𝑎. Finally, to obtain the end-beam
deflection, Eq. (7) is used with the root rotation 𝑢(1)2 (0) given by the solution of Eq. (12) and the applied displacement 𝑢2(0) = 𝑢2,0.

The TSR in Fig. 10 represents a possible behavior of the reaction force opposed by the springs, and the behavior is defined in
both tension and compression.
8
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3.4. Numerical solutions

The differential Eq. (12) is solved numerically for two reasons. First, 𝐹 (𝑢(2)2 ) is calculated numerically, as detailed in Section 3.1,
nd there is no analytical expression available. Second, no constraints are imposed on the TSR, 𝜎(𝑢2), which preserves the generality
f the model. A reformulation of the problem and boundary conditions such that it can be solved as a vector boundary value problem
BVP) is presented.

With the following substitutions, the problem can be expressed as a first-order ordinary differential equation (ODE) with a vector
variable:

𝑓 (1)
4 = 𝑢(4)2 = −

𝐹 (𝑓3)
�̇� (𝑓3)

𝑓 2
4 −

𝜎(𝑢2)
�̇� (𝑓3)

𝑓 (1)
3 = 𝑢(3)2 = 𝑓4

𝑓 (1)
2 = 𝑢(2)2 = 𝑓3

𝑢(1)2 = 𝑓2 (16)

Eq. (12) in vector form is given by Eq. (17).

𝑑𝒚
𝑑𝑥1

= 𝒇 (𝑥1, 𝒚) with 𝒚 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓4
𝑓3
𝑓2
𝑢2

⎤

⎥

⎥

⎥

⎥

⎦

,𝒇 (𝑥1, 𝒚) =

⎡

⎢

⎢

⎢

⎢

⎣

− 𝐹 (𝑓3)
�̇� (𝑓3)

𝑓 2
4 − 𝜎(𝑢2)

�̇� (𝑓3)
𝑓4
𝑓3
𝑓2

⎤

⎥

⎥

⎥

⎥

⎦

(17)

Accordingly, the boundary conditions are described by Eq. (18).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

lim𝑥1→∞ 𝑓3(𝑥1) = 0
lim𝑥1→∞ 𝑢2(𝑥1) = 0
�̇� (𝑓3(0))𝑓4𝑎 = 𝐹 (𝑓3(0))
𝑢2(0) = 𝑢2,0

(18)

As the numerical domain cannot be infinite, the solution is solved for a finite length domain, which is assumed to be longer than
the fracture process zone (FPZ). Eqs. (6), (17) and (18) are implemented in Python, and the SciPy library [32] used to numerically
solve the BVP. The internal algorithm is based on a 4th order collocation algorithm with residual control [33].

A flowchart of the implementation is presented in Fig. 11. First, 𝐹 (𝑢(2)2 ) is computed using trapezoidal integration, and a cubic
spline is fitted through the resulting relationship. This allows for smooth evaluation of 𝐹 , �̇� , and 𝐹 . Two functions are required to
solve the system: one that returns 𝒇 (𝒚) and one that returns four residuals (one per boundary condition). The system is solved using
the SciPy routine solve_bvp.

3.5. Experimental validation

The tests carried out in Section 2 are used to validate the proposed model. The tested samples are modeled and the TSRs used
are the ones presented in Fig. 5 where the CTOD has been halved. As the model is a beam laying on a rigid ground representing the
symmetry axis of the DCB sample, as illustrated in Fig. 6, the displacement at the crack tip in the model is half of the experimental
CTOD and the displacement at the loaded end is half of the experimental displacement.

Using a TSR measured with TS joints to model Fe-SMA joints assumes that the fracture energy and the TSR shape are material
properties of the adhesive and independent on the adherends. While this is accepted for the fracture energy [34,35], contradicting
results can be found regarding the shape of the TSR [36,37].

Solutions are computed for a range of CTODs. To compute the reaction load per unit depth on the beam from the solution,
Eq. (19) derived from Eq. (14) is used.

𝑃𝑟𝑒𝑎𝑐𝑡 = �̇� (𝑢(2)2 (0))𝑢(3)3 (0) = �̇� (𝑓3(0))𝑓4(0) (19)

The resulting modeled load-CTOD and load–displacement curves are shown in Fig. 12, along with experimental ones. The
experimental load is normalized per unit width and the experimental CTOD and displacement halved.

Good agreement is found for the TS joints both in the load–displacement and load-CTOD curves (Figs. 12(b) and 12(a)). In the
Fe-SMA joints case, good agreement in the load-CTOD comparison, especially the fracture initiation (0 mm ≤CTOD≤ 0.1 mm) is
found in Fig. 12(c). As for load–displacement case, Fig. 12(d) shows the initial stiffness appears to be overestimated. Nonetheless,
the bond strength can be well approximated.

The proposed method can predict the bond strength of adhesively bonded joints given the TSR corresponding to the adhesive
used. If linear elastic adherends are used the model is able to predict the CTOD and the loading point displacement during the
fracture initiation process. If nonlinear adherends are used and assuming TSRs are adhesive material properties, the model can
predict the CTOD. For the displacement of the loading point, the model prediction deviate from the experiments. The lever length
𝑎 will magnify small root rotation errors and induce a large error in the end-beam displacement, see Eq. (7). The other explanation
may be that TSR shapes are dependent on the adherends and that the TSR should be adjusted if used to model Fe-SMA joints. This
should be done in a way that preserves the fracture energy. However, this question is left outside the scope of the present work and
9

for future investigations.
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Fig. 11. Implementation flowchart for solving the differential Eq. (12).

. Comparison to finite elements method

The proposed theoretical model offers a non-incremental method to model fracture of bonded joints which relies on the analytical
ormulation of the problem at hand and a generic boundary value problem solver. This offers a fast and straightforward way to gain
nsight in a bonded joint behavior. Other methods with the same capabilities exist, with the most popular being a finite element (FE)

model considering elasto-plastic material behavior and cohesive zone modeling (CZM) interaction. To further evaluate the proposed
theoretical model’s accuracy and performance it is compared to such an FE model.

A model representing the problem in Fig. 10 is built using ABAQUS [38]. It consists of a 2D beam and a rigid body 1D ground.
The beam is assigned an elasto-plastic material model with the yield stress-plastic strain relationship depicted in Fig. 13.

A simpler trapezoidal TSR shown in Fig. 14(a) was used for the sake of comparison. The cohesive interface is defined by setting
a cohesive contact between the rigid ground and the beam, and the damage evolution is defined with tabulated data giving the
evolution of the damage (𝐷) with the plastic displacement (𝑈). Both are defined in Eqs. (20) and (21). No interaction is defined for
a length corresponding to the initial crack length 𝑎.

𝐷 = 1 −
𝜎(𝑢2)∕𝑢2

𝐾
= 1 −

𝐾𝐷
𝐾

(20)

𝑈 = 𝑢2 − 𝑢2,𝑖𝑛𝑖𝑡 (21)

Here, 𝐾 is the undamaged stiffness and 𝐾𝐷 is the damaged stiffness of the cohesive interaction, as depicted in Fig. 14.
No additional penalty stiffness is required as cohesive interaction is also defined for a negative opening in ABAQUS allowing to

model the compression of the adhesive layer. The penetration is expected to be smaller than the damage initiation displacement,
so it perfectly mimics an elastic compressive branch, as shown in the insert in Fig. 10.

The rigid ground is completely constrained, and no displacement is allowed. At the free end of the beam, the vertical displacement
is set to zero (second condition in Eq. (18)). A vertical displacement is defined at the loaded end.

The model and boundary conditions are summarized in Fig. 15. The FE model is discretized using plane stress linear quadrilateral
10

elements. The elements aspect ratio is one and the element edge length is 0.175 mm.
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Fig. 12. Validation against experimental DCB test results. (a) Load-CTOD curves for TS samples. (b) Load–displacement curves for TS samples. (c) Load-CTOD
curves for Fe-SMA samples. (d) Load–displacement curves for Fe-SMA samples.

Fig. 13. The stress–strain relationship of Fe-SMA defined in FE modeling.

4.1. DCB model comparison

A 150 mm long beam of 1.4 mm thickness laying on a foundation depicted in Fig. 15 is modeled with both methods. The TSR
used is shown in Fig. 14(a). The material behavior defined is based on the experimental 𝜎11 − 𝜀11 tensile test of Fe-SMA results
(Figs. 8(a) and 13). The precrack length is chosen as 𝑎 = 25 mm. Fig. 16 presents the results under an imposed displacement of
𝑢2,0 = 0.2, 0.5, 1.0 mm. Fig. 16(a) presents solutions for the beam deflection and the corresponding reaction forces opposed by the
adhesive layer. In Fig. 16(b), the load-CTOD curves provided by both models are shown. In Fig. 16(c), the load–displacement curves
are shown.
11
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Fig. 14. Transformation of the TSR to damage evolution data as used in FE. (a) As used in model, represented as 𝜎(𝑢2). (b) The corresponding damage evolution
relationship, as represented in FE.

Fig. 15. Finite element model with the boundary conditions.

All three solutions depicted in Fig. 16(a) are consistent with the FE model. Furthermore, Fig. 16(b), which shows the applied load
over the CTOD, confirms that the model is consistent with the FE model throughout the debonding process. The main assumption
of Section 3.1 appears valid.

Both curves drift apart after the ultimate load is reached, a similar effect is seen in Fig. 12. This is because of the fundamental
difference between the material definition of both models. Upon unloading, the elasto-plastic material retains part of its deformation
as in Fig. 13. Therefore, the FE predicted load–displacement exhibits a higher displacement for the same load after the maximum
load is reached (start of unloading). This explains the difference between the two models, which is amplified by the initial lever
arm length, 𝑎.

What sets the models apart is their computational cost. While FE offers a versatile and robust method to analyze general structural
problems, the simplified model dedicated to a single problem will be computationally less expensive. While it may be hard to
compare two algorithms’ performance objectively, some reasonable comparisons can be made.

To produce the results in Fig. 16, the proposed theoretical model computes 70 solutions with the boundary conditions spanning
0 mm ≤ 𝑢2,0 ≤ 1 mm, this required on average 8.53 ± 0.58 s (the process was repeated 50 times to get an average value). The
FE model computed 63 steps in 58.93 ± 3.00 s using 4 cpus (the process was repeated 10 times to get an average value). Both
computations were performed on the same computer, in the same conditions, with no other resource-consuming process running.

While the effective computing time can be influenced by many factors and these results regarded with the necessary caution,
this suggests a better performance of the proposed theoretical model. It is about seven times faster than the FE. If the user requires
only a single solution and not the full load–displacement behavior, the fact that the proposed theoretical model is non-incremental
further puts it at an advantage.

5. Comparison with linear elastic beams

The significance of this new model lies in its consideration of adherend material nonlinearity. The influence of this beam on
foundation model extension is estimated by comparing it to that of a linear elastic adherends. Two parallel models are compared
in this section. One with an experimental stress–strain curve describing a nonlinear relationship, the same model as in Section 3.5
and a second identical model only with a Young’s modulus 𝐸 = 176′827 MPa (as in Table 1). The TSR used is TS2 in Fig. 5.

The output of both models are presented in Fig. 17. The difference between the beams’ behaviors is limited, as the nonlinear
12

beam remains close to the linear region (see Fig. 17(c)) due to limited precrack and adhesive toughness.
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Fig. 16. Validation against FE for a partially bonded beam. (a) The deflection of the beam and reaction forces opposed by the adhesive layer at different
mposed boundary conditions. (b) The predicted load-CTOD curves. (c) The predicted load–displacement curves.

Fig. 18 shows the effect of beam nonlinear material deformation on the output of the model used in Section 4.1 using a tougher
dhesive. The TSR used is shown in Fig. 14(a). Fig. 18(b) shows the ultimate load is lower by 9.5% in the presence of nonlinear
aterial deformation. The differences are more obvious as the bending moment increases beyond the local linear range in Fig. 18(c).

These differences are explained because the fracture process is inherently a displacement controlled failure process. Adhesive
racture occurs at a critical displacement where the traction reaches zero (in Fig. 5 𝑢2,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.2 mm and in Fig. 14, 𝑢2,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
0.5 mm). When an infinitesimal section of the adhesive undergoes the same stress–strain history and dissipates the same amount of
energy (same TSR), an infinitesimal section of the beam requires less energy to reach compatible deformation. The overall external
work is lower, as shown in Fig. 18(b).

For the same reason, the FPZ, defined as the region within which damage accumulates, is shorter in the nonlinear case than the
linear case (see Fig. 18(a)).

The impact of the material behavior in the bonded region is expected; as the highest bending moment, therefore highest stress,
is located in the vicinity of the crack tip. However, models from the literature do not consider the possibility of local yielding of
adherends [39–42].

This study does not aim to demonstrate that elastic adherends result in higher bond strengths. Instead, it points out the
effect of not considering nonlinear material deformation in the adherends. Bonded lightweight metallic structures undergo plastic
deformation upon joint failure. This is unavoidable because of the thinness of adherends. The results show that the assumption of
linear elastic adherends leads to an overestimation of the bond strength, as nonlinear deformation causes premature joint failure.
Although the presence of two dissipative mechanisms may initially be assumed to increase the bond strength, the inverse occurs as
the increased deformation in the adherends increases the CTOD.

6. Advantages and limitations of the model

The proposed method is able to model the problem of the monotonic debonding of a strip with nonlinear material deformation
bonded to any type of nonlinear adhesive with results in accordance with FE methods and is validated by experiments. Contrary
to FE, the model is non-incremental, allowing for direct computation of the solution given a set of boundary conditions without
handling nonlinearities through incremental steps. This allows for faster execution, about seven times faster.
13
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Fig. 17. Comparison between a linear and nonlinear elastic beam (a) Deflection and reaction force of the cohesive layer for 𝑢2,0 = 0.2 mm. (b) Load–displacement
urves. (c) Moment–curvature relationship both beams with highest moment and curvature in the beam at initiation (𝑢2,0 = 0.1 mm).

Recovering the TSR using the load–displacement curve and unidirectional 𝜎11 − 𝜀11 diagram, appears feasible given the rapid
xecution. Such an approach was proposed recently for hardwood bonded joints [43]. Using this model can allow for the reverse
dentification of the TSR, accounting for the nonlinear material behavior of the adherends and completely decoupling both
onlinearities; however, this is beyond the scope of this work.

Nonetheless, the present work has several limitations worth pointing out and discussing. The first is a simplified treatment of
onlinear material deformation behavior. As mentioned, this approach assumes that the adherends are nonlinear elastic, and thus
istory-independent. This allows for the formulation of Eq. (12), but deviates from reality when unloading occurs. However, Fig. 16
hows that the difference only manifests after the crack has completely initiated. The treatment of CZM suffers from the same
rawback as an unloading actually results in a ‘‘rebonding’’. No history-dependent damage variables are considered. The model is
nly equivalent to an elasto-plastic model with damage accumulation in the adhesive during monotonic debonding. This holds for
ll other analytical closed-form solutions.

The second limitation is the use of a modified Euler–Bernoulli beam with inherent limitations. Only small strains and
eformations are valid; therefore, the unbonded length needs to be short, as a long precrack will lead to large displacements at
he loaded end, which is outside the validity range of the model. For the load–displacement curve presented in Fig. 16, the impact
f the geometric nonlinear deformation is investigated via FE. The maximal error of the reaction load is below 1.3%, whereas the
ifference due to material nonlinearity on the reaction force is about 9.5% in Fig. 18.

. Conclusion

Mode I fracture behavior of Fe-SMA and steel bonded DCB joints were investigated experimentally and theoretically to deepen
he understanding of the influence of Fe-SMA nonlinear material behavior on the joint failure behavior. The main findings of this
tudy are as follows:

• Fe-SMA to Fe-SMA DCB joints were tested and the Fe-SMA material exhibited nonlinear deformation when compared to steel
to steel DCB test results.

• A new theoretical model has been developed and validated against experimental results. It successfully predicts the ultimate
bond strength for the Fe-SMA joints.
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Fig. 18. Comparison between a linear and nonlinear elastic beam (a) Deflection and reaction force of the cohesive layer for 𝑢2,0 = 1 mm. (b) Load–displacement
curves. (c) Moment–curvature relationship both beams with highest moment and curvature in the beam at initiation (𝑢2,0 = 0.5 mm).

• The model captures the interaction of the nonlinear deformations of adhesive and adherend. It shows the influence of
the adherend material nonlinearity on the failure mechanism is to reduce the bond strength by increasing the crack tip
displacement.

• The model is based on a differential equation solved with a general boundary value problem solver openly available. While
it comes with some limitations, the theoretical model is non-incremental and was found to be faster than conventional FE
methods to predict the Mode I failure of Fe-SMA bonded joints while considering the nonlinear material behavior.

• The model can be further used to analyze DCB tests in the presence of unavoidable nonlinear material deformation to extract
TSRs using only adherend stress strain data from a unidirectional tensile test and experimental load–displacement curves.
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