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1. Introduction

Machining is an essential part of modern manufacturing. 
However, anomalies and failures in machining processes, such 
as material with hard inclusions, tool breakage, incorrect 
clamping, or collisions impair its productivity. These failures
can lead to critical consequences, such as downtimes, machine 
damages, as well as scrap and rework. While optimal process 
preparation mitigates the risk of process failures, it cannot fully 
prevent failures and their consequences [1]. Process monitoring 

reduces the risk of such critical consequences by detecting 
abnormal processes and tool conditions. Process monitoring 
systems that prevent critical consequences reliably enable
unsupervised and economical operation of machine tools [2].
Consequently, process monitoring is considered a prerequisite
for autonomous machine tools [3].

To achieve peak performance, state-of-the-art monitoring 
systems require references for the classification of correct (OK) 
and faulty (NOK) processes. Such references are used to
identify process models and sensor signals sensitive to failures, 

56th CIRP Conference on Manufacturing Systems, CIRP CMS ‘23, South Africa

Failure sensitivity and similarity of process signals
among multiple machine tools

Berend Denkenaa, Heinrich Klemmea, Tobias H. Stiehla,*
aInstitute of Production Engineering and Machine Tools, Leibniz Universität Hannover, 30823 Garbsen, Germany

* Corresponding author. Tel.: +49-511-76218003; fax: +49-511-7625115. E-mail address: stiehl@ifw.uni-hannover.de

Abstract

For a monitoring system to provide considerable performance, it usually requires machine- and process-specific information. This includes 
information about which process signals are sensitive to failures and which signal behavior indicates these failures. However, this information is
mostly unavailable when monitoring the manufacturing of individual parts or small series. The transfer of process-specific information among 
similar machine tools can provide the required information, thereby improving monitoring performance. Nevertheless, no systematic research 
exists on what process signals are best suited for such an information transfer. This paper investigates a) whether information about the sensitivity 
of a signal to failures is transferrable among multiple machine tools and b) whether the behavior of these signals, modelled as probability 
distributions, is similar among multiple machine tools. Initially, a measure is introduced that quantifies the capability of a signal to separate two 
process conditions, the signal overlap factor SOF. It is then demonstrated how the SOF can be calculated for transient process conditions. The 
SOF is then empirically determined for a set of process signals for three different machine tools, individually, to assess failure-sensitivity of the 
signals for slot milling in steel. Additionally, the SOF is calculated for the union of the data of the machine tools to assess the similarity of signals 
among machine tools. The set of evaluated process signals includes process forces, the torque of the main spindle, and the torque and position 
control deviation of the feed axes. All machine tools were operated with identical instructions, tools, and materials. Bores were machined in 
workpieces to simulate material anomalies. Results suggest that low-pass filtered process forces or position control deviations, if sensitive to 
failure in a machine tool with linear direct drives, are also sensitive to failure in other machine tools. Also, low-pass filtered process forces were 
the most similar signals among the investigated machines. Possible causes that impair the similarity of signals among machine tools are discussed.



Berend Denkena  et al. / Procedia CIRP 120 (2023) 922–927 923

along with the corresponding monitoring limits. In series 
production, process signals of previous processes can be used 
as references. For the monitoring of small series and 
manufacturing of individual parts, however, these references 
are usually unavailable.

One approach to improve monitoring performance for small 
series and individual parts is to transfer the references, limits,
or models from similar machine tools. In [4], for example, an
artificial neural network to detect chatter from microphone 
signals was trained on one machine tool and used to monitor a 
milling process on another machine tool. In [5], deep learning 
models were transferred between machine tools to detect 
failure patterns in power signals. In [6], limits for torque signals 
of the main spindle were transferred between multiple lathes to 
detect material anomalies online. However, while these 
approaches transfer models among multiple machine tools, no
approach evaluates what signals are best suited for a transfer.

This paper investigates a) whether information about the 
sensitivity of a signal to failures is transferrable among multiple 
machine tools and b) whether the behavior of these signals is 
similar among machine tools. Section 2 introduces a method to 
quantify how well a signal distinguishes OK and NOK 
processes for online monitoring. Section 3 describes the 
experiments and section 4 compares the capability of different 
signals to detect NOK processes and their similarity among 
machine tools. Additionally, disturbance factors are identified.

2. Measure to assess the suitability of signals

Industrial applications require a certain decision quality, 
usually defined as a compromise of high sensitivity and low 
false alarm rates. Therefore, the behavior of signals is modeled 
statistically. Signals are interpreted as a random variable 𝑉𝑉
whose observed values 𝑣𝑣𝑖𝑖 follow different distributions 
depending on the condition of the process.

2.1. Quantifying the suitability of an individual signal

Repetitive processes without wear and anomalies can be 
modeled with a normal distribution [7]. In Fig. 1, 𝑁𝑁(𝜇𝜇𝑂𝑂𝑂𝑂, 𝜎𝜎𝑂𝑂𝑂𝑂

2 )
is the normal distribution of signal values originating from an
OK process with the expected value 𝜇𝜇𝑂𝑂𝑂𝑂 and the standard 
deviation 𝜎𝜎𝑂𝑂𝑂𝑂 . The distribution of NOK processes is fault-
specific. However, it is also assumed to be normally 
distributed. Therefore, 𝑁𝑁(𝜇𝜇𝑁𝑁𝑂𝑂𝑂𝑂, 𝜎𝜎𝑁𝑁𝑂𝑂𝑂𝑂

2 ) is the normal 
distribution of signal values originating from NOK processes.

When monitoring a process, a value 𝑣𝑣𝑖𝑖 of the signal is 
observed. The monitoring system decides whether the observed 
value originated from the distribution of OK processes or not. 
Often, a limit 𝑙𝑙 is used as a critical value to classify the 
observed value. In this case, a monitoring system acts as a 
binary classifier. The decision quality of a binary classifier can 
be quantified by sensitivity and false alarm rates. The 
sensitivity or true positive rate (TPR) is the probability with 
which a NOK process is detected as NOK. The false alarm rate 
or false positive rate (FPR) is the probability with which an OK 
process is falsely assessed as NOK. 

The false positive rate FPR is determined by the position of 
the limit 𝑙𝑙 to the expected value of the distribution of OK

processes 𝜇𝜇𝑂𝑂𝑂𝑂. To not exceed a given false alarm rate FPR, the 
limit l has to be at least placed in a certain distance to the right 
of the expected value 𝜇𝜇𝑂𝑂𝑂𝑂 as defined in Eq. 1:

|𝜇𝜇𝑂𝑂𝑂𝑂 − 𝑙𝑙| ≥ |𝜎𝜎𝑂𝑂𝑂𝑂 ∙ Φ−1(1 − 𝐹𝐹𝐹𝐹𝐹𝐹)| (1)

With Φ−1(𝐹𝐹) = 𝑧𝑧 being the quantile function of the standard 
normal distribution, it assigns the standard score 𝑧𝑧 = (𝑣𝑣-𝜇𝜇)/𝜎𝜎 to 
a probability P. The standard score 𝑧𝑧 is the number of standard 
deviations by which a value is above or below the expected 
value. As for the observed values 𝑣𝑣𝑖𝑖 from an OK distribution
Φ-1(0.9773) ≈ 2 indicates that 97.73% of the observed values 
are less than or equal to 𝜇𝜇𝑂𝑂𝑂𝑂 + 2𝜎𝜎𝑂𝑂𝑂𝑂.

Fig. 1. Relationship between signal distributions, true positive rate, and false 
positive rate.

The other essential requirement, the sensitivity of a 
monitoring system, is determined by the position of the limit 𝑙𝑙
to the expected value of the distribution of the NOK processes. 
To achieve or exceed a required sensitivity TPR, the limit l has 
to be placed at least in a certain distance to the left of the 
expected value 𝜇𝜇𝑁𝑁𝑂𝑂𝑂𝑂 as defined in Eq. 2:

|𝜇𝜇𝑁𝑁𝑂𝑂𝑂𝑂 − 𝑙𝑙| ≥ |𝜎𝜎𝑁𝑁𝑂𝑂𝑂𝑂 ∙ Φ−1(1 − 𝑇𝑇𝐹𝐹𝐹𝐹)| (2)

Nomenclature

B2, B4 Process condition “bore ⌀2 mm”, “bore ⌀2 mm” 
e Position control deviation
F Process force
FPR False positive rate or false alarm rate
𝑙𝑙 Limit or critical value for monitoring
N Feed drive force
NOK Process condition “not correct”
OK Process condition “correct”
P Probability
p Probability density
SOF Signal overlap factor
T Feed drive torque
TPR True positive rate or sensitivity
𝑉𝑉 Signal as a random variable with observed values 𝑣𝑣𝑖𝑖
X, Y, Z Position coordinates
𝑧𝑧 Standard score
𝜇𝜇 Expected value of the population
�̂�𝜇 Estimate for the expected value
𝜎𝜎 Standard deviation of the population
�̂�𝜎 Estimate for the standard deviation
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Instead of the quantile function Φ−1(𝑃𝑃) = 𝑧𝑧 the standard 
score z can be used in Eq. 1 and 2 for a more compact 
representation:

𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹 = |Φ−1(1 − 𝐹𝐹𝑃𝑃𝐹𝐹)| = |Φ−1(𝐹𝐹𝑃𝑃𝐹𝐹)|
and 𝑧𝑧𝑇𝑇𝐹𝐹𝐹𝐹 = |Φ−1(1 − 𝑇𝑇𝑃𝑃𝐹𝐹)| = |Φ−1(𝑇𝑇𝑃𝑃𝐹𝐹)| (3)

Integrating Eq. 1, 2 and 3, to represent the combined 
requirements in terms of sensitivity TPR and false alarm rate 
FPR leads to Eq. 4:

|𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜇𝜇𝑁𝑁𝑁𝑁| ≥ 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝜎𝜎𝑁𝑁𝑁𝑁 + 𝑧𝑧𝑇𝑇𝐹𝐹𝐹𝐹 ∙ 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁 (4)

For a defined decision quality (FPR, TPR) to be reached, the 
distance between the expected values of the distributions (𝜇𝜇𝑁𝑁𝑁𝑁, 
𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁) must be at least 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝜎𝜎𝑁𝑁𝑁𝑁 + 𝑧𝑧𝑇𝑇𝐹𝐹𝐹𝐹 ∙ 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁 as in Fig. 1.

A special case is when requirements for sensitivity and false 
alarm rate are equally demanding (1-TPR = FPR). This causes 
𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹 to be equal with 𝑧𝑧𝑇𝑇𝐹𝐹𝐹𝐹. Equation 4 can then be converted 
into a measure that quantifies the capability of a signal to 
distinguish between two conditions, the signal overlap factor:

𝑆𝑆𝑆𝑆𝐹𝐹 =
|𝜇𝜇𝑁𝑁𝑁𝑁 − 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁|
𝜎𝜎𝑁𝑁𝑁𝑁 + 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁

(5)

Contrary to other discussions of the 𝑆𝑆𝑆𝑆𝐹𝐹 (e.g. [8, 9]), Eq. 5
is designed with standard deviations instead of variances to 
increase interpretability in the context of process monitoring.

2.2. Signal overlap factor for transient process conditions

Existing literature uses the SOF to quantify how well a 
signal discriminates between different conditions that are rather 
stationary, such as “wear” and “no wear”. In online monitoring, 
however, conditions are mostly temporary and anomalies are 
only present for a short period of time, e.g. local material flaws.
To account for the transient behavior of signals, the SOF is 
subsequently calculated at the tool position or time where an 
anomaly causes the highest signal deflection. Mathematically, 
this corresponds to the minimum or maximum of the course of 
a signal. Whether the maximum or minimum applies depends 
on the failure, as well as the signal, and is determined manually. 
In the analysis, the search for extrema is limited to an interval 
where the anomaly is known to occur.

Fig. 2a gives an example of process signals as a function of 
the tool position for different process conditions. Minima are 
determined in the interval from 43 mm to 55 mm of the tool 
position Y. One minimum is determined for every OK process 
(one for every gray curve 𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚,1,𝑁𝑁𝑁𝑁 to 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,30,𝑁𝑁𝑁𝑁 , a total of 
NOK = 30) and one minimum for every NOK process with a
temporary anomaly (one for every blue curve 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,1,𝑁𝑁𝑁𝑁𝑁𝑁 to 
𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚,9,𝑁𝑁𝑁𝑁𝑁𝑁 , a total of NNOK = 9). Once the extrema (either 
minima 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 or maxima 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 of the processes k) are 
determined, the probability distributions are estimated, one 
specific to each process condition. The expected value 𝜇𝜇 of the 
population is estimated by the arithmetic mean:

�̂�𝜇 = 1
𝑁𝑁 ∑ 𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘

𝑁𝑁

𝑘𝑘=1
(6)

The standard deviation 𝜎𝜎 is estimated by:

�̂�𝜎 = √ 1
𝑁𝑁 − 1 ∑ (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 − �̂�𝜇)2𝑁𝑁

𝑘𝑘=1
(7)

Equations 6 and 7 yield the condition-specific means (�̂�𝜇𝑁𝑁𝑁𝑁, 
�̂�𝜇𝑁𝑁𝑁𝑁𝑁𝑁 ) and standard deviations (�̂�𝜎𝑁𝑁𝑁𝑁 , �̂�𝜎𝑁𝑁𝑁𝑁𝑁𝑁 ) that enable the
approximation of the SOF using Eq. 5. For the example in 
Fig. 2b, the SOF is 6.1. While the SOF is calculated from 
extrema to account for the transient signal behavior, it does 
make a statement about the suitability of the evaluated signal 
itself.

The conducted investigation on the suitability of signals for 
the transfer among machine tools evaluates anomalies in the 
form of bores. The SOF is determined as described in Fig. 2.

Fig. 2. (a) Determining extrema and (b) estimated probability functions
specific to process conditions

2.3. Interpretation of the signal overlapping factor

The SOF requirements depend on the monitoring 
application. For reference, the following examples are 
considered: high demands, enabling less than 1 false alarm on 
average in a 24 h period of continuous monitoring making 100
decisions a second (requires 𝐹𝐹𝑃𝑃𝐹𝐹 < 1/8,640,000 or 𝑆𝑆𝑆𝑆𝐹𝐹 ≥ 5.2).
Medium demands are less than 1 false alarm on average in an 
8 h period of continuous monitoring making 10 decisions a 
second (requires 𝐹𝐹𝑃𝑃𝐹𝐹 < 1/288,000 or 𝑆𝑆𝑆𝑆𝐹𝐹 ≥ 4.5). Low 
demands are less than 1 false alarm on average in an 1 h period 
of continuous monitoring making 1 decision a second (requires
𝐹𝐹𝑃𝑃𝐹𝐹 < 1/3,600 or 𝑆𝑆𝑆𝑆𝐹𝐹 ≥ 3.5). In practice, however, 𝜎𝜎 is often 
underestimated due to a small sample size that does not include
all variations. Therefore, all 𝑆𝑆𝑆𝑆𝐹𝐹 requirements are rounded up 
to the nearest integer (Tab. 1) More precise requirements can 
be determined from an economic perspective [10] or a 
perspective of functional safety [11].

Tab. 1: Examples of SOF requirements for univariate, one-sided monitoring

Demands for monitoring Requirement incl. safety margin

High: <1 false alarm in 24h at 100 Hz SOF ≥ 6

Medium: <1 false alarm in 8h at 10 Hz SOF ≥ 5

Low: <1 false alarm in 1h at 1 Hz SOF ≥ 4
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3. Experimental setup

To evaluate which signals are suited best for a transfer 
scenario, experiments were conducted on three different
milling centers of similar size (Tab. 2). The machine tools 
differed in terms of controls, feed drive design, and spindle 
performance. The same NC instructions were used for all 
machine tools (G-code according to ISO 6983), except for the 
machine-specific file headers. Workpieces were from 
normalized heat treatable steel (1.0601). The employed end 
mill cutters had a diameter of 8 mm and four teeth (no. 19940 
by Gühring KG). A single batch of workpieces were used.

Experiments were comprised of slot milling with consistent 
process parameters (Fig. 3). The depth of cut ap was 2 mm, feed 
per tooth fz was 0.05 mm, and cutting speed vc was 150 m/min.
The Y-axis is the feed axis, the X-axis is resting, and the Z-axis 
is the vertical axis. Process conditions varied between OK, B2, 
and B4 according to Tab. 3. Bores constituted a reproducible 
material anomaly, thereby allowing a more precise focus on the 
variances between machine tools. Three tools and three 
workpieces were used per machine tool.

Acquired signals comprise the measured process forces (FX, 
FY, FZ), the actual position of the tool center point (X, Y, Z), 
position control deviations (eX, eY), and the torque of the main 
spindle (TSP). Additionally, torque of the feed drives (TX, TY, 
TZ) was recorded for machine tools with ball screw drives 
(MIL) and forces of the feed drives (NX, NY, NZ) were recorded 
for machine tools with linear direct drives (HSC30, HSC55).
Process forces were recorded with a dynamometer (type 9257B 
by Kistler Instrumente AG) with a sampling frequency of 
20 kHz. The remaining signals were recorded from the control 
of the machine tools with a sampling rate of 125 Hz. All signals 
were lowpass-filtered with a cut-off frequency of 10 Hz.

Fig. 3. Experimental setup for slot milling processes

4. Evaluation of process signals

The subsequent analysis uses the signal overlap factor SOF,
as in Fig. 2, to quantify the capability of process signals to 
distinguish process conditions. All signal values are assumed 
to be normally distributed. Signals are assessed for individual 
machine tools and among multiple machine tools, the latter 
representing a transfer scenario. Bores 2 mm and 4 mm 
represent material anomalies (conditions B2 and B4). The 
analysis focuses on the B4 condition since it demonstrates the 
same type of failure as the B2 condition, but with more 
pronounced effects.

Figure 4 gives an overview of the signal overlap factors SOF
for the three individual machine tools and the union of their 
data sets (transfer scenario). For individual machine tools, 
signals that meet at least low demands (SOF ≥ 4) are the control 
deviation of the X-axis eX, the torque of the main spindle TSP

and the process forces FX, FY and FZ. For the transfer scenario, 
the SOFs are generally lower than for individual machine tools.

The differences among machine tools present a disturbance 
factor when transferring references for signals among machine 
tools. The only signals in the transfer scenario that meet at least 
low demands are measured process forces. Due to the varying 
feed drive concepts of machine tools, controls provide different 
physical quantities (torque T and force N) that form no 
meaningful union set. Consequently, no SOF is available 
(marked ‘-‘). The suitability of signals is subsequently analyzed 
in detail.

Fig. 4. Signal overlapping factor for different signals and machines

4.1. Process forces

The probability distributions used to calculate the SOF for 
the process force Fx are shown in Fig. 5. The histograms 
visualize the distribution of observed signal values (bar charts, 
scaled to match PDFs). The orange curves represent the 
probability density functions (PDFs) of the normal 
distributions estimated by formula 6 and 7 from the observed 
signal values. 

For all machine tools, the locations of the distributions differ
between the OK processes (gray, �̂�𝜇𝑂𝑂𝑂𝑂 ) and the material 
anomalies (light and dark blue, �̂�𝜇𝐵𝐵2, �̂�𝜇𝐵𝐵4). The displacement in 
the force FX that is caused by the bore 2 mm is less pronounced 
than for the bore 4 mm. As a result, the distance between the 
mean values of the OK and B2 condition (�̂�𝜇𝑂𝑂𝑂𝑂 - �̂�𝜇𝐵𝐵2) decreases 

Tab. 2: Examined 5-axis milling centers

ID Model Control
Feed 
drive

Main 
spindle

Machining 
space

MIL DMG Mori 
Milltap 700

Siemens Sinu-
merik 840D sl

Ball 
screw

4 kW / 
8 Nm

700x420x3
80 mm

HSC30 DMG Mori 
HSC 30 linear

Siemens Sinu-
merik 840D sl

Direct 
drive

15 kW / 
12 Nm

320x300x2
80 mm

HSC55 DMG Mori 
HSC 55 linear

Heidenhain 
iTNC 530

Direct 
drive

55 kW / 
19 Nm

450x650x4
60 mm

Tab. 3: Conducted slot milling experiments

Condition Description Repetitions Parts & 
OK No anomalies, OK process 30/machine 3/machine
B2 Anomaly: single bore ⌀ mm 9/machine 3/machine
B4 Anomaly: single bore ⌀ mm 9/machine 3/machine
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when compared to the condition B4. The deviation (�̂�𝜎𝐵𝐵2, �̂�𝜎𝐵𝐵4), 
however, remains similar. Following Eq. 5, the SOF decreases 
from 12.4 (for B4 vs. OK) to 6.9 (for B2 vs. OK) as a result. 

For individual machine tools, the process force FX of the 
resting axis, normal to the feed direction, is generally the best 
suited signal. It is meets high demands for all machine tools. 
The process forces FY and FZ, in comparison, are generally less 
sensitive to failures. This is predominantly due to higher 
variations resulting from the cutting process itself. 
Consequently, the process forces FY and FZ meet low demands 
only for the detection of bores 4 mm (SOF > 4.8).

In the transfer scenario (union), the process force FX of the 
resting axis meet high demands for monitoring (SOF ≥ 6.9 for 
bore 2 mm and 4 mm). The process forces FY and FZ meet 
medium demands for the bore 4 mm (SOF of 5.1 and 5.0). The 
rather small difference between the SOF of individual machine
tools and the transfer scenario indicates that low-pass filtered 
process forces are generally well suited for a transfer.

Differences between machine tools are mostly caused by 
different standard deviations in the B2 and B4 conditions, e. g.
between the HSC30 and the HSC55. Low-pass filtering of 
process forces suppressed the highly machine-specific part of 
the frequency response functions at about 100 Hz and above.

Fig. 5. Condition-dependent distributions of the process force FX

4.2. Main spindle torque

For individual machine tools, the suitability varies greatly
(0.9 ≤ SOF ≤15.9). While the main spindle torque TSP meets 
high demands for monitor the bore 2 mm on the machine tool
HSC55, it is unsuited on the machine tool MIL. However, for 
the bore mm, the main spindle torque meets at least low 
demands for all machine tools (Fig. 6).

In the transfer scenario (union), the main spindle torque is 
unsuited for monitoring (SOF = 2.1, bore mm). However, the 
torque of the main spindle TSP has the best suitability among 
the signals sourced from the machine control.

Differences between machine tools result from varying 
spindle drive properties and signal processing. For instance, the 
no-load torque of spindles differs causing different locations of 
distributions (�̂�𝜇𝑂𝑂𝑂𝑂 , �̂�𝜇𝐵𝐵2, �̂�𝜇𝐵𝐵4). For the machine tool MIL, the 

signal processing within the machine control caused an 
increased standard deviation. Internal filters were deactivated, 
thereby increasing noise and possibly causing aliasing.
Similarity of torque signals could be improved among machine
tools by employing observers that isolate the process-related 
signal components.

Fig. 6. Condition-dependent distributions of the torque of the main spindle Tsp

4.3. Position deviation

For individual machine tools, the control deviation in feed 
direction eY is unsuited for machine tools with linear direct 
drives (HSC30, HSC55). While the bores affect the control 
deviation, the effect is superimposed and dominated by a 
periodic, low frequency disturbance, probably resulting from 
groove and cogging effects. Future work might eliminate this 
disturbance by employing a high-pass filter. The control 
deviation of the resting axis ex, normal to the feed direction, 
meets high demands for monitoring (Fig. 7). This is true for 
both the 2 mm and the 4 mm bore (SOF ≥ 6.7).

In the transfer scenario (union), all control deviations are 
unsuited for monitoring (SOF ≤ 1.7). The distributions for the 
B2 and B4 conditions of the machine tool MIL are located apart 
from those of the machine tools HSC30 and HSC55 (Fig. 6). 
Consequently, in the union set, the standard deviation increases 
and the SOF decreases. However, the meaning of the SOF is 
limited in this situation, as the distribution of the bores in the 
union set is insufficiently represented by a normal distribution. 
The distributions of OK conditions are meaningful. OK 
distributions are sufficiently similar for an anomaly detection 
that requires no information about failures. With this limitation,
the control deviations are considered to meet at least low 
demands in the transfer scenario. Differences in the control 
deviation of machine tools arise from dynamic properties of the 
feed drives and control parameters, such as contour tolerances.

4.4. Feed axes torque and force

For individual machine tools, the force or torque of feed 
axes are mostly unsuited for monitoring. An exception is the
machine tool MIL, where the torque of the X-axis meets low 
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demands for detecting the bore 4 mm. On the machine tools 
HSC30 and HSC55, the force signal is dominated by a periodic 
disturbance. While the bore affects the force signals, the failure 
pattern is superimposed and dominated by groove and cogging 
effects. Both machine tools have linear direct drives. As for the 
transfer scenario, no comparison was possible as the machine 
controls output different physical quantities (forces vs. torque).

Fig. 7. Condition-dependent distribution of the position control deviation eX

5. Conclusion

Effective monitoring requires signals that are sensitive to 
failures, such as material anomalies, tool breakage, and 
collisions. Signals that are sensitive to failures on one machine 
tool might not be sensitive to failures on another machine tool. 
However, the conducted investigation suggests, for the 
selection of signals sensitive to material anomalies in slot 
milling on individual machine tools, that

• measured and low-pass filtered process forces are among the 
most sensitive signals on all machine tools,

• the resting axis, normal to the feed direction, provides the 
most suitable signals of all feed axes,

• low-pass filtered process forces or position control 
deviations, if suited for monitoring on a machine with linear 
direct drives, are also suited for monitoring on other 
machine tools.

Sharing references for signals among multiple machine
tools requires signals that are sensitive to failure on all machine
tools and, additionally, are similar among all machine tools. As 
for the similarity of signals among multiple machine tools, the 
conducted investigation suggests, that

• measured and low-pass filtered process forces are among the
most similar signals among machine tools,

• the distribution of correct processes of the position control 
deviation of the resting axis, normal to the feed direction, is
similar among machine tools,

• the more pronounced a failure pattern is, the less similarity 
is required for a transfer of references to still be successful,

• process forces and the main spindle torque are independent 
of machine-specific kinematics.

The examined machine tools were of similar size, had similar 
spindle drive power and similar kinematics (Tab. 2). In 
addition, only a selection of low-pass filtered signals were 
examined. Future research should assess a broader variety of 
machine tools, processes, failures, signals, and signal 
processing. Furthermore, future research should investigate the 
typical probability distributions of failures. The signal overlap 
factor SOF could then be generalized to evaluate arbitrary 
probability distributions. For the concept of the SOF to yield 
robust results, probability distributions have to model all 
occurring variations in an application. This modelling can be 
challenging in industry. Consequently, future work should 
investigate how probability distributions change when 
boundary conditions vary, e.g. machining aluminum instead of 
steel. Future research might also determine how precise process 
force observers or force sensors need to be to enable a 
successful transfer of signal references.
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