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1. Introduction

The aerospace industry is characterized by high quality 
requirements. For example, the international standard EN 9100 
describes requirements for quality management systems in the 
aerospace industry [1]. However, the current inspection process 
of a workpiece does not add value to the workpiece and causes 
a high expenditure of time and costs. Particularly due to small-
series production of large components made of aluminum or 
titanium, it is not always possible to reduce the scope of 
inspections by means of sample-based inspection planning 
(IP). In the present application, however, a 100 % inspection
leads to an inspection time of 4.5 h for the optical measurement 
of a sill beam. An adaption of the scope is therefore necessary 
in order to reduce avoidable inspection efforts in quality 
assurance. It is already shown that the use of a digital twin can 
be useful for optimizing the production system [2]. In this 
context, the virtual measurement result can be used as a filter 
to reduce avoidable inspection efforts [3]. For this purpose,
only inspections of workpieces that cannot be unambiguously 
classified into the categories "OK" and "not OK" are defined as 
necessary inspection efforts. In this paper, the potential of a 
digital twin based adaption of the inspection plan is 
demonstrated.

2. State of the art

The task of IP is to design quality inspections for the various 
manufacturing steps of products or service delivery stages. 
During IP, the inspection steps, procedures, methods and 
finally the inspection plans are developed [4]. Already more 
than thirty years ago, Neumann devised an approach to
automated IP that is still frequently referred to today. This 
results in a distinction between product-dependent and product-
independent planning components within IP. The work focuses 
on a reduction of the experience-based steps within the 
product-dependent IP in small-series production [5]. Based on 
Neumann, further work has been done in the following years to 
increase the degree of automation within IP [6,7]. According to 
Hwang et al., the number of measurement points is a key 
element to achieve sufficient measurement accuracy within 
quality inspection. Therefore, to reduce the subjectivity of the 
inspection planner, a knowledge-based IP system was 
developed for the automated generation of effective and 
consistent inspection plans [8]. Ahmed et al. dealt with 
experience-based, product-related IP in the context of Industry 
4.0. Here, the relevant knowledge is collected, stored and used 
in a higher-level system of intelligent, virtual product 
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development. The use of experience knowledge thus leads to 
an improvement in product-related IP in the early phases of 
product development [9]. Ascione et al. already provide the
first work on the generation of adaptive inspection plans for 
coordinate measuring machines. Using Gaussian process 
models, the next measuring point of the workpiece is selected 
based on the predictions as well as the uncertainty of the shape
deviation. Iteratively, the next point to be inspected is selected 
and then measured until a termination criterion is met [10].

Data-based approaches for virtual inspection of workpiece 
quality are necessary for an adaptive IP. The prediction of 
straightness and roundness of milled surfaces based on internal 
drive signals was investigated by Brecher et al. To predict the 
quality parameters, a neural network with the following input 
parameters is used: drive currents, spindle current and speed, 
as well as encoder positions. The results show highly accurate 
prediction results in the application used [11, 12]. Another 
approach for virtual inspection of machined workpieces is 
provided by Königs and Brecher. Measured process forces of a 
dynamometer, the recorded axis positions of the control and a 
process-parallel material removal simulation are used. A 
comparison of the virtually obtained results with the 
conventional measurement results yields a maximum deviation 
of 3 µm. However, the approach has so far been limited to 
simple flank milling processes [13]. To predict the milled 
surface roughness, Khorasani and Yazdi achieved a surface 
roughness prediction accuracy of over 99 % in their studies for 
flute milling [14]. Further work on surface roughness 
prediction based on neural networks or genetic algorithms can 
be found in [15, 16]. Moreover, it should be considered that the 
selected modeling approach has an impact on the accuracy of 
the developed model. For example, Denkena et al. show that 
the resulting root mean square error of the model has a high 
dependence on the selected modeling approach and the 
hyperparameters [17].

The current state of the art shows that there is potential in 
the use of data-based predictions for quality inspection.  
However, research results are mainly limited to simple 
machining processes, so there is not yet sufficient knowledge 
about the applicability of virtual inspection methods for 
industrial use cases. Furthermore, from a scientific point of 
view, IP has not progressed much in recent years. A holistic 
approach by feeding back virtual measurement results into the 
IP is not yet state of the art. However, such an approach would 
lead to a significant reduction of the efforts in quality control.

3. Approach

Within the CAD-CAM chain, inspection planning usually 
takes place in parallel with or following CAM planning (s. Fig. 
1, step 1). As described, classical inspection planning usually 
takes place once for a specific product. All steps of the quality 
inspection are thus generally defined. An individual adaptation 
of the necessary inspections per workpiece is not carried out. 
Adaptive IP extends the classical IP in two essential aspects. 
First, it integrates a digital twin into the planning process. 
Secondly, the initial inspection plans are adapted on this basis
(s. step 5). 

Fig. 1. Method for adaptive IP

After the machining process of the workpiece, all relevant 
manufacturing data (machine, sensor, simulation and quality 
data) must be stored in the form of a digital footprint of the 
workpiece (s. step 2). Based on this, the modeling of the 
workpiece quality takes place in the subsequent step 3. If not 
already available, virtual inspection equipment must first be 
developed to enable data-based quality inspection. These are, 
for example, regression models that provide the correlation 
between the input variables from the machine, the sensor 
system or the simulation with the target quality value. Such 
models are then used in the NC simulation to determine the 
achieved quality. The result of the quality modeling is finally 
new knowledge about the existing workpiece quality (s. step 
4). Based on the result, a decision is made on the further quality 
inspection of the workpiece. Therefore, it is common to 
categorize them as "OK" and "Not OK". If the virtual quality 
inspection can also clearly classify the workpiece, no further 
physical inspection is necessary and the inspection plan is 
adapted (s. step 5). However, it is possible that the determined 
quality value is very close to the tolerance limit. In this case, a 
physical re-inspection is necessary, since it cannot be assumed 
with sufficient certainty that the virtual quality inspection is 
unambiguous. In this case, the inspection order remains in the 
inspection plan. The procedure for determining a threshold 
value and for adapting the inspection plan will be described in 
more detail later in this paper.

4. Digital twin for virtual quality inspection

4.1. Data acquisition

This article is based on a use case from the aerospace
industry. The sill beam of an Airbus A 350 Cargo has a length 
of over 4.3 m and functions as a kind of door frame of the cargo 
hatch at the rear of the aircraft. The surface roughness Ra and 
the shape deviation ds exist as inspection characteristics 
whereby in this work the shape deviation is defined as the 
distance in terms of amount between the actual and nominal 
shape. A complete geometry inspection of a single sill beam 
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takes about 4.5 h. The potential for adaptive IP of the 
workpiece is therefore definitely present here. A demonstrator 
component of the sill beam was hence derived (s. Fig. 2). Table 
1 shows the cutting parameters used. 

Fig. 2. Experimental setup

Table 1. Design of experiments
Name Peripheral face 

milling 
End face milling

Feed rate vf 2,190; 3,960 mm/min 2,190; 3,960 mm/min

Depth of cut ap 20 mm 0.3; 1.4 mm

Width of cut ae 0.3; 1.4 mm 7; 14 mm

Virtual quality inspection using a digital twin requires the 
recording and synchronization of different data streams (s. Fig. 
3). As part of the work, a digital twin was set up within the 
dexel-based material removal simulation IFW CutS [18]. For 
the simulation of the real machining process, a dexel resolution 
of 20 dexels/mm and a cycle time of 0.001 s are used.

Fig. 3. Approach to virtual quality inspection

Furthermore, the interpretation of the axis positions is 
carried out using the real axis positions which are read out from 
the machine control (Siemens 840D sl). The data is logged via 
a TCP/IP interface at a frequency of 160 Hz. For this, the 
commercially available communication library "ACCON-

AGLink" from Deltalogic is used. The following NC variables 
are readout from the machine control (s. Table 2). 

Table 2. Relevant data from the machine control

Name Definition NC 
variable*

Unit

Current axis position in the 
workpiece coordinate system

actProgPos mm

Current spindle speed actSpeed U/min

Current feed rate actFeedRateIpo mm/min

* according to SINUMERIK 840D sl NC Variable and Seam Position 
Signals, List Manual, Version 4.5 SP2

Additionally, process forces are recorded during the 
machining process using a Kistler M9257B dynamometer. By 
means of process forces, additional indicators that influence the 
workpiece quality (e.g. tool wear) can be taken into account.
The inclusion of axis and spindle currents is also conceivable. 
However, this was not implemented in this article. During data 
preprocessing, the active force Fa was calculated from the 
tangential Ft and normal force Fn. Finally, the maximum force 
of the active force Fa,max is included in the virtual quality 
inspection. Within the material removal simulation, additional 
local cutting conditions are calculated for each simulation step
(s. Table 3). By these, the process knowledge can be 
additionally extended. By using calculated cutting conditions, 
additional information (e.g. material removal rate Qw or tool 
wrap angle φ) can be used that influence a quality deviation.

Table 3. Relevant simulation variables from IFW CutS

Name Unit

Material removal rate Qw mm3/s

Depth of cut ap mm

Width of cut ae mm

Tool wrap angle φ °

Furthermore, quality data is recorded tactilely. The 
roughness values are recorded using a MarSurf LD 130 (λc = 
0.8 mm, lr = 0.8 mm, ln = 4 mm). The shape deviation data is
recorded using a Precision Coordinate Measuring Machine of 
type Leitz PMM 866 at a distance up to 0.25 mm. The 
alignment of the workpiece geometry to the nominal geometry 
is based on the best-fit method. A probe ball with a diameter of 
3 mm is used to measure the shape deviation. The probing 
accuracy is about 0.3 µm. According to DIN ISO 1101, the 
shape deviation is recorded by Chebyshev.
Finally, the last step of data acquisition consists of 
synchronizing the data streams. This procedure was 
programmed in MATLAB software (s. Fig. 4). The basis for 
the material removal simulation is the read-out machine data. 
Based on the axis positions, the virtual machine axis are moved 
within the simulation. Parallel to the virtual production of the 
workpiece, the relevant cutting conditions are calculated. 
Finally, both the axis positions and the cutting conditions can 
be exported together from the simulation. Furthermore, the 
quality data is recorded in a locally resolved manner. Thus, the 
measuring points are to be defined in the workpiece coordinate 
system. Based on the axis positions, which are also read out in 
the workpiece coordinate system, the associated simulation 
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data can be determined using the least squares method. 
Consequently, the time t of the process is also known. This is 
necessary to compare the already filtered force data (low pass 
filter = 350 Hz) with the synchronized data streams. At time t, 
the corresponding force value is extracted from the data. Fa,max

is then calculated as the average value of the Fx,max and Fy,max

values for a full milling tool revolution. After that, a data set is 
available, which can be used for further investigations.

Fig. 4. Approach of data synchronization

4.2. Modeling 

First, significance analysis of the data sets is carried out to 
make a selection of suitable input parameters for the virtual 
quality inspection (s. Fig. 5). The Pearson coefficient was used
as an indicator for the significance of the input parameter A 
compared to the output parameter B (s. Eq. 1). 

𝜌𝜌(𝐴𝐴, 𝐵𝐵) = 1
𝑁𝑁−1 ∑ (𝐴𝐴𝑖𝑖−µ𝐴𝐴

𝜎𝜎𝐴𝐴
)𝑁𝑁

𝑖𝑖=1 (𝐵𝐵𝑖𝑖−µ𝐵𝐵
𝜎𝜎𝐵𝐵

), (1)
where μA and σA are the mean and standard deviation of A 
and μB and σB are the mean and standard deviation of B. A 
value of 1 shows a perfect positive correlation. A value of 0 
represents no correlation.

Fig. 5. Significance analysis of the input parameters in relation to the quality 
target variable

First of all, it should be mentioned that the cutting width ae

has the most significant influence on the material removal rate 
Qw due to the selected design of experiment. Therefore, a high 
relevance of the cutting width ae and the tool engagement angle
φ results in the data sets, which are dependent on each other.
Furthermore, the active force Fa,max has a high linear 
dependence on the material removal rate Qw. The surface 
roughness Ra, however, depends mainly on the feed rate vf and 
the cutting width ae. Two different data sets were divided for 
further virtual quality inspection (s. Table 4). Data setm,s

initially includes both manufacturing (machine and sensor 
data) and simulation data. Data setm, on the other hand, only 
includes manufacturing data. Thus, the benefit of an additional 
material removal simulation can be evaluated for the present 
use case. 

Table 4. Relevant simulation variables from IFW CutS

Data set Feature source Features

dsm,s Manufacturing and simulation data Fa,max, vf, Qw, ae

dsm Manufacturing data Fa,max, vf

Ram,s Manufacturing and simulation data Fa,max, vf, Qw, φ

Ram Manufacturing data Fa,max, vf

The modeling was done in Python using the library sklearn.
Due to the small size of the available data sets, a nested cross-
validation was performed. In addition, model building was 
performed for 30 iterations. Each iteration had a different 
assignment of training and test data sets (random states). For a 
better comparability, the mean value as well as the standard 
deviation of the comparison metrics (e.g. Mean absolute error 
(MAE)) were formed. In the context of this work, the potential 
was initially investigated by using machine learning methods 
in comparison to heuristic regression methods for the present 
use case. Furthermore, the influence of adding simulation data 
(material removal rate Qw and tool engagement angle φ) on the 
prediction result was investigated. As methods of supervised 
learning, Support Vector Regression (SVR), Gradient Boosted 
Trees (GBT), Gaussian Process Regression (GPR) and 
Decision Tree (DT) were compared. Linear Regression (LR) 
and Bayesian Ridge Regression (BR) were used for 
comparison with heuristic methods (grey background in Fig. 6 
and 7). 

Considering the prediction results of the shape deviation ds 
in Fig. 6, it is first shown that machine learning methods are 
suitable for quality prediction.  Thus, GPR provides the best 
prediction result with a MAE of 0.8 µm. Including the standard 
deviation, a mean absolute percentage error (MAPE) between 
8.5 % and 11.5 % can be expected. In contrast, heuristic 
methods (grey background) show a 40 % higher MAE. On 
average, this is 1.3 µm. This corresponds to a MAPE of 13.5 %. 
Furthermore, when examining the prediction results, it can be 
seen that the modeling uncertainty can also be reduced by using 
machine learning methods. While the MAE varies by 
± 0.22 µm with heuristic methods, the uncertainty with GPR is 
± 0.11 µm. Hence, the investigations show that significantly 
more stable prediction results can be achieved with machine 
learning methods and thus represent an added value for data-
based quality inspection. Additionally, it is noticeable that 
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already by using manufacturing data a reliable quality 
prediction is made. Thus, the addition of simulation data during 
flank milling does not lead to an improvement in the prediction 
quality. These results can be explained by the fact that there is 
a high linearity between the input variables in the data set. 
Thus, the material removal rate Qw, the cutting width ae, the
tool engagement angle φ as well as the active force Fa,max have 
a comparably high linear dependence on the shape deviation 
ds.

Fig. 6. Prediction results of shape deviation ds

Fig. 7. Prediction results of surface roughness Ra

The results that machine learning methods can significantly 
increase the prediction quality are also shown in Fig. 7. 
Compared to heuristic methods (grey), the MAE can be 
reduced on average from 0.079 µm to 0.039 µm by using GPR, 
which corresponds to a reduction of almost 50 %. Furthermore, 
it could be demonstrated among all the models used that the 
addition of simulation data leads to an increase in the prediction 
quality when modeling the surface roughness Ra. The largest 
reduction of the MAE was achieved by using the SVR and the 
GPR (-34 %). Furthermore, it can be seen that the prediction 
uncertainty could be reduced by using machine learning 
methods and the addition of simulation data. The standard 

deviation of the prediction results could be reduced by 45% 
when using the SVR. A comparable result could also be 
obtained by using the GPR and the GBT. Overall, a MAE 
between 0.03 µm and 0.048 µm can be achieved when 
predicting the surface roughness Ra, which corresponds to a 
MAPE between 7.1 % and 11.1 %. Using heuristic methods, a 
MAE of 0.079 µm (MAPE of 19.7 %) is expected.

Overall, it can be seen that when comparing the prediction 
quality of dsm and Ram, the prediction of shape deviation ds
without simulation data works much more reliably. This can be 
explained by the fact that there is a large linear dependency 
between the input and output variables (s. Fig. 5). Accordingly, 
fewer independent variables are included in the dataset. 
However, an increase in the influence of the simulation data is 
expected if more complex geometries are investigated.

5. Inspection plan adaption

Considering the previous results, it has been shown that 
data-based quality inspection based on machine learning can 
provide a reliable prediction of workpiece quality. By 
integrating the trained models, a virtual quality inspection can 
be performed within the digital twin. Based on the inspection 
result, the existing part quality can now be visualized by 
coloring the workpiece depending on the virtual inspection 
result. The result of the virtual quality inspection always has a 
certain variance compared to the conventionally measured 
quality. The adaption of the inspection plan, which is based on 
the virtual inspection result, therefore considers the uncertainty 
associated with the prediction. For this purpose, a threshold 
value th has to be defined, which represents the uncertainty of 
the inspection result. This is then available in an interval (± th).
Using the example of the shape deviations ds, eqs. 2-4 show 
the output of the virtual quality inspection.

{𝑑𝑑𝑠𝑠𝑡𝑡 | 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡ℎ ≤ 𝑑𝑑𝑠𝑠𝑡𝑡 ≥ 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡ℎ},   (2)

{𝑑𝑑𝑠𝑠𝑡𝑡 | 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡ℎ ≥ 𝑑𝑑𝑠𝑠𝑡𝑡 ≤ 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡ℎ},   (3)

{𝑑𝑑𝑠𝑠𝑡𝑡 | 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡ℎ ≤ 𝑑𝑑𝑠𝑠𝑡𝑡 ≤ 𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡ℎ},   (4)
with the target value dst, the actual value dsmeas and the 
threshold value th. The target value dst contains the nominally 
required quality specification as well as the permitted tolerance
(e.g. dst = 15 µm). As an example, one way to define the 
threshold th could be the level of MAPE (e.g. 10 %) of the 
underlying data set. Consequently, each measurement result 
dsmeas is calculated with 10 % measurement uncertainty. 
Subsequently, a rule-based adaption of the inspection plan is 
performed. If the quality target is outside the virtual inspection 
result, no further classical inspection of the workpiece is 
performed (s. Fig. 8 a)). The inspection result may be 
significantly below the specification (e.g. 12 µm ± 1.2 µm, eq. 
2) or above the specification (e.g. 18 µm ± 1.8 µm, eq. 3). In 
both cases, no further inspection is necessary, since it could be 
safely classified as OK or NOT OK.  This reduces the 
inspection effort defined in the original inspection plan by the 
inspected characteristics. However, if the quality target is 
within the result interval (e.g. 14 µm ± 1.4 µm, eq. 4), there is 
no clear inspection certainty, so another quality inspection is 
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required. In this case, the inspection plan cannot be reduced (s. 
Fig. 8 b). In this case, a further classical inspection of the 
feature is necessary. 

Fig. 8. Inspection plan adaption

As already explained, the duration for geometrical 
inspection of a sill beam is 4.5 hours. With a 100 % virtual 
inspection, the time-consuming physical inspection can be 
reduced to only the necessary measuring points. However, the 
major part (approx. 75 %) of a sill beam consists of the 
inspection features presented in this paper (straight flanks as 
well as surface roughness). Such workpiece features can 
already be inspected with a high degree of reliability using 
data-based inspection, so that time-consuming, traditional 
inspection can be dispensed with. If avoidable inspection 
efforts of 75 % can be saved, already 3.4 h inspection time per 
sill beam can be saved.

6. Summary and outlook 

This work presented a novel approach of adaptive inspection 
planning using a digital twin that can reduce manual inspection 
efforts for geometric measurement of a sill beam by up to 4.5 h. 
Until now, current IP methods have lacked adaptive procedures 
to react to possible manufacturing errors at an early stage and 
reduce inspection efforts. One possibility for the integration of 
virtual inspection methods lies in the use of data-based machine
learning approaches. These have clear advantages over 
heuristic methods in terms of prediction accuracy. 
Furthermore, it can be beneficial to expand the knowledge 
required for data-based prediction with additional simulation 
variables such as the metal removal rate Qw or the tool 
engagement angle φ. However, since every virtual 
measurement result is subject to a certain degree of uncertainty, 
a safety factor should be taken into account in order to 
subsequently reduce avoidable inspection efforts. In the 
context of this work, this factor was assumed to be constant 
(e.g. the level of the MAPE). In further work, additional 
modeling possibilities of uncertainty consideration in the 
context of adaptive IP will be researched. Furthermore, the 

investigations for data-based quality prediction will be 
extended to other workpiece segments, such as the pocket 
radius. This will lead to an improvement in virtual inspection 
results and adaptive IP.  
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