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Abstract
Conway and Coxeter have shown that frieze patterns
over positive rational integers are in bijection with trian-
gulations of polygons. An investigation of frieze patterns
over other subsets of the complex numbers has recently
been initiated by Jørgensen and the first two authors. In
this paper, we first show that a ring of algebraic num-
bers has finitely many units if and only if it is an order
in a quadratic number field ℚ(

√
𝑑) where 𝑑 < 0. We

conclude that these are exactly the rings of algebraic
numbers over which there are finitely many non-zero
frieze patterns for any given height. We then show that
apart from the cases 𝑑 ∈ {−1,−2, −3, −7, −11} all non-
zero frieze patterns over the rings of integers 𝑑 for
𝑑 < 0 have only integral entries and hence are known
as (twisted) Conway–Coxeter frieze patterns.

MSC 2020
05E99, 11R04, 11R11, 13F60 (primary)

1 INTRODUCTION

Frieze patterns are arrays of numbers introduced by Coxeter [2] (for the definition, see Section 3).
They are closely connected to Fomin and Zelevinsky’s cluster algebras of Dynkin type 𝐴. This
connection to cluster algebras is one of the main reasons for frieze patterns being an active topic
of research, linking different areas like combinatorics, geometry and representation theory; see
the survey [10].
Soon after Coxeter defined frieze patterns, Conway and Coxeter [1] gave a beautiful character-

isation of frieze patterns over the positive rational integers: such frieze patterns of height 𝑛 are
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2 CUNTZ et al.

in bijection with triangulations of a regular (𝑛 + 3)-gon. It is an obvious question whether this
observation of Conway and Coxeter could be generalised from triangulations to other dissections
of polygons. About 40 years later, several variations were proposed.
In [4], we give a combinatorial model for frieze patterns over the rational integers

(including negative numbers and 0) and suggest to consider further subsets of the com-
plex numbers. This extends the case of frieze patterns over ℤ ⧵ {0} that was also consid-
ered in [7]. Our combinatorial model consists of triangles and quadrangles plus a com-
binatorial recipe to determine the entries of the corresponding frieze patterns from the
dissection.
In [8], the authors define for any integer 𝑝 ⩾ 3 the notion of a frieze pattern of type Λ𝑝: a

frieze pattern (with positive real numbers as entries) is of type Λ𝑝 if the quiddity sequence con-
sists of (positive) integral multiples of the number 𝜆𝑝 = 2 cos(

𝜋

𝑝
). Note that for 𝑝 = 3 we have

𝜆3 = 1 and frieze patterns of type Λ3 are precisely the Conway–Coxeter frieze patterns (over pos-
itive rational integers). Then the classic result by Conway and Coxter can be generalised (see [8,
Theorem A]): There is a bijection between 𝑝-angulations of the (𝑛 + 3)-gon and frieze patterns of
type Λ𝑝 with height 𝑛. One can even go a bit further: to any dissection of a polygon one can
associate a frieze pattern with entries in 𝐾 , the ring of algebraic integers of the number field
𝐾 = ℚ(𝜆𝑝1 , … , 𝜆𝑝𝑠 ), where 𝑝1, … , 𝑝𝑠 are the sizes of the subpolygons in the dissection. This yields
an injection from polygon dissections of the (𝑛 + 3)-gon to frieze patterns with height 𝑛 (see [8,
Theorem B]).
In [3], a notion of irreducible frieze pattern was introduced. Using this notion one obtains

combinatorial models for the set of frieze patterns with entries in arbitrary subsets of a com-
mutative ring. The set of irreducible frieze patterns for a given subset is infinite in most
cases, but it turns out that all the previously known combinatorial models arise in this
way.
One of the most fundamental questions in the theory of frieze patterns is whether over a given

set of numbers there are finitely or infinitely many non-zero frieze patterns for any given height.
Usually, one can only expect a nice combinatorial model when the number of frieze patterns in
each height is finite. In [4], the following results are shown:

(1) If 𝑅 ⊆ ℂ is a discrete subset, then there are only finitely many non-zero frieze patterns over 𝑅
of height 𝑛 for each 𝑛 ∈ ℕ (see [4, Corollary 3.8]).

(2) Let 𝑅 ⊆ ℂ be a subset containing infinitely many divisors of 2. Then for each 𝑛 > 0 there are
infinitely many non-zero frieze patterns of height 𝑛 over 𝑅 (see [4, Proposition 3.9]).

It is known that a subring 𝑅 of the complex numbers forms a discrete subset if and only if 𝑅 is
contained in the ring of integers𝑑 of an imaginary quadratic number fieldℚ(

√
𝑑) for 𝑑 < 0 (see

Proposition 3.11). So, according to (1) above these rings of integers will lead to finitely many non-
zero frieze patterns in each height. On the other hand, any ring of integers 𝑑 of a real quadratic
field ℚ(

√
𝑑) with 𝑑 > 0 contains infinitely many units by Dirichlet’s unit theorem. Hence by (2)

above, there are infinitely many non-zero frieze patterns in each positive height over 𝑑 for any
𝑑 > 0.
One of the aims of this paper is to deduce for many more subrings 𝑅 of the complex numbers

whether or not there are finitely or infinitely many non-zero frieze patterns. More precisely, we
can give an answer for subrings 𝑅 for which all entries in non-zero frieze patterns over 𝑅 are
algebraic numbers.
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 3

Our first main result shows that having finitely many non-zero frieze patterns in each height
restricts the possible subrings. This theorem will be restated and proven as Theorem 3.5.

Theorem 1.1. Let 𝑅 ⩽ ℂ be a subring and let 𝑅◦ be the subring of 𝑅 generated by all entries of all
non-zero frieze patterns over 𝑅. If 𝑅◦ ⊆ ℚ, then there are finitely many non-zero frieze patterns over
𝑅 in each positive height if and only if

(i) 𝑅◦ = ℤ or
(ii) 𝑅◦ is an order in ℚ(

√
𝑑) with 𝑑 ∈ {−1,−2, −3, −7, −11}.

To prove Theorem 1.1, we need the following purely number theoretic result on the number of
units in rings of algebraic numbers:

Theorem 1.2 (Theorem 2.1). Let 𝑅 ⩽ ℚ be a subring with finitely many units. Then 𝑅 = ℤ or there
exists an integer 𝑑 ∈ ℤ<0 such that 𝑅 is an order in ℚ(

√
𝑑).

Theorem 1.1 shows that the imaginary quadratic fields and their rings of integers play a special
role when studying non-zero frieze patterns over arbitrary number fields.
Clearly, every frieze pattern over the rational integers ℤ is also a frieze pattern over 𝑅 for any

subring 𝑅 ⩽ ℂ. The non-zero frieze patterns over ℤ are known. First of all there are the frieze
patterns over positive rational integers considered by Conway and Coxeter. When also allowing
negative integers as entries, not very many further frieze patterns occur (see [7]): every non-
zero frieze pattern over ℤ is either a Conway–Coxeter frieze pattern or can be obtained from a
Conway–Coxeter frieze pattern by multiplying every second diagonal by −1 (which only works
if the height 𝑛 is odd). We call the latter twisted Conway–Coxeter frieze patterns. In Section 4, we
give a self-contained proof of this fact, using different methods than in [7]. In particular, there are
only finitely many non-zero frieze patterns over the rational integers.
For understanding frieze patterns over rings of integers in quadratic number fields, the fun-

damental question is how many new such frieze patterns appear in addition to the non-zero
frieze patterns over ℤ already known. As our second main result we can answer this question for
almost all rings of integers in imaginary quadratic number fields. This theorem will be restated
and proven as Theorem 5.2.

Theorem 1.3. Let 𝑑 be a negative square-free integer. Then

◦
𝑑
=

{
𝑑 if 𝑑 ∈ {−1,−2, −3, −7, −11},
ℤ else.

In other words, for any negative square-free integer 𝑑 ∉ {−1,−2, −3, −7, −11} the only non-
zero frieze patterns over 𝑑 are the Conway–Coxeter frieze patterns and the related twisted
Conway–Coxeter frieze patterns.

In the cases of frieze patterns over𝑑 for 𝑑 ∈ {−1,−2, −3, −7, −11}, it seems to be a hard prob-
lem to classify all non-zero frieze patterns and each of these casesmight need different ideas. After
posting our preprint to the arxiv, it has been stated in [6] that Theorem 1.3 could also be obtained
by a geometric argument.
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4 CUNTZ et al.

2 SUBRINGS OF ℚWITH FINITELYMANY UNITS

In this section, we give a proof of:

Theorem 2.1. Let𝑅 ⩽ ℚ be a subring with finitely many units. Then𝑅 = ℤ or there exists an integer
𝑑 ∈ ℤ<0 such that 𝑅 is an order in ℚ(

√
𝑑).

Let us, as a first approximation, show that a subring of ℚ with finitely many units is contained
in an imaginary quadratic field.

Proposition 2.2. Let 𝑅 ⩽ ℚ be a subring and denote by Quot(𝑅) the field of fractions of 𝑅. If 𝑅 has
finitely many units, then Quot(𝑅) is either ℚ or an imaginary quadratic field.

Proof. We can assume that the field extension Quot(𝑅)∕ℚ has finite degree; in fact if Quot(𝑅)∕ℚ
has infinite degree, choose more than two ℚ-linearly independent elements 𝛼1, … , 𝛼𝑛 of 𝑅 and
replace 𝑅 by ℤ[𝛼1, … , 𝛼𝑛] ⩽ 𝑅 in the argument.
By the primitive element theorem, we have an element 𝜗0 in Quot(𝑅) such that ℚ(𝜗0) =

Quot(𝑅). Observe that Quot(𝑅)
𝑅

is a torsion group. Hence by multiplying by a sufficiently large
integer 𝑁, we find that 𝜗 ∶= 𝑁 ⋅ 𝜗0 is both in 𝑅 and ℤ[𝜗] is an order in Quot(𝑅).
Dirichlet’s unit theorem (see [11, Theorem 12.12] for a version including orders) states that the

rank of the group of units of ℤ[𝜗] is 𝑟 + 𝑠 − 1, where 𝑟 is the number of real embeddings and 𝑠 the
number of conjugate pairs of complex embeddings of ℚ(𝜗) = Quot(𝑅).
If 𝑟 + 2𝑠 = [ℚ(𝜗) ∶ ℚ] > 2, then 𝑟 + 𝑠 − 1 > 0, thus the group of units 𝑅× is infinite because it

contains ℤ[𝜗]×. On the other hand, if ℚ(𝜗) is real quadratic, then 𝑟 = 2, 𝑠 = 0 and 𝑟 + 𝑠 − 1 > 0
as well. This gives the desired conclusion. □

Before concluding the proof of Theorem 2.1, let us prove two simple facts. All rings here are
commutative with unit. Given two subrings 𝑅1, 𝑅2 of a ring 𝑅3, we denote by 𝑅1 ⋅ 𝑅2 the ring
generated by the two rings in 𝑅3. It is nothing else than the natural image of the map

𝑅1 ⊗ℤ 𝑅2 → 𝑅3,

given by the bilinear form obtained by the multiplication on 𝑅3.

Proposition 2.3.

(a) Let𝑅1, 𝑅2 be two subrings of𝑅3. Suppose that𝑅1 ∩ 𝑅2 has finite index in𝑅2. Suppose furthermore
that for every positive integer 𝑛, we have that 𝑅1∕𝑛𝑅1 is finite. Then 𝑅1 has finite index in 𝑅1 ⋅ 𝑅2.

(b) Suppose that𝑅1 ⊆ 𝑅2 is an inclusion of ringswith finite index (as abelian groups). Then𝑅×1 ⊆ 𝑅
×
2

has also finite index (as abelian groups).

Proof. For part (a). The natural map

𝑅1 ⊗ℤ 𝑅2 ↠
𝑅1 ⋅ 𝑅2
𝑅1
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 5

factors through

𝑅1 ⊗ℤ
𝑅2

𝑅1 ∩ 𝑅2
↠
𝑅1 ⋅ 𝑅2
𝑅1

.

Now the second factor is a finite abelian group by assumption. Let 𝑛 be its order. Then the map
further factors through

𝑅1
𝑛𝑅1

⊗ℤ
𝑅2

𝑅1 ∩ 𝑅2
↠
𝑅1 ⋅ 𝑅2
𝑅1

.

Now the source is a finite abelian group and so also the target must be finite, as desired.
For part (b). Observe that the abelian group 𝑅2∕𝑅1 is naturally an 𝑅1-module. Denote by 𝐽 the

kernel of the natural map 𝑅1 → Endab.gr.(𝑅2∕𝑅1). It is clearly an ideal of 𝑅1. But as a matter of fact
it is already an ideal of 𝑅2. Indeed 𝑟𝐽𝑅2 = 𝐽𝑟𝑅2 ⊆ 𝑅1, for each 𝑟 in 𝑅2. Furthermore 𝐽 has finite
index in 𝑅1 (the endomorphism ring of a finite abelian group is certainly finite), which has finite
index in 𝑅2. It follows that 𝐽 is an ideal of 𝑅2 with finite index. Hence, we have that the subgroup

ker(𝑅×
2
→ (𝑅2∕𝐽)

×)

has also finite index in 𝑅×
2
(the target group is the unit group of a finite ring). But by construction

this consists of elements of the form 1 + 𝑗 with 𝑗 in 𝐽 and hence of 𝑅×
1
(the inverse of 1 + 𝑗 is

a priori in 𝑅2, but it has to be still in 1 + 𝐽 as one can see reducing 𝑅2 modulo 𝐽, therefore the
inverse is also in 𝑅1), which therefore in particular must have finite index (as a subgroup does),
as desired. □

Proposition 2.4. Let 𝑅 be a subring of a number field 𝐿. Let 𝑛 be a positive integer. Then 𝑅∕𝑛𝑅
is finite.

Proof. For an abelian group 𝐴, the property that 𝐴∕𝑛𝐴 is finite for all 𝑛 is equivalent to the same
property over primes 𝑛 ∶= 𝑝. Now suppose that 𝐴 is a torsion free abelian group, such that all its
finitely generated subgroups have rank at most 𝑑, for a uniform positive integer 𝑑. Then we claim
that 𝐴∕𝑝𝐴 must be finite for all prime number 𝑝, and more precisely it must have dimension at
most 𝑑, for each 𝑝. Suppose not. Then we can find 𝑑 + 1 elements 𝑎1, … , 𝑎𝑑+1 in 𝐴, which are
linearly independent vectors in 𝐴∕𝑝𝐴. Let now 𝐻 ∶= ⟨𝑎1, … , 𝑎𝑑+1⟩ be the group generated by
these elements. It must be that 𝐻∕𝑝𝐻 is a 𝑑 + 1-dimensional vector space, as its image in 𝐴∕𝑝𝐴
is already 𝑑 + 1-dimensional. It follows that the finitely generated group 𝐻 surjects onto 𝔽𝑑+1𝑝 ,
hence its rank has to be at least 𝑑 + 1, a contradiction. This gives the desired conclusion for any
such 𝐴.
We now reach the desired conclusion for 𝑅, as 𝑅 is a subgroup of a finite-dimensional ℚ-

vector space, 𝐿. And if 𝑑 denotes the dimension of this space then clearly every finitely generated
subgroup of 𝐿must have rank at most 𝑑. This ends the proof. □

To conclude the proof of Theorem 2.1, we have the following.

Proposition 2.5. Let 𝑅 be a subring of a number field 𝐿. Suppose that 𝑅× is finite. Then 𝑅 is
contained in 𝐾 for some imaginary quadratic field 𝐾 inside 𝐿.
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6 CUNTZ et al.

Proof. Thanks to Proposition 2.2, we already know that there must be 𝐾 ⊆ 𝐿 a sub-extension that
is imaginary quadratic and contains 𝑅. Hence, we are reduced to proving the statement in the case
that 𝐾 = 𝐿 is an imaginary quadratic field.
Let us first assume that 𝑅 is not a subring ofℚ. This means that 𝑅 ∩ 𝐾 is a finite index subring

of 𝐾 . It follows that 𝑅′ ∶= 𝑅 ⋅ 𝐾 contains 𝑅 as a finite index subring thanks to Proposition 2.3
combinedwith Proposition 2.4. It follows that#𝑅′× < ∞, as 𝑅× has finite index therein, by Propo-
sition 2.3, and it is finite by assumption. Hence, we are reduced to prove the desired conclusion
for 𝑅′, which, this time, contains𝐾 . Suppose by contradiction that there exists 𝛼 in 𝑅′ that is not
contained in 𝐾 . Let us factor the principal 𝐾-module (𝛼) in prime factors

(𝛼) =
∏
𝔭∈𝑆+

𝔭𝑛(𝔭) ⋅
∏
𝔮∈𝑆−

𝔮𝑛(𝔮),

where for all 𝔭 in 𝑆+ we have that 𝑛(𝔭) > 0 and for all 𝔮 in 𝑆− we have that 𝑛(𝔮) < 0. The
assumption that 𝛼 is not in 𝐾 is equivalent to saying that 𝑆− is not empty.
Now, as the class group of 𝐾 is finite [11, Theorem 6.3], we can raise 𝛼ℎ for some positive

integer ℎ, in such a way that each ideal in the expression becomes principal. We conclude that we
can write

𝛼ℎ ∶=
𝛾1
𝛾2
,

with 𝛾1, 𝛾2 coprime elements of 𝐾 (and hence also of 𝑅′) such that 𝛾2 has positive valuation at
some prime. As 𝛾1, 𝛾2 are coprime, we can find 𝑥, 𝑦 in 𝐾 such that

1 = 𝑥𝛾1 + 𝑦𝛾2.

It follows that 𝑥𝛼ℎ + 𝑦 = 1

𝛾2
, where the left-hand side is visibly in 𝑅′. Hence, we have that 1

𝛾2
is

an element of 𝑅′, and therefore

𝛾2 ∈ 𝑅
′×,

is an element of infinite order, as its image under the valuationmap at one place has infinite order.
This gives the desired conclusion.
We are left with the case where 𝑅 is contained in ℚ, where we replicate the same argument as

above, this time with ℎ = 1. This ends the proof. □

Example 2.6. Let 𝑑 = −13, 𝜏 ∶=
√
𝑑,𝛼 = (−2 + 5𝜏)∕47 and consider the ring𝑅 = ℤ[𝛼].We com-

pute a unit in 𝑅 of infinite order following the proof of Proposition 2.5. Denote by  the maximal
order in Quot(𝑅). Then in , we have the following factorisations of ideals into prime ideals:

(−2 + 5𝜏) = (7, 1 + 𝜏) ⋅ (47, 9 + 𝜏), (47) = (47, 38 + 𝜏) ⋅ (47, 9 + 𝜏).

Thus, we have

(𝛼) = (7, 1 + 𝜏) ⋅ (47, 38 + 𝜏)−1.
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 7

With ℎ = 2, we get principal ideals

(7, 1 + 𝜏)2 = (6 − 𝜏), (47, 38 + 𝜏)2 = (−34 + 9𝜏), 𝛼ℎ =
6 − 𝜏

−34 + 9𝜏
=
𝛾1
𝛾2
,

and indeed, 𝛾1 = 6 − 𝜏 and 𝛾2 = −34 + 9𝜏 are coprime in . The element 1∕𝛾2 is a unit in 𝑅 ⋅ 
but not in 𝑅. As 𝑅 has finite index in 𝑅 ⋅ , it suffices to compute powers of 1∕𝛾2: the third power
of 1∕𝛾2 is equal to (68 102 − 21 735𝜏)∕476 that turns out to be a unit in 𝑅:

(68 102 + 21 735𝜏) ⋅ (68 102 − 21 735𝜏)∕476 = 1

is an equality in ℤ[𝛼] as

−68 102 − 21 735𝜏 = 5 900 521𝛼6 + 12 400 457𝛼5 + 2969,

(−68 102 + 21 735𝜏)∕476 = −1 215 601𝛼6 − 339 167𝛼5 − 4689.

The norms of these elements are not 1; they have infinite order in the group 𝑅×.

3 FRIEZE PATTERNS AND ALGEBRAIC NUMBERS

In this section, we collect some of the fundamental definitions in the theory of frieze patterns. We
then study in detail frieze patterns over algebraic number fields. As a main result, we obtain in
this section a proof of Theorem 1.1 from the introduction.

Definition 3.1. A non-zero frieze pattern  of height 𝑛 over a subset 𝑅 ⊆ 𝐾 of a field 𝐾 is an
infinite array of the form

⋱ ⋱

0 1 𝑐𝑖−1,𝑖+1 𝑐𝑖−1,𝑖+2 ⋯ ⋯ 𝑐𝑖−1,𝑛+𝑖 1 0

0 1 𝑐𝑖,𝑖+2 𝑐𝑖,𝑖+3 ⋯ ⋯ 𝑐𝑖,𝑛+𝑖+1 1 0

0 1 𝑐𝑖+1,𝑖+3 𝑐𝑖+1,𝑖+4 ⋯ ⋯ 𝑐𝑖+1,𝑛+𝑖+2 1 0

⋱ ⋱

with 𝑐𝑖,𝑗 ∈ 𝑅 ⧵ {0} such that each adjacent 2 × 2-submatrix has determinant 1, that is, 𝑐𝑖,𝑗𝑐𝑖+1,𝑗+1 −
𝑐𝑖,𝑗+1𝑐𝑖+1,𝑗 = 1 for all 𝑖 ∈ ℤ and 𝑖 + 1 ⩽ 𝑗 ⩽ 𝑛 + 𝑖 + 2 (with 𝑐𝑖,𝑖+1 = 1 = 𝑐𝑖,𝑛+𝑖+2). We sometimes
write  = (𝑐𝑖,𝑗) for such a frieze pattern.

Every non-zero frieze pattern  as above is tame (that is, all neighbouring 3 × 3-determinants
are 0); a proof of this fact can be found in [5, Proposition 2.6].
Note that for a non-zero frieze pattern all entries are uniquely determined by the entries in the

first diagonal (… , 𝑐𝑖−1,𝑖+1, 𝑐𝑖,𝑖+2, 𝑐𝑖+1,𝑖+3, …). Following Conway and Coxeter [1], we call this the
quiddity sequence of the frieze pattern. It is known that non-zero frieze patterns satisfy a glide
reflection, in particular the quiddity sequence is invariant under translation by 𝑛 + 3 steps. So,
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8 CUNTZ et al.

the entire frieze pattern is determined by the quiddity cycle (𝑐0,2, 𝑐1,3, … , 𝑐𝑛+2,𝑛+4) (or any shift
thereof).
We address now the fundamental question of whether for a given ring 𝑅 there are finitely many

or infinitely many non-zero frieze patterns over 𝑅 in each height. The following known result
shows that such a ring should have finitely many units.

Proposition 3.2. Let𝑅 be a ring containing infinitelymany pairs (𝑎, 𝑏) ∈ 𝑅 ⧵ {0}with 𝑎𝑏 = 2. Then
there are infinitely many non-zero frieze patterns of height 1 over 𝑅. In particular, this holds for a ring
𝑅 with infinitely many units and characteristic ≠ 2.

Proof. Each pair (𝑎, 𝑏) with 𝑎𝑏 = 2 gives the quiddity cycle (𝑎, 𝑏, 𝑎, 𝑏) of length 4, and this yields
a non-zero frieze pattern over 𝑅 of height 1. □

From now on, we consider subrings 𝑅 of the field of complex numbers ℂ. In the light of Propo-
sition 3.2, it is relevant for our purposes to determine whether or not such a subring contains
finitely or infinitely many units. In Theorem 2.1, we have obtained an answer for subrings of the
ring of algebraic numbers.
We shall need the following notion frequently.

Definition 3.3. Let 𝑅 ⩽ ℂ be a subring. We define 𝑅◦ to be the subring of 𝑅 generated by all
entries of all non-zero frieze patterns over 𝑅 and call it the frieze subring of 𝑅.

We can then state a strong and maybe surprising consequence of Theorem 2.1.

Corollary 3.4. Let 𝑅 ⩽ ℂ be a subring such that the number of non-zero frieze patterns over 𝑅 is
finite in each height. If the frieze subring 𝑅◦ does not contain a transcendental number, then 𝑅◦ = ℤ
or there exists an integer 𝑑 ∈ ℤ, 𝑑 < 0 such that 𝑅◦ is an order in ℚ(

√
𝑑).

Proof. As the number of non-zero frieze patterns in each height is finite, it is in particular finite
in height 1; this implies that 𝑅◦ has finitely many units by Proposition 3.2. If 𝑅◦ does not con-
tain a transcendental number, then 𝑅◦ ⩽ ℚ, thus by Theorem 2.1, 𝑅◦ = ℤ or 𝑅◦ is an order in an
imaginary quadratic number field. □

This corollary is the key step to proving our first main result Theorem 1.1 from the introduction.
We restate this theorem here for the convenience of the reader.

Theorem3.5. Let𝑅 ⩽ ℂ be a subring. If the frieze subring𝑅◦ is contained inℚ, then there are finitely
many non-zero frieze patterns over 𝑅 in each positive height if and only if

(i) 𝑅◦ = ℤ, or
(ii) 𝑅◦ is an order in ℚ(

√
𝑑) with 𝑑 ∈ {−1,−2, −3, −7, −11}.

Proof. Let 𝑅◦ ⩽ ℚ and suppose that there are only finitely many non-zero frieze patterns over
𝑅 in each height. By Corollary 3.4, we know that 𝑅◦ = ℤ or 𝑅◦ is an order in ℚ(

√
𝑑) for some

rational integer 𝑑 < 0. If 𝑅◦ = ℤ or 𝑅◦ ⊆ 𝑑 with 𝑑 ∈ {−1,−2, −3, −7, −11}, then we are in case
(i) or case (ii) of the theorem and there is nothing to show. For every negative rational integer 𝑑 ∉
{−1,−2, −3, −7, −11}we show in Theorem 5.2 that◦

𝑑
= ℤ, and we are in case (i) of the theorem.
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 9

We now prove the converse. If 𝑅◦ = ℤ then there are finitely many non-zero frieze patterns in
each height by the work of Conway–Coxeter [1] and Fontaine [7]; we give an independent proof of
this fact in Section 4. As mentioned in the introduction, it is known that for every rational integer
𝑑 < 0 the ring of integers 𝑑 is a discrete subset of ℂ and hence there are finitely many non-zero
frieze patterns over 𝑑 in each height by [4, Corollary 3.8]. □

We close this section with general observations on frieze patterns over rings. The first one
abstracts one of the steps in the proof of Proposition 2.5.

Lemma 3.6. Let 𝑆 be a Dedekind domain with torsion class group and 𝑆 ⩽ 𝑅 ⩽ Quot(𝑆) a ring. If
𝑆 ≠ 𝑅, then 𝑆× has infinite index in 𝑅×.

Proof. One can apply the proof of Proposition 2.5 almost verbatim. The only additional observation
is that in the step of that proof where we invoked the finiteness of the class group we only needed
it to be a torsion group. Following that argument (with same notation) we find an element 𝛾2 that
has positive valuation at some prime of 𝑆 and is invertible in 𝑅. This means that the map

div𝑅 ∶ Quot(𝑆)× →
⨁

𝔭 maximal ideal in 𝑆
ℤ ⋅ 𝔭,

sending an element ofQuot(𝑆)× in its valuation vector, sends 𝑆× to 0 and 𝛾2 to a non-zero element,
hence necessarily of infinite order. It follows that 𝑅

×

𝑆×
has a quotient of infinite order and therefore

it is infinite, as desired. □

Remark 3.7. If 𝑆 is finite in Lemma 3.6, then it is well-known that 𝑆 is a field. Hence, in this case
𝑆 = Quot(𝑆) and there is no ring 𝑅 ≠ 𝑆 between 𝑆 and Quot(𝑆).

Corollary 3.8. Let 𝑆 is a principal ideal domain and 𝑆 ⩽ 𝑅 ⩽ Quot(𝑆) a ring. If 𝑆 ≠ 𝑅, then 𝑅 has
infinitely many units.

Proof. This follows at once from Lemma 3.6 and the fact that principal ideal domains are precisely
the Dedekind domains with trivial (and so in particular torsion) class group. □

Proposition 3.9. Let 𝑆 be a principal ideal domain andQuot(𝑆) be of characteristic≠ 2. If 𝑆 ⩽ 𝑅 ⩽
Quot(𝑆) is a ring such that the number of non-zero frieze patterns over 𝑅 is finite in each height, then
𝑅 = 𝑆.

Proof. Assume for a contradiction that 𝑎
𝑏
∈ 𝑅 ⧵ 𝑆 where 𝑎, 𝑏 ∈ 𝑆. By Corollary 3.8, 𝑅 has infinitely

many units. But this contradicts Proposition 3.2:𝑅 can only have finitelymany units because there
are only finitely many non-zero frieze patterns over 𝑅 of height 1 by assumption. □

As the special case 𝑆 = ℤ in Proposition 3.9, we obtain that ℤ is the only subring of the rational
numbers having finitely many non-zero frieze patterns in each height.

Corollary 3.10. Let 𝑅 ⩽ ℚ be a subring such that the number of non-zero frieze patterns over 𝑅 is
finite in each height. Then 𝑅 = ℤ.
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10 CUNTZ et al.

The following result is well-known, we include a proof for the convenience of the reader.

Proposition 3.11.

(1) Let 𝑅 ⩽ ℂ be a discrete subring. Then there exists a rational integer 𝑑 < 0 such that 𝑅 ⩽ ℚ(
√
𝑑).

(2) Let 𝑧 ∈ ℚ ⩽ ℂ be such that ℤ[𝑧] is discrete with respect to the topology induced by ℂ. Then ℤ[𝑧]
is an order in ℚ(𝑧).

Proof.

(1) As 𝑅 is discrete, as an abelian subgroup of ℂ its rank is at most two. If the rank is one, then
𝑅 = ℤ. Otherwise there exists an 𝜔 ∈ 𝑅 such that 𝑅 = ⟨1, 𝜔⟩ as an abelian group. Thus, there
are 𝑎, 𝑏 ∈ ℤ such that 𝜔2 = 𝑎𝜔 + 𝑏. Hence, 𝜔 is an algebraic integer and the field ℚ(𝜔) has
degree 2 over ℚ. Moreover, ℚ(𝜔) ⊄ ℝ because 𝑅 has rank two. So, ℚ(𝜔) = ℚ(

√
𝑑) for some

𝑑 < 0 and it follows that 𝑅 ⩽ ℚ(𝜔) ⩽ ℚ(
√
𝑑), as claimed.

(2) We proceed as in (1) for 𝑅 = ℤ[𝑧] and obtain an algebraic integer 𝜔 such that ℤ[𝑧] = ⟨1, 𝜔⟩.
Thus, 𝑧 is integral as well and hence ℤ[𝑧] is an order in ℚ(𝑧). □

4 NON-ZERO FRIEZE PATTERNS OVER INTEGERS

The goal of this section is to give a self-contained proof of the known classification of frieze pat-
terns with entries from the set of non-zero rational integers. It turns out that in addition to the
classic Conway–Coxeter frieze patterns over the positive rational integers only very few new frieze
patterns occur. We shall give an independent proof of this result below. These non-zero frieze pat-
terns over ℤ will appear again in the next section when we study frieze patterns over rings of
quadratic integers.
We first provide some observations that hold more generally for non-zero frieze patterns over

the set of real numbers with absolute value at least 1√
2
≈ 0, 7071.

Lemma 4.1. Let  = (𝑐𝑖,𝑗) be a non-zero frieze pattern as in Definition 3.1 and suppose that 𝑐𝑖,𝑗 ∈
ℝ>𝑎 ∪ ℝ<−𝑎 where 𝑎 =

1√
2
. We set

𝜀𝑖,𝑗 =

{
1 if 𝑐𝑖,𝑗 > 0
−1 if 𝑐𝑖,𝑗 < 0

.

Then the following hold.

(a) For all 𝑖 ∈ ℤ and 𝑖 + 2 ⩽ 𝑗 ⩽ 𝑛 + 𝑖 + 1, we have

𝜀𝑖,𝑗𝜀𝑖+1,𝑗𝜀𝑖,𝑗+1𝜀𝑖+1,𝑗+1 = 1.

(b) For all 𝑖 ∈ ℤ and 1 ⩽ 𝓁 ⩽ 𝑛 + 1, we have

𝜀𝑖,𝑖+2𝜀𝑖,𝑖+𝓁+1𝜀𝑖+1,𝑖+𝓁+1 = 1.
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 11

(c) We have |{𝜀𝑖,𝑖+2 | 𝑖 ∈ ℤ}| = 1.
Proof.

(a) Note that the assertion in the lemma claims that in each neighbouring 2 × 2-submatrix
𝑐𝑖,𝑗 𝑐𝑖,𝑗+1
𝑐𝑖+1,𝑗 𝑐𝑖+1,𝑗+1

of the frieze pattern there is an even number of positive entries (and hence also

an even number of negative entries). So, it suffices to show that all configurations with an odd
number of positive entries cannot occur. By elementary arithmetic, each of the configurations
of signs

+ +

+ −
and

− +

+ +
and

+ −

− −
and

− −

− +

would yield a negative number as determinant of a 2 × 2-submatrix, contradicting the
condition 𝑐𝑖,𝑗𝑐𝑖+1,𝑗+1 − 𝑐𝑖,𝑗+1𝑐𝑖+1,𝑗 = 1 in Definition 3.1. The remaining cases

+ −

+ +
and

+ +

− +
and

− +

− −
and

− −

+ −

give a positive determinant, but as |𝑐𝑖,𝑗| > 1√
2
by assumption this determinant is strictly bigger

than 1, again contradicting the condition in Definition 3.1.
(b) We proceed by induction on 𝓁. For 𝓁 = 1, we have (as 𝜀𝑖+1,𝑖+2 = 1):

𝜀𝑖,𝑖+2𝜀𝑖,𝑖+2𝜀𝑖+1,𝑖+2 = 𝜀
2
𝑖,𝑖+2
= 1.

Let 𝓁 > 1. By part (a), we have

𝜀𝑖,𝑖+𝓁𝜀𝑖+1,𝑖+𝓁𝜀𝑖,𝑖+𝓁+1𝜀𝑖+1,𝑖+𝓁+1 = 1.

Moreover, by induction hypothesis we can assume that

𝜀𝑖,𝑖+2𝜀𝑖,𝑖+𝓁𝜀𝑖+1,𝑖+𝓁 = 1.

Putting these equations together yields

𝜀𝑖,𝑖+2𝜀𝑖,𝑖+𝓁+1𝜀𝑖+1,𝑖+𝓁+1 = 1.

(c) Note that 𝜀𝑖,𝑛+𝑖+2 = 1 as 𝑐𝑖,𝑛+𝑖+2 = 1 (see Definition 3.1). Then part (b) for 𝓁 = 𝑛 + 1 yields

𝜀𝑖,𝑖+2 = 𝜀𝑖+1,𝑛+𝑖+2 for all 𝑖 ∈ ℤ. (4.1)

The frieze pattern  is non-zero and hence tame (see the remark after Definition 3.1). Every
tame frieze pattern satisfies a glide symmetry, more precisely we have 𝑐𝑖,𝑗 = 𝑐𝑗,𝑛+𝑖+3 for all 𝑖, 𝑗
(a proof of this known fact can be found in [5, Theorem 2.12]). This implies that for all 𝑖 ∈ ℤ

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13003, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 CUNTZ et al.

we have 𝑐𝑖−1,𝑖+1 = 𝑐𝑖+1,𝑛+𝑖+2. Together with Equation (4.1), we deduce that

𝜀𝑖−1,𝑖+1 = 𝜀𝑖+1,𝑛+𝑖+2 = 𝜀𝑖,𝑖+2 for all 𝑖 ∈ ℤ

and this proves the claim in part (c). □

We now state the classification of non-zero frieze patterns over ℤ, combining the classic result
of Conway and Coxeter [1] and the extension by Fontaine [7]. With our above observations, we
can provide an independent and self-contained proof.
We recall a general construction on frieze patterns with odd height: multiplying the diagonal

containing the quiddity sequence and then every second diagonal with−1 again gives a frieze pat-
tern (this follows immediately fromDefinition 3.1 because the determinant of every neighbouring
2 × 2-submatrix is unchanged).

Theorem 4.2. Let  = (𝑐𝑖,𝑗) be a non-zero frieze pattern over the rational integers. Then one of the
following assertions hold.

(i)  is a Conway–Coxeter frieze pattern, that is, all entries are positive integers.
(ii) The height of  is odd and  is obtained from a Conway–Coxeter frieze pattern by multiplying

every second diagonal by −1.

Proof. From Lemma 4.1(c), we know that the entries 𝑐𝑖,𝑖+2 in the quiddity sequence all have
the same sign. If all these quiddity entries are positive integers, then it follows from [2, eq.
(6.6)] that all entries in the frieze pattern are positive integers. So,  is a Conway–Coxeter frieze
pattern.
Now suppose that all quiddity entries 𝑐𝑖,𝑖+2 are negative integers. By glide symmetry it follows

that 𝑐𝑖,𝑛+𝑖+1 = 𝑐𝑛+𝑖+1,𝑛+𝑖+3 are negative integers for all 𝑖 ∈ ℤ (where 𝑛 denotes the height of ).
On the other hand, 𝜀𝑖,𝑖+2 = −1 by assumption, hence we deduce from Lemma 4.1 (b) that

𝜀𝑖,𝑖+𝓁+1 = −𝜀𝑖+1,𝑖+𝓁+1 for all 𝑖 ∈ ℤ and 1 ⩽ 𝓁 ⩽ 𝑛 + 1.

This implies that the signs on each diagonal in the frieze pattern are constant, namely all entries
𝑐𝑖,𝑗 are positive if 𝑗 − 𝑖 is odd and negative if 𝑗 − 𝑖 is even. As we have observed above that the
numbers 𝑐𝑖,𝑛+𝑖+1 are negative, we conclude that 𝑛 + 𝑖 + 1 − 𝑖 = 𝑛 + 1 is even, thus the height 𝑛
of  is odd. We can therefore apply the standard construction on frieze patterns of odd height,
multiplying every second diagonal by−1. Then we obtain a frieze pattern with all entries positive
integers, that is, a Conway–Coxeter frieze pattern. This means that assertion (ii) of the theorem
holds for . □

5 NON-ZERO FRIEZE PATTERNS OVER RINGS OF QUADRATIC
INTEGERS

In this section, we study non-zero frieze patterns over rings of integers 𝑑 in quadratic number
fields ℚ(

√
𝑑), where 𝑑 ∈ ℤ ⧵ {0, 1} is a square-free integer.

It seems to be a subtle problem to describe all non-zero frieze patterns over the Gaussian inte-
gers −1 = ℤ[𝑖] and the Eisenstein integers −3 = ℤ[

1+
√
−3

2
]. As the main result of this section,
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 13

we will show that among the imaginary quadratic integers there are only finitely many such dif-
ficult cases. Apart from these few cases, all non-zero frieze patterns over imaginary quadratic
integers are known. For the proof, we shall need a different viewpoint on frieze patterns and some
useful results on reductions of quiddity cycles. All this is based on certain 2 × 2-matrices that play a
fundamental role in the theory of frieze patterns.We briefly recall the necessary background here.
Let 𝐾 be a field. For any 𝑐 ∈ 𝐾, we define the 2 × 2-matrix

𝜂(𝑐) =

(
𝑐 −1

1 0

)
.

Then a sequence (𝑐0,2, 𝑐1,3, … , 𝑐𝑛+2,𝑛+4) of numbers is the quiddity cycle of a tame frieze pattern
(of height 𝑛) if and only if

𝑛+2∏
𝑖=0

𝜂(𝑐𝑖,𝑖+2) =

(
−1 0

0 −1

)

(for a proof of this known fact see, for instance, [4, Proposition 2.4]). In general, a sequence
(𝑐1, … , 𝑐𝑚) ∈ ℂ

𝑚 is called a quiddity cycle if
∏𝑚
𝑖=1 𝜂(𝑐𝑖) = −id is the negative of the identity matrix.

For later use, we collect some results from [4] stating that every quiddity cycle must contain
some small entries and giving reduction formulae for quiddity cycles.

Lemma 5.1.

(a) Let (𝑐1, … , 𝑐𝑚) ∈ ℂ𝑚 such that
∏𝑚
𝑗=1 𝜂(𝑐𝑗) is a scalar multiple of the identity matrix. Then there

are two different indices 𝑗, 𝑘 ∈ {1, … ,𝑚} with |𝑐𝑗| < 2 and |𝑐𝑘| < 2.
(b) For all 𝑎, 𝑏 ∈ ℂ, we have

(i) 𝜂(𝑎)𝜂(1)𝜂(𝑏) = 𝜂(𝑎 − 1)𝜂(𝑏 − 1),
(ii) 𝜂(𝑎)𝜂(−1)𝜂(𝑏) = −𝜂(𝑎 + 1)𝜂(𝑏 + 1),
(iii) 𝜂(𝑎)𝜂(0)𝜂(𝑏) = −𝜂(𝑎 + 𝑏).

(c) Let (𝑐1, … , 𝑐𝑚) ∈ ℂ𝑚 be a quiddity cycle with𝑚 > 3. Then there are two indices 𝑗, 𝑘 ∈ {1, … ,𝑚}
with |𝑗 − 𝑘| > 1 and {𝑗, 𝑘} ≠ {1,𝑚} such that |𝑐𝑗| < 2 and |𝑐𝑘| < 2.

Proof. The statements in parts (a) and (b) are [4, Corollary 3.3] and [4, Proposition 4.1], respec-
tively. The assertion in part (c) is stated in [4, Corollary 6.3] for quiddity cycles over ℤ. However,
the integrality assumption is only used in the proof for dealing with the case 𝑚 = 4. The argu-
ment for 𝑚 = 4 can easily be generalised to arbitrary quiddity cycles over ℂ. Namely, every such
quiddity cycle is of the form (𝑐1,

2

𝑐1
, 𝑐1,

2

𝑐1
); if |𝑐1| < 2, we are done, and if |𝑐1| ⩾ 2 then | 2𝑐1 | ⩽ 1 < 2

and we are also done. □

We now state the main result of this section.

Theorem 5.2. Let 𝑑 be a negative square-free rational integer. Then

◦
𝑑
=

{
𝑑 if 𝑑 ∈ {−1,−2, −3, −7, −11}
ℤ else.
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14 CUNTZ et al.

F IGURE 1 Certain quiddity cycles in 𝑑 .

Remark 5.3. Note that the above theorem states that for any negative square-free integer 𝑑 ∉
{−1,−2, −3, −7, −11} the only non-zero frieze patterns over 𝑑 are the Conway–Coxeter frieze
patterns and the related twisted Conway–Coxeter frieze patterns (appearing in Theorem 4.2).
For the values 𝑑 ∈ {−1,−2, −3, −7, −11} there exist non-integral frieze patterns as shown in the
subsequent proof.

Proof. The proof consists of two parts. First, for 𝑑 ∈ {−1,−2, −3, −7, −11}, we present explicit
non-integral frieze patterns over 𝑑, showing that ◦

𝑑
= 𝑑. Second, we prove that when

𝑑 ∉ {−1,−2, −3, −7, −11} all entries in all non-zero frieze patterns over 𝑑 are rational
integers.
Recall that 𝑑 = ℤ[𝜔𝑑], where

𝜔𝑑 ∶=

{√
𝑑 if 𝑑 ≡ 2, 3 (mod 4),

1+
√
𝑑

2
if 𝑑 ≡ 1 (mod 4).

Figure 1 contains quiddity cycles of non-zero frieze patterns for 𝑑 ∈ {−1,−2, −3, −7, −11}. In each
of these cases, we can thus conclude that ◦

𝑑
= 𝑑. For example, for 𝑑 = −11, with 𝜔 = 𝜔−11 we

have 𝜔𝜔 = 3 and we obtain the frieze pattern:

⋱

0 1 𝜔 2 𝜔 1 0

0 1 𝜔 2 𝜔 1 0

0 1 𝜔 2 𝜔 1 0

0 1 𝜔 2 𝜔 1 0

0 1 𝜔 2 𝜔 1 0

0 1 𝜔 2 𝜔 1 0

⋱

This completes the first part of the proof.
For the second part of the proof, we now suppose that 𝑑 ∉ {−1,−2, −3, −7, −11}. Let  =

(𝑐𝑖,𝑗) be a non-zero frieze pattern over 𝑑. We consider the corresponding quiddity cycle
(𝑐0,2, … , 𝑐𝑛+2,𝑛+4) ∈ (𝑑)

𝑛+3 (where 𝑛 is the height of ). So, we have
∏𝑛+2
𝑖=0 𝜂(𝑐𝑖,𝑖+2) = −id (see

the remark before Lemma 5.1).
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FRIEZE PATTERNS OVER ALGEBRAIC NUMBERS 15

We first show that every quiddity cycle (𝑐1, … , 𝑐𝑚) over𝑑 can be reduced to one of the quiddity
cycles (0,0), (1,1,1), by applying transformations as in Lemma 5.1(b). We proceed by induction on
𝑚, the length of the quiddity cycle. For𝑚 = 2 and𝑚 = 3, the statement clearly holds because the
only quiddity cycle of length 2 is (0,0) and the only quiddity cycle of length 3 is (1,1,1) (see [4, Exam-
ple 2.7]). So, let𝑚 ⩾ 4. By Lemma 5.1(a), there are two different entries 𝑐𝑖, 𝑐𝑗 in the quiddity cycle
with |𝑐𝑖| < 2 and |𝑐𝑗| < 2, and by Lemma 5.1(c) these entries can assumed to be non-neighbouring
because𝑚 ⩾ 4.
The crucial observation is that for 𝑑 ∉ {−1,−2, −3, −7, −11} the only elements in 𝑑 with

absolute value < 2 are 0 and ±1 (this requires some elementary computations that we
leave to the reader, and it is not true for 𝑑 ∈ {−1,−2, −3, −7, −11}). This means that in our
quiddity cycle (𝑐1, … , 𝑐𝑚), there are two different non-neighbouring entries equal to 1, −1
or 0.
If there is a 1 in the quiddity cycle, we can remove it by Lemma 5.1(b)(i) and obtain a quiddity

cycle of shorter length 𝑚 − 1 to which we apply induction. If there is no 1 in the quiddity cycle,
then there must be two non-neighbouring entries equal to −1 or 0. We remove both entries by
the transformations in Lemma 5.1(b)(ii),(iii) and obtain a quiddity cycle of shorter length (note
that the signs appearing in these transformations cancel because we apply two transformations
involving a sign) to which we can apply induction. Altogether, inductively, we obtain a quiddity
cycle of length 2 or 3, that is, we can reduce our initial quiddity cycle (𝑐1, … , 𝑐𝑚) to (0,0) or (1,1,1).
Now we come back to the quiddity cycle (𝑐0,2, … , 𝑐𝑛+2,𝑛+4) of the frieze pattern . In particu-

lar, the resulting quiddity cycle after the above inductive reduction process has integral entries†.
Reversing this process means that our original quiddity cycle of  can be obtained from (0,0) or
(1,1,1) by transformations in Lemma 5.1(b); but the new entries resulting from these transforma-
tions are still integral (adding/subtracting 1 or adding two entries). Therefore, the original quiddity
cycle of  has integral entries and then the rule defining frieze patterns (see Definition 3.1) implies
that all entries of the frieze pattern  are rational numbers. However, it is well-known for rings of
integers of number fields that 𝑑 ∩ ℚ = ℤ. Thus, all entries of the frieze pattern  are (non-zero)
integers. From Theorem 4.2, we can then conclude that  is a Conway–Coxeter frieze pattern or
a twisted Conway–Coxeter pattern and this completes the proof of the theorem. □

Remark 5.4.

(i) The rings of integers 𝑑 for 𝑑 ∈ {−1,−2, −3, −7, −11} are all unique factorisation domains
(UFDs). This is part of the Baker–Heegner–Stark theorem stating that for squarefree 𝑑 < 0,
the ring of integers 𝑑 of the imaginary quadratic number field ℚ(

√
𝑑) is a UFD if and only

if

𝑑 ∈ {−1,−2, −3, −7, −11, −19, −43, −67, −163}

(thus proving the class number problem for the case of class number 1).
(ii) Among the imaginary quadratic integers, the cases 𝑑 ∈ {−1,−2, −3, −7, −11} are precisely

the ones where 𝑑 is a Euclidean ring (with respect to the usual norm function); see [9,
Proposition 4.1].

†Note that we do not know at this point that the cycles obtained in this process in fact correspond to non-zero frieze
patterns because they could a priori contain zeros.
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