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Abstract

Descriptive complexity theory is the study of the expressibility of computational
problems in certain logics. Most of the results in this field use (fragments or
extensions of) first-order logic or second-order logic to describe decision com-
plexity classes. For example the complexity class NP can be characterized as
the set of problems that are describable by a dependence logic formula, in short
NP = FO(=(. . . )). Dependence logic is a certain team logic, where a team logic
is an extension of first-order logic by some new atoms, with new semantics, called
team semantics. Compared to decision complexity where one is interested in the
existence of a solution to an input instance, in counting complexity one is interested
in the number of solutions and in enumeration complexity one wants to compute
all solutions. Counting complexity has been less studied in terms of descriptive
complexity than decision complexity, whereas there are no results for enumera-
tion complexity in this field. The latter is because the concept of hardness in the
enumeration setting was first introduced rather recently.

In this thesis, we characterize counting and enumeration complexity classes with
team logics and compare the results to the corresponding results for decision com-
plexity classes. To study the framework of hard enumeration a bit more, we
investigate further team logic based enumeration problems.

In the counting setting we characterize the classes #P and #·NP as #P =
#FOT and #·NP = #FO(⊥). Furthermore, we establish two team logic based
classes #FO(⊆) and #FO(=(. . . )) which seem to have no direct counterpart in
classical counting complexity, but contain problems that are complete under Turing
reductions for #P and #·NP, respectively. To show the latter we identify a new
#·NP-complete problem with respect to Turing reductions.

We show that in the enumeration setting the classes behave very similarly
to the corresponding classes in the decision setting. We translate the results
P = FO(⊆) and NP = FO(=(. . . )) to the enumeration setting which results in
DelP = DelFO(⊆) and DelNP = DelFO(=(. . . )). Furthermore, we identify sev-
eral DelP and DelNP-complete problems which yield additional characterisations
of DelP and DelNP. For one of the investigated problems we were only able to
show Del+NP membership (and DelNP-hardness), a precise classification remains
open.

Keywords: counting complexity, enumeration complexity, descriptive complexity, team logic
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Zusammenfassung

In der deskriptiven Komplexitätstheorie wird die Ausdrückbarkeit von Berech-
nungsproblemen durch bestimmte Logiken erforscht. Meist wird hierbei die Prä-
dikatenlogik der ersten (FO) oder zweiten Stufe (SO) oder Fragmente oder Er-
weiterungen davon verwendet. Zum Beispiel lässt sich die Klasse NP charakter-
isieren als die Menge der Probleme die durch jeweils eine Formel der Dependence-
Logik beschreibbar sind, oder kurzgesagt NP = FO(=(. . . )). Dependence-Logik
ist eine bestimmte Team-Logik, wobei eine Team-Logik eine Erweiterung von FO
um neue atome mit einer neuen Semantik, der Team-Semantik. Im Vergleich
zur Entscheidungskomplexität, bei der man an der Existenz einer Lösung zu einer
gegebenen Eingabe interessiert ist, sucht man in der Zählkomplexität nach der An-
zahl der Lösungen und in der Aufzählkomplexität die Lösungen selbst. Das Fachge-
biet der Zählkomplexität wurde weniger untersucht in Hinblick auf die deskriptive
Komplexität als die Entscheidungskomplexität, für die Aufzählkomplexität gibt
es bislang keine Ergebnisse dahingehend. Letzteres resultiert daraus, dass das
Konzept von Schwere in der Aufzählkomplexität noch recht jung ist.

In dieser Arbeit charakterisieren wir Zähl- und Auszählkomplexitätsklassen mit
Team-Logiken und vergleichen die Ergebnisse mit ihren Pendants in der Entschei-
dungswelt. Um das Modell der schweren Aufzählkomplexität weiter zu unter-
suchen, betrachten wir weitere Aufzählprobleme aus dem Bereich der Team-Logik.

Im Fachgebiet der Zählkomplexität charakterisieren wir die Klassen #P und
#·NP als #P = #FOT und #·NP = #FO(⊥). Weiterhin identifizieren wir zwei
neue Team-Logik basierte Klassen, #FO(⊆) und #FO(=(. . . )), für die es kein
Pendant in der klassischen Zählkomplexität zu geben scheint. Jedoch enthal-
ten diese Klassen Probleme, die unter Turing-Reduktionen für die Klassen #P
beziehungsweise #·NP vollständig sind. Um letzteres zu zeigen, identifizieren wir
ein Problem, welches #·NP-vollständig unter Turing-Reduktionen ist.

Wir zeigen, dass sich die Klassen der Aufzähl- und Entscheidungswelt ähnlich
verhalten. Wir übertragen die Ergebnisse P = FO(⊆) und NP = FO(=(. . . )) in die
Aufzählwelt, was zu DelP = DelFO(⊆), beziehungsweise DelNP = DelFO(=(. . . ))
führt. Weiterhin identifizieren wir einige DelP- und DelNP-vollständige Probleme,
welche zu weiteren Charakterisierungen dieser Klassen führen. Für eines der un-
tersuchten Probleme konnten wir nur Del+NP-Mitgliedschaft (und DelNP-Schwere)
zeigen, eine genaue Einordnung ist noch zu finden.

Schlagworte: Zählkomplexität, Deskriptive Komplexität, Aufzählkomplexität, Team Logik
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1 Introduction

The question “P = NP?” was first formulated by Cook and Levin in 1971 (see for
example [Coo71]). Today this is the most important question in complexity theory
and maybe even in whole computer science. There is a broad consensus that the
answer must be “no”, that is, P 6= NP, but so far nobody was able to prove it.
In a sense, any research in the field of complexity theory does in part try to help
answering this question, even if it has different focus.

In complexity theory one studies computational problems, most notably decision
problems. In a decision problem we are given an input and like to answer the
question if there is a solution to it. Such problems are classified in terms of their
complexity by showing that they are contained in certain (decision) complexity
classes. There are several ways to define complexity classes, the most prominent
being by a computational model. Examples for computational models used in this
area are Turing machines, circuits, random access machines or neuronal networks.
Another way to define complexity classes is to use logical formulas to describe their
problems. The beauty of this is that no resource bounds are needed, there is no
computation, no algorithm, the complexity of a problem is determined solely by
writing it down. Classically one uses fragments or extensions of first- or second-
order logic to define such complexity classes. The logics in the focus of this thesis
are team logics, which are an extension of classical first-order logic.

As mentioned besides decision problems there are also other kinds of problems
that are studied in complexity theory. For example, there are search problems,
where one wants to find a solution instead of just proving its existence. In counting
complexity one is interested in the number of solutions, whereas in enumeration
complexity one wants to enumerate all solutions to a given input. These settings
are all tied to each other in one way or another. This offers the possibility to
translate results between settings and compare different settings to get a better
overall picture.

In this thesis we study the complexity of counting and enumeration problems
defined by certain team logics.
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1 Introduction

1.1 Team Semantics

In classical first-order logic it is in some way possible to express certain depen-
dencies. For example in the formula f(x) = y the value of y depends on the
value of x and this dependency is described by the function f . Having multiple
quantifiers also creates dependency, in the formula ∀x∃y ψ(x, y), the value of y
depends on the value of x. In 1959 Henkin took this kind of dependency one step
further by extending first-order logic by his new branching quantifiers, which are
also often called Henkin quantifiers [Hen61]. Henkin quantifiers are expressions of
the following form: (

∀x1 ∃y1

∀x2 ∃y2

)
ψ(x1, x2, y1, y2).

This specific formula has the meaning, “for all x1 there is a y1 depending only on x1

and for all x2 there is a y2 depending only on x2 such that ψ(x1, x2, y1, y2) is true”.
Any such formula is equivalent to a second-order formula with free functional
variables. For our example this formula would be ∀x1∀x2 ψ(x1, x2, f1(x1), f2(x2)),
where f1, f2 are free functional variables. In 1989 Hintakka and Sandu introduced
two new quantifiers, the backslash quantifier and the slash quantifier [HS89]. Con-
sider the following formula

∃x∀y∃z\{x} ψ′1(x, y, z).

The backslash quantifier ∃z\{x} in this formula expresses that there is a value for
z that only depends on the value of x such that ψ′1 holds. If we would replace the
backslash by a slash quantifier the meaning of the formula would change to “there
is a value for z that is independent of x such that ψ′1 holds”. When extending first-
order logic by the backslash or slash quantifier we get a new logic called dependence
friendly logic and independence friendly logic, respectively.

In 2007 Väänänen extended first-order logic by a new atom, the dependence
atom =(. . . ) and redefined the semantics to obtain a new logic FO(=(. . . )), which
is fittingly called dependence logic [Vää07]. Intuitively, the atom =(x1, . . . , xn, y)
expresses that the value of y depends on the values of x1, . . . , xn and nothing else,
without actually stating this dependency like in the previous example f(x) = y.
The new semantics, called team semantics, defines satisfiability not for single as-
signments but for sets of assignments, called teams. The dependence atom thereby
expresses dependencies that hold for all assignments in such a team. For example
=(x, y) is satisfied by a team, if any pair of assignments in that team have the
following property: If the assignments agree on x they must agree on y as well.

Several new atoms have been defined for first-order logic with team semantics
since then. Most notably the independence atom x⊥zy introduced by Grädel and
Väänänen [GV13] and the inclusion atom x ⊆ y introduced by Galliani [Gal12].
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1 Introduction

The atom x⊥zy expresses: the value of x is independent of the value of y if the
values of z are constant. The inclusion atom x ⊆ y expresses that the values that
appear for x must only be values that also appear for y. These atoms define new
logics, independence logic FO(⊥) and inclusion logic FO(⊆), respectively.

1.2 Descriptive Complexity

The field of descriptive complexity was founded by Ronald Fagin in 1974 with his
result NP = Σ1

1, that is, NP is exactly the class of problems that can described by an
existential second-order logic formula [Fag74]. In 1982, both Immerman and Vardi
found (independently of each other) a characterisation of P in terms of first-order
logic. They showed that P = LFP, that is, the problems in P are exactly those that
can be described by a first-order formula with least fixed point quantifiers [Imm82,
Imm86, Var82]. Several results followed in the field, the classes L,NL,PSPACE and
EXP where characterized with similar logics by Immerman [Imm87]. The book
“Descriptive Complexity” [Imm99] by Immerman gives a good overview over the
field, it contains results that range from characterisations for LOGTIME to the
arithmetic hierarchy.

Dependence logic, independence logic and inclusion logic were all studied in
terms of descriptive complexity and expressive power. It was shown that over
sentences dependence logic as well as independence logic are expressive equivalent
to existential second-order logic [KV09, Gal12]. As a consequence, by Fagin’s
Theorem, both logics capture NP. Inclusion logic on the other hand has the same
expressive power as LFP [GH13], hence it captures P. We will revisit these results
in more detail in Section 2.6.

1.3 Counting Complexity

In 1979, Leslie Valiant published a paper in which he classified the complexity of
the problem of computing the permanent of a binary matrix [Val79a]. He showed
that this problem was complete for the new class #P he defined in the same
paper. He defined #P as the set of counting problems that can be computed by
counting the number of accepting paths of a nondeterministic polynomial-time
Turing machine. A second paper of his contains a list of several additional #P-
complete problems from the fields of graph theory and propositional logic. For
these results he used Turing reductions, but it was later shown that several of
these reductions can be made parsimonious, which is a stronger reducibility notion.
In a rather confusing definition, he introduced further counting classes, probably
the most interesting one of them is #NP := #PNP. The complexity class #L
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1 Introduction

was introduced by Alvarez and Jenner [ÀJ93], which is defined analogously to
#P but on logarithmic space Turing machines. It was shown that this class is
closely related to the problem of computing the determinant of a binary matrix
[AO96, Vin91, Val92].

In 1991, Toda proposed a new operator “#·” (or “NUM”) that defines a count-
ing class #·C for arbitrary complexity classes C [Tod91]. By this definition #·C
contains the problems that count the number of solutions y to a given input x
such that (x, y) ∈ D, where D is a decision problem in C. This way they also
defined #·NP which is a more fitting version of #NP. Around the turn of the mil-
lennium two additional counting classes where introduced that are both subsets of
#P, namely #PE [Pag01] and TotP [KPSZ01]. The “E” in #PE stands for “easy”
which is fitting, since #PE was defined as the class of problems in #P that have
an easy decision version (in this context “easy” means computable in polynomial
time). The class TotP was defined similarly to #P but instead of counting only
accepting paths, problems in TotP count any paths of nondeterministic polynomial-
time Turing machines. It was shown that TotP is the closure under parsimonious
reductions of self-reducible problems in #PE [PZ06] and thereby TotP ⊆ #PE.

The first descriptive complexity result in the counting complexity setting was
provided by Saluja et al. by showing that problems in #P can be described by first-
order formulas with free relational variables and free individual variables, in short,
#P = #FOrel [SST95]. This result can be seen as a translation of Fagin’s Theorem,
since #P is often seen the equivalent of NP in the counting setting and FOrel = Σ1

1.
More recent studies of Haak et al. showed that this result can also be achieved by
counting functions instead of relations, which results in #P = #FOfunc [DHKV21].
Arenas et al. introduced a new logic called quantitative second order logics and
showed that several counting classes can be described by fragments of this logic.
This way they characterised the classes #L,FP,#P and FPSPACE [AMR20]. In
this thesis we characterize the classes #P and #·NP and introduce two new count-
ing classes using team logics. These results are based on the paper “Counting of
teams in first-order team logics” of Haak et al.[HKM+19].

1.4 Enumeration Complexity

For a long time this field has been on the more practical side. One was more
interested in algorithms that are considered tractable than in hardness and com-
pleteness results. In this field tractable means that the algorithm has polynomial
delay, that is, the time between any two outputs of the algorithm is bounded by a
polynomial. However such algorithms can be forced to have an exponential over-
all running time, since the number of solutions might be exponential. Up until
recently lower bounds in this field were translated to the decision setting. Results
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1 Introduction

were of the form “When enumeration problem E is in class C1 then decision prob-
lem D is in class C2”, which, together with a result that implies D 6∈ C2, can then
be seen as a lower bound.

In 2019, Creignou et al. introduced the classes DelC for arbitrary (decision) com-
plexity classes C and proposed reducibility notions to be able to conduct hardness
results [CKP+19]. By their definition DelC is the class of enumeration problems
for which there exists an algorithm that has access to an oracle from C and out-
puts all solutions with polynomial delay. This definition yields a counterpart of
the polynomial hierarchy in the enumeration setting. Hardness results in this
framework are still closely tied to the decision setting, as hardness results from
the decision setting translate to the enumeration setting. However, the converse
does not hold. Creignou et al. were able to identify enumeration problems that
are hard for DelNP, whereas the corresponding decision problem is still in P.

So far the only descriptive complexity results in the enumeration setting pub-
lished are the ones by Haak et al. [HMMV22], which is one of the papers this
thesis is based on. The main results are the characterisations of DelP and DelNP
in terms of team logic.

1.5 Overview

The content of this thesis is based on the papers “Counting of teams in first-
order team logics” [HKM+19] and “Enumerating teams in first-order team logics”
[HMMV22]. Compared to these papers there is one major new result, Theo-
rem 4.13, which states that a certain decision problem defined over an inclusion
logic formula is NP-hard, which implies DelNP-hardness for a related enumeration
problem. Furthermore, there are some minor enhancements to results from these
papers. For example, we dedicatedly show DelP = DelFO(⊆). Overall these new
results and the presentation of this thesis leads to a better overview about the
relationships between the considered complexity classes and enhances the compa-
rability between the decision, counting and enumeration settings.

In Chapter 2 we recall the fundamentals of propositional logic, first and second-
order logic, team logic, counting and enumeration complexity. Furthermore we
introduce a new framework that allows us to easily define corresponding decision,
counting and enumeration problems in Section 2.5. This framework is very similar
to the one used by Creignou et al. [CKP+19], but uses functions instead of rela-
tions, which feels slightly more natural in the context of counting and enumeration
problems. In Section 2.6 we give a complete picture of the descriptive complexity
results for team logics in the decision setting.

In Chapter 3 we study the descriptive complexity of counting problems in
terms of team logic. We start by showing that the descriptive complexity classes

5



1 Introduction

#FO(=(. . . )), #FO(⊥) and #FO(⊆) are closed under first-order reductions, which
is the reducibility notion we consider in this context. Afterwards we show that
#FO(T) ⊆ #·NP, for sets of atoms T with a certain property, which implies that
this inclusion holds for the three mentioned classes. The first three sections are
each dedicated to one of these logics. Section 3.1 contains the results for inde-
pendence logic. Here we show #·NP ⊆ #FO(⊥) in two steps. In the first step,
we show #·NP ⊆ #Σ1

1 and in the second #Σ1
1 = #FO(⊥). Together with the

result from before, #FO(⊥) ⊆ #·NP, we are able to conclude #FO(⊥) = #·NP.
In Section 3.2, we show that #·FO(=(. . . )) contains a problem that is #·NP-
complete under Turing reductions. Furthermore, we show that the same problem
is also complete for #·FO(=(. . . )) under first-order reductions. In Section 3.3,
we study the class #FO(⊆). We show that #FO(⊆) ⊆ #P and this inclusion is
strict unless P = NP. However, we identify a problem that is included in #FO(⊆)
and also complete for #P under Turing reductions. Furthermore, we show that
#FO(⊆) ⊆ TotP. We conjecture that this inclusion is strict as well, but have no
proof. To give our conjecture more substance we present a problem that is hard
for (and probably not included in) #FO(⊆) and included in TotP. In Section 3.4,
we identify complete problems for #·NP, most notably the problem we showed
is included in #FO(=(. . . )). In Section 3.5, we summarize our results from the
Chapter in a class diagram.

In Chapter 4, we study the descriptive complexity of enumeration problems in
terms of team logic. First, we show that DelFO(⊥) = DelFO(=(. . . )) = DelNP
in three steps. In similar fashion, we capture DelP with inclusion logic, that is,
we show DelFO(⊆) = DelP. We summarise the results up to this point in a class
diagram, which looks almost identical to the one from the decision setting. In
Section 4.1, we study the complexity of enumerating optimal (minimal, maximal
etc.) solutions for dependence and independence logic formulas. We show that all
except one of these problems are DelNP-complete. For the one exception, we show
DelNP-hardness and the inclusion in Del+NP, which is a more powerful version of
DelNP. In Section 4.2, we study the complexity of optima problems for inclusion
logic. Here, we show that enumerating maxima is in DelP, whereas enumerating
minima is DelNP-complete. We give a summary of the Chapter in Section 4.3.

6



2 Preliminaries

In the first few section, we recall the main ideas of proposition logic, first-order
logic, second-order logic, graph theory and complexity theory. For a thorough
introduction to propositional, first-order and second-order logic we recommend
“A Mathematical Introduction to Logic” [End72]. For the topics of graph theory
and complexity theory we recommend “Computational Complexity” [Pap94].

As we consider several logics in this thesis (often in the same proof), it might
sometimes be hard to determine from which logic a certain formula stems. To
minimize confusion we always represent propositional formulas with χ, team logic
formulas with ϕ, and first- and second-order logic formulas with ψ.

2.1 Propositional Logic

The formulas of propositional logic are constructed from variables and the con-
stants 0 and 1, using the connectives ∧,∨ and ¬. We also refer to those formulas
as Boolean formulas. For readability we denote an implication by χ1 → χ2 and an
equivalence by χ1 ↔ χ2, for propositional formulas χ1, χ2. That is, we use χ1 → χ2

as a shorthand for the formula ¬χ1 ∨ χ2 and χ1 ↔ χ2 for (χ1 → χ2) ∧ (χ2 → χ1).
Given a formula χ over variables x1, . . . , xn, we denote with vars(χ) = {x1, . . . , xn}
the set of variables of χ. When we use the term literal we mean either a (positive)
variable or a negated variable. A formula χ is in conjunctive normal form, if it has
the form χ =

∧
iCi, where each Ci is a clause, that is, Ci = (li,1 ∨ li,2 ∨ · · · ∨ li,|Ci|)

and li,j are literals. A Horn formula (respectively DualHorn formula) is a formula
in conjunctive normal form, that contains at most one positive (respectively nega-
tive) literal in each clause. We define quantified Boolean formulas as the extension
of propositional formulas by existential and universal quantifiers. In this thesis we
only consider quantified Boolean formulas in prenex normal form. In a quantified
Boolean formula (in prenex normal form), we say a variable x is bound if it lies
in the scope of a quantifier ∃x or ∀x, otherwise we say x is free. We denote with
free(χ) the set of free variables for a given formula χ. We also write χ(x1, . . . , xn) to
denote that x1, . . . , xn are free variables in χ. Note that in propositional formulas
all variables are free.

Now we define different classes of propositional formulas. First of all we have
the class BF, which stands for Boolean formula and consists of all propositional

7



2 Preliminaries

formulas. The class CNF contains all propositional formulas that are in conjunctive
normal form and kCNF contains the formulas that are in CNF and have their clause
size bounded by k. By HORN and DH we denote the class of Horn formulas and
DualHorn formulas, respectively. Given a class P of propositional formulas, we
define the new class Σ1P which consists of quantified Boolean formulas in prenex
normal form with only existential quantifiers where the quantifier-free part is in
the class P. For a class P of quantified boolean formulas, we define the classes P+

and P− of formulas from P whose free variables only occur positively or negatively,
respectively. Note the subtle difference between the classes (Σ1P)− and Σ1(P−):
Formulas in (Σ1P)− have only negative free variables but may have positive and
negative bound variables, whereas formulas in Σ1(P−) have only negative variables
(bound and free). In this thesis we are only interested in classes of the type
(Σ1P)−, therefore we omit the parentheses and write Σ1P− instead. For example,
Σ1CNF− consists of all quantified Boolean formulas in prenex normal form with
only existential quantifiers, where the quantifier-free part is in CNF and the free
variables occur only negatively.

A (propositional) assignment β is a set of variables which we interpret as the
set of variables with the truth value 1. By this definition the empty set is an
assignment as well, which we will call empty assignment. When we consider an as-
signment β in the context of a formula χ, we assume that β is a suitable assignment
for χ, that is, β ⊆ free(χ). Given a formula χ we call the assignment β = free(χ)
full assignment. We denote by Θ the set of all propositional assignments and by
Θ(χ) the set of all assignments with β ⊆ free(χ).

Remark 2.1. Let χ be a Horn formula. Then there is a DualHorn formula χ̃ such
that

β |= χ ⇐⇒ vars(χ) \ β |= χ̃, for all β ⊆ vars(χ)

and vice versa. The same holds for CNF+ and CNF− formulas. The formula χ̃
is defined as follows. Let χ =

∧
i

∨
j `i,j be a formula in conjunctive normal form.

We define the formula χ̃ :=
∧
i

∨
j
˜̀
i,j, where

˜̀
i,j :=

{
xm , if `i,j = ¬xm,
¬xm , if `i,j = xm.

2.2 First-order logic

Now we turn to first-order logic (FO). We consider only (finite) relational vocab-
ularies, that is, our vocabularies contain no constants or functions. Therefore we
use the notions relational vocabulary and vocabulary as synonyms. Since the only

8



2 Preliminaries

terms in our formulas are variables, we skip the definitions of terms and define
formulas over variables directly.

Let σ be a vocabulary, first-order formulas in FO(σ) are defined by the following
grammar:

ψ ::= x = y | x 6= y | R(x) | ¬R(x) | (ψ ∧ ψ) | (ψ ∨ ψ) | ∃x ψ | ∀x ψ,

where x, y are variables, x is a tuple of variables and R is a relation symbol in σ.
When comparing our definition of first-order logic to the “standard” definition

from the literature one might notice some differences: We allow no function and
constant variables. This is a common practice in descriptive complexity and we
follow this approach to ensure compatibility to established results from the liter-
ature (for example from [Fag74, SST95]). Moreover, our negation only applies to
relations (this includes equality) and not arbitrary formulas, which is sometimes
called weak negation or atomic negation. We made this choice since in team se-
mantics one gets a more powerful logic when allowing arbitrary negation, which is
also called strong negation in this context. However, for classical first-order logic
both definitions—with strong negation or atomic negation—are equivalent. As for
propositional logic we use ψ1 → ψ2 as an abbreviation for the formula ¬ψ1∨ψ2 and
ψ1 ↔ ψ2 for (ψ1 → ψ2) ∧ (ψ2 → ψ1) in first-order logic. This time we have to pay
attention when using the implication symbol since ¬ψ1 might not be a formula in
our logic, as we only allow atomic negation. Despite that we allow arbitrary first-
order formulas ψ1 on the left side of an implication, in that case ψ1 → ψ2 means
ψ̃1∨ψ2, where ψ̃1 is the formula ¬ψ1 in negation normal form (negation pushed in-
wards, such that the negations only apply to relations and equality atoms). Given
a formula ψ with free variables x1 . . . xn we define free(ψ) := {x1, . . . , xn} as the
set of free variables in ψ. For better readability we often write ψ(x1, . . . , xn), to
denote that x1, . . . , xn are the free variables in ψ. A formula with no free variables
is called sentence.

Let σ = {Ri1
1 , . . . R

ik
k } be a vocabulary, where i1 . . . ik ∈ N are the corresponding

arities of the relations. A σ-structure A = (A, (RAj )Rj∈σ) is a tuple, which consists
of a finite set A—that we also call universe or domain—and an interpretation for
every relation symbol in σ, that is, RAj ⊆ Aij for every Rj ∈ σ. As notation we
use dom(A) to denote the universe of A. For convenience, we assume without loss
of generality that the universe of a given structure is always the set {0, . . . , n− 1}
for some n ∈ N. Let σ be a vocabulary, we denote with STRUC(σ) the set of all
σ-structures. We use ≤,+ and × in this context as relation symbols and assume
that these symbols are always interpreted in the same way. More formally, let σ
be a vocabulary with ≤ ∈ σ, then STRUC(σ) is the set of σ-structures A with
≤A= {(x, y) | 0 ≤ x ≤ y ≤ n − 1}. Analogously + and × are interpreted in
a structure A as +A = {(x, y, z) | 0 ≤ x, y, z ≤ n − 1 and x + y = z} and
×A = {(x, y, z) | 0 ≤ x, y, z ≤ n− 1 and x · y = z}, respectively.

9



2 Preliminaries

A (first-order) assignment is a function s : V → A that maps variables from a
set V to an arbitrary finite set A. With s∅ we denote the empty assignment, that
is, V = ∅. For an assignment s : V → A we define the new assignment s(a/x),
where a ∈ A and x ∈ V , which assigns the value a to variable x and agrees with s
on all other variables:

s(a/x)(y) :=

{
a, if x = y,

s(y), if x 6= y.

Let x = (x1, . . . , xn) be a tuple of variables and s be an assignment, we define
s(x) as the tuple of values that s assigns to the variables from x, that is, s(x) :=
(s(x1), . . . , s(xn)). For an assignment s : V → A, a structure A and a formula ψ
we say s is an assignment of A if A = dom(A) and s is an assignment of ψ if
free(ψ) = V .

Definition 2.2. Let σ be a vocabulary, A be a σ-structure, s be an assignment
of A, x, y be variables, x be a tuple of variables, R be a relation from σ and
ψ1, ψ2 ∈ FO(σ). The satisfaction relation |= is defined as follows:

A |=s x = y ⇐⇒ s(x) = s(y),
A |=s x 6= y ⇐⇒ s(x) 6= s(y),
A |=s R(x) ⇐⇒ s(x) ∈ RA,
A |=s ¬R(x) ⇐⇒ s(x) 6∈ RA,
A |=s ψ1 ∧ ψ2 ⇐⇒ A |=s ψ1 and A |=s ψ2,
A |=s ψ1 ∨ ψ2 ⇐⇒ A |=s ψ1 or A |=s ψ2,
A |=s ∃x ψ1 ⇐⇒ there is a ∈ dom(A) such that A |=s(a/x) ψ1,
A |=s ∀x ψ1 ⇐⇒ for every a ∈ dom(A) we have that A |=s(a/x) ψ1.

From now on, when we mention an assignment s in the context of a formula
ψ and/or a structure A—for example with A, s |= ψ—we assume that s is an
assignment of ψ and/or that s is an assignment of A, respectively. To ease notation
we often omit the vocabulary if it is arbitrary or obvious in the context. In that
case we write for example FO instead of FO(σ) or “let A be a structure” instead
of “let A be a σ-structure”.

2.3 Second-order logic

Second-order logic (SO) is an extension of first-order logic, that additionally allows
quantification of relations. Moreover relations may occur free in SO formulas,
which means that these relations are neither quantified nor defined in the structure

10
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but have to be given separately. Formally, second-order formulas in SO(σ) are
defined by the following grammar:

ψ ::= x = y | x 6= y | R(x) | ¬R(x) | (ψ ∧ ψ) | (ψ ∨ ψ) | ∃x ψ | ∀x ψ | ∃R ψ | ∀R ψ,

where x, y are variables, x is a tuple of variables and R is a relation symbol in σ
or an arbitrary relation symbol. We write ψ(R1, . . . , Rk) to denote that relation
symbols R1, . . . , Rk appear free in formula ψ. An SO(σ) formula with neither free
relations nor free variables is called SO(σ)-sentence. As for first-order logic, we
may omit the vocabulary σ and just write SO. Let ψ ∈ SO, A be a structure and
R be a relation of arity i, we say R is a relation of A, if R ⊆ dom(A)i and R is a
relation of ψ, if ψ has a free relational variable of arity i. With REL(A),REL(ψ)
and REL(A, ψ), we denote the set of all relations of A, the set of all relations of
ψ and REL(A) ∩ REL(ψ), respectively.

Definition 2.3. Let σ,A, s, x, y, x, R, ψ1 and ψ2 be defined as in Definition 2.2.
Furthermore let P be a relation symbol of arity i, with P 6∈ σ and Q be a tuple of
relations of A. The (second-order) satisfaction relation |= is defined by the rules
from Definition 2.2 with the following additions:

A, Q |=s P (x) ⇐⇒ s(x) ∈ QP , where QP ∈ Q,
A, Q |=s ∃P ψ1 ⇐⇒ there is a relation QP such that A, Q,QP |=s ψ1,
A, Q |=s ∀P ψ1 ⇐⇒ for every relation QP it holds A, Q,QP |=s ψ1,

where QP is the relation assigned to relation symbol P .

By abuse of notation we might use the same symbol for the relational variable
and the relation itself, for example we write A, R |=s ψ(R).

In this thesis we are especially interested in three fragments of SO-logic, namely
existential second-order logic (also known as ESO or Σ1

1), the logic FOrel and the
set of so-called myopic formulas, as these logics have similarities to the team logics
we want to analyse. Existential second-order logic allows—as the name suggests—
only existential quantification of relations. The logic FOrel consists of first-order
formulas with a free relational variable, whereas myopic formulas ψ1 are FOrel

formulas that have a certain form:

ψ1(R) = ∀x
(
R(x)→ ψ2(R, x)

)
,

where ψ2 is a first-order formula with only positive occurrences of the relation
R. FOrel and myopic formulas are technically first-order formulas but as they are
both allowed to have a free relational variable we list them here as fragments of
second-order logic.

11
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2.4 Team Semantics

In team semantics (first-order) formulas are not evaluated on single assignments
but on sets of assignments, which we call teams. Formally a team X = {s1, . . . sn}
is a finite set of assignments s1, . . . , sn that share the same domain and codomain.
The set containing only the empty assignment {s∅} and the empty set are also
teams, the latter we call empty team in this context. As for assignments, we say X
is a team of A or X is a team of ϕ if the assignments from X are assignments of
A or of ϕ respectively. We denote with TEAM(A),TEAM(ϕ) and TEAM(A, ϕ),
the set of all teams of A, the set of all teams of ϕ and TEAM(A) ∩ TEAM(ϕ)
respectively. When considering a team X, a structure A and a formula ϕ in the
same context, we assume that X is a team of A and ϕ. Given a structure A and
a formula ϕ there are |dom(A)|free(ϕ) many assignments of A and ϕ, and therefore

2|dom(A)|free(ϕ)
teams of A and ϕ. We call the team containing all those assignments

full team and use XA,ϕfull to denote the full team of A and ϕ or Xfull if the structure
and formula are clear from the context.

Definition 2.4. Let X be a team, x be a variable, A be a set and F : X → 2A \ ∅
be a function. We define the supplementing team X[F/x] and the duplicate team
X[A/x] as follows:

X[F/x] := { s(a/x) | s ∈ X and a ∈ F (s) }
X[A/x] := { s(a/x) | s ∈ X and a ∈ A }.

Example 2.5. We consider the structure A = ({0, 1, 2, 3}) (consisting only of
its universe) and the team X consisting of the assignments s1, s2 given by Ta-
ble 2.1. Furthermore let F : X → {0, 1, 2, 3} be a function with F (s1) = {0, 1} and
F (s2) = {1}. The supplementing team X[F/y] consists of the assignments given
in Table 2.2 and the duplicating team X[A/x] of the ones given in Table 2.3.

Definition 2.6 (Team semantics for first-order formulas). Let σ be a vocabulary,
A be a σ-structure, X be a team of A, x, y be variables, x be a tuple of variables,
R be a relation from σ and ϕ1, ϕ2 be σ-formulas. The satisfaction relation |= is
defined as follows:

A |=X x = y ⇐⇒ for every s ∈ X we have that s(x) = s(y),
A |=X x 6= y ⇐⇒ for every s ∈ X we have that s(x) 6= s(y),
A |=X R(x) ⇐⇒ for every s ∈ X we have that s(x) ∈ RA,
A |=X ¬R(x) ⇐⇒ for every s ∈ X we have that s(x) /∈ RA,
A |=X ϕ1 ∧ ϕ2 ⇐⇒ A |=X ϕ1 and A |=X ϕ2,
A |=X ϕ1 ∨ ϕ2 ⇐⇒ there are Y, Z ⊆ X with

Y ∪ Z = X,A |=Y ϕ1 and A |=Z ϕ2,
A |=X ∃x ϕ1 ⇐⇒ A |=X[F/x] ϕ1 for some F : X → dom(A),
A |=X ∀x ϕ1 ⇐⇒ A |=X[A/x] ϕ1.

12
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Table 2.1

x1 x2 x3

s1 0 2 0
s2 1 3 3

Table 2.2

x1 x2 x3 y

s′1 0 2 0 0
s′2 0 2 0 1
s′3 1 3 3 1

Table 2.3

x1 x2 x3 y

s′′1 0 2 0 0
s′′2 0 2 0 1
s′′3 0 2 0 2
s′′4 0 2 0 3
s′′5 1 3 3 0
s′′6 1 3 3 1
s′′7 1 3 3 2
s′′8 1 3 3 3

Example 2.7. We consider the structure A = ({0, 1, 2, 3}, RA), with RA = {0, 1}
and the team X given in Table 2.1. In Table 2.4 we give examples of formulas that
are satisfied by A and X and of ones that are not.

In contrast to classical first-order logic, team semantics comes with some special
properties. As we have seen in Example 2.7 there are formulas ϕ, structures A and
teams X such that neither A |=X ϕ nor A |=X ¬ϕ. In other words the law of the
excluded middle does not hold in team semantics. Since we are mainly interested
in satisfiability in this thesis the law of the excluded middle will not be of much
relevance for us. There are more such properties discussed by Väänänen [Vää07],
where the following are especially relevant for us.

Proposition 2.8 ([Vää07]).

1. First-order formulas have the empty team property, that is, for any ϕ ∈ FO
and any structure A it holds A |=∅ ϕ.

2. First-order formulas are flat, that is, for any ϕ ∈ FO, any structure A and
any team X it holds A |=X ϕ, if and only if A |=s ϕ for all s ∈ X.

By the empty team property any formula ϕ is satisfiable. Especially every
sentence ϕ is trivially true in the sense that for any structure A, A |=∅ ϕ holds.
We therefore redefine the satisfaction relation for sentences: A σ-sentence ϕ is
satisfied in A, if A |={s∅} ϕ holds. To simplify the notation we write A |= ϕ in that
case. As we will later see, the empty team property also holds for other logics we
define. For sentences this will not be an issue because of our definition above, but
we still have to handle formulas. We therefore decide to exclude the empty team
from the solution sets when defining computational problems based on team logics
later. This will cause some issues, since we want to express problems from other
fields that allow the “empty solution” using team logics and vice versa. Therefore

13
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Table 2.4

Satisfaction relation Explanation

A |=X R(x1) The values that appear in X for variable x1 are
s1(x1) = 0 and s2(x1) = 1, both values are in RA

and therefore A |=X R(x1).

A |=X ¬R(x2) The values that appear in X for variable x2 are
s1(x2) = 2 and s2(x2) = 3. Both values are not in RA

and therefore A |= ¬R(x2).

A 6|=X R(x3) We have s2(x3) = 3, which is not in RA. Therefore,
A |=X R(x3) does not hold.

A 6|=X ¬R(x3) We have s1(x3) = 0, which is in RA. Therefore,
A |=X ¬R(x3) does not hold.

A |=X R(x1) ∨R(x3) We choose Y = {s2} and Z = {s1}. Now we have
A |=Y R(x1) and A |=Z R(x3).

A |=X R(x1) ∧ ¬R(x2) Since A |=X R(x1) and A |=X ¬R(x2) hold we can
conclude A |=X R(x1) ∧ ¬R(x2).

A |=X ∃y R(y) We choose the function F from Example 2.5. The val-
ues that appear in the corresponding supplementing
team X[F/y] for y are s′1(y) = 0 and s′2(y) = s′3(y) =
1, which are both in RA and thereforeA |=X ∃y R(y).

A 6|=X ∀y R(y) Consider the duplicating team X[A/x] from Exam-
ple 2.5. As s′′3(y) = 2 appears as a value for y and is
not in RA, we can conclude A 6|=X ∀y R(y).

one of our tasks will be to find equivalent problems that somehow exclude the
empty solution.

Because of the flatness property FO formulas are not that interesting in team
semantics. We therefore extend FO formulas by new atoms which we will call team
atoms. We start by defining the three most studied atoms which are also the focus
of this thesis. These are the dependency atom =(x, y), the independency atom
x⊥zy and the inclusion atom x ⊆ y, where x, y, z are tuples of variables and y is
a single variable.

Definition 2.9. Let σ be a vocabulary, A be a σ-structure, X be a team of A, y
be a variable and x, y, z be tuples of variables. The satisfaction relation for team
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atoms |= is defined as follows:

A |=X =(x, y) ⇐⇒ for every s, t ∈ X we have that s(x) = t(x) implies
s(y) = t(y),

A |=X x⊥zy ⇐⇒ for every s, t ∈ X with s(z) = t(z) there is u ∈ X
such that u(x) = s(x), u(y) = t(y) and u(z) = s(z),

A |=X x ⊆ y ⇐⇒ for every s ∈ X there is t ∈ X such that s(x) = t(y).

Intuitively, the dependence atom =(x, y) expresses dependency in the sense that
if two assignments agree on x they must also agree on y. The independence atom
x⊥y expresses “total” independency, which means in our case that all values that
are assigned to x and y by (potentially different) assignments must also appear
in one assignment combined. This is not to be confused with the negation of the
dependence atom, which expresses another kind of independecy not considered in
this thesis. The inclusion atom x ⊆ y expresses that for x only values may appear
that also appear for y. When considering the sets of those values Rx, Ry, we can
observe a subset relation between those sets, that is, Rx ⊆ Ry.

Example 2.10. We consider the structure A = ({0, 1}) (consisting only of its
universe) and the team X consisting of the assignments s1, s2, s3, s4 given in Ta-
ble 2.5. We have that A |=X ϕ for ϕ ∈ {=(x1, x2), x1⊥x3, x1 ⊆ x3} and A 6|=x ϕ

′

for ϕ′ ∈ {=(x2, x1), x1⊥x4, x1 ⊆ x2}. In Table 2.6 we explain why this is the case.
Note that, for example, the formula x1⊥x2 is also satisfied by A and X, which
means that at the same time x1 and x2 are independent but also x2 depends on x1

(since A |=X =(x1, x2), see above) in our notion.

Table 2.5

x1 x2 x3 x4

s1 0 0 0 1
s2 0 0 1 1
s3 1 0 0 0
s4 1 0 1 0

For a vocabulary σ and a set of team atoms T ⊆ {=(. . . ),⊥,⊆} we define
FO(σ,T) as the logic of first-order formulas over σ that can contain atoms from
T. For convenience we omit the curly brackets if T consists of only one atom and
may omit σ as mentioned before. We give names to the logics we get by extending
first-order logic by one of the three atoms we defined already: FO(=(. . . )) is called
dependence logic, FO(⊥) is called independence logic and FO(⊆) is called inclusion
logic.
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Table 2.6

Satisfaction relation Explanation

A |=X =(x1, x2) There are two interesting pairs of assignments since
they agree on x1, one being s1, s2 and the other being
s3, s4. Since for both pairs the respective assignments
also agree on x2, the required implication holds. All
other pairs do not agree on x1 and therefore satisfy the
implication trivially.

A 6|=X =(x2, x1) Since s1(x2) = s3(x2) but s1(x1) 6= s3(x1) the formula
=(x2, x1) is not satisfied by the team X in A.

A |=X x1⊥x3 This holds since for any combination of values ((0, 0),
(0, 1), (1, 0), (1, 1)), there is an assignment that assigns
those values to x1 and x3. More formally, for any pair
s, t ∈ X one of the four assignments s1, s2, s3, s4 agrees
with s on x1 and with t on x3.

A 6|=X x1⊥x4 We have s1(x1) = 0 and s3(x4) = 0 but no assignment
s ∈ X that agrees on both.

A |=X x1 ⊆ x3 For any assignment s ∈ X either s(x1) = s1(x3) or
s(x1) = s2(x3).

A 6|=X x1 ⊆ x2 For the assignment s3 there is no assignment s ∈ X with
s3(x1) = s(x2).

Proposition 2.11 ([Gal12, GH13, GV13, Vää07]).

1. The dependence atom =(. . . ) and the inclusion atom ⊆ can be expressed
using the independence atom ⊥:

=(x, y) ≡ y⊥xy
x ⊆ y ≡ ∀v1∀v2∀z

(
(z 6= x ∧ z 6= y) ∨ (v1 6= v2 ∧ z 6= y)

∨
(
(v1 = v2 ∨ z = y) ∧ z⊥(v1, v2)

))
2. Let T ⊆ {=(. . . ),⊥,⊆}. Formulas of FO(T) have the empty team property.

3. Formulas of FO(=(. . . )) are downwards closed, that is: If A |=X ϕ and
Y ⊆ X, then A |=Y ϕ for any structure A, formula ϕ and teams X, Y .

4. Formulas of FO(⊆) are closed under union, that is: If A |=X ϕ and A |=Y ϕ,
then A |=X∪Y ϕ for any structure A, formula ϕ and teams X, Y .
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The union closure property of inclusion logic implies a really nice property:
Given a formula ϕ ∈ FO(⊆) and a structure A, there is a unique maximal team
X with A |=X ϕ. Moreover, when in addition given a team X ′, the maximal team
X ⊆ X ′ with that property is unique as well.

The above atoms expressing team properties can be generalized, which we will
do next. For this, we introduce some more notation: With the expression rel(X)
we denote the translation of a team X to a relation, formally

rel(X) = {(s(x1), . . . , s(xk)) | s ∈ X}.

For an assignment s : V → A and a set of variables V ′ ⊆ V , we denote by s|V ′
the restriction of s to V ′, that is, s|V ′ : V ′ → A with s|V ′(x) = s(x) for all x ∈ V ′.
Furthermore, for a team X over V and a set of variables V ′ ⊆ V we denote by
X|V ′ the restriction of X to V ′, that is, X|V ′ =

{
s|V ′ | s ∈ X

}
. With vars(x) we

denote the set of variables in the tuple x.

Definition 2.12. Let i1, . . . , in > 0, and σ = (Ri1
1 , . . . , R

in
n ) be a vocabulary. A

generalized quantifier of type (i1, . . . , in) is a class Q of σ-structures that is closed
under isomorphism.

Let Q be a generalized quantifier of type (i1, . . . , in). We extend the syntax of
first-order logic with an expression GQ(x1, . . . , xn), where each xj is a tuple of
variables of length ij. We call GQ a generalized team atom (of type (i1, . . . , in)),
and define its satisfaction relation by:

A |=X GQ(x1, . . . , xn) ⇐⇒
(
dom(A), rel(X|vars(x1)), . . . , rel(X|vars(xn))

)
∈ Q.

Of course one can express the dependence, independence and inclusion atoms in
terms of generalized quantifiers. We do this exemplarily for the inclusion atom.

Example 2.13. We define a generalized quantifier Q such that the corresponding
generalized team atom GQ expresses the inclusion atom ⊆ (for single variables).
The class Q consists of all structures A = (A,R1, R2) with the property R1 ⊆ R2.
Clearly Q is closed under isomorphisms and we have that

A |=X GQ(x, y) ⇐⇒ (dom(A), rel(X|x), rel(X|y) ∈ Q)

⇐⇒ rel(X|x) ⊆ rel(X|y)
⇐⇒ for every s ∈ X there is t ∈ X such that s(x) = t(y)

⇐⇒ A |=X x ⊆ y.

We denote by G the set of all generalized team atoms. Given a set T ⊆ G of
generalized team atoms, we define the logic FO(T) which consists of all first-order
formulas extended by the atoms from T. Under the term team logics, we summarise
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every such extension of first-order logic. We say a set of generalized team atoms
T ⊆ G is NP-verifiable, if the model checking problem VERIFYTEAMϕ is in NP
for every formula ϕ ∈ FO(T). The set of all NP-verifiable generalized team atoms
is denoted with GNP.

Problem: VERIFYTEAMϕ

Input: structure A, team X
Question: A |=X ϕ and X 6= ∅?

Proposition 2.14 ([Grä13]). Let T be a set of generalized team atoms that can
be evaluated in polynomial time. Then T ⊆ GNP.

Proof. This Proposition is a special case of a theorem by Grädel (see [Grä13]) which
states that the model-checking problem VERIFYTEAMFO(T) is in NEXPTIME and
furthermore in NP if the input formula has bounded width. In this context the
width of a formula ϕ is the maximal number of free variables of its subformulas.

Problem: VERIFYTEAMFO(T)

Input: ϕ ∈ FO(T), structure A, team X
Question: A |=X ϕ and X 6= ∅?

Note that compared to the model-checking problem VERIFYTEAMϕ we defined
before, in the problem VERIFYTEAMFO(T) the formula is part of the input and
not fixed. Because in our case the formula is fixed, its width is bounded and
therefore VERIFYTEAMϕ ∈ NP for ϕ ∈ FO(T).

Corollary 2.15. Let T ⊆ {=(. . . ),⊥,⊆}. Then T is NP-verifiable.

Proof. This follows from Proposition 2.14, since all three atoms =(. . . ),⊥ and ⊆
can be evaluated in polynomial time.

2.5 Complexity Theory

In this section we introduce a framework for defining computational problems,
which allows us to quickly compare problems from different settings. On top of
that we define complexity classes and certain properties of them.

We formally define computational problems such as decision problems, counting
problems and enumeration problems by functions that map instances to sets of
solutions. For this let Σ be an alphabet with |Σ| ≥ 2. We call any function
f : Σ∗ → 2Σ∗ a computational problem function, in short CPF. For a given x ∈ Σ∗

we call f(x) the set of solutions of x in f and every element y ∈ f(x) a solution
of x in f . We say f is polynomially bounded, if there is a polynomial p such that
for all x ∈ Σ∗ and all y ∈ f(x) it holds that |y| ≤ p(|x|).
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Now, given a (polynomially bounded) computational problem function f , we
can easily define decision (D-f), counting (C-f) and enumeration (E-f) problems:

Problem: D-f
Input: x ∈ Σ∗

Question: f(x) 6= ∅?

Problem: C-f
Input: x ∈ Σ∗

Output: |f(x)|

Problem: E-f
Input: x ∈ Σ∗

Output: f(x)

This framework also allows us to define other computation problems, such as
the search problem which asks for a solution given an input (S-f) or the model-
checking problem (V-f), which will turn out to be quite useful.

Problem: S-f
Input: x ∈ Σ∗

Output: Any y ∈ f(x)

Problem: V-f
Input: x, y ∈ Σ∗

Question: y ∈ f(x)?

For convenience, when defining arbitrary problems this way, we will define the
corresponding function implicitly. For example we write “Let E-f be an enu-
meration problem” instead of “Let f be a polynomial bounded CPF and E-f be
the corresponding enumeration problem”. For this definition Σ can be arbitrary
(with |Σ| ≥ 2) but from now on we assume that Σ = {0, 1}. For readability,
when we specifically define CPFs and computational problems, we will hide the
underlying encoding over Σ. If the argument is not an encoding of the respec-
tive object, then the image value is the empty set. For example, in the defini-
tion of the function satteam

ϕ (see below), instead of satteam
ϕ : Σ∗ → 2Σ∗ , we write

satteam
ϕ : STRUC → 2TEAM(ϕ). Here we want to express that satteam

ϕ maps struc-
tures to sets of teams and, for this, assume suitable encodings of structures and
teams over Σ∗, respectively. Later we will also define non-unary functions. For
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this we assume a suitable encoding of all the arguments of the respective function
over Σ∗ as well. If at some point the encoding becomes important, we write enc(Z)
to specify the encoding of object Z over alphabet Σ.

As an example, we define the satisfiability problems that are the focus of this
thesis. Let T ⊆ G and ϕ ∈ FO(T). We define the CPF satteam

ϕ : STRUC →
2TEAM(ϕ) with

satteam
ϕ (A) := {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } .

The corresponding problems are defined as D-satteam
ϕ ,C-satteam

ϕ ,E-satteam
ϕ with:

Problem: D-satteam
ϕ

Input: A ∈ STRUC
Question: satteam

ϕ (A) 6= ∅?

Problem: C-satteam
ϕ

Input: A ∈ STRUC
Output: |satteam

ϕ (A)|

Problem: E-satteam
ϕ

Input: A ∈ STRUC
Output: satteam

ϕ (A)

or if we replace satteam
ϕ (A) with its image

Problem: D-satteam
ϕ

Input: A ∈ STRUC
Question: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } 6= ∅?

Problem: C-satteam
ϕ

Input: A ∈ STRUC
Output: | {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } |

Problem: E-satteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ }

The corresponding model-checking problem would be defined as
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Problem: V-satteam
ϕ

Input: A ∈ STRUC, X ′ ∈ TEAM(ϕ)
Question: X ′ ∈ {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ }?

which is equivalent to the model-checking problem VERIFYTEAMϕ we defined
in Section 2.4. Note that in these problems the formula ϕ is fixed and not part
of the input. In fact we just defined infinitely many CPFs, four for each formula
ϕ. The size of the solutions is bounded by the size of the full team, that is,
|Xfull| = |dom(A)||free(ϕ)|. Since ϕ is fixed, |free(ϕ)| is a constant and therefore
|dom(A)||free(ϕ)| is polynomial. Thus, satteam

ϕ is polynomially bounded.
We consider three types of complexity classes. A decision complexity class is

a set of decision problems. Analogously we define counting complexity classes
and enumeration complexity classes as sets of counting problems and enumera-
tion problems respectively. Given a complexity class, one might want to compare
the problems contained in it to each other in terms of complexity. For this, we
introduce a comparison notion—called reduction—, which differs depending on
the respective complexity class. We assume that the reader is familiar with the
classes ΣP

k (for k ≥ 0) of the polynomial hierarchy, polynomial-time many-one
reductions (≤P

m) and log-space reductions (≤log
m ). We will define other complexity

classes as well as reducibility notions later in Sections 2.6, 2.7 and 2.8. Since all
the reducibility notions we define in this thesis are polynomial-time computable,
we sometimes omit “polynomial-time” and, for example, only write “many-one
reducible”. This is not to be confused with the generalisations of the reductions,
where the reduction function only needs to be computable.

Definition 2.16. Let A be a computational problem and C be a complexity class.
We say A is C-hard with respect to reducibility notion ≤ if for every B ∈ C it
holds that B ≤ A. Furthermore we say A is C-complete with respect to reducibility
notion ≤, if A ∈ C and A is C-hard with respect to reducibility notion ≤.

Given a complexity class, there are weaker and stronger reducibility notions and
therefore hardness and completeness results have different impacts depending on
the notion. Hence, some reductions are more suitable than others for a specific
complexity class. Formally, for a reducibility notion ≤ to be suitable for a class C,
we want C to be closed under ≤, as defined below.

Definition 2.17. A complexity class C is closed under some reducibility ≤, if for
any two computational problems A,B it holds that:

if A ≤ B and B ∈ C then A ∈ C.

When a complexity class is closed under a reduction we have some nice properties
such as: upper bounds translate “from right to left” and lower bound “from left
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to right”. These properties will help us later to show membership and hardness
results and subset relationships between complexity classes.

Next we define the notion of oracle Turing machines. We start in the decision
setting. A (decision) oracle Turing machine M with oracle D-f is a Turing machine
with two new special tapes—the query tape and the answer tape—and two new
states corresponding to those tapes. The machine may use the query tape like a
normal tape. At any point in the computation the machine may ask the oracle
for an answer to the word written on the query tape by going into the query
state. The oracle outputs the answer to the query “x ∈ D-f?” in one time step
on the answer tape and the machine switches into the answer state. Afterwards,
the computation of M continues. Given an oracle Turing machine M, we use MD-f

to denote that we give the machine access to the oracle D-f . A counting oracle
Turing machine is defined analogously but instead of a decision problem it uses a
counting problem C-f as an oracle. There is also a notion of oracle machines in
the enumeration setting, which we will not define here but later in Section 2.8 due
to its complexity. Let C be a complexity class defined via Turing machines (with
some computational bounds) and D be an arbitrary complexity class, we denote
with CD the class of problems that can be solved by a machine with access to an
oracle in D and the computational bounds of C. For example, PNP is the set of
problems that can be decided by a polynomial-time Turing machine with access
to an NP-oracle.

Now, we define all (polynomially bounded) CPFs—and by this also implicitly
computational problems—that we consider in this thesis. The idea of this is to
have proper formal definitions of all CPFs in one place, but for readability we will
restate the definitions of the corresponding problems at the places where we need
them. We group these CPFs in different categories: The first group consists of
CPFs we aim to achieve new results for, the second group consists of those that
we only use as oracles and the third group contains CPFs that we only use in
reductions. Any CPFs defined in this section are polynomially bounded, as one
can easily show.

First group The CPF satteam
ϕ , which was defined above, belongs to the first group

of CPFs. The other CPFs of this group are different variants of satteam
ϕ , where we

restrict the solutions to those that are (inclusion) maximal/minimal or of max-
imum/minimum cardinality. Formally, given T ⊆ G, a formula ϕ ∈ FO(T), a
structure A and a team X 6= ∅ with A |=X ϕ, we say X is

maximal satisfying ⇐⇒ ∀X ′ X ( X ′ implies A 6|=X′ ϕ,

minimal satisfying ⇐⇒ ∀X ′ 6= ∅ X ′ ( X implies A 6|=X′ ϕ,

maximum satisfying ⇐⇒ ∀X ′ |X ′| > |X| implies A 6|=X′ ϕ and
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minimum satisfying ⇐⇒ ∀X ′ 6= ∅ |X ′| < |X| implies A 6|=X′ ϕ.

Since all of these terms describe satisfying teams we will sometimes omit the word
“satisfying” and write for example “let X be a maximal team”. When using the
term optimum, we refer to either of the above defined terms.

Let T ⊆ G and ϕ ∈ FO(T), we define the CPFs

satteam
ϕ :

{
STRUC→ 2TEAM(ϕ)

A 7→ {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } ,

maxsatteam
ϕ :

{
STRUC→ 2TEAM(ϕ)

A 7→ {X ∈ TEAM(A, ϕ) |X is a maximal team for ϕ in A} ,

minsatteam
ϕ :

{
STRUC→ 2TEAM(ϕ)

A 7→ {X ∈ TEAM(A, ϕ) |X is a minimal team for ϕ in A} ,

cmaxsatteam
ϕ :

{
STRUC→ 2TEAM(ϕ)

A 7→ {X ∈ TEAM(A, ϕ) |X is a maximum team for ϕ in A} ,

cminsatteam
ϕ :

{
STRUC→ 2TEAM(ϕ)

A 7→ {X ∈ TEAM(A, ϕ) |X is a minimum team for ϕ in A} .

Second group Let T ⊆ G and ϕ ∈ FO(T), we define the CPFs

extendteamϕ :

STRUC× TEAM(ϕ)2 → 2TEAM(ϕ)

(A, X, Y ) 7→
{
X ′ ∈ TEAM(A, ϕ)

∣∣∣∣A |=X′ ϕ, X ( X ′

and X ′ ∩ Y = ∅

}
,

extendteam′ϕ :

{
STRUC× TEAM(ϕ)→ 2TEAM(ϕ)

(A, X) 7→ {X ′ ∈ TEAM(A, ϕ) | A |=X′ ϕ,X ( X ′ } ,

extendcteamϕ :


STRUC× TEAM(ϕ)2 × N→ 2TEAM(ϕ)

(A, X, Y, k) 7→

X ′ ∈ TEAM(A, ϕ)

∣∣∣∣∣∣
A |=X′ ϕ, X ( X ′,
X ′ ∩ Y = ∅ and
|X ′| = k′

 ,

maxsubteamϕ :


STRUC× TEAM(ϕ)→ 2TEAM(ϕ)

(A, X) 7→

X ′ ∈ TEAM(A, ϕ)

∣∣∣∣∣∣
A |=X′ ϕ, X ′ ⊆ X and
∀X ′′ ⊆ X : |X ′′| > |X ′|
=⇒ A 6|=X′′ ϕ

 .

The CPF maxsubteamϕ does not really fit in this category (or the other two cate-
gories) as we are only interested in the S-version, which we formally may not use
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as an oracle, but since we use it in similar fashion to an oracle we list it here.

Third group To improve readability we split this group into two blocks. The first
block contains logic based CPFs. Let T ∈ G, ϕ ∈ FO(T), ψ ∈ SO,P1,P2 ⊆ Σ1BF
and P3 ⊆ CNF. We define the CPFs

k-minsatteam
ϕ :

STRUC× N→ 2TEAM(ϕ)

(A, k) 7→
{
X ∈ TEAM(A, ϕ)

∣∣∣∣A |=X ϕ, X 6= ∅
and |X| ≤ k

}
,

anothersolminsatteam
ϕ :


STRUC× 2TEAM(ϕ) → 2TEAM(ϕ)

(A,M) 7→

{
X ∈ TEAM(A, ϕ)

∣∣∣∣∣X 6∈M and
X is minimal
for ϕ in A

}
,

k-minsatrel
ψ :

STRUC× N→ 2REL(ψ)

(A, k) 7→
{
R ∈ REL(A, ψ)

∣∣∣∣A, R |= ψ, R 6= ∅
and |R| ≤ k

}
,

anothersolminsatrel
ψ :

STRUC× 2REL(ψ) → 2REL(ψ)

(A,M) 7→
{
R ∈ REL(A, ψ)

∣∣∣∣R 6∈M and R is
minimal for ψ in A

}
,

satrel
ψ :

{
STRUC→ 2REL(ψ)

A 7→ {R ∈ REL(A, ψ) | A, R |= ψ } ,

satrel,¬∅
ψ :

{
STRUC→ 2REL(ψ)

A 7→ {R ∈ REL(A, ψ) | A, R |= ψ and R 6= ∅ } ,

satP1 :

{
P1 → 2Θ

χ 7→ { β ∈ Θ(χ) | β |= χ } ,

sat¬∅P1
:

{
P1 → 2Θ

χ 7→ { β ∈ Θ(χ) | β |= χ and β 6= ∅ } ,

(satP1 , satP2) :

P1 × P2 → 2Θ

(χ1, χ2) 7→
{
β ∈ Θ(χ1) ∪Θ(χ2)

∣∣∣∣ β |= χ1 and
β |= χ2

}
,

sat1
P3

:


P3 → 2Θ

χ 7→

{
β ∈ Θ(χ)

∣∣∣∣∣ In each clause Ci of χ there
is exactly one literal `i,j
that evaluates to 1 under β

}
,
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k-minsat¬∅DH :

{
DH× N→ 2Θ

(χ, k) 7→ { β ∈ Θ(χ) | β |= χ, β 6= ∅ and |β| ≤ k } ,

anothersolminsat¬∅DH :

DH× 2Θ → 2Θ

(χ,B) 7→
{
β ∈ Θ(χ)

∣∣∣∣ β 6∈ B and β is
minimal for χ

}
,

anothersolmaxsat¬full
HORN :

HORN× 2Θ → 2Θ

(χ,B) 7→
{
β ∈ Θ(χ)

∣∣∣∣ β 6∈ B and β is
maximal for χ

}
.

Here, minimal solutions in the context of second-order formulas and DualHorn
formulas are defined analogously to inclusion minimality in the team logic setting
(with the special role of the empty solution). In the context of Horn formulas,
maximal means inclusion maximal with respect to the set of all solutions that are
not the full assignment, i.e. the set

{ β ∈ Θ(χ) | β |= χ, β 6= βfull and ∀β′ 6= βfull : β ( β′ =⇒ β′ 6|= χ } .

The second block contains graph CPFs. Before we define those, we have to recall
some notions of graph theory: We consider only undirected graphs. Let GRAPH
be the set of all (undirected) graphs G = (V,E), VERTEX = {V | G = (V,E) ∈
GRAPH} and EDGE = {E | G = (V,E) ∈ GRAPH}. A cycle cover of a graph
is a set of cycles such that every vertex of the graph is contained in at least one
of the cycles. A cycle cover is vertex-disjoint, if each pair of cycles have no vertex
in common. In the following we identify vertex disjoint cycle covers with the sets
of its edges. A graph G = (V,E) is bipartite if one can split its vertex set into
two disjoint independent sets V1, V2. We call each such split (V1, V2) bipartition.
We write G = (V1, V2, E) to specify the bipartition (V1, V2) that was applied to
the Graph G = (V,E). With BIP we denote the set of all bipartite graphs. For a
given graph G = (V,E) a matching is a set of edges E ′ such that every two edges
e1, e2 ∈ E ′ do not share a vertex, that is, e1 ∩ e2 = ∅. A matching E ′ is called
perfect, if every vertex v ∈ V is part of an edge e ∈ E ′. Now we have everything
we need to define the second block of CPFs. Let P ⊆ Σ1BF, we define the CPFs

is¬full :

{
GRAPH× N→ 2VERTEX

(G, k) 7→ {V ′ ( V | ∀u, v ∈ V ′ : {u, v } 6∈ E, |V ′| ≥ k } ,

cyclecover :

{
GRAPH→ 2EDGE

G 7→ {E ′ ⊆ E |E ′ is a vertex disjoint cycle cover of G } ,

matching :

{
BIP→ 2EDGE

G 7→ {E ′ ⊆ E |E ′ is a matching of G } ,
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pmatching :

{
BIP→ 2EDGE

G 7→ {E ′ ⊆ E |E ′ is a perfect matching of G } ,

(cyclecover, satP) :

GRAPH× P→ 2EDGE

(G,χ) 7→
{
E ′ ⊆ E

∣∣∣∣E ′ is a vertex disjoint cycle cover
of G, free(χ) = E and E ′ |= χ

}
,

(matching, satP) :

BIP× P→ 2EDGE

(G,χ) 7→
{
E ′ ⊆ E

∣∣∣∣E ′ is a matching of
G, free(χ) = E and E ′ |= χ

}
,

(pmatching, satP) :

BIP× P→ 2EDGE

(G,χ) 7→
{
E ′ ⊆ E

∣∣∣∣E ′ is a perfect matching of
G, free(χ) = E and E ′ |= χ

}
.

This concludes the definitions of the considered CPFs. We close this section by
recalling some completeness results.

Proposition 2.18.

1. D-satBF is NP-complete with respect to ≤P
m reductions [GJ79].

2. D-satHORN is P-complete with respect to ≤log
m reductions [Kas86, GHR95].

3. D-satDH is P-complete with respect to ≤log
m reductions, by Remark 2.1.

2.6 Decision Problems in Team Logics

In descriptive complexity we study complexity classes which consist of problems
that are definable by certain logics. At first glance some description complexity
results might seem confusing, since description complexity classes are often de-
noted by the same symbols as the corresponding logic itself. For example, Fagin’s
Theorem states Σ1

1 = NP, which does not mean that NP and existential second
order logic are the same, but that NP contains exactly the problems definable by
Σ1

1 formulas. To avoid confusion, we now define the decision complexity classes
based on the considered logics.

Problem: D-satrel
ψ

Input: A ∈ STRUC
Question: {R ∈ REL(A, ψ) | A, R |= ψ } 6= ∅?

Definition 2.19. The complexity class FOrel consists of all problems D-satrel
ψ ,

where ψ ∈ FOrel.

26



2 Preliminaries

Definition 2.20. The complexity class Σ1
1 consists of all problems D-satrel

ψ , where
ψ ∈ Σ1

1.

Proposition 2.21. FOrel = Σ1
1.

Proof. The relation FOrel ⊆ Σ1
1 holds trivially since any FOrel formula is also a Σ1

1

formula. For the converse let D-satrel
ψ1
∈ Σ1

1 via ψ1 ∈ Σ1
1. We assume without loss

of generality that ψ1(R) is of the form ψ1(R) = ∃Q ψ′1(R,Q), where ψ′1(R,Q) is a
first-order formula with free relational variables R and Q. Now we have

D-satrel
ψ1

= {A | there is a relation R with A, R |= ψ1(R) }
=
{
A
∣∣ there are relations R,Q with A, R,Q |= ψ′1(R,Q)

}
= {A | there is a relation R′ with A, R′ |= ψ2(R′) }
= D-satrel

ψ2
,

where ψ2 is obtained by replacing any relational variable in ψ′1 by R′. The idea of R′

is to capture all relations R,Q. The formal definition of R′ is straightforward but
technical, which is why we omit it. Note that ψ2 ∈ FOrel and therefore D-satrel

ψ1
=

D-satrel
ψ2
∈ FOrel.

The motivation to define the class FOrel arises from the corresponding counting
class #FOrel, which was first introduced by Saluja et al. with the aim to capture
the counting class #P [SST95] (we will revisit the definition of these counting
classes and the corresponding result in Section 2.7). Note that (under reasonable
assumptions) #FOrel ( #Σ1

1, where #Σ1
1 is the counting class corresponding to Σ1

1.
We therefore introduced the class FOrel to compare the results from the counting
setting to the decision setting.

Problem: D-satteam
ϕ

Input: A ∈ STRUC
Question: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } 6= ∅?

Definition 2.22. Let T ∈ G. The complexity class FO(T) consists of all problems
D-satteam

ϕ , where ϕ ∈ FO(T).

There are some other logics that help us to compare the complexity classes we
defined via team logics to conventional complexity classes. These include least
fixed point logic (LFP), positive greatest fixed point logic (posGFP) and FOT. We
do not go into detail about those logics as this would go beyond the scope of this
thesis. However, we stress that these logics match logics we study in terms of
expressibility. For more information about them see [GH13] for LFP and posGFP
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and [KY19] for FOT. We define the corresponding complexity classes analogously
to the complexity classes FOrel, Σ1

1 and FO(T) (see Definitions 2.19, 2.20 and 2.22).
The logics LFP and posGFP were thoroughly studied and it was shown that both
coincide with P over finite ordered structures [Imm86, Var82]. The logic FOT is a
variant of first-order team logic, which was defined with the aim to capture FOrel

[KY19]. Having defined our logic-based complexity classes, we can show how the
classes defined by team logics relate to those defined by predicate logics. This
allows us to show that the team logic-based complexity classes capture certain
classical complexity classes.

Proposition 2.23 (Fagin’s Theorem, [Fag74]). Σ1
1 = NP.

For dependence and independence logic there is a connection to existential
second-order logic which we can use to translate Fagin’s Theorem to those log-
ics.

Proposition 2.24 ([Gal12]). For every σ-formula ϕ(x1, . . . , xk) of FO(⊥), there
is a σ-formula ψ(R) of Σ1

1 such that for all σ-structures A and teams X over
{x1, . . . , xk},

A |=X ϕ ⇐⇒ A, rel(X) |= ψ(R). (?)

Conversely, for every σ-formula ψ(R) of Σ1
1, there is a σ-formula ϕ of FO(⊥) such

that (?) holds for all σ-structures A and non-empty teams X.

Proposition 2.25 ([KV09]). For every σ-formula ϕ(x1, . . . , xk) of FO(=(. . . )),
there is a σ-formula ψ(R) of Σ1

1 with R occurring only negatively such that for all
σ-structures A and teams X over {x1, . . . , xk},

A |=X ϕ ⇐⇒ A, rel(X) |= ψ(R). (?)

Conversely, for every σ-formula ψ(R) of Σ1
1 with R only occurring negatively,

there is a σ-formula ϕ of FO(=(. . . )) such that (?) holds for all σ-structures A
and non-empty teams X.

To get a better understanding for how such translations work, we present an
example for the case of dependence logic.

Example 2.26. Let ϕ := =(x, y)∧z = y be a dependence logic formula. Consider
the following Σ1

1 formula

ψ := ∀x1∀y1∀x2∀y2∀z
( expresses =(x, y)︷ ︸︸ ︷((

R(x1, y1, z) ∧R(x2, y2, z) ∧ x1 = x2

)
→ y1 = y2

)
∧ (R(x1, y1, z)→ z = y1)︸ ︷︷ ︸

expresses z=y

)
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Note that R only appears in the left side of an implication and therefore only
negatively. Now we have for all structures A and teams X

A |=X ϕ ⇐⇒ A, rel(X) |= ψ(R).

For the other direction let ψ′ := ∀x∃y∀z¬R(x, y, z) ∨ y = z. To construct the
corresponding dependence logic formula we first translate ψ′ to Skolem normal
form:

ψ′Skolem := ∃f∀x∀z ¬R(x, f(x), z)) ∨ f(x) = z.

Note that we have introduced second-order logic without functional variables, hence
the formula ψ′Skolem is not a second-order formula by our definition. Nevertheless
any second-order formula (by our definition) is equivalent to a formula in Skolem
normal form [Vää07]. The corresponding dependence logic formula is defined as
follows

ϕ′(a, b, c) := ∀x∀z∃y
(expresses f(x)=y︷ ︸︸ ︷
=(x, y)∧ (

expresses ¬R(x,y,z)︷ ︸︸ ︷
a 6= x ∨ b 6= y ∨ c 6= z ∨ y = z)

)
Now we have for all structures A and teams X 6= ∅

A |=X ϕ′ ⇐⇒ A, rel(X) |= ψ′(R).

Corollary 2.27 ([Gal12, KV09]). FO(=(. . . )) = FO(⊥) = NP.

Proof. By Propositions 2.24 and 2.25, over sentences both FO(⊥) and FO(=(. . . ))
are expressively equivalent to Σ1

1: Every σ-sentence ϕ of FO(⊥) (or FO(=(. . . )))
is equivalent to a σ-sentence ψ of Σ1

1, i.e., for any σ-structure A,

A |= ϕ ⇐⇒ A |= ψ,

and vice versa. Combining this with Fagin’s Theorem 2.23 we can conclude:

FO(=(. . . )) = FO(⊥) = Σ1
1 = NP.

Amongst others, Corollary 2.27 states that FO(=(. . . )) = FO(⊥), even though
independence logic has a higher expressive power than dependence logic. The
reason for this is very similar to the reason why FOrel = Σ1

1 holds: Any deci-
sion problem that can be described by an FO(⊥) formula, can also be described
by an FO(⊥) sentence. Furthermore, any such problem can be described by an
FO(=(. . . )) sentence, since over sentences independence logic and dependence logic
are expressively equivalent. Note that the CPFs that are described by such a for-
mula and a corresponding sentence are not equivalent. This is due to the reason
that the solution set of the CPF defined by the sentence can only be the empty
set or consist of the team {s∅}. For this reason the corresponding counting classes
do not coincide, as we will later see.
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Proposition 2.28 ([KY19]). For any σ-formula ϕ(x1, . . . , xk) ∈ FOT, there is a
σ-formula ψ(R) of FOrel such that for any σ-structure A and any team X over
{x1, . . . , xk},

A |=X ϕ ⇐⇒ A, rel(X) |= ψ(R) (?)

Conversely, for σ(R)-formula ψ(R) of FOrel, there is a σ-formula ϕ of FOT such
that (?) holds for all σ-structures A and non-empty teams X.

Corollary 2.29 ([KY19]). FOT = NP.

Proof. By Proposition 2.28 follows that FOT = FOrel. Furthermore by Proposi-
tions 2.21 and 2.23 we can conclude FOT = Σ1

1 = NP.

For inclusion logic there is a connection to posGFP and therefore to LFP, which
can be use to show FO(⊆) = P.

Proposition 2.30 ([GH13]). For any σ-formula ϕ(x1, . . . , xk) of FO(⊆), there
exists a σ-formula ψ(R) of posGFP such that for all σ-structures A and teams X
over {x1, . . . , xk},

A |=X ϕ ⇐⇒ A, rel(X) |= ψ(R) (?)

Conversely, for every σ-formula ψ(R) of posGFP, there is a σ-formula ϕ of FO(⊆)
such that (?) holds for all σ-structures A and non-empty teams X.

The result from Proposition 2.30 allows us to conclude FO(⊆) = P over ordered
structures. Here, “over ordered structures” means that any problem D-satteam

ϕ ∈
FO(⊆) is defined over a vocabulary σ with ≤ ∈ σ and thereby that any input
structure A for D-satteam

ϕ interprets the relation ≤.

Corollary 2.31 ([GH13]). Over ordered structures we have FO(⊆) = P.

Proof. By Proposition 2.30, over sentences FO(⊆) is expressively equivalent to
posGFP. Since posGFP = LFP (see [Imm86]), FO(⊆) is expressively equivalent to
LFP over finite structures. Furthermore LFP = P over ordered finite structures
[Imm86, Var82], thus FO(⊆) captures P.

There is also a connection between inclusion logic and myopic formulas, which
will be useful later.

Proposition 2.32 ([GH13]). Let ψ(R) be a myopic σ-formula. Then there exists
a σ-formula ϕ(x1, . . . , xk) ∈ FO(⊆) such that for all σ-structures A and all teams
X over {x1, . . . , xk} we have

A |=X ϕ(x) ⇐⇒ A, rel(X) |= ψ(R).

In Figure 2.1, we summarise the relationships between the classes defined in this
section.
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P = FO(⊆)

NP = Σ1
1 = FOrel = FO(⊥) = FO(=(. . . )) = FOT

D-satDH

D-satBF

Figure 2.1: Class diagram of considered decision complexity classes. The edge denotes
a subset relationship from bottom to top between its nodes. The problems marked in
blue next to the classes are complete for the respective class (see Proposition 2.18).

2.7 Counting Complexity

In this section, we define counting complexity classes as well as the corresponding
reducibility notions. We start with the conventional counting classes and get to
the logic based classes afterwards.

Definition 2.33. A counting problem C-f is in FP, if there is a (deterministic)
polynomial-time Turing machine M such that, given input x ∈ {0, 1}∗, M computes
C-f(x).

Definition 2.34. A counting problem C-f is in #P if there is a non-deterministic
polynomial-time Turing machine M such that for all inputs x ∈ {0, 1}∗,

C-f(x) is the number of accepting computation paths of M on input x.

Definition 2.35. A counting problem C-f is in TotP if there is a non-deterministic
polynomial-time Turing machine M such that for all inputs x ∈ {0, 1}∗,

C-f(x) is the number of computation paths of M on input x minus 1.

The purpose of subtracting the value 1 is to allow TotP problems to map to the
value 0.

Definition 2.36. Let C be a decision complexity class. A counting problem C-f
is said to be in #·C if there are D-g ∈ C and a polynomial p such that for all
x ∈ {0, 1}∗:

C-f(x) = |{y | |y| ≤ p(|x|) and (x, y) ∈ D-g}|.

In Definition 2.36, we defined #·C for arbitrary classes C, however in this thesis
we are only really interested in one of these classes, namely #·NP. The class
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#·NP is not to be confused with #NP := #PNP, which is defined by extending
the definition of #P by giving the machine M access to an NP oracle [Val79a]. It
is straightforward to show #·NP ⊆ #NP but the converse does (most likely) not
hold, since this would imply NP = coNP [HV95].

In the next proposition we recall subset relationships between the counting
classes we defined in this section so far. We consider all but one of those re-
sults folklore, hence we do not provide a reference for those results but give proof
sketches instead.

Proposition 2.37 ([PZ06]). FP ⊆ TotP ⊆ #P = #·P ⊆ #·NP.

Proof. FP ⊆ TotP: Let C-f ∈ FP. Then there is a machine M that on input
x computes C-f(x) in polynomial time. Now the following machine witnesses
C-f ∈ TotP: On input x compute C-f(x) in polynomial time by simulating M.
Afterwards create C-f(x) (accepting or rejecting) branches.

TotP ⊆ #P: It was shown that TotP is the closure with respect to parsimonious
reductions of self-reducible counting problems from #P whose decision version is
in P [PZ06]. It follows that TotP ( #P unless P = NP.

#P ⊆ #·P: Let C-f ∈ #P. This means that there is a non-deterministic
polynomial-time Turing machine M such that C-f(x) is the number of accepting
paths of M on input x. Let p be a polynomial such that the longest computation
path of M on input x is bounded by p(|x|). The set of accepting computation
paths of M on input x can be described as

{y | y ≤ p(|x|) and (x, y) ∈ D-g},

where (x, y) ∈ D-g ⇐⇒ M accepts x on computation path y. Note that D-g can
be computed in polynomial time by simulating M on input x on path y. Now for
all x ∈ {0, 1}∗ we have

C-f(x) = |{y | M accepts input x on computation path y}|
= |{y | y ≤ p(|x|) and (x, y) ∈ D-g}|.

Hence C-f ∈ #·P.
#·P ⊆ #P: Let C-f ∈ #·P. By definition there are D-g ∈ P and polynomial p

such that
C-f(x) = |{y | |y| ≤ p(|x|) and (x, y) ∈ D-g}|.

We describe a machine M that witnesses C-f ∈ #P: Branch on all y ≤ p(|x|). At
the end of each branch accept if and only if (x, y) ∈ D-g.

#·P ⊆ #·NP: This follows from P ⊆ NP.
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Next, we introduce two reducibility notions: On one hand we have parsimonious
reductions under which the classes defined above are closed (see Lemma 2.39)
and on the other hand we have Turing reductions under which these classes are
(probably) not closed.

Definition 2.38. Let C-f1,C-f2 be two counting problems. We say C-f1 is (poly-
nomial-time) parsimonious reducible to C-f2, C-f1 ≤P

par C-f2, if there is a function
g : {0, 1}∗ → {0, 1}∗ such that

1. C-f1(x) = C-f2(g(x)) for every x and

2. g can be computed in polynomial time.

In the next lemma we examine≤P
par closure properties of certain counting classes.

Again, we consider those results folklore and therefore provide only proof sketches.

Lemma 2.39. The classes #P,TotP and #·ΣP
k for k ≥ 0 are closed under parsi-

monious reductions.

Proof. We start by showing the closure under parsimonious reductions for #P. Let
C-f1,C-f2 be two counting problems with C-f1 ≤P

par C-f2 and C-f2 ∈ #P. Since
C-f1 ≤P

par C-f2, there is a polynomial-time computable function g such that

C-f1(x) = C-f2(g(x)) (1)

and since C-f2 ∈ #P there is a non-deterministic polynomial-time Turing machine
M such that

C-f2(x) = |{y | M accepts input x on computation path y}|. (2)

Combining (1) and (2) we conclude:

C-f1(x) = |{y | M accepts input g(x) on computation path y}|
= |{y | M′ accepts input x on computation path y}|

and therefore C-f1(x) ∈ #P. Here, M′ is the Turing machine that first computes
g(x) and then acts like machine M on input g(x).

We are very brief in the proofs for TotP and #·C since they work analogously
to the case of #P.

Let C-f1 ≤P
par C-f2 and C-f2 ∈ TotP. It holds that

C-f1(x) = C-f2(g(x))

= |{y | y encodes a computation path of M on input g(x)}| − 1

= |{y | y encodes a computation path of M’ on input x}| − 1
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Let C-f1 ≤P
par C-f2 and C-f2 ∈ #·ΣP

k . This means that there is a D-h ∈ ΣP
k such

that

C-f1(x) = C-f2(g(x))

= |{y | |y| ≤ p(|g(x)|) and (g(x), y) ∈ D-h}|
= |{y | |y| ≤ p′(|x|) and (x, y) ∈ D-h′}|,

where p′(|x|) = p(|g(x)|) and (x, y) ∈ D-h′ ⇐⇒ (g(x), y) ∈ D-h. Note that
D-h′ ∈ ΣP

k , since D-h ∈ ΣP
k and P ⊆ ΣP

k .

For the second reducibility notion—Turing reducibility—recall the definition of
oracle Turing machines from Section 2.5.

Definition 2.40. Let C-f1,C-f2 be two counting problems. We say C-f1 is (poly-
nomial-time) Turing reducible to C-f2 (denoted by C-f1 ≤P

T C-f2), if C-f1 can be
computed by a Turing machine MC-f2 in polynomial time.

Since the considered counting classes of this thesis are not closed under Turing
reductions, we can not use this kind of reduction to show subset relations between
those classes. However, we can use Turing reductions to compare FPC to FPD, for
counting classes C,D: Suppose we have two counting problems C-f1 ∈ C,C-f2 ∈ D
with C-f1 ≤P

T C-f2. Furthermore, let C-f1 be complete for C with respect to Turing
reductions. Then, we can conclude FPC = FPC-f1 ⊆ FPC-f2 ⊆ FPD.

In the following result we recall one #P-complete and one TotP-complete prob-
lem, to have a representative problems for both classes.

Proposition 2.41. [Pap94, PZ06]

1. C-satBF is #P-complete with respect to ≤P
par reductions.

2. C-satDNF is TotP-complete with respect to ≤P
T reductions.

Here with DNF we denote the class of propositional formulas in disjunctive
normal form, that is, DNF := {ϕ ∈ BF | ϕ =

∨
i

∧
j `i,j}. Note that we do not

know whether or not C-satDNF is TotP-complete with respect to ≤P
par reductions.

As a matter of fact there is no problem known to be TotP-complete with respect to
≤P

par reductions. For #·NP, we will identify complete problems later in Section 3.4.
For FP we have that any problem C-f ∈ FP is trivially also complete with respect
to ≤P

par reductions.
We already mentioned that for inclusion logic formulas there is always an unam-

biguous maximal (satisfying) team. In fact, we can even compute this team in poly-
nomial time, as the next result states. For this, recall the problem S-maxsubteamϕ.
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Problem: S-maxsubteamϕ

Input: A ∈ STRUC, X ∈ TEAM(ϕ)

Output: y ∈

X ′ ∈ TEAM(A, ϕ)

∣∣∣∣∣∣
A |=X′ ϕ, X ′ ⊆ X and
∀X ′′ ⊆ X : |X ′′| > |X ′|
=⇒ A 6|=X′′ ϕ


Proposition 2.42 ([Grä16]). S-maxsubteamϕ ∈ FP for any ϕ ∈ FO(⊆).

Now we turn to logic-based counting complexity classes. We define one coun-
terpart to each of the logic-based decision complexity classes from Section 2.6.

Problem: C-satrel
ψ

Input: A ∈ STRUC
Question: | {R ∈ REL(A, ψ) | A, R |= ψ } |

Definition 2.43. The counting class #FOrel consists of all functions C-satrel
ψ ,

where ψ ∈ FOrel(σ) and σ is a vocabulary with ≤ ∈ σ.

As mentioned before the class #FOrel was first introduced by Saluja et al.
[SST95]. There is a difference between our definition and the one of Saluja: By
our definition the formulas may only contain one free relational variable, whereas
Saluja’s definition allows an arbitrary number of free relational variables and indi-
vidual variables. We stress that both definitions are equivalent as one can convert
a formula ψ(R1, . . . , Rk, x1, . . . , x`) to a formula ψ′(R) such that the number of
solutions is preserved for any structure A.

Definition 2.44. The counting class #Σ1
1 consists of all functions C-satrel

ψ , where
ψ ∈ Σ1

1(σ) and σ is a vocabulary with {≤,+,×} ⊆ σ.

Problem: C-satteam
ϕ

Input: A ∈ STRUC
Output: | {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } |

Definition 2.45. Let T ∈ G. The counting class #FO(T) consists of all functions
C-satteam

ϕ , where ϕ ∈ FO(σ,T) and σ is a vocabulary with {≤,+,×} ⊆ σ.

As we see in the next two results, there are already characterisations of #P in
the context of first-order logic and team logic.

Proposition 2.46 ([SST95]). #FOrel = #P.
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In Section 2.6 we mentioned that there is a logic, FOT, and its corresponding
descriptive complexity class captures NP. We introduce its counting counterpart
#FOT as the set of problems C-satteam

ϕ , where ϕ ∈ FOT(σ) and σ is a vocabulary
with ≤ ∈ σ.

Corollary 2.47 ([HKM+19]). #FOT = #P.

Proof. Since there is a one-to-one correspondence between satisfying teams for
FOT formulas and satisfying relations for the corresponding first-order formulas
in the sense of Proposition 2.28, we can conclude #FOT = #FOrel. Furthermore,
#FOrel = #P (see Proposition 2.46). Hence we can conclude #FOT = #P.

As our reducibility notion in the context of counting complexity classes defined
via team logics, we choose (parsimonious) first-order reducibility. As we will later
see in Theorem 3.1, all classes #FO(T), for T ∈ {=(. . . ),⊥,⊆}, are closed under
this type of reduction.

For the definition of first-order reductions we first need to introduce first-order
queries. Let σ1, σ2 be two vocabularies with σ2 = (Ri1

1 , . . . , R
ik
k ). An FO-query is a

function I : STRUC(σ1)→ STRUC(σ2) represented by the tuple I = (ψ0, . . . , ψk)
of first-order σ1-formulas, where for a structure A ∈ STRUC(σ1) there is ` ∈ N
such that

I(A) = (dom(I(A)), R
I(A)
1 , . . . , R

I(A)
k ),

dom(I(A)) = { (a1, . . . , a`) | A |= ψ0(a1, . . . , a`) } and

R
I(A)
j =

{
(a1

1, . . . , a
`
1, . . . , a

1
ij
, . . . , a`ij)

∣∣∣A |= ψi(a
1
1, . . . , a

`
1, . . . , a

1
ij
, . . . , a`ij)

}
for all j ≤ k. Intuitively I simply maps `-ary tuples of elements of A to ele-
ments of I(A). Since we use FO-queries in the context of team logics we also
need to define what it means to apply an FO-query to a team X or an assign-
ment s. Let s : {x1

1, . . . , x
1
` , . . . , x

m
1 , . . . , x

m
` } → dom(A) be an assignment with

(s(x)j1, . . . , s(x)j`) ∈ dom(I(A)) for 1 ≤ j ≤ m, we define I(s)((xj1, . . . , x
j
`)) =

(s(xj1), . . . , s(xj`)). For a team X = {s1, . . . , sn}, we define I(X) = {I(s) | s ∈ X}.
Definition 2.48. Let C-f1,C-f2 be counting problems. We say C-f1 is first-order
reducible or FO-reducible to C-f2 (denoted by C-f1 ≤FO

par C-f2) if there are vocab-
ularies σ1, σ2 and an FO-query I : STRUC(σ1) → STRUC(σ2) such that for all
σ1-structures A

C-f1(A) = C-f2(I(A)).

2.8 Enumeration Complexity

By the definition of the considered CPFs, the solution set to an instance might
contain an exponential number of solutions (compared to the size of the instance).
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Hence, a machine enumerating such a solution set might be required to have an
exponential running time. Furthermore, the space requirement of the machine
might be exponential as well. This means that our classical complexity measures
are not suitable for the enumeration setting and we have to define new ones.

Rather than analysing the runtime of the whole computation, we examine the
delay, which is an upper bound for the time of the computation before the first
solution is output (precomputation), the time between the outputs of each two
consecutive solutions and the time between the output of the last solution and the
termination of the algorithm (postcomputation).

Instead of Turing machines, we will use random access machines (RAMs) to be
able to access the (potentially) exponential “memory” in polynomial time. For a
formal introduction to RAMs we refer to the PhD Thesis of Strozecki [Str10] and
the book “Computational Complexity: A Modern Approach” [AB09]. Here, we
will not give a formal definition of RAMs, but instead give an intuition of how
they work using the concept of Turing machines.

One can imagine a RAM as a Turing machine that can jump to certain cells in
one time step. For this, the machine has one special index tape, where it can write
down the index of the cell it wants to jump to. This is the same concept that is
used to define log-time complexity classes [RV97]. Analogously to the definition
of (decision) oracle Turing machines we define (decision) oracle random access
machines (ORAMs) and write MD-f to denote that we give the ORAM M access
to the oracle D-f .

We say a RAM enumerates a problem E-f , if on input x ∈ Σ it outputs all
solutions y ∈ f(x) without duplicates (in any order).

Definition 2.49. The enumeration complexity class DelP contains all enumeration
problems E-f , for which there is a RAM M and polynomial p such that for all inputs
x, M enumerates the output set of E-f with delay p(|x|).

Definition 2.50. Let C be a decision complexity class. The enumeration complex-
ity class DelC consists of all enumeration problems E-f , for which there exists a
RAM MD-g, with D-g ∈ C and p be a polynomial such that for all inputs x, M enu-
merates the output set of E-f with p(|x|) delay and all oracle queries are bounded
by p(|x|).

The class Del+C is defined analogously without the bound on the size of the
oracle queries.

Example 2.51. We show E-satBF ∈ DelNP.

Problem: E-satBF

Input: χ ∈ BF
Output: { β ∈ Θ(χ) | β |= χ }
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Let χ be an input formula over the variables x1, . . . , xn. To enumerate all satisfying
assignments of χ, we assign the value 0 to the smallest variables that is not assigned
yet and ask the oracle if resulting formula is still satisfiable. If the answer is “yes”,
we continue with the next variable, if it is “no” we stop looking for extensions of
the current assignment. Afterwards we repeat the same for the value 1. At any
point, where all variables are assigned we output the current assignment.

We now have to argue, that this method has polynomial delay, the oracles queries
are polynomially bounded and that the oracle is in NP. The last one is the easiest,
since we all know by Cook’s Theorem that D-satBF ∈ NP (see Proposition 2.18).
The oracles queries have the same length as the input formula, therefore they are
polynomial bounded. To get from one satisfying assignment to another we have to
go up and down the whole tree of assignments once in the worst case, which takes
polynomial time.

Since the answer of the oracle from Example 2.51 gives us a glance at the whole
tree of solutions, this kind of enumeration algorithm is often called flashlight or
torchlight search. Our algorithms in Section 4 showing membership for DelP and
DelNP will be based on torchlight search. We therefore call the corresponding
oracles torchlight in such algorithms.

Definition 2.50 yields a second definition of DelP, which coincides with our first
one, since the answers to oracle queries to an oracle D-f ∈ P can simply be
computed in polynomial time [JPY88].

To determine the complexity of enumeration problems precisely we need a suit-
able definition of reducibility. The reductions we use are quite similar to Turing
reductions. For this, we give a RAM access to an enumeration oracle.

An enumeration oracle machine (EOM) with access to oracle E-f is defined
similar to an ORAM but with an enumeration oracle instead of a decision oracle
and the following difference: When the machine asks the oracle for an answer
to a query x, the oracle outputs only one solution y from the solution set. The
machine can then ask the oracle again and the answer is any solution y′ 6= y. In
that manner, as long as there are solutions to x that have not been output by
the oracle before, the oracle answers queries to x with one of them. On the other
hand, when all solutions have been given by the oracle it answers with the special
symbol ⊥ to the query x. The oracle may give its answers in any order. As for
the other oracle machines we defined previously we write ME-f to denote that we
give the EOM M access to the oracle E-f . We say an EOM is oracle-bounded if
the size of all queries is at most polynomial in the size of the input.

Definition 2.52. Let E-f1,E-f2 be enumeration problems. We say that E-f1 re-
duces to E-f2 via DelP reductions, E-f1 ≤DelP E-f2, if there is an oracle-bounded
EOM ME-f2 that enumerates E-f1 with polynomial delay and independently of the
order in which the E-f2-oracle gives its answers.
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With DelP reductions we are using a quite strong reducibility notion in the
enumeration setting. Fortunately, the classes we consider are still closed under
this reducibility notion.

Proposition 2.53 ([CKP+19]). The class DelΣP
k is closed under DelP reductions

for any k ≥ 0.

By the definition of our complexity classes via decision oracles and with the
power of our reducibility notion, we get a connection to the decision case that
allows us to translate hardness results.

Theorem 2.54 ([HMMV22]). Let k ≥ 0,D-f be a ΣP
k -hard decision problem (with

respect to ≤P
m) and E-g be an enumeration problem such that D-f can be decided

by an EOM ME-g in polynomial time. Then it holds that E-g is DelΣP
k -hard under

DelP reductions.

Proof. We show that for every E-h ∈ DelΣP
k it holds that E-h ≤DelP E-g. For this,

let E-h ∈ DelΣP
k . Then

there are D-q ∈ ΣP
k and ORAM MD-q

1 that enumerates E-h with polynomial delay

(1)
=⇒ there is an ORAM MD-f

2 that enumerates E-h with polynomial delay

(2)
=⇒ there is an EOM ME-g

3 that enumerates E-h with polynomial delay

⇐⇒ E-h ≤DelP E-g.

Since D-f is ΣP
k -hard, implication (1) holds: The machine M2 can simulate M1 but

instead of asking the oracle D-q it translates the oracle queries via the reduction
function that witnesses D-q ≤P

m D-f and asks D-f .
Furthermore, implication (2) holds, since D-f can be decided in polynomial time

by an EOM ME-g: The machine M3 can simulate M2 but whenever M2 would ask
the oracle D-f , M3 instead simulates ME-g.

The next corollary covers a special case of Theorem 2.54, which relates an enu-
meration problem E-f to its decision counterpart D-f .

Corollary 2.55. Let E-f be an enumeration problem and k ≥ 0 such that D-f is
ΣP
k -hard (with respect to ≤P

m). Then we have that E-f is DelΣP
k -hard under DelP

reductions.

Proof. The problem D-f can be decided in polynomial time by just asking the
oracle for a solution to the input E-f once and output “yes” if the answer was a
solution and “no” if the answer was ⊥. Since the precondition of Theorem 2.54 is
fulfilled, we can conclude that E-f is DelΣP

k -hard under DelP reductions.
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Remark 2.56. By Corollary 2.55 we can conclude that any enumeration problem
E-f ∈ DelP is also DelP-hard under DelP reductions:

E-f ∈ DelP =⇒ D-f ∈ P (2.1)

=⇒ D-f is P-hard with respect to ≤P
m (2.2)

=⇒ E-f is DelP-hard with respect to DelP reductions. (2.3)

For (1) we can just run the algorithm the precomputation of the algorithm that
enumerates E-f and output “yes” if and only if we find a solution that way. The
second implication (2) follows the fact that any decision problem (other than Σ∗ and
∅) in P is P-hard under ≤P

m reductions. Finally (3) follows from Corollary 2.55.

Proposition 2.57 ([CKP+19]).

1. E-satBF is DelNP-complete with respect to DelP reductions.

2. E-satDH ∈ DelP and thereby DelP-complete with respect to DelP reductions
(see Remark 2.56).

Next, we define enumeration classes based on team logics. This time, we do not
define these classes as sets of satisfiability problems like we did in the decision or
counting setting, but as the “≤DelP closure” of such problems. This is due to the
fact that in the enumeration case, the output is the solution set, and we might not
be able to express arbitrary solution sets using teams.

Problem: E-satteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ }

Definition 2.58. Let T ∈ G.The class DelFO(T) is defined as follows

DelFO(T) =
[ ⋃
ϕ∈FO(T)

E-satteam
ϕ

]≤DelP

.

Note that, by definition, DelFO(T) is closed under ≤DelP reductions.

2.9 Modelling With First-Order Structures

In this section we define how we encode propositional formulas and strings as first-
order structures. We then give examples of team logic formulas that are satisfied
by a structure A and a team X if and only if A represents a propositional formula
χ and X a satisfying assignment for χ. To represent formulas in conjunctive
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normal form as first-order structures we use the vocabulary τCNF = (V 1, P 2, N2).
The intention of the predicate V is to be the set of all variables. Furthermore,
the predicate P (respectively N) is the incidence relation between clauses and
positive (respectively negated) variables. A formula χ(x1, . . . , xk) =

∧
iCi with

Ci = li,1 ∨ · · · ∨ li,mi
is encoded by the following τCNF-structure

Aχ = (dom(A), V A, PA, NA)

defined as follows: The elements of dom(A) are numerical encodings of the vari-
ables and clauses in χ. By abuse of notation, we write

dom(A) = {x1, . . . , xk, C1, . . . , Cn } ,

where we identify the variables and clauses with their encodings. The interpreta-
tions of the predicate symbols are defined as:

• x ∈ V A if and only if x is a variable in χ,

• (Ci, x) ∈ PA if and only if there is a j such that li,j = x and

• (Ci, x) ∈ NA if and only if there is a j such that li,j = ¬x.

Note that by definition the set of clauses of χ is given by dom(A) \ V .
We give two examples of how we use this encoding to model CPFs of type satC,

for C ⊆ CNF in terms of team logics.

Example 2.59. We model the CPF sat2CNF+ in terms of inclusion logic. For
this let χ(x1, . . . , xk) =

∧
Ci ∈ 2CNF+, where each Ci = `i,1 ∨ `i,2 for some

`i,1, `i,2 ∈ {x1, . . . , xk}. The corresponding τCNF-structure then is

Aχ = ({x1, . . . , xk, C1, . . . , Cn}, {x1, . . . , xk}, {(Ci, xj) | xj = `i,1 or xj = `i,2}, ∅).

We now provide an inclusion logic formula ϕ2CNF+ such that for all structures Aχ
and all teams X it holds

Aχ |=X ϕ2CNF+ ⇐⇒ rel(X) |= χ. (?)

The formula is defined as ϕ2CNF+(t) := ϕ1
2CNF+ ∧ ϕ2

2CNF+(t), where the first-order
sentence ϕ1

2CNF+ expresses that the input structure encodes a propositional formula
in 2CNF+ and the formula ϕ2

2CNF+(t) ensures that satisfying teams correspond to
satisfying assignments for χ. Formally, these formulas are defined as follows:

ϕ1
2CNF+ := ∀C∀x∀y∀z(

¬N(C, x)

∧
(
P (C, x)→ ¬V (C) ∧ V (x)

)
∧
(
P (C, x) ∧ P (C, y) ∧ P (C, z)→ (x = y) ∨ (x = z) ∨ (y = z)

))
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ϕ2
2CNF+(t) := V (t) ∧ ∀C∃x

(
¬V (C)→ (P (C, x) ∧ x ⊆ t)

)
We argue that (?) holds: Let X be a satisfying team for ϕ2

2CNF+(t) in Aχ. This
means that rel(X) is a set of variables that contains at least one variable for each
clause, which in turn means that rel(X) is a satisfying assignment for χ. For the
converse let β be a satisfying assignment for χ and X be the team with rel(X) = β.
Since rel(X) is satisfying for χ, in particular for every clause C of χ there is a
variable x ∈ rel(X) such that C is satisfied by assigning the value 1 to x. This is
exactly what the formula ϕ2

2CNF+(t) states, hence Aχ |=X ϕ2CNF+.
As there is a one-to-one correspondence between satisfying teams for ϕ2CNF+ in
Aχ and satisfying assignments β for χ, we can conclude D-sat2CNF+ = D-satteam

ϕ2CNF+
,

C-sat2CNF+ = C-satteam
ϕ2CNF+

and E-sat2CNF+ = E-satteam
ϕ2CNF+

.

By Example 2.59 we know that the CPFs sat2CNF+ and satteam
ϕ2CNF+

are the same

(assuming the same encodings are used). Moreover, by Remark 2.1 we can conclude
sat2CNF− = sat2CNF+ = satteam

ϕ2CNF+
(when switching the predicates P and N in the

respective encodings).
In the next example we show that we can express the same CPFs in terms of

dependence logic. This time we define a formula ϕ2CNF− such that sat2CNF− =
satteam

ϕ2CNF−
.

Example 2.60. Analogously to Example 2.59, we model the CPF sat2CNF−, but
this time in terms of dependence logic. For this, let χ(x1, . . . , xk) =

∧
Ci ∈

2CNF−, where each Ci = `i,1 ∨ `i,2 and `i,1, `i,2 ∈ {¬x1, . . . ,¬xk}. The corre-
sponding τCNF-structure is

Aχ = ({x1, . . . , xk, C1, . . . , Cn}, {x1, . . . , xk}, ∅, {(Ci, xj) | xj = `i,1 or xj = `i,2}).

We now provide a dependence logic formula ϕ2CNF− such that for all structures Aχ
and all teams X it holds

Aχ |=X ϕ2CNF− ⇐⇒ rel(X) |= χ. (?)

The formula is defined as ϕ2CNF−(t) := ϕ1
2CNF−

∧ ϕ2
2CNF−

(t), where the first-order
sentence ϕ1

2CNF−
expresses that the input structure encodes a propositional formula

in 2CNF− and the formula ϕ2
2CNF−

(t) ensures that satisfying teams correspond to
satisfying assignments for χ. Formally, these formulas are defined as follows:

ϕ1
2CNF+ := ∀C∀x∀y∀z(

¬P (C, x)

∧
(
N(C, x)→ ¬V (C) ∧ V (x)

)
∧
(
N(C, x) ∧N(C, y) ∧N(C, z)→ (x = y) ∨ (x = z) ∨ (y = z)

))
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ϕ2
2CNF−(t) := V (t) ∧ ∀C

(
¬V (C)→

(
∃x(N(C, x) ∧=(C, x) ∧ x 6= t)

))
We argue that (?) holds: Let X be a team with Aχ |=X ϕ2CNF−. This means that
for any clause C in χ, there is a fixed variable x ∈ vars(χ)\ rel(X). In other words
every C, and thus also the whole formula χ, is satisfied by rel(X). For the other
direction let β be a satisfying assignment for χ and X be the team with rel(X) = β.
Now we can choose one variable x ∈ vars(χ) \ rel(X) for each clause C of χ, such
that C is satisfied by assigning the value 0 to x. As this property is stated by the
formula we can conclude Aχ |=X ϕ2CNF−.

As there is a one-to-one correspondence between satisfying teams for ϕ2CNF− in
Aχ and satisfying assignments β for χ, we can conclude D-sat2CNF− = D-satteam

ϕ2CNF−
,

C-sat2CNF− = C-satteam
ϕ2CNF−

and E-sat2CNF− = E-satteam
ϕ2CNF−

.

To be able to also represent Σ1CNF formulas, we adjust the vocabulary τCNF to
obtain the new vocabulary τΣ1CNF:

τΣ1CNF = (F 1, B1, P 2, N2).

The predicate symbols P and N have the same intended meaning as in τCNF,
but—since Σ1CNF formulas have quantifiers—we now differentiate between bound
variables (predicate B) and free variables (predicate F ). Clauses then are the
elements that are neither a bound nor a free variable. Now an arbitrary Σ1CNF
formula χ(x1, . . . , xk) = ∃y1 . . . ∃yl ψ(x1, . . . , xk, y1, . . . , yl) with ψ =

∧n
i=1 Ci and

Ci = li,1 ∨ · · · ∨ li,mi
is encoded as the τΣ1CNF-structure

Aχ = (dom(A), FA, BA, PA, NA),

defined as follows: The elements of dom(A) = {x1, . . . , xk, y1, . . . , yl, C1, . . . , Cn}
are the numerical encodings of the variables and clauses in χ. The interpretations
of the predicate symbols are defined as:

• x ∈ FA if and only if x is a free variable in χ,

• x ∈ BA if and only if x is a bound variable in χ,

• (Ci, x) ∈ PA if and only if there is a j such that li,j = x and

• (Ci, x) ∈ NA if and only if there is a j such that li,j = ¬x.

We close this section by explaining how we encode binary strings as first-order
structures. For this let τstring = (S1) be a vocabulary. For any binary string
w = w0w1 . . . wn−1 ∈ {0, 1}∗ we define the structure encoding w as

Aw = ({0, 1, . . . , n− 1}, S)

where S(i) = wi for all i.
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3 Counting Problems in Team
Logics

We aim to classify the counting classes of the three “main” team logics, which are
#FO(⊥), #FO(=(. . . )) and #FO(⊆). First we establish results that hold for all
these logics and dedicate a section to each individual logic afterwards. At the end
of this section we show #·NP-completeness of two problems to give some of our
results more context and then close with a summary of our results in form of a
class diagram.

First we would like to point out that our reducibility notion of choice—first-order
reductions—are suitable for our task. We do this by showing that our logics are
closed under these kind of reductions, that is, C-f1 ≤FO

par C-f2 and C-f2 ∈ #FO(⊥)
imply C-f1 ∈ #FO(⊥) (for #FO(=(. . . )) and #FO(⊆) ,respectively).

Theorem 3.1 ([HKM+19]). #FO(T) is closed under first-order reductions for
T ⊆ {=(. . . ),⊥,⊆}.

Proof. Let C-f1,C-f2 be two functions and σ1, σ2 two vocabularies such that
C-f1 ≤FO

par C-f2 via FO-query I = (ψ0, . . . , ψk). Furthermore, let C-f2 ∈ #FO(T),
then there is a formula ϕ(x1, . . . , xn) ∈ FO(σ2,T) such that C-f2(A) is equal to the
number of teams X satisfying A |=X ϕ(x1, . . . , xn) or in short C-f2 = C-satteam

ϕ .
We define a formula ϕ∗(x1

1, . . . , x
k
1, . . . , x

1
n, . . . , x

k
n) ∈ FO(σ1,T) such that for all

σ1-structures A and all teams X over x1
1, . . . , x

k
1, . . . , x

1
n, . . . , x

k
n,

A |=X ϕ∗(x1
1, . . . , x

k
1, . . . , x

1
n, . . . , x

k
n) ⇐⇒ I(A) |=I(X) ϕ(x1, . . . , xn)

For readability we write xi to denote the variables x1
i , . . . , x

k
i . We first inductively

define a formula ϕ′ from ϕ as follows:

• ϕ′ := ψR(x1, . . . , xa`) if ϕ = R(x1, . . . , xa`)

• ϕ′ := ψ̃R(x1, . . . , xa`) if ϕ = ¬R(x1, . . . , xa`)

• ϕ′ :=
∧k
i=1 x

i = yi if ϕ = (x = y)

• ϕ′ := x ≤ y if ϕ = x ≤ y
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3 Counting Problems in Team Logics

• ϕ′ := +(x, y, z) if ϕ = +(x, y, z)

• ϕ′ := ×(x, y, z) if ϕ = ×(x, y, z)

• ϕ′ :=
∧k
i=1 = (x1, . . . , xm, y

i) if ϕ = =(x1, . . . , xm, y)

• ϕ′ := (x1, . . . , xm) ⊆ (y1, . . . , ym) if ϕ = (x1, . . . , xm) ⊆ (y1, . . . , ym)

• ϕ′ := (y1, . . . , ym1
)⊥(x1,...,xm2 )(z1, . . . , zm1) if

ϕ = (y1, . . . , ym1)⊥(x1,...,xm2 )(z1, . . . , zm1)

• ϕ′ := ϕ′1 ∧ ϕ′2 if ϕ = ϕ1 ∧ ϕ2

• ϕ′ := ϕ′1 ∨ ϕ′2 if ϕ = ϕ1 ∨ ϕ2

• ϕ′ := ∃x ψ0(x) ∧ ϕ′1 if ϕ = ∃x ϕ1

• ϕ′ := ∀x ψ0(x)→ ϕ′1 if ϕ = ∀x ϕ1

The numerical predicates≤,+,× are definable for tuples by Immerman [Imm99].
Now, we define ϕ∗(x1, . . . , xn) := ϕ′(x1, . . . , xn)∧

∧
i ψ0(xi). We conclude that there

is a formula ϕ∗(x1, . . . , xn) ∈ FO(T) over σ1 such that

C-f1(A) = C-f2(I(A)))

= |{X | X 6= ∅ and I(A) |=I(X) ϕ(x1, . . . , xn) }|
= |{X | X 6= ∅ and A |=X ϕ∗(x1, . . . , xn) }|
= C-satteam

ϕ∗ (A)

and therefore that C-f1 ∈ #FO(T).

Since #FO(T) is closed under first-order reductions for T ⊆ {=(. . . ),⊥,⊆} by
Theorem 3.1, this result especially holds for the classes #FO(⊥), #FO(=(. . . ))
and #FO(⊆).

Next we establish an upper bound that holds for all considered logics, which we
reconsider for individual cases later.

Theorem 3.2 ([HKM+19]). For any set T ∈ GNP, we have that #FO(T) ⊆ #·NP.

Proof. Let C-satteam
ϕ ∈ #FO(T) with ϕ(x1, . . . , xk) ∈ FO(T). To count the number

of (non-empty) teams X with A |=X ϕ for a given input structure A with a
#·NP-algorithm, we first non-deterministically guess a team X and check in NP
whether A |=X ϕ holds. The latter can be done since T ⊆ GNP. Therefore
C-satteam

ϕ ∈ #·NP.
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3.1 Counting Problems in Independence Logic

We show that the result FO(⊥) = NP (see Corollary 2.27) in the decision setting
can be translated to the counting setting, that is, #FO(⊥) = #·NP. We already
covered the direction #FO(⊥) ⊆ #·NP in Theorem 3.2, but we still have to show
the converse. We do this in two steps, first we show #·NP ⊆ #Σ1

1 and afterwards
#Σ1

1 = #FO(⊥).

Theorem 3.3 ([HKM+19]). #·NP ⊆ #Σ1
1.

Proof. Let C-f ∈ #·NP via D-g ∈ NP and the polynomial p, with p(n) = n`+c for
some `, c ∈ N. By definition we have C-f(x) = | { y | |y| ≤ p(|x|), (x, y) ∈ D-g } |.
We encode tuples (x, y) with x ∈ {0, 1}∗ and y ∈ {0, 1}|x|k by structures A(x,y) =
({0, . . . , |x| − 1}, S, Rk) over the vocabulary τk = τstring ∪ (Rk). Here x is en-
coded by the string relation S and y is encoded by Rk, with R(i0, . . . , ik−1) =
yi0+i1·|x|+···+ik·|x|k . Such an encoding is possible because as mentioned before we
can define the extension of the numerical predicates to tuples in FO (see [Imm99]).
For strings x with |x| ≥ 2 we can choose k such that |x|k ≥ p(|x|) (strings of length
1 can be handled separately). Fix such a k.

Now consider the decision problem

D-g′ ··=
{
A(x,y)

∣∣∣∣ A(x,y) ∈ STRUC(τk), y = y0 . . . y|x|k−1,
yp(|x|) = · · · = y|x|k−1 = 0 and (x, y0 . . . yp(|x|)−1) ∈ D-g

}
.

For any given x, A(x,y) is an element of D-g′ if and only if the first p(|x|) bits of y
form an input z such that (x, z) ∈ D-g and the rest of the bits are fixed to be 0.
Thus we can write C-f(x) as:

C-f(x) = |
{
y
∣∣A(x,y) ∈ D-g′

}
|.

Obviously D-g′ ∈ NP, which, by Fagin’s Theorem (see Theorem 2.23), implies that
there is a sentence ψ ∈ Σ1

1 over τk such that

A(x,y) ∈ D-g′ ⇐⇒ A(x,y) |= ψ.

Viewing ψ as a formula over the vocabulary τstring with free relational variable R
of arity k (that encodes y) we have

A(x,y) ∈ D-g′ ⇐⇒ Ax, R |= ψ(R)

for all x ∈ {0, 1}∗, which yields

C-f(x) = |{R | Ax, R |= ψ(R)}| = C-satrel
ψ (enc(Ax)) = C-satrel

ψ (x).

Hence C-f ∈ #Σ1
1.
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Theorem 3.4 ([HKM+19]). #Σ1
1 = #FO(⊥).

Proof. Let ψ(R) ∈ Σ1
1 be a sentence with a k-ary relation symbol R. We translate

the formula ψ(R) to a formula ψ′(R′) with a new (k+ 1)-ary relation R′ such that
C-satrel

ψ (x) = C-satrel
ψ′ (x) for all inputs x and ψ′(R′) is only satisfied by non-empty

relations. The formula ψ′(R′) is defined as follows:

ψ′(R′) = ∃min∃max∀x(
≤(min, x) ∧ ≤(x,max)

∧ ∀x1, . . . , xk+1

(
R′(x1, . . . , xk+1)→ (

k+1∧
i=1

xi = min ∨ xk+1 = max)
)

∧
(
ψ(∅)↔ R′(min, . . . ,min)

)
∧ ∃R

(
(R(x)↔ R′(x,max)

)
∧ ψ(R)

)
.

Now we have that for any structure A and relation R:

A, R |= ψ ⇐⇒ A, R′ |= ψ′,

where R′ = {(x,max) | x ∈ R} ∪ {(min, . . . ,min)}, when A, ∅ |= ψ and R′ =
{(x,max) | x ∈ R} otherwise. Therefore it follows C-satrel

ψ (x) = C-satrel
ψ′ (x). Fur-

thermore, ψ′ is never satisfied by the empty relation as desired. By Proposition 2.24
and Definition 2.45, it follows that there is a formula ϕ ∈ FO(⊥) such that for all in-
puts x it holds C-satteam

ϕ (x) = C-satrel
ψ′ (x) and therefore C-satteam

ϕ (x) = C-satrel
ψ (x).

The other direction can be shown in the same manner.

Corollary 3.5. #FO(⊥) = #·NP

Proof. #FO(⊥) ⊆ #·NP follows from Theorem 3.2 and Corollary 2.15, just choose
T = {⊥}. The converse follows from the composition of Theorem 3.4 and Theo-
rem 3.3.

Note that Theorem 3.4 and Corollary 3.5 also imply that #Σ1
1 = #·NP, which

can be seen as a counting version of Fagin’s Theorem (see Theorem 2.23).

3.2 Counting Problems in Dependence Logic

For dependence logic we can not translate the result FO(=(. . . )) = NP (see Corol-
lary 2.27) from the decision setting to the counting setting like we did for in-
dependence logic. This is due to the fact that there are Σ1

1 formulas—those
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where R occurs positively—that have not a corresponding dependence logic for-
mula such that the solutions are preserved. Therefore we are not able to show
#·NP ⊆ #FO(=(. . . )), the other direction follows from Theorem 3.2 and Corol-
lary 2.15 though.

Instead of showing the equality of those classes, we show that #FO(=(. . . ))
contains the problem C-sat¬∅

Σ1CNF−
, which is also #·NP-complete under Turing re-

ductions (see Section 3.4). This does not imply #·NP = #FO(=(. . . )), but it
implies the relativisation, that is, FP#·NP = FP#FO(=(... )).

Problem: C-sat¬∅
Σ1CNF−

Input: χ ∈ Σ1CNF−

Output: | { β ∈ Θ(χ) | β |= χ and β 6= ∅ } |

We like to explain the choice of the problem C-sat¬∅
Σ1CNF−

for this task: We can
not simply work with a problem based on quantified boolean formulas with no
free variables (like in the decision case), as there would not be much to count
(the output would be either 0 or 1). Therefore we need to allow free variables in
the problem definition. Here it is important that the solutions have a monotone
property since we want to describe them with dependence logic formulas, which
are downwards monotone. Thus we allow free variables only to occur negatively.

Theorem 3.6 ([HKM+19]). C-sat¬∅
Σ1CNF−

∈ #FO(=(. . . )).

Proof. By Proposition 2.25 it suffices to construct a Σ1
1 formula ψ(R) with R oc-

curring only negatively such that for each τΣ1CNF-structure Aχ, the number of
relations R with Aχ, R |= ψ(R) is equal to the number of satisfying assignments
of the Σ1CNF− formula χ. Note a subtle point in this setting: The empty assign-
ment is not counted by C-sat¬∅

Σ1CNF−
. In the formula ψ(R), the empty assignment

corresponds to the empty relation, which, in turn, corresponds to the empty team
in the translation to FO(=(. . . )) given in Proposition 2.25. By definition we do
not count the empty team in #FO(=(. . . )), and the empty assignment is thus not
counted in this setting.

Let us now define the formula ψ(R). First, let ψ1 be an FO formula expressing
that Aχ is a correct encoding of a Σ1CNF− formula (i.e., F and B correspond to
disjoint sets, free variables occur only negatively in the clauses, etc.). Formally ψ1

is defined as follows:

ψ1 :=∀x
(
¬B(x) ∨ ¬F (x)

)
∧ ∀C∀x

(
N(C, x)→

(
¬B(C) ∧ ¬F (C) ∧ (B(x) ∨ F (x))

))
∧ ∀C∀x

(
P (C, x)→

(
¬B(C) ∧ ¬F (C) ∧B(x)

))
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Second, let ψ2 be a formula expressing that R only assigns values to free variables
and that each clause must be satisfied by the assignment, that is, formally,

ψ2(R) := ∃S∀C
((
¬F (C) ∧ ¬B(C)

)
→

∃x
(
N(C, x) ∧

(
(B(x) ∧ ¬S(x)) ∨ (F (x) ∧ ¬R(x))

))
∨ ∃x

(
P (C, x) ∧ (B(x) ∧ S(x)

))
,

Finally, let
ψ(R) := ψ1 ∧ ψ2(R)

It is easy to see that the formula ψ(R) has the desired properties.

We like to briefly discuss #FO(=(. . . )) versus #P: #FO(=(. . . )) ⊆ #P together
with Theorem 3.6 would imply that C-sat¬∅

Σ1CNF−
∈ #P. This seems not to be

the case, as it would mean that there is a #P-machine that answers D-satBF

queries in every path. The converse—#P ⊆ #FO(=(. . . ))—is also unlikely since
TotP and therefore also #P contains the (non-monotone) problem C-sat¬∅Σ1DH (see
Theorem 3.13) which is probably not contained in #FO(=(. . . )), as FO(=(. . . )) is
downwards closed. We therefore conjecture that #P (and TotP for that matter)
are incomparable to #FO(=(. . . )).

Theorem 3.7 ([HKM+19]). C-sat¬∅
Σ1CNF−

is complete for #FO(=(. . . )) with respect
to first-order reductions.

Proof. By Theorem 3.6, C-sat¬∅
Σ1CNF−

is contained in #FO(=(. . . )). It remains to

show hardness. Let ϕ(x1, . . . , xm) ∈ FO(=(. . . )) and A be a structure. We reduce
computing the value of C-satteam

ϕ to counting the number of satisfying assignments
(apart from the empty assignment) of a suitable Boolean formula χϕ,A ∈ Σ1CNF−.
By [Vää07], we may assume without loss of generality that ϕ is of the form

∀y1 . . . ∀yk∃yk+1 . . . ∃yk+l

(∧
t

=(ut, wt) ∧ ψ(y1, . . . , yk+l, x1, . . . , xm)
)
,

where ψ is a quantifier-free FO formula, wt ∈ {yk+1, . . . , yk+l}, and ui is a tuple
consisting of some of the variables y1, . . . , yk. The formula χϕ,A is defined over
the set {ps | s ∈ Am ∪ Am+1 ∪ · · · ∪ Am+k+l} of propositional variables. Observe
that each such s can be identified with a partial first-order assignment over the
domain {x1, . . . , xm, y1, . . . , yk+l}. Since ϕ is a fixed formula, the number of such
assignments and, consequently, also the number of variables ps is polynomial. The
variables ps for s ∈ Am+1 ∪ · · · ∪ Am+k+l will be existentially quantified in χϕ,A,
whereas the variables ps for s ∈ Am will remain free and occur only negatively.
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We now define the set of clauses C of χϕ,A. For every universally quantified
variable yi in ϕ, and for every s ∈ Am+(i−1) we introduce to C the following set of
clauses:

{ps → ps′ | s′ ∈ Am+i and s = s′|{x,y1,...,yi−1}} (∀)

For every existentially quantified variable yi in ϕ, and for every s ∈ Am+(i−1) we
introduce the following clause:

ps →
∨

s′∈Am+i and
s=s′|{x,y1,...,yi−1}

ps′ . (∃)

The quantifier-free part of the formula ϕ also gives rise to clauses as follows. For
each dependence atom =(ut, wt) we introduce the set of clauses:

{¬ps ∨ ¬ps′ | s, s′ ∈Am+k+l, s(ut) = s′(ut) and s(wt) 6= s′(wt)}. (=(. . . ))

Finally, for the FO formula ψ the team semantics satisfaction condition stipulates
that all assignments s ∈ Am+k+l should satisfy ψ (since ψ is flat). This can be
expressed by introducing the following two sets of clauses:

{ps → > | s ∈ Am+k+l and A |=s ψ} (>)

and
{ps → ⊥ | s ∈ Am+k+l and A 6|=s ψ}. (⊥)

Now define χϕ,A ∈ Σ1CNF− as

χϕ,A := ∃{ps | s ∈
⋃

1≤i≤k+l

Am+i}
∧
C∈C

C.

Clearly, there is a one-to-one-correspondence between teams X over the domain
{x1, . . . , xm} and assignments β of formula χϕ,A. Furthermore, it is also easy to
check that for all teams X with domain {x1, . . . , xm}

A |=X ϕ(x1, . . . , xm) ⇐⇒ β |= χϕ,A,

where the Boolean assignment β is defined as ps ∈ β if and only if s ∈ X.
We now argue that the above can be done using a first-order reduction. First

note that clauses of types ∀,∃,=(. . . ) only depend on the input length n. We thus
only need to give a closed formula in n (only using + and ×) to calculate for every
clause the incident literals.

As an illustration, we give the details for clauses of type ∀. In total, there are∑k
i=0 n

m+i clauses of this type, where each summand gives the number of clauses
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corresponding to one universal quantifier. Consider a clause C that is counted in
the i-th summand. The clause C is of the form ps → ps′ , where s′ ∈ Am+i and
s = s′|{(x,y1,...,yi−1)}. Let j be the position of C within the i-th summand. Then

s′ is the j-th element of Am+i and s is defined accordingly. Clauses arising from
existential quantifiers can be handled analogously.

For clauses corresponding to dependence atoms it is helpful to simplify the
construction as follows: Consider the atom =(ut, wt). Instead of adding the clauses
from (=(. . . )) we add a clause for each pair s, s′ ∈ Am+k+l and check whether that
pair falsifies the additional condition using an FO formula. If it does, we construct
a fixed tautology instead of the clause (¬ps ∨ ¬ps′).

Clauses of type >,⊥ depend not only on the input length but on the actual
input. They can be handled simultaneously by adding clauses of the form ps → ps
for type > and ps → ⊥ ≡ ¬ps for type ⊥. Distinguishing between those two types
only depends on the FO-definable property A |=s ψ.

3.3 Counting Problems in Inclusion Logic

In this section we show #FO(⊆) ⊆ #P and that this inclusion is also strict un-
less P = NP. Moreover we strengthen this result by showing #FO(⊆) ⊆ TotP.
To indicate that this inclusion might also be strict, we show that TotP contains
the problem C-sat¬∅Σ1DH which is hard for #FO(⊆) but probably not included in
#FO(⊆).

Theorem 3.8 ([HKM+19]). #FO(⊆) ⊆ #P.

Proof. To count the number of satisfying teams for a given input structure A and
a formula in FO(⊆), we simply guess a team and verify that it satisfies the formula.
The latter step can be done in polynomial time, since model-checking for FO(⊆)
is in P by Corollary 2.31.

The next lemma connects the counting setting to the decision setting. It allows
us to answer #FO(⊆) versus #P depending on P versus NP.

Lemma 3.9. Let C-f ∈ #FO(⊆), then D-f ∈ P.

Proof. Let C-f ∈ #FO(⊆). That means there is a formula ϕ ∈ FO(⊆) such that
C-f = C-satteam

ϕ and hence D-f = D-satteam
ϕ . A structure A is in D-satteam

ϕ if
there is a team X 6= ∅ with A |=X ϕ(x), which is equivalent to asking whether
A |={s∅} ∃x ϕ(x) holds. By Corollary 2.31, over ordered structures, the properties
definable by FO(⊆)-sentences are exactly the properties in P, hence it follows that
D-f ∈ P.
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By Lemma 3.9 we can conclude that #FO(=(. . . )) 6⊆ #FO(⊆) (unless P = NP):
Suppose #FO(=(. . . )) ⊆ #FO(⊆), then C-sat¬∅

Σ1CNF−
∈ #FO(⊆) and therefore

D-sat¬∅
Σ1CNF−

∈ P. This is only possible if P = NP, since D-sat¬∅
Σ1CNF−

is obviously
NP-complete.

Corollary 3.10 ([HKM+19]). If P 6= NP, then #FO(⊆) 6= #P.

Proof. Suppose #FO(⊆) = #P. This means that C-sat3CNF ∈ #FO(⊆). Then,
by Lemma 3.9, D-sat3CNF is in P, which implies P = NP (since D-sat3CNF is NP-
complete), contradicting the assumption.

Theorem 3.8 and Corollary 3.10 indicate that #FO(⊆) is most likely a strict
subclass of #P. Nevertheless, we show in the next theorem that #FO(⊆) contains
the problem C-sat¬∅DH which is complete for #P with respect to Turing reductions.
By this we also show that FP#P = FP#FO(⊆).

Problem: C-sat¬∅DH

Input: χ ∈ DH
Output: | { β ∈ Θ(χ) | β |= χ and β 6= ∅ } |

We briefly argue the #P-completeness for C-sat¬∅DH: Valiant [Val79b] showed that
C-sat2CNF+ is #P-complete with respect to Turing reductions. This result can be
translated to C-satDH since every 2CNF+ formula is also a DualHorn formula. The
empty assignment can be handled in a further reduction which is similar to the
one we later use in Theorem 3.17.

Theorem 3.11 ([HKM+19]). C-sat¬∅DH ∈ #FO(⊆).

Proof. By Proposition 2.32 it suffices to give a myopic τCNF-formula ψ such that
for all DualHorn formulas χ the number of satisfying assignments is equal to the
number of relations R with Aχ, R |= ψ(R). We define the formula as ψ(R) :=
ψ1∧ψ2(R), where ψ1 expresses that Aχ is an encoding of a DualHorn formula and
ψ2 ensures that the solutions are preserved. The formulas ψ1, ψ2 are defined as
follows:

ψ1 := ∀C∀x
((
P (C, x)→ ¬V (C) ∧ V (x)

)
∧(

N(C, x)→ ¬V (C) ∧ V (x) ∧ ¬∃y(N(C, y) ∧ x 6= y)
))

ψ2(R) := ∀x
(
R(x)→ V (x) ∧

(
∀C¬V (C)→(

(¬∃zN(C, z)
)
→
(
∃yP (C, y) ∧R(y)

)
∧
(
N(C, x)→ (∃yP (C, y) ∧R(y))

)))
.
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Note that ψ is not a myopic formula but can be easily transformed into one, since
ψ2 is myopic and ψ1 is independent from R.

Now suppose R satisfies the formula ψ2. Let x ∈ R. It follows that all clauses
that contain x or contain only positive literals are satisfied by R: If x is positively
contained in a clause C, then it is already satisfied since x ∈ R. If x is negatively
contained in C, then there must be another variable y that occurs positively in
C (since each clause contains at most one negative literal) with y ∈ R. If C only
contains positive literals, then there must be also one y ∈ R. This only works if
there is at least one variable included in R. If R is empty in the first place the
premise of the first implication is always false and therefore the conclusion can be
anything. It follows that ψ2(∅) is always true, which is no surprise since ψ2 is a
myopic formula. But since we are only looking for non-empty relations, non-empty
assignments β, respectively, this is not a problem. Now for all assignments β 6= ∅
it holds that β |= χ ⇐⇒ Aχ, β |= ψ1 ∧ ψ2(β) ⇐⇒ Aχ, β |= ψ(β).

In Section 3.2 we conjectured that #P and #FO(=(. . . )) are incomparable.
Similarly we argue that #FO(⊆) and #FO(=(. . . )) are most likely incomparable,
since C-sat¬∅DH is non-monotone and by Theorem 3.11 included in #FO(⊆).

The properties of #FO(⊆), being (most likely a strict) subclass of #P and having
easy decision versions, reminds us of the class TotP. We therefore investigate the
relationship between these two classes.

Problem: C-sat¬∅Σ1DH

Input: χ ∈ Σ1DH
Output: | { β ∈ Θ(χ) | β |= χ and β 6= ∅ } |

Theorem 3.12 ([HKM+19]). C-sat¬∅Σ1DH is hard for #FO(⊆) with respect to first-
order reductions.

Proof. The proof is analogous to that of Theorem 3.7 (see also [DKdRV15]). As
for dependence logic formulas, there is a normal form for inclusion logic formulas
ϕ(x1, . . . , xm) [Yan20]:

∃y1, . . .∃yk∀yk+1

(
ϕ′(y1, . . . , yk+1) ∧ ψ(x1, . . . , xm, y1, . . . , yk)

)
,

where ϕ′ is a conjunction of inclusion atoms and ψ is a quantifier free first-order
formula. Thus, the only remaining ingredient needed for the proof is the fact that
inclusion atoms x ⊆ y can be expressed by adding the following type of DH clauses:

ps →
∨

s′∈Am+k+l and
s(x)=s′(y)

ps′ .

Note that the other clause types (∀,∃,>,⊥) that were introduced in the proof of
Theorem 3.7 are also DualHorn clauses.
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Theorem 3.13 ([HKM+19]). C-sat¬∅Σ1DH ∈ TotP.

Proof. Let χ ∈ Σ1DH. The machine that witnesses membership in TotP works as
follows: Choose a free variable, assign the value 0 to it and simplify the formula
(remove all clauses that are already satisfied and all positive occurrences of the
variable). Compute in polynomial time if the resulting formula is satisfiable and
do the same for the value 1 afterwards. Create one branch for each of those two
formulas that is satisfying. In each branch do this recursively for the next variable
that is not assigned yet.

Corollary 3.14 ([HKM+19]). #FO(⊆) ⊆ TotP.

Proof. Let C-f ∈ #FO(⊆). By Theorem 3.12 it follows C-f ≤FO
par C-sat¬∅Σ1DH and

thereby C-f ≤P
par C-sat¬∅Σ1DH (since ≤FO

par implies ≤P
par). Furthermore, since TotP is

closed under ≤P
par (see Lemma 2.39) and C-sat¬∅Σ1DH ∈ TotP by Theorem 3.13, we

can conclude C-f ∈ TotP.

We do not know whether or not the inclusion #FO(⊆) ⊆ TotP is in fact strict,
but as we have seen, there is a problem—namely C-sat¬∅Σ1DH—that is hard for

#FO(⊆) and contained in TotP. It is not known if C-sat¬∅Σ1DH is also contained in
#FO(⊆) but quantifiers seem not to be expressible in inclusion logic.

3.4 Complete Problems for #·NP
In Section 3.2 we showed C-sat¬∅

Σ1CNF−
∈ #FO(=(. . . )). We give this result some

more weight by showing that C-sat¬∅
Σ1CNF−

is also #·NP-complete with respect to
Turing reductions. For this, recall that for a class of quantified boolean formulas
P, the problems C-satP and C-sat¬∅P are defined as follows:

Problem: C-satP

Input: χ ∈ P
Output: | { β ∈ Θ(χ) | β |= χ } |

Problem: C-sat¬∅P

Input: χ ∈ P
Output: | { β ∈ Θ(χ) | β |= χ and β 6= ∅ } |

We start by showing #·NP-completeness for C-satΣ1CNF and show C-satΣ1CNF ≤P
T

C-satΣ1CNF− ≤P
T C-sat¬∅

Σ1CNF−
in two separate results afterwards.
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Lemma 3.15 ([HKM+19]). C-satΣ1BF and C-satΣ1CNF are #·NP-complete under
parsimonious reductions.

Proof. Aziz et al. [ACMS15] studied the problem C-satΣ1BF under the name pro-
jected model counting and showed its membership in #·NP. Since C-satΣ1CNF is a
restriction of C-satΣ1BF, membership for C-satΣ1CNF also follows immediately. A
simple adaptation of Cook’s NP-completeness proof for D-satBF [Coo71] shows that
both problems are hard for #·NP with respect to parsimonious reductions.

In the next result we show #·NP-completeness for the problem C-satΣ1CNF− .
For the hardness proof, we orient ourselves to some results from Valiant [Val79a,
Val79b] . In “The complexity of computing the permanent” [Val79a] Valiant shows
that the problem to compute the permanent of a given binary matrix is #P-
complete. In the proof Valiant uses the fact that one can compute the permanent
of a given binary matrix by counting (vertex-disjoint) cycle covers of a graph
corresponding to the matrix. In “The complexity of Enumeration and reliability
problems” Valiant shows #P-completeness for several counting problems—among
them the problem C-sat2CNF+ . For this the permanent problem (or the cycle cover
problem) is reduced to C-sat2CNF+ with two intermediate steps. The complete
chain of reductions looks as follows:

C-sat3CNF ≤P
T C-cyclecover

≤P
T C-pmatching

≤P
T C-matching

≤P
T C-sat2CNF+ ,

Formally the problems C-cyclecover, C-pmatching, C-matching are defined as fol-
lows:

Problem: C-cyclecover
Input: G = (V,E) ∈ GRAPH

Output: | {E ′ ⊆ E |E ′ is a vertex disjoint cycle cover of G } |

Problem: C-pmatching
Input: G = (V1, V2, E) ∈ BIP

Output: | {E ′ ⊆ E |E ′ is a perfect matching of G } |

Problem: C-matching
Input: G = (V1, V2, E) ∈ BIP

Output: | {E ′ ⊆ E |E ′ is a matching of G } |
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Note that this reduction can be modified to also work for C-sat2CNF− . To show
#·NP-hardness for C-satΣ1CNF− the idea is to add a Σ13CNF− formula to the input
of each problem in the chain of reductions above and to express certain properties
of the respective inputs in the added formula. We then count only the solutions
to the input that also satisfy the added formula. Valiant’s reductions are Turing
reductions but some of them can be made parsimonious, in our case the extra
power from the second input makes this much simpler.

Theorem 3.16 ([HKM+19]). C-satΣ1CNF− is #·NP-complete under Turing reduc-
tions.

Proof. Membership follows from Lemma 3.15, since C-satΣ1CNF− is a special case
of C-satΣ1CNF.

For hardness we first reduce C-satΣ13CNF to C-(sat3CNF, satΣ1CNF−), and then
apply the above mentioned chain of reductions with the added formulas to reduce
C-(sat3CNF, satΣ1CNF−) to C-(sat2CNF− , satΣ13CNF−), which will be further reduced
to C-satΣ1CNF− . Recall the definition of C-(satP1 , satP2) for two sets of quantified
Boolean formulas P1,P2:

Problem: C-(satP1 , satP2)
Input: χ1 ∈ P1, χ2 ∈ P2

Output: | { β ∈ Θ(χ1) ∪Θ(χ2) | β |= χ1 and β |= χ2 } |

All of these reductions will be parsimonious, except for the one from perfect
matchings to imperfect matchings. This full chain of reductions looks as follows:

C-satΣ13CNF ≤P
par C-(sat3CNF, satΣ1CNF−) (3.1)

≤P
par C-(cyclecover, satΣ1CNF−) (3.2)

≤P
par C-(pmatching, satΣ1CNF−) (3.3)

≤P
T C-(matching, satΣ1CNF−) (3.4)

≤P
par C-(sat2CNF− , satΣ13CNF−) (3.5)

≤P
par C-satΣ1CNF− (3.6)

We continue by proving each of these reductions.
(3.1) C-satΣ13CNF ≤P

par C-(sat3CNF, satΣ1CNF−): Let χ0(x1, . . . , xk) ∈ Σ13CNF
with k ∈ N and

χ0(x1, . . . , xk) = ∃y1 . . . ∃y`
∧

Ci ∧
∧

Di ∧
∧

Ei,

where vars(Ci) ⊆ {x1, . . . , xk}, vars(Di) ⊆ {y1, . . . , y`}, vars(Ei) ⊆ {x1, . . . , xk} ∪
{y1, . . . , y`}. We now construct two formulas χ1 ∈ 3CNF and χ2 ∈ Σ13CNF− such
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that C-satΣ13CNF(χ0) = C-(sat3CNF, satΣ1CNF−)(χ1, χ2). Define

χ1(x1, . . . , xk, e1, . . . , em) =
∧(

Ci ∧
∧

(¬ei ↔ Ei|{x1,...,xk})
)

and
χ2(e1, . . . , em) = ∃y1 . . . ∃y`

∧
Di ∧

∧
(ei → Ei|{y1,...,y`}),

where m is the number of the clauses Ei, and C|V denotes the restriction of the
clause C to variables in V . More precisely, for a clause C = `1 ∨ `2 ∨ `3 we define

C|V ··=
∨

i∈{1,2,3}
∃x∈V :`i=x or `i=¬x

`i.

Note that in these two formulas the new implications and equivalences can be
trivially transformed to 3CNF formulas, and in χ2 the free variables only occur
negatively. Intuitively, using the new variables ei, the formula χ1 expresses that the
assignment to the variables x1, . . . , xk does not satisfy any literal in Ei, and thus, as
expressed in χ2, the clause Ei has to be satisfied by an appropriate assignment to
the variables y1, . . . , y`. Since the assignments to the new variables ei are uniquely
determined by the assignments to the variables x1, . . . , xk, the formula χ1∧χ2 has
the same number of satisfying assignments as the original formula χ0.

(3.2) C-(sat3CNF, satΣ1CNF−) ≤P
par C-(cyclecover, satΣ1CNF−): Let χ0(x1, . . . , xk) ∈

3CNF, χ1(x1, . . . , xk) ∈ Σ13CNF−.

Problem: C-(cyclecover, satΣ1CNF−)
Input: G = (V,E) ∈ GRAPH, χ ∈ Σ1CNF−

Output:

∣∣∣∣{E ′ ⊆ E

∣∣∣∣E ′ is a vertex disjoint cycle cover
of G, free(χ) = E and E ′ |= χ

}∣∣∣∣
We map χ0 to an instance G of C-cyclecover similar to Valiant [Val79a]. In

Valiant’s reduction [Val79a], certain pairs of nodes are connected by so-called
junctions, which are essentially two edges connecting the nodes in both directions.
The goal then is to count only “good” cycle covers, namely those cycle covers that
contain at most one edge per junction. In the original proof this is achieved by
replacing junctions by a certain gadget. In our case, we can instead use a formula
to express the crucial condition: A junction consisting of two edges e1, e2 is used
appropriately if and only if one of the edges e1 and e2 is not contained in the cycle
cover.

In Valiant’s construction, each satisfying assignment of χ0 corresponds to exactly
one good cycle cover of G, and vice versa. In particular, for each variable x of χ0,
there is a certain edge e in G such that e is contained in each good cycle cover of
G if and only if the variable x is assigned to 1 by the corresponding assignment.
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Now, let χ′1 be the formula obtained from χ1 by replacing all occurrences of the
free variables by the corresponding edges. Let J be the set of junctions in G, each
of which can be given as the set of its edges. Define

χ′′1 := χ′1 ∧
∧

{j1,j2}∈J

(¬j1 ∨ ¬j2)

Note that the free variables in χ′′1 only occur negatively. Now we have

C-(cyclecover, satΣ1CNF−)(G,χ′′1) = C-(sat3CNF, satΣ1CNF−)(χ0, χ1).

(3.3) C-(cyclecover, satΣ1CNF−) ≤P
par C-(pmatching, satΣ1CNF−):

Problem: C-(pmatching, satΣ1CNF−)
Input: G = (V1, V2, E) ∈ BIP, χ ∈ Σ1CNF−

Output:

∣∣∣∣{E ′ ⊆ E

∣∣∣∣E ′ is a perfect matching of
G, free(χ) = E and E ′ |= χ

}∣∣∣∣
Following the 1-to-1 correspondence between cycle covers of directed graphs and

perfect matchings of bipartite graphs, the reduction can be given as follows:(
(V,E), χ

)
7→
(
(V, {v′ | v ∈ V }, {{v1, v

′
2} | (v1, v2) ∈ E}), χ′

)
,

where χ′ is obtained from χ by replacing all occurrences of variables (v1, v2) by
the corresponding new variables {v1, v

′
2}.

(3.4) C-(pmatching, satΣ1CNF−) ≤P
T C-(matching, satΣ1CNF−): Let G = (V1, V2, E)

be a bipartite graph with E = {e1, . . . , en} and χ(e1, . . . , en) ∈ Σ13CNF−.

Problem: C-(matching, satΣ1CNF−)
Input: G = (V1, V2, E) ∈ BIP, χ ∈ Σ1CNF−

Output: | {E ′ ⊆ E |E ′ is a matching of G, free(χ) = E and E ′ |= χ } |

For the reduction C-pmatching ≤P
T C-matching, Valiant constructs bipartite

graphs Gk for 1 ≤ k ≤ |V1| + 1 from G by adding copies of all nodes in V1 as
follows:

Gk := (V1,k, V2, Ek), where

V1,k := V1 ∪ {uij | 1 ≤ i ≤ |V1|, 1 ≤ j ≤ k} and

Ek := E ∪
{
{uij, vi} | 1 ≤ i ≤ |V1|, 1 ≤ j ≤ k

}
Let Ar be the number of matchings of G of size |V1| − r. Then Gk has exactly∑|V1|

r=0Ar · (k + 1)r matchings. Using the number of matchings of all graphs Gk

yields a system of linear equations that allows us to compute A0, the number of
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perfect matchings of G. Note that each matching of G corresponds to a number of
matchings in each Gk (those consisting only of copies of the edges from the original
matching).

To compute the number of perfect matchings E ′ of G with E ′ |= χ, we now
associate each graph Gk with a formula χk such that E ′′ |= χk holds for those
matchings E ′′ of Gk corresponding to a matching E ′ of G with E ′ |= χ. Let
ei = {v1, v2} be an edge of G. A matching E ′′ of Gk corresponds to a matching E ′

of G that does not use edge ei if and only if it does neither use the edge {v1, v2}
nor any of the edges eij, where eij = {u1,j, v2}. Formally this can be written as

E ′ |= ¬ei ⇐⇒ E ′′ |= ¬{v1, v2} ∧
∧

1≤j≤k

¬eij.

Now in any clause (¬ei ∨ `1 ∨ `2) where `1 and `2 are literals of bound variables of
χ we can replace ¬ei by

∧
1≤j≤k ¬eij. The resulting formula is equivalent to∧

1≤j≤k

(¬eij ∨ `1 ∨ `2),

which is of the desired form. Similarly we can replace any clause of the form
(¬ei1 ∨ ¬ei2 ∨ `1) by (

∧
1≤j≤k ¬ei1,j ∨

∧
1≤j≤k ¬ei2,j ∨ `1), resulting in the formula∧

(j1,j2)∈{1,...,k}2
(¬ei1,j1 ∨ ¬ei2,j2 ∨ `1).

Analogously we can also handle clauses of the form (¬ei1 ∨ ¬ei2 ∨ ¬ei3).
Let χ′ be χ after applying the above changes. We have that any matching E ′′ of

Gk corresponds to a matching of E ′ of G with E ′ |= χ if and only if E ′′ |= χ′. Now,
we can proceed as Valiant [Val79b]: Let A′r be the number of matchings E ′ of G

of size |V1| − r with E ′ |= χ. Then Gk has exactly
∑|V1|

r=0A
′
r · (k + 1)r matchings

E ′′ with E ′′ |= χ′. Using the number of such matchings for all graphs Gk we get
a system of linear equations allowing us to compute A′0, the number of perfect
matchings E ′ of G with E ′ |= χ.

(3.5) C-(matching,Σ13cnf−) ≤P
par C-(sat2CNF− , satΣ13CNF−): Let G = (V1, V2, E)

be a bipartite graph with E = {e1, . . . , en} and χ0(e1, . . . , en) ∈ Σ13CNF−. The
reduction is completely analogously to the proof by Valiant: We define a 2CNF−

formula χ1(e1, . . . , en) expressing that each node of the graph is only matched once
as:

χ1(e1, . . . , en) :=
∧

(e1,e2)∈E×E
e1 6=e2 and e1∩e2 6=∅

¬e1 ∨ ¬e2

Then

C-(matching, satΣ1CNF−)(G,χ0) = C-(sat2CNF− , satΣ13CNF−)(χ1, χ0).
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Note that no change is made to the Σ13CNF− formula χ0 in this reduction.
(3.6) C-(sat2CNF− , satΣ13CNF−) ≤P

par C-satΣ1CNF− : Let χ0(x1, . . . , xn) ∈ 2CNF−

and χ1(x1, . . . , xn) ∈ Σ13CNF−. Clearly,

C-(sat2CNF− , satΣ13CNF−)(χ0, χ1) = C-satΣ1CNF−(∃y1 . . . ∃yk(χ0 ∧ χ′1)).

Theorem 3.17 ([HKM+19]). The problem C-sat¬∅
Σ1CNF−

is #·NP-complete under
Turing reductions.

Proof. Membership follows again from Lemma 3.15.
For hardness we give a Turing reduction from C-satΣ1CNF− . From Theorem 3.16

it follows that C-sat¬∅
Σ1CNF−

is #·NP-hard. Let χ0(x1, . . . , xn) ∈ Σ1CNF−. Replace
every free variable xi in χ0 by the constant⊥, and simplify the formula by removing
all literals that are equivalent to ⊥ and all clauses that are equivalent to >. Denote
the resulting formula by χ′0, and

χ1 ··= χ′0 ∧ (¬xn+1 ∨ ¬xn+2),

where xn+1 and xn+2 are the only free variables in χ1. Observe that if χ0(x1, . . . , xn)
is satisfiable then it is also satisfied by the empty assignment. We use C-sat¬∅

Σ1CNF−

as an oracle to compute the number of satisfying assignments of χ1, not counting
the empty assignment. The answer can only be either 0 or 2. If the answer is
0, we conclude that χ0(x1, . . . , xn) is not satisfiable and therefore the number of
satisfying assignments of χ0 is 0. If the answer is 2, we know that χ0(x1, . . . , xn)
is satisfiable. Now we can ask the oracle again for the number k of the satisfying
assignments of χ0(x1, . . . , xn). The actual number of satisfying assignments of
χ0(x1, . . . , xn) is then k+1 (as the oracle does not count the empty assignment).

3.5 Summary

In Figure 3.1, we present a class diagram which summarizes all our results regard-
ing counting complexity classes. The diagram contains new counting classes we
defined using team logics and compares them to previously known counting classes.
We conjecture that all these subsets are in fact strict, but these conjectures are
bound to assumptions (e.g. P 6= NP or C-sat¬∅DH 6∈ #FO(=(. . . ))). Recall that by
Proposition 2.47 #FOT = #P.
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FP #FO(⊆)

TotP

#P = #FOT

#·NP = #FO(⊥)

#FO(=(. . . ))

C-sat¬∅DH

C-sat¬∅Σ1DH

C-satBF

C-sat2CNF+

C-satΣ1BF

C-sat¬∅
Σ1CNF−

C-sat¬∅
Σ1CNF−

Figure 3.1: Class diagram of considered counting complexity classes. An edge between
two nodes in the diagram denotes a subset relation between the two nodes (from bottom
to top). Orange marked problems are contained in the respective class, blue marked
problems are complete for the respective class with respect to parsimonious reductions,
light blue marked problems are complete for the respective class with respect to Turing
reductions and green marked problems are complete with respect to first-order reduc-
tions.
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4 Enumeration Problems in Team
Logics

Like in the decision and counting setting we classify the enumeration complexity
classes that we defined based on independence, dependence and inclusion logic. As
we will see, the results here are very similar to the ones in the decision case, since
by Theorem 2.54 there is a simple way to translate hardness from the decision to
the enumeration setting. To study the framework of hardness in the enumeration
setting a bit more, we analyse the complexity of satisfiability problems that are
restricted to optimal solutions.

In this section, we mainly have two types of results, membership and hardness
results. For showing membership results we provide an algorithm (a RAM) that
has access to a (suitable) decision oracle and computes the desired solutions. Af-
terwards we show that every solution is output exactly once and argue that the
delay satisfies the given bounds. To prove hardness for an enumeration problem
we show hardness for a corresponding decision problem and translate it to the
enumeration problem.

Some of our algorithms assume an order on the assignments. Here any total
order, e.g. lexicographical order, is suitable. Furthermore, for a given team X we
denote by max(X) the greatest assignment s ∈ X with respect to our order. In
our first result we show that E-satteam

ϕ ∈ DelNP for ϕ ∈ FO(T) and T ∈ GNP.

Problem: E-satteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ }

For this we provide an algorithm that has access to two oracles, namely V-satteam
ϕ

and D-extendteamϕ.

Problem: V-satteam
ϕ

Input: A ∈ STRUC, X ′ ∈ TEAM(ϕ)
Question: X ′ ∈ {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ }?

62



4 Enumeration Problems in Team Logics

Problem: D-extendteamϕ

Input: A ∈ STRUC, X ∈ TEAM(ϕ), Y ∈ TEAM(ϕ)

Question:

{
X ′ ∈ TEAM(A, ϕ)

∣∣∣∣A |=X′ ϕ, X ( X ′

and X ′ ∩ Y = ∅

}
6= ∅?

We use the oracle D-extendteamϕ as our torchlight (like D-satBF in Exam-
ple 2.51). That means we can query the oracle at any point whether the current
team can be extended to a solution. The idea of the extra input Y is to keep
track of solutions that have been output before. More precisely, we use Y to store
certain assignments that may not appear any more for further solutions, since all
solutions containing those assignments have been output before. Since Y is a set
of assignments it is formally a team but Y does not correspond to any solutions.

Since T ∈ GNP, we know that V-satteam
ϕ ∈ NP and therefore that it is a suitable

oracle for showing DelNP membership. Moreover D-extendteamϕ is in NP as well:
Guess team X ′ and make the guesses needed to verify A |=X′ ϕ in polynomial
time. The latter is possible since V-satteam

ϕ ∈ NP. Afterwards check X ( X ′ and
X ′ ∩ Y = ∅ (in polynomial time).

Formally, our algorithm may only use one oracle, but since D-extendteamϕ and
V-satteam

ϕ are both in NP we can reduce them to an NP-complete problem D-f
which we can then use as oracle. For readability we give the algorithm direct
access to the oracles D-extendteamϕ and V-satteam

ϕ instead of D-f . Later we will
provide more algorithms with two oracles which we will handle this way.

Theorem 4.1 ([HMMV22]). E-satteam
ϕ ∈ DelNP for ϕ ∈ FO(T) and T ⊆ GNP.

Proof. We start with the empty team and add assignments step by step. At every
step we ask the oracle V-satteam

ϕ and output the current team depending on the
answer. Afterwards we ask the oracle D-extendteamϕ whether we have to search
for more solutions.

A formal description of our method is given in Algorithm 1. The algorithm gets
a structure A and a team X as inputs and outputs all satisfying teams X ′ with
X ( X ′ and X ′ \ X ⊆ { s ∈ dom(A)|free(ϕ)| | s > max(X) }, that is, X ′ only
contains new assignments that are greater (with respect to to our order) than the
greatest assignment in X. The algorithm computes such teams by using recursive
calls where in each call exactly one assignment s > max(X) is added to X. We
run the algorithm on input (A, ∅) to get all satisfying teams.

The algorithm outputs every solution at least once: Suppose we would skip line
3 of the algorithm. Then the algorithm would branch on any assignments s that
are greater than max(X) for the considered team X and therefore would consider
all teams at one point. Line 3 stops some of these recursive calls from happening
but only when the torchlight tells us that there are no solutions to be found in
those calls. Therefore all solutions will be found.
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Algorithm 1: E-satteam
ϕ ∈ DelNP for ϕ ∈ FO(T )

Oracles: D-extendteamϕ and V-satteam
ϕ

Function ESuperteams(structure A, team X)
1 if V-satteam

ϕ (A, X) then output X

2 Y =
⋃
s<max(X)∧s 6∈X s

3 if D-extendteamϕ(A, X, Y ) then
4 forall s > max(X) do
5 ESuperteams(A, X ∪ { s })

On the other hand in the recursive calls the teamsize grows and any two parallel
recursive calls search through distinct sets of teams, therefore no solution will be
output twice.

We now argue that the delay of the algorithm is polynomial. Suppose the only
solution is the full team Xfull, which is a worst case for both the precomputation
and postcomputation. In that case the algorithm makes |Xfull| recursive calls until
the first solution is output and therefore the precomputation takes polynomial
time. After the output there are no other solutions to be found but the algorithm
still has to end some recursive calls. An upper bound for the number of these calls
is |Xfull| · |Xfull| and thus the postcompuation takes polynomial time as well. Now
consider the time between the outputs of two consecutive solutions. Here, a worst
case is that Xfull and {s} are the only solutions, where s is the highest assignment
with respect to the considered order. In that case the number of recursive calls
that have to be handled between the first and second solution would be bounded
by |Xfull| · |Xfull| again.

We have shown DelNP membership of E-satteam
ϕ for formulas of team logics

that allow arbitrary sets of NP-verifiable generalized atoms and by this deduce
DelFO(T) ⊆ DelNP for T ⊆ {⊥,=(. . . ),⊆}. This result therefore holds especially
for independence, dependence and inclusion logic. As we will see, the other di-
rection only holds for independence and dependence logic. For this we show that
there are formulas ϕ ∈ FO(T) for T ∈ {⊥,=(. . . )} such that D-satteam

ϕ is NP-hard
and use Corollary 2.55 afterwards to conclude DelNP-hardness for E-satteam

ϕ . This
yields the desired result DelNP ⊆ FO(T).

Problem: D-satteam
ϕ

Input: A ∈ STRUC
Question: {X ∈ TEAM(A, ϕ) | A |=X ϕ and X 6= ∅ } 6= ∅?
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Theorem 4.2 ([HMMV22]). Let T ⊆ {=(. . . ),⊥} with T 6= ∅. There exists a
formula ϕ ∈ FO(T) such that the problem D-satteam

ϕ is NP-hard.

Proof. We show the result for T = {⊥}. The proof for T = {=(. . . ) } works anal-
ogously by reducing from the NP-complete problem D-satΣ1CNF− . Since the depen-
dence atom can be expressed using the independence atom the case of {⊥,=(. . . ) }
is the same as {⊥}.

We reduce from the NP-complete problem D-satCNF to the problems D-satrel
ψ and

D-satrel,¬∅
ψ′ for some ψ, ψ′ ∈ Σ1

1.
By Proposition 2.24 we get that D-satteam

ϕ is NP-hard, for a formula ϕ ∈ FO(⊥).
Let us recall the definition of those problems. For a class P of quantified boolean
formulas the problem D-satP is defined as follows:

Problem: D-satP

Input: χ ∈ P
Question: { β ∈ Θ(χ) | β |= χ } 6= ∅?

Furthermore, for second order formulas ψ, the problems D-satrel
ψ and D-satrel,¬∅

ψ are
defined in the following way:

Problem: D-satrel
ψ

Input: A ∈ STRUC
Question: {R ∈ REL(A, ψ) | A, R |= ψ } 6= ∅?

Problem: D-satrel,¬∅
ψ

Input: A ∈ STRUC
Question: {R ∈ REL(A, ψ) | A, R |= ψ and R 6= ∅ } 6= ∅?

Let χ(x1, . . . , xn) =
∧m
i Ci be a propositional formula in conjunctive normal

form, with Ci =
∨
j li,j. We encode χ via the τCNF-structure

Aχ = { {x1, . . . , xn, C1, . . . , Cm }, V A, PA, NA }.

We define the Σ1
1 formula ψ(R) := ψ1 ∧ ψ2(R), where ψ1 and ψ2(R) are defined as

follows:

ψ1 := ∀C∀x
((
P (C, x)→ ¬V (C) ∧ V (x)

)
∧
(
N(C, x)→ ¬V (C) ∧ V (x)

))
ψ2(R) := ∀C

(
¬V (C)→ ∃x

(
P (C, x) ∧R(x)

)
∨
(
N(C, x) ∧ ¬R(x)

))
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The formula ψ1 ensures that the input structure is an encoding of a CNF formula
and ψ2(R) that there is a one-to-one correspondence between relations satisfying
R and satisfying assignments β for formula χ. Now, we have that

∃R : Aχ, R |= ψ(R) ⇐⇒ ∃β : β |= χ,

showing D-satCNF ≤P
m D-satrel

ψ .

Next, we will show NP-hardness for D-satrel,¬∅
ψ′ . This follows from an easy reduc-

tion from D-satrel
ψ to D-satrel,¬∅

ψ′ which holds for all ψ ∈ Σ1
1. Let ψ′(R) = ψ(R)∨ψ(∅).

Now, for all structures A we claim that

∃R : A, R |= ψ(R) ⇐⇒ ∃R′ 6= ∅ : A, R′ |= ψ′(R′).

“ =⇒ ”: If A, R |= ψ(R) holds for R = ∅, then A, R′ |= ψ′(R′) holds for any
R′ 6= ∅. If A, R |= ψ(R) for any R 6= ∅, then A, R |= ψ′(R) also holds.

“⇐= ”: Since A, R 6|= ψ(R) for all R, we have A, ∅ 6|= ψ(R) in particular. This
immediately shows A, R 6|= ψ′(R) for all R.

Corollary 4.3. Let T = {⊥,=(. . . ) }, then there is a formula ϕ ∈ FO(T) such
that E-satteam

ϕ is DelNP-complete. Furthermore DelFO(T) = DelNP.

Proof. Again we only argue for the independence logic case, the proof for depen-
dence logic case works analogously. By Corollary 2.15 the independence atom is
NP-verifiable. Hence Theorem 4.1 is applicable and we can conclude E-satteam

ϕ′ ∈
DelNP for all formulas ϕ′ ∈ FO(⊥) and thus DelFO(⊥) ⊆ DelNP.

For the other direction we first conclude that by Theorem 4.2 and Corollary 2.55
there is a formula ϕ ∈ FO(⊥) such that E-satteam

ϕ is DelNP-hard and thus DelNP-
complete. Since E-satteam

ϕ is DelNP-hard it follows that any enumeration problem
E-f ∈ DelNP is reducible to E-satteam

ϕ and therefore

E-f ∈
[
E-satteam

ϕ

]≤DelP

⊆
[ ⋃
ϕ′∈FO(⊥)

E-satteam
ϕ′

]≤DelP

= DelFO(⊥).

Since DelFO(⊥) ⊆ DelNP and any E-f ∈ DelNP is also in DelFO(⊥), we can
conclude DelFO(⊥) = DelNP.

Recall that we defined DelFO(⊥) as
[⋃

ϕ∈FO(⊥) E-satteam
ϕ

]≤DelP

. We can now sim-

plify this definition to DelFO(⊥) =
[
E-satteam

ϕ

]≤DelP

, where ϕ is the formula from

Corollary 4.3. The same holds for dependence logic.
Having classified DelNP, our next task is to capture DelP with inclusion logic.

We start by showing E-satteam
ϕ ∈ DelP for arbitrary inclusion logic formulas. For

this we take advantage of the fact that, by Proposition 2.42, S-maxsubteamϕ ∈ FP
for inclusion logic formulas ϕ.
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Theorem 4.4 ([HMMV22]). For any formula ϕ ∈ FO(⊆) it holds that E-satteam
ϕ ∈

DelP.

Proof. We will search through the set of all teams in a top down manner for solu-
tions using S-maxsubteamϕ as our torchlight. Note that formally S-maxsubteamϕ

can not be used as an oracle since it is not a decision problem, but as the problem
is included in FP (see Proposition 2.42) we can compute it directly and therefore
do not need an oracle.

We start by computing the maximal satisfying team X and output it. After-
wards we split the set of subteams of X in two halves, the ones that contain s and
the ones that do not. Here s is one (arbitrary) assignment in X. We look for addi-
tional solutions in the second half by starting a recursive call of our method with
the input X \ s. To find the solutions in the first half we again split the remaining
teams in half, this time in the set of teams that contain s′ (and s) and the ones
that do not contain s′ (but s). Then we start a recursive call for the second half
and continue as above. If at some point the maximal team is the empty team we
output nothing and do not start any new recursive calls.

Algorithm 2 is a formal description of this method. It is a recursive algo-
rithm that computes all satisfying subteams X ′ 6= ∅ of X with Y ⊆ X ′ on input
(A, X, Y ). To compute all satisfying subteams for a given A, we run this algorithm
on input (A, Xfull, ∅).

Algorithm 2: E-satteam
ϕ ∈ DelP for ϕ ∈ FO(⊆)

Function ESubteams(structure A, teams X, Y )
1 X ← S-maxsubteamϕ(A, X)
2 if X 6= ∅ ∧ Y ⊆ X then
3 output X
4 for s ∈ X do
5 Y = Y ∪ { s′ | s′ < s ∧ s′ ∈ X }
6 ESubteams(A, X \ { s }, Y )

The algorithm outputs every solution at least once: The first output X is the
maximal satisfying team and due to union closure all other satisfying teams are
subsets ofX. In the recursive calls the set of subteams ofX is systematically looked
through for any new solutions. The search in a recursive call is only stopped when
the maximal team is the empty team or Y 6⊆ X, i.e. either there is no solution left
to find in the corresponding subset or we have considered it before.

The algorithm outputs every solution at most once: Suppose that there is a
team X that is output more than once. In the recursive call where X is output
for the first time the algorithm starts new recursive calls and we know that these
can not lead to the output X again, since only subsets of X are considered. That
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means the recursive calls that yield the solution X must originate from the same
recursive call. On the other hand we know that this can not happen since the
search space of these recursive calls are distinct, which leads to a contradiction.
There are no more cases to consider which means that the claim was wrong. It
follows that the algorithms outputs every solution exactly once as desired.

The precomputation takes polynomial time since S-maxsubteamϕ ∈ FP. For the
postcomputation consider the worst case: For every solution that is output, only
the first recursive call leads to another solution. Thus the algorithm outputs all
solutions in direct succession at the beginning and has no solutions left to output
afterwards. We now argue that there are only polynomially many recursive calls
left at that point. The number of solutions that are output in this case is at most
|Xfull|. For a given solution X the algorithm makes at most |X| ≤ |Xfull| recursive
calls. Therefore, the algorithm makes at most |Xfull| · |Xfull| recursive calls which
is polynomial. Every recursive call that does not lead to a solution only takes
polynomial time, since it terminates at line 2 of the algorithm (and does not make
any new recursive calls). It follows that the algorithm makes polynomially many
recursive calls that each take polynomial time which in total takes polynomial
time. For the delay between two outputs a similar worst case can be found.

Corollary 4.5. E-satteam
ϕ is DelP-complete for any formula ϕ ∈ DelFO(⊆). Fur-

thermore, DelFO(⊆) = DelP.

Proof. By Theorem 4.4 we know that E-satteam
ϕ ∈ DelP for any formula ϕ ∈ FO(⊆)

and therefore DelFO(⊆) ⊆ DelP. Furthermore any problem in DelP is also DelP-
complete (see Remark 2.56). Hence, we can conclude that E-satteam

ϕ is DelP-
complete. Since E-satteam

ϕ is DelP-hard it follows that any enumeration problem
E-f ∈ DelP is reducible to E-satteam

ϕ and therefore

E-f ∈
[
E-satteam

ϕ

]≤DelP

⊆
[ ⋃
ϕ′∈FO(⊆)

E-satteam
ϕ′

]≤DelP

= DelFO(⊆).

Since DelFO(⊆) ⊆ DelP and any E-f ∈ DelP is also in DelFO(⊆), we can conclude
DelFO(⊆) = DelP.

Similar to the independence and dependence cases we can now simplify the

definition of DelFO(⊆) to
[
E-satteam

ϕ

]≤DelP

, where ϕ ∈ FO(⊆).

Figure 4.1 summarises the results we have established in the enumeration setting
so far.
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DelP = DelFO(⊆)

DelNP = DelFO(⊥) = DelFO(=(. . . ))

E-satDH

E-satBF

Figure 4.1: Class diagram of considered enumeration complexity classes. An edge be-
tween two nodes denotes a subset relation from bottom to top. The blue marked prob-
lems are complete for the respective class with respect to ≤DelP reductions.

4.1 Enumeration of Optima in Team Logics

Having characterised the enumeration complexity classes defined in this work,
we now like to study other satisfiability problems based on team logics. These
problems arise when restricting the solutions to those that are minimal/maximal
or a minimum/maximum. In this section we present results for different team
logics and we dedicate the next section to inclusion logic. The problems we want
to study in both sections are formally defined as follows:

Problem: E-maxsatteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) |X is a maximal team for ϕ in A}

Problem: E-minsatteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) |X is a minimal team for ϕ in A}

Problem: E-cmaxsatteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) |X is a maximum team for ϕ in A}

Problem: E-cminsatteam
ϕ

Input: A ∈ STRUC
Output: {X ∈ TEAM(A, ϕ) |X is a minimum team for ϕ in A}

We start by showing E-cmaxsatteam
ϕ ∈ DelNP. For this we use a new torchlight

oracle, namely D-extendcteamϕ.
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Problem: D-extendcteamϕ

Input: A ∈ STRUC, X ∈ TEAM(ϕ), Y ∈ TEAM(ϕ), k ∈ N

Question:

{
X ′ ∈ TEAM(A, ϕ)

∣∣∣∣A |=X′ ϕ, X ( X ′,
X ′ ∩ Y = ∅ and |X ′| = k′

}
6= ∅?

Note that D-extendcteamϕ is in NP: Use the same method as for D-extendteamϕ

and check if |X| = k afterwards.

Theorem 4.6 ([HMMV22]). E-cmaxsatteam
ϕ ∈ DelNP for ϕ ∈ FO(T) and T = GNP.

Proof. There is a recursive algorithm that on input (A, X, k) enumerates all satis-
fying superteams of X having cardinality k with polynomial delay. The algorithm
is very similar to Algorithm 1. The only differences are that |X| = k is checked
before a team X is output and that D-extendcteamϕ is used as the torchlight or-
acle instead of D-extendteamϕ. A formal description of the algorithm is given in
Algorithm 3. Running the algorithm on input (A, ∅, k), where k is the highest
cardinality of a satisfying team, enumerates all solutions. The highest cardinal-

Algorithm 3: E-cmaxsatteam
ϕ ∈ DelNP for ϕ ∈ FO(T )

Oracles: D-extendcteamϕ and V-satteam
ϕ

Function
EnumerateCMaxTeams(structure A, team X, natural number k)

1 if V-satteam
ϕ (A, X) ∧ |X| = k then output X

2 Y =
⋃
s<max(X)∧s 6∈X s

3 else if D-extendcteamϕ(A, X, Y, k) then
4 for s > max(X) do EnumerateCardMaxTeams(A, X ∪ { s }, k)

ity can be computed by asking the D-extendcteamϕ oracle on input (A, ∅, ∅, i) for
i = |dom(A)||free(ϕ)|, . . . , 1. The highest cardinality is then the largest value i for
which the answer of the oracle was “yes”.

The algorithm outputs every solution exactly once and has polynomial delay.
This can be argued similarly as in the proof of Theorem 4.1.

As we will see next, the membership results for E-satteam
ϕ and E-cmaxsatteam

ϕ can
be translated to E-minsatteam

ϕ and E-cminsatteam
ϕ , by making slight modifications to

the algorithms.

Theorem 4.7 ([HMMV22]). E-minsatteam
ϕ , E-cminsatteam

ϕ ∈ DelNP for ϕ ∈ FO(T)
and T ⊆ GNP.
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Proof. For E-minsatteam
ϕ we can run a slightly modified version of Algorithm 1 on

input (A, ∅), which was originally used for E-satteam
ϕ . The only modification needed

is that the new algorithm terminates after outputting a solution. This suffices to
enumerate E-minsatteam

ϕ , since Algorithm 1 outputs the solutions in an ascending
order in any recursive call. Thus, in any recursive call only one minimal team is
considered and this team is always output first.

For E-cminsatteam
ϕ we can run Algorithm 3 on input (A, ∅, k), where k is the

lowest cardinality (instead of the maximal) of a satisfying team. This way we can
enumerate E-cminsatteam

ϕ , since as stated in Theorem 4.6, Algorithm 3 enumerates
all satisfying teams with cardinality k. The lowest cardinality can be computed
analogously to the maximal cardinality using the oracle D-extendcteamϕ.

Both algorithms inherit the properties that are needed for showing DelNP mem-
bership from their counterparts.

Having shown DelNP membership, we can already conclude DelNP-completeness
for certain formulas. This is due to the fact that Theorem 4.2 together with
Theorem 2.54 induces DelNP-hardness.

Corollary 4.8. Let T = {⊥,=(. . . ) }, then there is a formula ϕ ∈ FO(T) such that
E-maxsatteam

ϕ , E-cmaxsatteam
ϕ , E-minsatteam

ϕ , E-cminsatteam
ϕ are DelNP-hard. Fur-

thermore, the latter three problems are in DelNP and thus DelNP-complete.

Proof. Again we argue only for the independence logic case. By Theorem 4.2
there is a formula ϕ ∈ FO(⊥) such that D-satteam

ϕ is NP-hard. Furthermore, the

Problem D-satteam
ϕ can be decided in polynomial time by an EOM ME-f , where

f ∈ {maxsatteam
ϕ , cmaxsatteam

ϕ ,minsatteam
ϕ , cminsatteam

ϕ }: The machine just asks the
oracle for the next solution. If the answer is a team then it outputs “yes” oth-
erwise it outputs “no”. By Theorem 2.54 it follows that E-f is DelNP-hard
for f ∈ {maxsatteam

ϕ , cmaxsatteam
ϕ ,minsatteam

ϕ , cminsatteam
ϕ }. Finally by the Theo-

rems 4.6 and 4.7, the problems E-cmaxsatteam
ϕ , E-minsatteam

ϕ , E-cminsatteam
ϕ are in

DelNP and thus DelNP-complete.

By Corollary 4.8 we have further characterisations of DelNP as

DelNP =
[
E-cmaxsatteam

ϕ

]≤DelP

=
[
E-minsatteam

ϕ

]≤DelP

=
[
E-cminsatteam

ϕ

]≤DelP

,

where ϕ is the formula from Corollary 4.8 or more generally as

DelNP =
[ ⋃
ϕ∈FO(T)

E-cmaxsatteam
ϕ

]≤DelP

=
[ ⋃
ϕ∈FO(T)

E-minsatteam
ϕ

]≤DelP
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=
[ ⋃
ϕ∈FO(T)

E-cminsatteam
ϕ

]≤DelP

for T ∈ {⊥,=(. . . ) }.
We have not talked much about the problem E-maxsatteam

ϕ and concluded only
DelNP-hardness so far. The reason for this is that there does not seem to be a
suitable torchlight to show DelNP membership. A helpful torchlight would, given
a team X, answer the query whether there is an inclusion maximal satisfying team
X ′ that is a superset of X and contains no assignments from a set Y . This seems
to be a ΣP

2 -query. Note that in contrast to here, for D-extendcteamϕ we did not
need the maximality condition since we could simply ask for a team of size k. One
way to get rid of the maximality condition would be to omit the set Y , but then
there is no difference between asking for a maximal satisfying team and asking for
any satisfying team since these questions are equivalent. Using only such an oracle
it is not clear how to compute different solutions with polynomial delay: At some
point in the algorithm the torchlight could tell us that there is a satisfying team
X ′ that is a superset of our current team X, but the only solution X ′′ (a maximal
satisfying team) with X ⊆ X ′′ has been output before. In that case—depending
of the design of the algorithm—the algorithm would either output X ′′ again or go
through the whole set of possible solutions without outputting a solution which
could then lead to an exponential delay. In both cases we would fail to present a
DelC algorithm for any class decision complexity class C.

Instead of showing DelNP membership we show Del+NP membership. This gives
us the power to make queries which are not polynomially long with respect to the
input. The idea is to modify the input structure for the torchlight after each
output, such that the input structure contains all the information about the teams
that were output before. By doing this (and by modifying the formula once)
we can ensure that no team is output twice. To achieve this, given a structure
A = ({ 0, . . . , n−1 }, RA0 , . . . , RAm−1) and a set of teams {X0, . . . , Xj−1 }, we define
a new structure A(X0, . . . , Xj−1) as follows:

A′ :=
(
{ 0, . . . ,max(n− 1, j − 1) }, RA0 , . . . , RAm−1, U

A′ , SA
′)
,

where A′ is an abbreviation for A(X0, . . . , Xj−1), UA
′
= { 0, . . . , n−1 } and SA

′
=

{ (i, a0, . . . , ak−1) | (a0, . . . , ak−1) ∈ rel(Xi) }. The intention of this new structure
A′ is to store (previously output) teams in the relation SA

′
. Since the number

of teams we want to store in SA
′

might be larger than |dom(A)|, we need to
extend the universe for dom(A′). To be able to distinguish between elements
from dom(A) and dom(A′) we use the relation UA

′
. Now by replacing A with

A(X0, . . . , Xj−1) in our oracle queries, we give the oracle indirect access to the
solutions X0, . . . , Xj−1. Since now our structure contains all information about
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the solutions that have already been output, our oracle does not need its third
input Y , which was only used for storing information about the sets of teams that
have been searched through so far. Therefore we use the oracle D-extendteam′ϕ
which is defined analogously to D-extendteamϕ but without the third input Y .

Problem: D-extendteam′ϕ
Input: A ∈ STRUC, X ∈ TEAM(ϕ)

Question: {X ′ ∈ TEAM(A, ϕ) | A |=X′ ϕ,X ( X ′ } 6= ∅?

Clearly this oracle is in NP as it is a simpler version of D-extendteamϕ.

Theorem 4.9 ([HMMV22]). For T ∈ {⊥,=(. . . ),⊆} and ϕ ∈ FO(T) we have that
E-maxsatteam

ϕ ∈ Del+NP.

Proof. By Proposition 2.11 it suffices to show this result for T = {⊥}. Let
ϕ0(x0, . . . , xk−1) be a fixed FO(⊥) formula over σ = {R0, . . . , Rm−1 }. We enu-
merate all inclusion maximal satisfying teams for ϕ0 and an input structure A =
({ 0, . . . , n − 1 }, RA0 , . . . , RAm−1) with the help of the oracles D-extendteam′ϕ1

and
V-satteam

ϕ1
, for a formula ϕ1 we are about to define.

The algorithm works as follows: After every output, the output itself is “added”
to the current structure A. To access the information about the solutions that are
encoded in the current structure A, we use the oracle D-extendteam′ϕ1

for a new
FO(⊥) formula ϕ1 := ϕ2 ∧ ϕ3, where ϕ2, ϕ3 are defined as follows:

ϕ2(x) :=
∧
x∈x

U(x) ∧ ϕ′0(x),

ϕ3(x) := ∀i∃y ¬S(i, y) ∧ y ⊆ x,

where x, y are tuples of k variables, U, S are two new relations and ϕ′0 is the formula
that we obtain from ϕ0 by replacing each subformula ∃z ϕ with ∃z (U(z)∧ϕ) and
each subformula ∀z ϕ with ∀z (¬U(z) ∨ ϕ). The point of relation U is to ensure,
that only elements from the original universe are used for ϕ′0, for the free variables
x0, . . . , xk−1 and indirectly also for the variables y0, . . . , yk−1. Recall that we can
express the inclusion atom with the independence atom (see Proposition 2.11) and
therefore it is appropriate to use an inclusion atom here.

Now, for a set of teams {X0, . . . , Xj−1 } and a team X withA(X0, . . . , Xj−1) |=X

ϕ1, it follows that:

1. A |=X ϕ and

2. X 6⊆ X ′ for all X ′ ∈ {X0, . . . , Xj−1 }.
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The first statement holds, since X satisfies ϕ2 and UA
′
= {0, . . . , n−1} = dom(A).

The second statement holds, since every satisfying team X must contain one as-
signment that is not in X ′ for each team X ′ ∈ {X0, . . . , Xj−1 } to satisfy ϕ3. Both
taken together imply that if X is maximal for ϕ1, then it is maximal for ϕ0 as well.

Before we can provide the algorithm we have to deal with one technical detail.
Since our solutions are produced step by step we need to define the structures
A(X0, . . . , Xj−1) inductively:

A(∅) :=
(
{ 0, . . . , n− 1 }, RA0 , . . . , RAm−1, {0, . . . , n− 1}, ∅

)
A(X) :=

(
{ 0, . . . ,max(n− 1, j) }, RA0 , . . . , RAm−1, {0, . . . , n− 1}, S

)
, where

S := SA ∪
{

(j, a0, . . . , ak−1) | (a0, . . . , ak−1) ∈ rel(X)
}
.

Now we can write A(X0, . . . , Xj−1) as A(∅)(X0) . . . (Xj−1). To enumerate all max-
imal satisfying teams for ϕ0 and A, we run Algorithm 4 on input (A(∅), ∅).

Algorithm 4: E-maxsatteam
ϕ0
∈ Del+NP for ϕ0 ∈ FO(T )

Oracles: D-extendteam′ϕ1
and V-satteam

ϕ1

Function EMaximalTeams(structure A, team X)
1 if D-extendteam′ϕ1

(A, X) then
2 s← Xfull \X with D-extendteam′ϕ1

(A, X ∪ { s }) or

V-satteam
ϕ1

(A, X ∪ { s })
3 EMaximalTeams(A, X ∪ { s })
4 else if X 6= ∅ then
5 output X
6 EMaximalTeams(A(X), ∅)

Since after each output the oracle query is (polynomially) extended, it might
be exponential in size compared to the original input structure A at some point.
Therefore this algorithm shows Del+NP membership (rather than DelNP member-
ship). Moreover, the sizes of the universe and S might be exponential with respect
to the input.

By the design of formula ϕ1 and the structures A(X0, . . . Xj−1), the oracles lead
us only to new solutions and therefore no solution is output twice. After every
output X the algorithm starts at the bottom again with a smaller search space
since X is no longer considered. It follows that all solutions are obtained since the
search space still contains all solutions that have not been output before.

The precomputation, the time between two consecutive outputs and the post-
computation have all the same (polynomial) bound: Starting at the empty team
the algorithm adds one assignment at a time to the current team. In the worst
case this has to be repeated |dom(A)||free(ϕ)| times. To add one assignment the
algorithm has to check all assignments in the worst case, which again is bounded
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by |dom(A)||free(ϕ)|. The resulting delay is therefore bounded by (|dom(A)||free(ϕ)|)2

which is polynomial.
In order for this to work we have to deal with some technical details, which were

not addressed in the algorithm for readability. We choose a special encoding of
A′ = A(X0, . . . , Xj−1) to make sure that we are able to extend the oracle queries
in polynomial time. For this, we encode the relations RA0 , . . . , R

A
m−1, U

A′ , SA
′

as
lists of tuples and the universe as the set of values which occur as first entry in
SA

′
. To extend A′, we now only need to add tuples to the relation SA

′
. This

leads to the problem, that the universe has fewer than n elements before the first
n teams are output. We therefore add the elements (i, n, . . . , n) for all i < n to
SA

′
. This ensures that at least the elements { 0, . . . , n − 1 } are included in the

universe. Note that this does not have any influence on whether a team satisfies ϕ1

or not, since n 6∈ UA′ and therefore n is not a possible value for the free variables
x0, . . . , xk−1 in a satisfying team.

As in the proofs of Theorem 4.1 and 4.6, we use two oracles here which is not
consistent with the definition of a DelC/Del+C problem. This time we can not
simply reduce them to another oracle, since the oracles’ queries can be exponen-
tially long. Carrying out the reduction could therefore take exponential time. We
solve this problem by using the marked union of D-extendteam′ϕ1

and V-satteam
ϕ1

as
our oracle. This means that our oracle gets a structure A, a team X and a bit
b as input. If b is 0 then the question is “A |=X ϕ1 and X 6= ∅?” and if b is 1
the question is “∃X ′A |=X′ ϕ1 and X ⊆ X ′?”. Note that this problem is in NP
since V-satteam

ϕ1
and D-extendteam′ϕ1

are both in NP and NP is closed under marked
union.

Before an oracle query, the oracle tape now looks like this:

RA0 | · · · | RAm−1 | UA
′ | S0 | · · · | Sj−1 | X | 0/1,

where Si = { (i, a0, . . . , ak−1) | (i, a0, . . . , ak−1) ∈ SA
′ }, X is the current team

(which might be empty) and 0 or 1 which specifies the oracle query.

4.2 Enumeration of Optima in Inclusion Logic

For enumeration of optima in inclusion logic we can summarise our results in the
following way: Enumeration of maxima is easy (in DelP), whereas enumeration of
minima is hard (DelNP-complete). We will first show the easy cases in the next
theorem and will handle the minima cases in separate theorems afterwards.

For the maxima cases, E-maxsatteam
ϕ and E-cmaxsatteam

ϕ , the solution sets are ei-
ther empty or consist of one single team, the team Xmax. Since this team can
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be computed in polynomial time (see Proposition 2.42) we can conclude that
E-maxsatteam

ϕ ,E-cmaxsatteam
ϕ ∈ DelP.

Theorem 4.10 ([HMMV22]). E-maxsatteam
ϕ ,E-cmaxsatteam

ϕ ∈ DelP for ϕ ∈ FO(⊆).

Proof. Compute team X = S-maxsubteamϕ(A, Xfull) and output X, when X 6= ∅
or ⊥ otherwise.

Corollary 4.11. For any ϕ ∈ FO(⊆) the problems E-maxsatteam
ϕ and E-cmaxsatteam

ϕ

are DelP-complete.

Proof. By Theorem 4.10 E-maxsatteam
ϕ and E-cmaxsatteam

ϕ are in DelP for any for-
mula ϕ ∈ FO(⊆). As DelP membership implies DelP-hardness (see Remark 2.56),
we can conclude that E-maxsatteam

ϕ and E-cmaxsatteam
ϕ are DelP-complete.

Corollary 4.11 leads to additional characterisations of DelP as

DelP =
[
E-cmaxsatteam

ϕ

]≤DelP

=
[
E-maxsatteam

ϕ

]≤DelP

,

where ϕ ∈ FO(⊆).
In the next result, we show NP-hardness for the decision problem D-k-minsatteam

ϕ

for an inclusion logic formula ϕ.

Problem: D-k-minsatteam
ϕ

Input: A ∈ STRUC, k ∈ N
Question: {X ∈ TEAM(A, ϕ) | A |=X ϕ,X 6= ∅ and |X| ≤ k } 6= ∅?

By this and Theorem 2.54, we can conclude DelNP-hardness for E-cminsatteam
ϕ .

We reduce from the problem D-is¬full—a variation of the independent set decision
problem, where the full vertex set V is not allowed as a solution—to D-k-minsatteam

ϕ

with two intermediate steps.

Problem: D-is¬full

Input: G = (V,E) ∈ GRAPH, k ∈ N
Question: {V ′ ( V | ∀u, v ∈ V ′ : {u, v } 6∈ E, |V ′| ≥ k } 6= ∅?

Note that D-is¬full is NP-complete: We can reduce from the standard indepen-
dent set problem, where V ′ = V is allowed, by just adding one new vertex which
is connected to all old vertices. Finally recall the following two problems for our
reduction.

Problem: D-k-minsat¬∅DH

Input: χ ∈ DH, k ∈ N
Question: { β ∈ Θ(χ) | β |= χ, β 6= ∅ and |β| ≤ k } 6= ∅?
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Problem: D-k-minsatrel
ψ

Input: A ∈ STRUC, k ∈ N
Question: {R ∈ REL(A, ψ) | A, R |= ψ,R 6= ∅ and |R| ≤ k } 6= ∅?

Theorem 4.12 ([HMMV22]). There is a ϕ ∈ FO(⊆) such that D-k-minsatteam
ϕ is

NP-hard.

Proof. We reduce from the NP-complete problem D-is¬full, showing that there are
a myopic formula ψ ∈ Σ1

1 and a formula ϕ ∈ FO(⊆) such that

D-is¬full ≤P
m

(1)

D-k-minsat¬∅DH ≤P
m

(2)

D-k-minsatrel
ψ ≤P

m
(3)

D-k-minsatteam
ϕ .

For (1) an arbitrary (G = (V,E), k) is mapped to (χ =
∧
{ i,j }∈E xi ∨ xj, |V | − k).

Intuitively, assigning a variable xi to 0 in χ corresponds to picking the vertex i
in G for an independent set. The formula χ expresses that at most one of the
variables in any clause may be set to 0, corresponding to the condition that at
most one of the endpoints of an edge can be in an independent set. Obviously,
there is a one-to-one correspondence between independent sets V ′ of G of size at
least k and satisfying assignments of χ of weight at most k. Note that χ is a
DualHorn formula.

(2): As we have seen before in Theorem 3.11, there is a formula ψ such that for
all DualHorn formulas χ and all assignments β 6= ∅ it holds that

β |= χ ⇐⇒ Aχ, β |= ψ(β).

Note that compared to the counting case (see Theorem 3.11) where only the num-
ber of solutions to the DualHorn formula must be equal to the number of solutions
to the FO(⊆) formula, in this case the sizes of the solutions must be preserved.
Fortunately, the given translation does both, as the solutions for both χ andAχ are
exactly the same. Thereby the identity function is a suitable reduction function.

Finally, (3) follows from Proposition 2.32, since ψ can be easily transformed to
a myopic formula.

Note that the reduction from the previous proof also works if we use 2CNF+

formulas instead of DualHorn formulas, since the given formula χ =
∧
{ i,j }∈E xi∨xj

is a 2CNF+ formula.
The next result is very similar to the previous: We show NP-hardness for the

problem D-anothersolminsatteam
ϕ and conclude DelNP-hardness for E-minsatteam

ϕ af-
terwards. Note that we previously tried to show E-minsatteam

ϕ ∈ DelP [HMMV22]
by providing a suitable algorithm, which together with our result here implies
DelP = DelNP and hence P = NP. We stress that the provided algorithm does in
fact enumerate E-minsatteam

ϕ but with exponential delay and hence does not yield
E-minsatteam

ϕ ∈ DelP.

77



4 Enumeration Problems in Team Logics

Problem: D-anothersolminsatteam
ϕ

Input: A ∈ STRUC, M = {X1, . . . , Xk } ∈ 2TEAM(ϕ)

Question:

{
X ∈ TEAM(A, ϕ)

∣∣∣∣X 6∈M and X is
minimal for ϕ in A

}
6= ∅?

This time we reduce the NP-complete problem D-sat1
3CNF+ (see [Sch78]) to

D-anothersolminsatteam
ϕ with three intermediate steps.

Problem: D-sat1
3CNF+

Input: χ ∈ 3CNF+

Question:

{
β ∈ Θ(χ)

∣∣∣∣∣ In each clause Ci of χ there
is exactly one literal `i,j
that evaluates to 1 under β

}
6= ∅?

Let us recall the following problems for the reduction.

Problem: D-anothersolmaxsat¬full
HORN

Input: χ ∈ HORN, B = { β1, . . . , βk } ∈ 2Θ

Question: { β ∈ Θ(χ) | β 6∈ B and β is maximal for χ } 6= ∅?

Problem: D-anothersolminsat¬∅DH

Input: χ ∈ DH, B = { β1, . . . , βk } ∈ 2Θ

Question: { β ∈ Θ(χ) | β 6∈ B and β is minimal for χ } 6= ∅?

Problem: D-anothersolminsatrel
ψ

Input: A ∈ STRUC, M = {R1, . . . , Rk } ∈ 2REL(ψ)

Question:

{
R ∈ REL(A, ψ)

∣∣∣∣R 6∈M and R is
minimal for ψ in A

}
6= ∅?

Theorem 4.13. There is a formula ϕ ∈ FO(⊆) such that D-anothersolminsatteam
ϕ

is NP-hard.

Proof. We reduce the NP-complete Problem D-sat1
3CNF+ to D-anothersolminsatteam

ϕ

for a ϕ ∈ FO(⊆) with a few intermediate steps. The complete chain of reduction
looks as follows:

D-sat1
3CNF+ ≤P

m anothersolmaxsat¬full
HORN (1)

≤P
m anothersolminsat¬∅DH (2)

≤P
m D-anothersolminsatrel

ψ (3)

≤P
m D-anothersolminsatteam

ϕ (4)
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(1): Kavvadias et al. showed this reduction already for anothersolmaxsatHORN—
the version where the full assignment is allowed as a solution [KSS00]. Since the
formula they give in their reduction is never satisfied by the full assignment the
same reduction is also suitable for showing NP-hardness for anothersolmaxsat¬full

HORN.
(2): By Remark 2.1 we already know that for any Horn formula χ there is a
DualHorn formula χ̃ such that for all assignments β:

β |= χ ⇐⇒ vars(ϕ) \ β |= χ̃.

Moreover if β is maximal satisfying for χ, then vars(ϕ) \ β is minimal satisfying
for χ̃. All taken together we can conclude:

(χ, {β1, . . . , βk}) ∈ D-anothersolmaxsat¬full
HORN

⇐⇒ (χ′, {vars(ϕ) \ β1, . . . , vars(ϕ) \ βk}) ∈ D-anothersolminsat¬∅DH.

(3): By using the formula ψ(R) = ψ1 ∧ ψ2(R) from the proofs of Theorems 3.11
and 4.12 we get the following equivalence:

(χ, {β1, . . . , βk}) ∈ D-anothersolminsat¬∅DH

⇐⇒ (Aχ, {β1, . . . , βk}) ∈ D-anothersolminsatrel
ψ ,

for any DualHorn formula χ and sets of minimal assignments {β1, . . . , βk}.
(4): This follows from Proposition 2.32.

Corollary 4.14. There are formulas ϕ, ϕ′ ∈ FO(⊆) such that E-cminsatteam
ϕ ,

E-minsatteam
ϕ′ are DelNP-complete.

Proof. By Theorem 4.7 the problems E-cminsatteam
ϕ , E-minsatteam

ϕ′ are in DelNP for
any formulas ϕ, ϕ′ ∈ FO(⊆).

DelNP-hardness for E-cminsatteam
ϕ follows from Theorem 2.54 together with The-

orem 4.12, as D-k-minsatteam
ϕ can trivially be decided in polynomial time by a RAM

ME-cminsatteamϕ : Simply get a solution from the oracle, output “yes” if the cardinality
of the solution is at most k and “no” otherwise.

For E-minsatteam
ϕ′ DelNP-hardness follows from Theorems 2.54 and 4.13, since

D-anothersolminsatteam
ϕ can be decided in polynomial time by a RAM ME-minsatteam

ϕ′ :
Ask the oracle for |M | + 1 solutions, if any of the answers was ⊥ output “no”,
otherwise output “yes”.

By Corollary 4.14 we have yet additional characterisations of DelNP as

DelNP =
[
E-cminsatteam

ϕ

]≤DelP

=
[
E-minsatteam

ϕ′

]≤DelP

,

where ϕ, ϕ′ are the formulas from Corollary 4.14 or as

DelNP =
[ ⋃
ϕ∈FO(⊆)

E-cminsatteam
ϕ

]≤DelP

=
[ ⋃
ϕ∈FO(⊆)

E-minsatteam
ϕ

]≤DelP

.
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4.3 Summary

We have already seen a class diagram of the enumeration complexity classes we
considered in this paper at the beginning of this section. In Sections 4.2 and 4.1
we identified additional complete problems for the mentioned classes, the results
are summarised Table 4.1.

Table 4.1

FO(⊆) FO(⊥),FO(=(. . . ))

E-satteam
ϕ DelP-complete DelNP-complete

E-maxsatteam
ϕ DelP-complete in Del+NP,DelNP-hard

E-cmaxsatteam
ϕ DelP-complete DelNP-complete

E-minsatteam
ϕ DelNP-complete DelNP-complete

E-cminsatteam
ϕ DelNP-complete DelNP-complete

As we have seen, we can characterise the considered enumeration complexity
classes as the ≤DelP closure of any problem that is complete for the respective
class. Consequently we can characterise DelNP via inclusion logic, for example as[
E-cminsatteam

ϕ

]≤DelP

for a certain formula ϕ ∈ FO(⊆).
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Even though the expressive power of independence logic is higher than the one
of dependence logic, the descriptive decision complexity classes corresponding to
those logics coincide. This is due to the facts that over sentences these logics are
equal in terms of expressive power and that sentences suffice to describe decision
problems. In the counting and enumeration settings this is no longer true. Sen-
tences are not of much use in these settings, since here the solutions matter and
need to be described by a formula. However, since the enumeration and decision
setting are closely connected by definition, their classdiagrams look almost iden-
tical. On the other hand, in the counting setting we see a different picture. Here,
the descriptive complexity of the classes corresponding to independence and de-
pendence logic differ. Similarly, the classes #FOrel and #Σ1

1 are not equal even
though their decision counterparts are. With inclusion logic we can capture P,
but we have no corresponding result like #FO(⊆) = FP in the counting setting.
Moreover, we stress that this equality does most likely not hold since this would
imply C-sat¬∅DH ∈ FP which yields FP = FP#P (and thereby FP = #PH [TW92]),
as C-sat¬∅DH is #P-complete under Turing reductions.

We like to mention a few results that follow from our results or should be easy
to show. In Section 3.1 we showed #FO(⊥) = #·NP which, together with Theo-
rem 3.4, implies that also #Σ1

1 captures #·NP. We think that this result can be
generalized to #Σ1

k = #·ΣP
k , when providing a suitable definition of #Σ1

k. Further-
more, characterisations of decision classes with “classical logics” (Σ1

1,FOrel, LFP)
should be translatable to the enumeration setting. For this, one would have to
define corresponding enumeration classes first, which could be done analogously
to our definition of DelFO(T) (see Definition 2.58). In the enumeration setting
we focused on the delay classes, but there are other complexity measures. One of
these measures is incremental delay. Analogous to the DelΣP

k hierarchy, Creignou
et al. introduced an IncΣP

k hierarchy with corresponding incremental delay classes
[CKP+19]. We like to point out that all our DelP and DelNP completeness re-
sults imply IncP and IncNP-completeness, respectively. Moreover, the problem
E-maxsatteam

ϕ is also IncNP-complete, even though we were not able to show DelNP-
completeness.

As we have seen, we can define infinitely many different team logics with the help
of generalized team atoms. We mainly studied three specific ones of them, which
leaves the others open for further studies. Maybe some more general results can be
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found that hold for all generalized team atoms or all that are NP-verifiable. Other
individual atoms that might be of interest are the strong negation we mentioned
in Chapter 2.4 and Boolean disjunction. Furthermore, there are “strict” versions
of the existential quantifier and the disjunction (see for example [Gal12]) which
might lead to some interesting results.

In Section 3.4 we showed that C-satΣ1CNF− is #·NP-complete by adjusting a
reduction from Valiant that showed #P-completeness for C-sat2CNF+ . We think
that the technique from the proof can be used to identify further #·NP-complete
problems.

We studied the complexity of optimal solution problems in the enumeration set-
ting, but not in the counting or decision setting. In the decision setting these prob-
lems all coincide with general satisfiability but the counting versions of these prob-
lems might be of interest. Especially C-maxsatteam

ϕ , as the problem E-maxsatteam
ϕ

has some similarities with the problem E-CIRCUMSCRIPTION that was stud-
ied by Creignou et al. [CKP+19]. They showed that E-CIRCUMSCRIPTION is
DelNP-hard and included in Del+NP (like E-maxsatteam

ϕ ) and has some other in-
teresting properties [CKP+19]. The corresponding “natural torchlight oracle” is
ΣP

2 -complete (we suspect the same to be true for E-maxsatteam
ϕ ) and the counting

version C-CIRCUMSCRIPTION is #·coNP-complete. We therefore think it might
be interesting to study the corresponding counting and torchlight problems.

Our definition of DelFO(T) has the benefit that is comes with ≤DelP closure but
we think it could be enhanced. First of all, ≤DelP reductions are a very strong
reducibility notion, a weaker reduction like ≤P

m should suffice to define the same
class. No matter which reducibility notion we choose, the “closure type” definition
has the drawback that it introduces new resource bounds, which does not seem
very fitting for descriptive complexity classes. Therefore we are very intrigued
whether there is a definition of DelFO(T) that disposes of the closure entirely.
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