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Digital learning technologies have grown increasingly important in physics education, partly enforced
through the COVID-19 pandemic. During the pandemic, digital technologies allowed for continued
teaching and learning of students even when schools were closed. While research in psychology and
educational technology has yielded many insights into the effectiveness of e-learning courses, fewer studies
have examined the design of e-learning courses. Few studies have empirically investigated the design of
learning tasks as a central element of e-learning courses. The present study analyzes how the design of tasks
in e-learning courses, specifically with respect to their degree of openness as well as the relevance of their
contexts, influences students’ behavioral engagement, learning outcomes, and situational interest. Due to
the importance of e-learning courses during the COVID-19 pandemic, we also analyzed the extent to which
specific learning settings (classroom learning, distance learning) influence the effects of e-learning course
design on students’ behavioral engagement, learning outcomes, and situational interest. To investigate
the research questions, we analyzed a total of N ¼ 1060 datasets for 12 different e-learning courses
(3 to 5 lessons, middle school physics), of which n ¼ 557 were completed before and n ¼ 503 during the
COVID-19 pandemic. The results suggest that e-learning courses with a high proportion of learning tasks
that relate to meaningful real-world contexts appear to be more conducive to behavioral engagement,
learning outcomes, and situational interest. Regarding the consideration of open-ended tasks, the results
suggest that these appear to be more useful for classroom learning but should be used in a limited way when
designing e-learning courses for distance education.
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I. INTRODUCTION

The COVID-19 pandemic has highlighted the need for a
better understanding of the role that digital technologies
can play in modern education. Physics education research
has provided insights into the use of specific digital
technologies, such as digital measurement acquisition or
interactive simulations, in specific teaching-learning con-
texts. However, there is little insight on how to design
e-learning courses, typically in the form of, for example,
moodle courses being accessed online or offline. E-learning
courses seem particularly interesting because they can be

used for classroom learning as well as distance learning.
The design of e-learning courses requires specific decisions
on the technological side regarding how the educational
features are presented and how they appear. From this
technological perspective, there are already numerous
findings from research and practice regarding the suitability
of specific platforms but also regarding more general
design elements of e-learning courses, such as features
of course structuring, consideration of self-assessments,
and clarity of instructions [1–3]. With reference to the
technological design perspective, insights from the cogni-
tive theory of multimedia learning (CTML) [4], which
deals with the arrangement and design of different repre-
sentations, are particularly worth mentioning.
Significantly fewer insights exist on the educational

design and specifically on the design of learning tasks
within e-learning courses. Up to now, very little research
has empirically investigated the influence of the design of
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learning tasks on learning and learning motivation in
e-learning courses. This seems particularly important for
physics education where digital learning technologies
already possess great importance. The aim of the current
study hence was to empirically investigate the design
of e-learning courses with respect to learning tasks, which
are important elements of these courses. One particular
strength of e-learning courses is that they can be used in
both classroom learning as well as distance learning
settings. Due to the popularity of e-learning courses during
the COVID-19 pandemic, we also considered the extent to
which the learning setting (classroom learning and distance
learning) influences the effects of the design of e-learning
courses on learning processes.

A. Digital technologies in physics education

Digital technologies have played a significant role in
physics education for decades. Personal computers with
various software have been an important tool since 1970s
[5], for example, for experimental data acquisition [6] or to
simulate and model physical processes [7]. Nowadays,
mobile digital technologies, such as smartphones or tablet
computers, have become core technologies due to their
high availability as well as their versatile applications [8];
for example, for data acquisition (e.g., digital measurement
systems) or the (computational) modeling activities (e.g.,
simulations). In the not-too-distant future, augmented as
well as virtual reality will further extend the range of
technologies used in physics education [9].
The importance of digital technologies for the individu-

alization of learning processes and training of specific
competencies in physics has been shown by empirical
studies in physics education and science education, which
have focused on the analysis of individual technologies and
their effectiveness compared to traditional teaching elements
[10–14]. Now, however, it no longer seems appropriate to
consider individual digital technologies in an isolated
manner. Increasingly, e-learning courses are becoming more
and more relevant for providing “a learning space integrating
different technologies and associated curricular and peda-
gogical practices that frame the context of learners and the
learning environment” [15] (pp. 1520–1521).
In this respect, e-learning courses, for example, provide

information through various media, integrate assessment
tools, and support communication between students
and teachers. They can be offered online through different
learning platforms, such as the Khan Academy or
Coursera, but they can also be offered offline via school
servers. E-learning courses are realized through digital
learning management systems and appear fruitful for
innovating teaching-learning processes: Digital technolo-
gies of appropriate design can contribute to lifelong
learning, due to “dissolving of the boundaries between
formal, informal, and non-formal learning” [16] (p. 31).
Furthermore, appropriate technologies also appear to be a

key to providing access to science learning content for
specific communities against the background of race,
ethnicity, gender, or language [17–19] if learners have
access to appropriate (mobile) digital devices. E-learning
courses also offer the advantage that they can be used for
both classroom learning and distance learning. In terms of
classroom learning, they appear to be a promising tech-
nology for supporting, for example, individualized learning
or individual feedback, with teachers acting as learning
guides and facilitators to support students. When used in
distance learning, e-learning courses can also be used to
combine learning materials from a series of lessons and
integrate learning activities and assessments, for example.

B. Digital learning during the COVID-19 pandemic

During the COVID-19 pandemic, an acceleration of
developments toward digital technologies occurred [20].
In most countries around the world [21–22], including the
United States [23], online learning environments and
e-learning courses took on a special role. Thus, it became
apparent that instruction was essentially no longer con-
ducted as classroom learning but as distance learning. Only
through e-learning courses could school learning continue
during the COVID-19 pandemic. Despite teachers express-
ing significant challenges in transforming instructional
processes [24], studies found that e-learning courses in
distance learning could certainly teach similar competen-
cies compared to classroom learning [23]. This even
applied to experimental lab courses in physics, whose
transformation into a digital format is a particular challenge
for learners and teachers [25–26].
Nevertheless, teachers perceived themselves as insuffi-

ciently supported and prepared to use digital learning
technologies during the COVID-19 pandemic [27]. The
teachers’ impression can be attributed, among other things,
to a lack of guidance on the design of e-learning courses.
Teachers have little influence on the design of e-learning
courses in terms of technological implementation, as the
prerequisites are generally predefined for each school.
Surface features for the design of multimedia also appear
to be less significant for teachers. However, it is important
to support teachers in making the best possible decisions
about the educational design of the courses, for example,
about how learning tasks can be best designed as part of
e-learning courses.

C. Design of e-learning courses

There are several lines of research that aim to identify
features of how to effectively use e-learning courses for
supporting students’ learning and learning motivation.
These include findings from cognitive psychology related
to learning as well as research on educational technologies
and ideas of educational sciences.
Many findings from learning psychology can be used to

design e-learning courses since these can be traced back to
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multiple representations as “fundamental building blocks.”
Therefore, the design of e-learning courses is supported,
among other theories, by the cognitive theory of multime-
dia learning (CTML) [4]. CTML describes cognitive
learning processes based on multiple representations
(e.g., texts and pictures) and modalities (e.g., seeing and
hearing) and provides more than ten design principles (e.g.,
multimedia principle and multimodality principle) that
describe how to design multimedia learning content con-
ducive to learning and that have already been tested many
times in the form of meta-analyses [28–32]. Thus, accord-
ing to the spatial contiguity principle, as one example of
the multimedia design principles, it seems advantageous
for learning to present textual and pictorial elements that
belong together in as close spatial proximity as possible
[27,33–35]. Considering the multimodality principle as
another example, learning is supported by addressing differ-
ent sensory channels simultaneously; therefore, an illustra-
tion should be complemented by spoken, not written text
[25,36–39]. Similarly, research on the influence of digital
media on affective characteristics shows, for example, how
the shape and color of the design affect learners’ emotions,
such as their situational interest, and, thus, indirectly
influence cognitive processes [40–41]. Conclusions from
findings in CTML can also be found for the field of
e-learning and, thus, for the design of e-learning courses
[42–43]. The literature review by Oh et al. (2020) empha-
sizes that design principles for organization and presentation
are analyzed in previous studies but notes on pedagogical
design need to be more fully developed [43].
Much research on e-learning courses has focused on

online learning courses or, more specifically, massive
open online courses (MOOCs). Successful MOOCs are
characterized by certain features, for example, course
structuring, consideration of self-assessments, or form of
instructions [1–3]. With respect to tasks and content, two
findings seem to be of particular interest: First, the
perceived task value of a learning task [44] is important
to positively influence learners’ behavioral engagement and
their situational interest in MOOCs. Behavioral engage-
ment, in this sense, “can be observed when students […]
attend to an academic task” [45]. To increase both learners’
behavioral engagement and their perceived relevance of a
task, it seems possible to include relevant and meaningful
contexts [46–49], according to studies within physics
education research. Second, the type of learning task not
only influences learners’ behavioral engagement but also
influences the quality of what students learn from it [50].
This seems important because it means the learning tasks
have a key function in the general teaching-learning
process: “They [learning tasks] may be characterized as
an interface between the learners and the information
offered in the learning environment. They serve to activate
and control learning processes to facilitate successful
learning.” [51] (p. 1976).

Regarding the first point, to increase the perceived task
value, the design of e-learning courses could integrate
meaningful (relevant) contexts for learning and pay atten-
tion to the nature (form) of the learning tasks. Notably,
based on the results of research in science education, the
perceived contextual relevance of a learning task seems
crucial for cognitive and affective outcomes, as it is
assigned a high activation potential [46–49]. Meaningful
context can support students’ behavioral engagement and
raise their situational interest [52–53]. Although there is
already ample evidence that context-based learning is
conducive to learning, Sevian et al. (2018), in a special
issue on context-based learning, point out as a perspective
for future research, “We need more studies that compare
how students learn in different context-based learning
classrooms” [48] (p. 1105). Against the background of
the previous considerations, e-learning courses seem to
represent such a special setting for the application of
context-based learning for which there is still little empiri-
cal evidence. This is especially true when comparing the
application of e-learning courses in different learning
settings (classroom learning and distance learning).
With regard to the typification of learning tasks, it can

be considered, among other approaches to classification,
whether they are open-ended learning tasks or, in contrast,
closed-ended learning tasks. Open-ended tasks, e.g.,
free-text questions, require more effort from learners to
answer the task but are considered effective for in-depth
learning [54]. Closed-ended tasks, e.g., multiple-choice
tasks, true or false questions, or matching tasks, can be
answered in a low-threshold manner and, thus, initially
activate learners but are often not assigned a deeper
activation of thought processes [55]. In addition to these
two types of learning tasks, there are also tasks called semi-
open-ended tasks, where parts of the solution path are
predefined, while other parts of the problem-solving
process are up to the learners, such as semistructured
worksheets [56]. As a summarizing characteristic of tasks,
the term “degree of openness” [57] (p. 1163) can be found
in the literature for the spectrum of tasks mentioned from
closed-ended to semi-open-ended to open-ended learning
tasks. As studies show, the “degree of openness” is a
relevant characteristic for success in teaching-learning
processes [58,59] as well as for the processing quality of
online surveys [60]. Based on the previous findings, it can
be hypothesized that open tasks may positively influence
learning effectiveness [57], but the probability that tasks are
processed at all decreases with the degree of openness [60].
Since learning tasks play a central role in controlling
learning processes, especially in e-learning courses, it
seems necessary to test this hypothesis empirically.
In addition, previous studies have not considered the

learning settings of e-learning courses. It seems feasible
that the use of e-learning courses in the classroom, in the
presence of the teacher, places different requirements on the
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design of the courses than when e-learning courses are
used in a distance learning setting. This assumption is
supported by the fact that studies already point to the
influence of self-directed learning skills and self-regulated
learning on the processing of e-learning courses [61].
Thus, a research deficit seems to exist with regard to the
question of how the design of learning tasks in e-learning
courses with regard to relevant contexts and the openness
of tasks influences the processing of e-learning courses in
different learning settings.

D. Research questions

Research has repeatedly shown the potential of
e-learning courses. In particular, if e-learning courses are
designed to include meaningful tasks and contexts, they
support students’ behavioral engagement, situational inter-
est, and learning. This seems particularly relevant for
physics, where numerous studies point to the importance
of meaningful contexts and, thus, the contextual relevance
of learning tasks. However, so far, there is a lack of
knowledge on how specific design features of learning
tasks (degree of openness and contextual relevance) influ-
ence students’ behavioral engagement, situational interest,
and learning. Furthermore, no studies exist that include the
learning setting of e-learning courses; for example, we do
not yet know the extent to which classroom learning
requires a different design of learning tasks compared to
distance learning. Therefore, this study addressed two
research questions:

RQ1: How do the degree of openness and the contextual
relevance of learning tasks influence students’ behav-
ioral engagement, learning outcomes, and situational
interest in e-learning courses?

RQ2: To what extent does the effect of openness and
contextual relevance of learning tasks on students’
behavioral engagement, learning outcomes, and situa-
tional interest in e-learning courses differ for class-
room learning and distance learning?

II. METHODS

The study presented here draws on data from a larger
project that was conducted with students in grades 7 to 11
in 3- to 5-h teaching units from January 2020 until
June 2021. Within this project, 12 e-learning courses were
developed, which were analyzed with regard to their use
in digitally supported classroom teaching. All units were
administered as Moodle courses. The courses included
learning content (videos, texts, illustrations related to
phenomena, experiments, or models, etc.) as well as
activities and learning tasks (free-text responses, multiple
choice, experimental tasks, etc.).
The courses took place in the classroom in the presence

of the teacher, who guided students through the activities,
facilitating discussions, and responding to questions.

In addition, parts of the activities were done in the form
of homework. In about the middle of the study, due to the
COVID-19 pandemic, it was no longer possible to use the
e-learning courses for classroom learning; they instead
had to be used for distance learning. Therefore, minor
adjustments were made to the courses to allow students to
participate in e-learning courses in distance learning.
However, the adjustments did not affect the structure
and learning content of the courses. In addition, the teacher
continued to guide students through the activities (online),
being available (online) to facilitate discussion and clarify
questions, analogous to regular classroom learning. As with
regular classroom learning, parts of the material were

FIG. 1. Two sample activities typical for the e-learning courses.
Left: Experimental task—The experimental task is to set up an
electric circuit with a battery, cables, and a wire and to determine
the temperature of the wire at given time intervals. Based on this,
the devaluation of energy during the conversion of electrical
energy into thermal energy is discussed. Right: Cloze or gap-fill
task—The cloze or gap-fill task deals with the conversion and
devaluation of energy in a laptop. Learners have to identify the
forms of energy involved in the conversion and describe the
processes taking place in the laptop.
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processed synchronously in the (online) presence of the
teacher, while other parts were completed asynchronously,
analogous to homework.
The 12 e-learning courses (units) used in this study

aimed to support the development of an increasingly
connected knowledge base on the scientific core idea
of “energy” as the foundation of competence, and these
courses were developed within the framework of another
project (see Fig. 1 for an example). The 12 units linked
content from different areas of middle school physics
and were designed such that they seamlessly integrated
with the existing curriculum [62] and related to a mean-
ingful driving question. Table I presents the driving ques-
tions, while Fig. 2 illustrates the grade levels and content
(energy forms) to which the respective driving questions
are assigned.
For example, the unit “Why does a laptop sometimes

get hot?” linked the area of electricity with the area of
thermodynamics and was designed to align with the grade 7
curriculum in German high schools. Such units were also
referred to as curriculum replacement units [63]. To ensure
the comparability of the content of the units, all e-learning
courses followed a uniform structure. According to this
structure, each e-learning course could be divided into five
sections (one section each for introduction and reflection as
entry and conclusion, and three sections for the elaboration
of the driving question). An overview of the structure of the
courses with the indication of exemplary questions can be
found in Fig. 3.
To ensure that the contexts of the e-learning courses and

driving questions are in fact perceived as meaningful by the
learners, a preliminary study with N ¼ 285 learners was

carried out in which it was investigated for a total of 30
driving questions on different contexts and how these are
assessed by learners with regard to (a) interestingness and
(b) importance. Considering the results of this preliminary
study, 12 driving questions that were selected by learners
as being significantly meaningful and having the widest
possible range of subject content to ensure applicability to
different teachers and age levels were selected.
The e-learning courses then each contained different

types of learning tasks, with the number of learning tasks
varying between 21 and 39 learning tasks per e-learning
course, on average 27.6� 5.1 learning tasks per e-learning
course.

A. Research design

Since the COVID-19 pandemic started during data
collection and teachers had to move their instruction from
classroom learning to distance learning, a situation resulted
in which about half of the courses examined were still held
in a classroom learning setting and the other half in a
distance learning setting. That is, the data structure corre-
sponds with a quasiexperimental group comparison design
to investigate the influence of the design of learning tasks
in e-learning courses on learning as well as on learning
motivation (RQ1), also considering the specific constraints
of classroom learning and distance learning according to
the form of instruction (RQ2). For the analyses, the average
degree of openness and the average contextual relevance
of each e-learning course were considered independent
variables, and students’ behavioral engagement, situational
interest, and learning outcomes as dependent variables.
While for RQ1 all data were considered regardless of the

FIG. 2. Overview of the subject content of the e-learning courses
by specifying the forms of energy considered, supplemented by the
context of the driving questions (see also Table I). Each gray arrow
in the figure corresponds to one e-learning course.

TABLE I. Overview of the driving questions of the e-learning
courses.

Course Driving question

1 Why are there seasons on earth?
2 What color should you choose for your clothes in

summer to avoid sweating?
3 How much energy is in a “stick bomb”?
4 Why does a laptop sometimes get hot?
5 How should solar cells be attached to a house to convert

as much energy as possible?
6 How long would you have to ride a bicycle to charge a

smartphone?
7 Why does a roller coaster go at breakneck speed even

without its own drive?
8 How does a skateboard constantly reach the same height

in a half pipe?
9 How can you charge a smartphone without a power

outlet or power bank?
10 How does a microphone work?
11 How high can you jump on a trampoline?
12 Why do you burn your skin when you slide across the

gym floor?
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learning setting (classroom learning and distance learning),
the analyses for RQ2 were performed separately by
learning setting.
When analyzing the research questions, we were aware

that, in addition to the characteristics of the learning tasks,
numerous other factors influence students’ behavioral
engagement, learning outcomes, and situational interest
in e-learning courses. These include each learner’s indi-
vidual preconditions (e.g., individual interest and prior
knowledge) as well as characteristics of the e-learning
courses (e.g., complexity and choice of context) and
features of implementation (e.g., class atmosphere and
environmental variables) so that we expected to find strong
variances in the variables mentioned. However, in order to
conduct a study with authentic data during the COVID-19
pandemic, we accepted the limitations of the effects given
by the expected variances.

1. Design features of e-learning courses—Learning tasks

Of particular importance for investigating both research
questions was classifying the e-learning courses in terms of
the degree of openness and the contextual relevance of their
learning tasks. For this purpose, each e-learning course was
first divided into its learning tasks.
To describe the degree of openness of an e-learning

course, each learning task was first assigned a value
according to the following assignment: 1 = open-ended
task (open-ended questions), 0.5 = semi-open-ended
task (experimental measurement tasks with semi-
structured digital worksheets), and 0 = closed-ended task

(multiple-choice tasks, true or false questions, matching
tasks, cloze or gap-fill tasks). It should be considered that
in the analyzed learning courses, only the mentioned task
types can be found. In this way, a relative value for the
degree of openness of an e-learning course could be
determined as the sum of the values over each learning
task of the respective course divided by the total number
of learning tasks of an e-learning course. The degree of
openness varied between 45.2% (minimum) and 87.1%
(maximum) open-ended learning tasks per e-learning
course, on average 64.4� 9.9% open-ended learning tasks
per e-learning course. For validation purposes, two inde-
pendent raters evaluated a subsample of about 15% of the
learning tasks regarding the “degree of openness.” Due to
the (almost) unambiguous assignment of the learning tasks
to the three expressions of the “degree of openness,” almost
perfect interrater reliability of Cohen’s κ ¼ 0.91 between
two independent raters resulted [64].
To describe the contextual relevance of an e-learning

course via the respective learning tasks, a similar approach
was taken. First, for each learning task, we determined
whether it referenced the overarching meaningful context
of the e-learning course. A value was assigned: 1 =
contextual reference (e.g., “Describe the energy trans-
formations of a skateboard in a half pipe.” or “Why does
a laptop heat up during intensive use?”), 0 = no contextual
reference (e.g., “Describe the energy transformations
of a pendulum.” or “Why does a resistor of an electrical
circuit heat up (depending on the electrical voltage and
current)?”). Here, the relative contextual relevance of the
e-learning course could be determined as the sum of the
values over each learning task of the respective course
divided by the total number of learning tasks of an
e-learning course. The contextual relevance varied between
0% (minimum) and 80% (maximum) context-related learn-
ing tasks per e-learning course, on average 26.2� 18.5%
context-related learning tasks per e-learning course. For
validation purposes, two independent raters evaluated a
subsample of about 15% of the learning tasks regarding the
“contextual relevant.” An almost perfect interrater reliabil-
ity of Cohen’s κ ¼ 0.86 between two independent raters
resulted [64].

2. Behavioral engagement, learning outcomes,
and situational interest

The research questions consider three variables relevant
to students’ learning: behavioral engagement, learning
outcomes, and situational interest.
To determine students’ behavioral engagement, all

learning tasks of every learner were assessed individually
based on the work products available in Moodle after
the processing by the learners was finished according to the
definition that behavioral engagement “can be observed
when students […] attend to an academic task” [45].
Therefore, a specific value was assigned according to the

FIG. 3. Presentation of the structuring of introduction, elabo-
ration, and reflection, which is uniform for all 12 courses, with an
indication of exemplary questions.
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degree of engagement: 0 = “task ignored,” 1 = “task opened
but not completed,” 2 = “task completed.” In addition, a
mean value of behavioral engagement was determined for
each learner and the entire e-learning course but also for
each of the five sections of the e-learning course, providing
longitudinal data of task processing.
To analyze students’ learning outcomes, we used the

input that students entered into Moodle in response to each
learning task. The learning tasks were divided into (type 1)
scientific explanation and (type 2) scientific inquiry.
Scientific explanation refers to students’ ability of using
scientific concepts to explain phenomena while scientific
inquiry refers to the meaningful use of scientific practices
for scientific inquiry [65]. Different models exist describing
students’ competence in scientific explanations and scien-
tific inquiry [66]. These models delineate different levels of
students’ competence based on the notion of hierarchical
complexity [67,68]. Based on this approach, both types of
tasks were scored on a five-level scale adapted from a
coding book taken from existing frameworks [69,70]. For
the scientific explanation tasks (type 1), each task was
scored on a five-level scale (0 = “No text,” 1 = “Off-task,”
2 = “Non-normative ideas,” 3 = “Normative ideas,”
4 = “Connections between normative ideas”). For example,
to explain the heating up of a laptop, students use elements
of a laptop to explain the heating up (level 2), single and
unconnected normative ideas like electric energy (level 3),
or connected normative ideas like energy transformation
from electric into thermal energy (level 4). For the scientific
practice tasks (type 2), tasks were scored on a five-level
scale (0 = “No text,” 1 = “Off-task,” 2 = “Non-scientific
practice,” 3 = “Non-systematic approach,” 4 = “Systematic
approach”). For example, to compare pictures including
solar cells, students mention single elements like “each
picture shows solar cells” (level 2), state unrelated facts like
“some solar cells are blue, most solar cells are on rooftops”
(level 3), or connect these facts systematically like “Most
solar cells are on rooftops, but each solar cell is positioned
in different directions” (level 4). Both task types were
assessed by three experts in physics education in which
we found a moderate agreement (Fleiss’ κ ¼ 0.49) [64]. By
analyzing the conflicting scored tasks, the experts could
resolve them.
Students’ situational interest [71–72] was assessed

before and after as well as 4 times throughout each
e-learning course using adapted versions of established
instruments on five 5-level Likert scale items (emotion-
related valence beliefs [73] and value-related valence
beliefs [74]). Thereby, for emotion-related valence beliefs,
a high value of situational interest results in a positive
evaluation of the joy of the content (“I am looking forward
to the content.”) as well as a negative evaluation of
frustration by the content (“I am dissatisfied while working
on the content.”). Regarding value-related valence beliefs, a
high value of situational interest emerges with a positive

evaluation of intrinsic value (“I think the content will be
important to me.”), usefulness-private (“The content will
be useful in my daily life.”), and usefulness-academic
(“Working on the unit tasks will be worthwhile because
it is expected in school.”). Again, means for entire
e-learning courses as well as longitudinal data for each
section of the e-learning course are available. When
considering the overall reported situational interest across
all learners and courses, a value of M ¼ 3.45 (SD ¼ 0.66)
indicates that the courses and contexts are perceived as
more likely to be meaningful, supporting the appropriate-
ness of the course selection based on the preliminary study
(see Sec. II).

B. Sample

The overall sample included ND ¼ 1060 datasets, each
corresponding to the completion of one e-learning course
by one student. NC ¼ 46 e-learning courses were com-
pleted by the participating classes. The assignment of the
students to the experimental conditions (group 1: classroom
learning and group 2: distance learning) was not random
but resulted from the time of implementation (before or
during the COVID-19 pandemic). Further information on
the sample can be found in Table II.

C. Analytical approach

The research questions based on the available data
were answered by means of linear mixed-effect models.
We examined the extent to which two independent
variables (IV: CRE and OPE) each influence one of
three dependent variables (DV: BE, LO, and SI) with
the purpose to identify possible influences of the design
characteristics on the learning-related variables and to be
able to assess the strength of the effects. Since the present
data were from learners clustered into classes, the stu-
dent’s class was considered as a subject factor in the

TABLE II. Sample description of the study and description of
the study groups.

Total
Classroom
learning

Distance
learning

Datasets 1,060 557 503
Grade 7 419 216 203
Grade 8 132 0 132
Grade 9 406 297 109
Grade 10 92 33 59
Grade 11 11 11 0

Completed courses 46 23 23
Grade 7 17 8 9
Grade 8 5 0 5
Grade 9 19 13 6
Grade 10 4 1 3
Grade 11 1 1 0
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models to account for the nested data structure [75,76].
Both the intraclass correlation coefficient (ICC) [77] and
the design effect (DEFF) [78], representing the degree of
variance inflation due to cluster sampling, indicate the
multilevel structure must be taken into account (see
Table III). Overall, the following models (random inter-
cepts and no random slopes) were determined for the two
research questions:

RQ1: DV ∼ IVþ ð1jCLASSÞ.
RQ2:DV∼IVþSETTINGþIV×SETTINGþð1jCLASSÞ.

III. RESULTS

Our study aimed to investigate the role of design features
of learning tasks, namely degree of openness (OPE)
and contextual relevance (CRE) on students’ behavioral
engagement (BE), learning outcomes (LO), and situational
interest (SI) in e-learning courses. Furthermore, the effects
of the design of learning tasks on students’ processing
of e-learning courses were analyzed regarding the learning
setting—classroom learning versus distance learning. Data
were analyzed with IBM SPSS Statistics (Version 29).
Effect sizes are given according to Ref. [79]. The

following interpretive ranges for effect size apply to all
results. Partial η2∶ η2 ≥ .01 small effect, η2 ≥ .06 moderate
effect, and η2 ≥ .14 large effect.

A. Effects of design of learning tasks in e-learning
courses on students’ behavioral engagement, learning

outcomes, and situational interest (RQ1)

In order to answer the research question (RQ1), separate
linear mixed-effect models (restricted maximum likelihood
estimation) were calculated for each dependent variable [DV:
behavioral engagement (BE), learning outcomes (LO), situa-
tional interest (SI)] and each independent variable [IV: degree
of openness (OPE), contextual relevance (CRE)] as well as
students’ class as a subject factor according to the following
models: DV ∼ IVþ ð1jCLASSÞ. All data were considered,
regardless of the learning setting. Themodel estimates for the
linear mixed-effect models are reported in Table IV (as a
measure of effect size, partial η2 was calculated [80].
The results show that all three dependent variables

are influenced by the degree of openness of the learning
tasks, as all standardized coefficients become statistically

insignificant. This can be observed differently for the
influence of contextual relevance. Here, a moderate pos-
itive effect on the behavioral engagement of the learners
(p ¼ 0.008 and partial η2 ¼ 0.11) and also on the learning
outcomes (p ¼ 0.011 and partial η2 ¼ 0.11) can be deter-
mined. The situational interest of the learners is even
positively influenced by the contextual relevance with a
large effect size (p ¼ 0.001 and partial η2 ¼ 0.21).

B. Effects of design of learning tasks in e-learning
courses on students’ behavioral engagement,
learning outcomes, and situational interest
in comparison between classroom learning

and distance learning (RQ2)

At first, due to the analysis of differential effects of the
learning session (classroom learning and distance learning),
it seems necessary to analyze whether both groups are
comparable regarding the dependent variables (BE, LO,
and SI) and the independent variables as design character-
istics (OPE and CRE). Performing t tests for independent
samples showed that conducted courses differed signifi-
cantly with respect to the dependent variable only with
respect to SI [CL: M ¼ 3.37, SD ¼ 0.68; DL: M ¼ 3.55,
SD ¼ 0.62; tð964Þ ¼ −4.21, p < 0.001, Pearson’s
r ¼ 0.13]. Therefore, students showed significantly higher
situational interest in distance learning compared to class-
room learning. With respect to the independent variables, a
significant difference was found for CRE [CL: M ¼ 0.22,
SD ¼ 0.11; DL:M¼0.31, SD¼0.23; tð692.25Þ ¼ −7.92,
p < 0.001, Pearson’s r ¼ 0.29] indicating that courses
taught during distance learning had a stronger contextual
relevance. However, respective differences showed only
small effect sizes, and both learning settings appear
comparable, although this aspect will be considered in
the final discussion.
Finally, to answer this research question (RQ2), separate

linear mixed-effect models (restricted maximum likelihood
estimation) were calculated for each dependent variable
[DV: behavioral engagement (BE), learning outcomes
(LO), and situational interest (SI)] and each independent

TABLE III. Intraclass correlation coefficients (ICC) and design
effects (DEFF) for linear mixed-effect models with respect to
behavioral engagement, learning outcome, and situational inter-
est as dependent variables.

Dependent variable ICC DEFF

Behavioral engagement (BE) 0.222 5.891
Learning outcome (LO) 0.173 4.808
Situational interest (SI) 0.072 2.585

TABLE IV. Estimates obtained from linear mixed-effect mod-
els regarding the influence of design features (OPE: degree of
openness, CRE: contextual relevance) on learning (BE: behav-
ioral engagement, LO: learning outcomes, SI: situational interest)
considering students’ class as subject factor.

Model Effect β SEβ t df p Partial η2

BE OPE −0.01 0.07 −0.20 53.60 0.846 0.00
CRE 0.20 0.07 2.74 62.28 0.008 0.11

LO OPE −0.04 0.07 −0.64 51.59 0.528 0.01
CRE 0.17 0.07 2.63 55.58 0.011 0.11

SI OPE −0.06 0.05 1.24 50.51 0.221 0.03
CRE 0.16 0.05 3.40 44.25 0.001 0.21
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variable [IV: degree of openness (OPE) and contextual
relevant (CRE)] as well as students’ class as subject
factor. However, due to the research question, the setting
as well as the moderation effects of the setting on the
respective independent variable were considered. This
resulted in the following models: DV ∼ IVþ SETTINGþ
IV × SETTINGþ ð1jCLASSÞ.
The model estimates for the linear mixed-effect models

are reported in Table V for the degree of openness
and Table VI for contextual relevance as independent
variables. As a measure of effect size, partial η2 was
calculated [80].
Regarding the degree of openness as a design feature, the

analysis yields one statistically significant effect. This large
effect is found on SI in distance learning (β ¼ −0.17,
p < 0.022, and partial η2 ¼ 0.20), suggesting that for
e-learning units with a larger share of open learning tasks,
students’ situational interest ends up being lower. If we
accept effects with type I error rates of less than 10%
(α < 0.10), there would be a difference in how the open-
ness affects students’ situational interest across the two
learning settings with moderate effect size (p ¼ 0.056 and
partial η2 ¼ 0.08).

Regarding contextual relevance also only one sta-
tistically significant effect can be found; again, a large
effect on SI in distance learning (β ¼ 0.13, p < 0.026, and
partial η2 ¼ 0.24) so that for learning units with a larger
share of context-related learning tasks, a higher situational
interest in the learners’ results is found. Also, for contextual
relevance, we find two other effects if considering type I
error rates up to 10%. These two effects relate to LO.
The analyses reveal a large effect on classroom learning
(β ¼ 0.32, p ¼ 0.072, and partial η2 ¼ 0.14), where better
learning outcomes are thus observed for learning units with
more contextual tasks. The corresponding comparison of
both learning settings reveals a moderate effect (p ≤ 0.051
and partial η2 ¼ 0.05) in the difference of the effect of
contextual relevance depending on the learning setting.

IV. LIMITATIONS

The present data provide insight into how the design of
learning tasks for e-learning courses in authentic learning
settings before and during the COVID-19 pandemic
affected student learning. However, the following limita-
tions must be considered when interpreting the data.

TABLE V. Estimates obtained from linear mixed-effect models regarding degree of openness (OPE) on learning
(BE: behavioral engagement, LO: learning outcomes, SI: situational interest) in varying learning setting (CL:
classroom learning, DL: distance learning) considering students’ class as subject factor.

Model Setting Effect β SEβ t d:o:f: p Partial η2

BE CL OPE 0.14 0.11 1.21 20.58 0.240 0.07
DL OPE 0.02 0.10 0.17 21.15 0.868 0.00

OPE × SET � � � � � � −0.92 36.85 0.362 0.02

LO CL OPE 0.03 0.11 0.31 20.52 0.759 0.00
DL OPE −0.01 0.09 −0.05 20.62 0.957 0.00

OPE × SET � � � � � � −0.46 37.78 0.647 0.01

SI CL OPE 0.01 0.06 0.11 18.77 0.914 0.00
DL OPE −0.17 0.07 −2.45 24.63 0.022 0.20

OPE × SET � � � � � � −1.96 43.63 0.056 0.08

TABLE VI. Estimates obtained from linear mixed-effect models regarding contextual relevance (CRE) on
learning (BE: behavioral engagement, LO: learning outcomes, SI: situational interest) in varying learning setting
(CL: classroom learning, DL: distance learning) considering students’s class as subject factor.

Model Setting Effect β SEβ t d:o:f: p Partial η2

BE CL CRE 0.18 0.19 0.97 21.71 0.345 0.04
DL CRE 0.12 0.08 1.48 18.24 0.155 0.11

CRE × SET � � � � � � −1.23 70.62 0.223 0.02

LO CL CRE 0.32 0.17 1.89 21.96 0.072 0.14
DL CRE 0.08 0.07 1.10 17.39 0.287 0.07

CRE × SET � � � � � � −1.98 69.35 0.051 0.05

SI CL CRE 0.16 0.10 1.61 21.81 0.122 0.11
DL CRE 0.13 0.05 2.42 18.40 0.026 0.24

CRE × SET � � � � � � −0.30 49.69 0.766 0.00

DESIGNING E-LEARNING COURSES FOR … PHYS. REV. PHYS. EDUC. RES. 20, 010107 (2024)

010107-9



A central limitation of the present study arises from the
clustered data structure for a given sample size. As the
introductory calculations of the intraclass correlation coef-
ficients show, the consideration of the multilevel structure
is necessary for the intended analyses. However, when
looking at potential design effects, it becomes apparent
that, given the study design, a 2 to -6 times larger sample
size, depending on the dependent variables, would have
been necessary to adequately analyze significant effects
using linear regressions. Due to the complex models
required, only particularly robust effects were found.
However, it can be assumed that further effects exist that
are no longer significant due to the complexity of the
models and are below the detection limit. For this reason,
effects with type I error rates less than 10%, often only
slightly above the commonly used 5% were also reported in
some cases.
Another limitation is that effects are limited by the fact

that the variables mentioned are influenced by numerous
other aspects in addition to the design features, which could
not be controlled due to the use of authentic classroom
settings. These additional aspects include individual pre-
conditions of the learners (e.g., individual interest and
prior knowledge) as well as characteristics of the e-learning
courses (e.g., complexity and choice of context) and
features of the implementation (e.g., class atmosphere
and environmental variables). Consequently, large varian-
ces were found in the behavioral engagement, learning
outcomes, and situational interest of the learners.
Despite these large variances, we did observe significant

influences of the design features of the learning tasks, as
elements of e-learning courses, and we did find differences
between the learning settings slightly above an alpha level
of 5%; these findings show that appropriately designing
learning tasks can contribute to the optimization of the
teaching-learning processes.
Then again, it must be mentioned as a limitation that to

obtain clearer effects in this sense, the design features
degree of openness and contextual relevance would have
had to be adapted in a certain way to highlight the largest
possible differences between the e-learning courses. In the
most extreme case, it would have been conceivable to
adjust the two design features as much as possible in the
sense of a 2 × 2 research design. This would have resulted
in e-learning courses with exclusively open-ended or
closed-ended tasks as well as completely with or without
context-related learning tasks. However, since the design of
the e-learning courses was oriented toward real teaching
to derive realistic and practical findings, designing the
e-learning courses in this way did not appear to make sense
for the study.
A further limitation arises with reference to the sample

and the distribution of the courses in classroom learning
and distance learning. Here, minor differences between
the groups in situational interest and in the design of the

e-learning courses regarding contextual relevance were
observed. However, due to the small effect sizes, only
small influences on the results are expected.

V. DISCUSSION AND CONCLUSIONS

The following discussion and derivation of conclusions
are done with reference to the two research questions of the
study. With respect to RQ1, which aimed at analyzing the
effects of learning task design (openness and contextual
relevance) in e-learning courses on students’ behavioral
engagement, learning outcomes, and situational interest,
the results can be summarized in the following way:
The results suggest that the learning tasks’ contextual

relevance is important, as contextual relevance influenced
both the number and the quality of the processed tasks
(expressed as behavioral engagement and learning out-
comes) and was positively related to situational interest.
Results of the linear mixed-effect models showed, inde-
pendent of the learning setting that e-learning courses with
a larger share of learning tasks with context relevance were
positively related to all considered dependent variables
(behavioral engagement, learning outcomes, and situational
interest), with the influence of context relevance on situa-
tional interest appearing to be the strongest. This is
consistent with findings in the literature that often attribute
the importance of meaningful contextualization to positive
effects on learner interest and motivation [81,82] and
confirms the impression of previous studies, especially
for the learning of abstract concepts in physics, which is
difficult for many learners and meets with little interest,
references to the life world of the learners and related
contexts seem to be beneficial. “The concept of interest
seemed to be appropriate to understand tendencies
of students or adults to engage in certain themes or
contexts” [83] (p. 29). In this context, the positive relation
between context relevance and behavioral engagement also
seems plausible, since it can be assumed that e-learning
courses with context-related tasks that positively influence
the learners’ interest are also worked on more frequently by
the learners. This is supported by the fact that regardless
of the learning setting, a higher proportion of context-
related tasks was associated with greater behavioral
engagement, indicating a higher number of completed
tasks (see Table IV). However, no corresponding studies
have been done in the field of science education on the
connection between the use of meaningful contexts and the
specific construct behavioral engagement.
As previous studies [84] suggested, the context relevance

of the e-learning courses, determined by the proportion of
context-related learning tasks, was also positively related to
learning outcomes but to a lesser extent compared to the
effect on situational interest. This result seems possibly
transferable to other subjects in which lifeworld contexts
have a similar importance as a complement to more abstract
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concepts, for example, in chemistry, although empirical
tests seem necessary.
Regarding the openness of the e-learning courses,

measured by the proportion of open-ended learning tasks,
we found that openness did not influence any of the
observed dependent variables. This applied both with
respect to the alpha levels of 5% typically used and also
with respect to effect sizes that might indicate less robust
effects, regardless of significance (see Table IV).
It seems interesting and noteworthy that learners in

e-learning units with more open and in e-learning units
with more closed learning tasks work with similar engage-
ment and interest and achieve comparable learning out-
comes. There are at least two possible explanations for this.
The first relates to physics as the specific discipline of the
study. In contrast to some other subjects, in physics in
general and also in the studied learning courses many open-
ended tasks are very concretely related to learning objects,
such as interpreting phenomena in videos or performing
experiments, the open-ended tasks might have subject-
specific peculiarities that make the results not directly
transferable. The second relates to the learners’ possible
prior experience with open-ended tasks. Studies suggest
that open-ended tasks place rather high demands on
learners, but these can be reduced by appropriate prior
experience, practical knowledge in the area of self-
regulation, and appropriate advice from teachers [85,86].
The results can therefore possibly be interpreted to mean
that learners have previous experience with open-ended
tasks and that they therefore do not represent a fundamental
challenge within the present study.
All in all, the data of the present study suggest that it

makes sense to develop e-learning courses in physics with
context-related tasks regardless of the learning setting, as
these seem to have a positive influence on central variables
related to learning and students’ motivation to learn, just as
they do in traditional teaching and learning materials.
Regarding RQ2, which focused on the effects of learning

task design (openness and context relevance) in e-learning
courses on students’ behavioral engagement, learning
outcomes, and situational interest depending on the learn-
ing setting (classroom or distance), the results can be
summarized as follows:
First, the findings of RQ2 regarding the influence of

contextual relevance of learning tasks on students’ behav-
ioral engagement, learning outcomes, and situational inter-
est in physics e-learning provide a more differentiated
picture (see Table VI). Only one statistically significant
effect was found, indicating a positive influence of con-
textual relevance on situational interest in distance learning.
Effects related to the two other dependent variables,
behavioral engagement and situational interest, and the
different learning settings were suggested by the corre-
sponding moderate to large effect sizes, but not significant.
Further studies would have to clarify whether the lack of

significance can be attributed to the effects themselves or to
the study design and the complex models as explained in
Sec. IV. Considering the results on RQ1, it can be assumed
that with a larger sample, further effects with appreciable
effect sizes may have been found to be significant.
Regarding the difference between the two learning settings,
the significance, which is slightly above the alpha level
of 5%, and the moderate effect size suggest that there could
only be a difference with regard to the learning outcomes,
whereby integrating context-related tasks in e-learning
courses for classroom learning fostered students’ learning
outcomes more than when doing so for distance learning.
Again, against the background of the particular importance
of contexts from the everyday life of learners, the findings
appear consistent with previous studies [81,82] when
transferred to learning in physics in e-learning courses
but require further research.
The analysis of the e-learning courses with respect to the

proportion of open-ended learning tasks provided a more
differentiated picture of the findings for RQ1. The results
for RQ1 showed that regardless of the learning setting, the
openness of the learning courses, specifically the degree of
openness of the learning tasks, did not affect behavioral
engagement, learning outcomes, or situational interest (see
Table IV). However, as the results for RQ2 show (see
Table V), a negative influence on situational interest with a
large effect size was present for distance learning as a
learning setting. In this setting, students who worked on
e-learning courses with a larger share of open-ended tasks
were substantially less interested. In classroom learning,
however, situational interest was statistically independent
of the degree of openness. This may be interpreted in a way
that especially in distance learning the open learning tasks,
which are often perceived as more demanding, have a
negative effect on the interest of the learners because in
distance learning, the impression arises that they must force
themselves to complete tasks, although more interesting
activities are available as an alternative. In classroom
learning, on the contrary, time must be used for learning
anyway so that the openness of the tasks has less of a
negative effect due to the lack of alternatives. Considering
this result, we get the impression that especially without
the direct support of peers or teachers, many open-ended
tasks may have a negative effect on the situational interest
of the learners in working through e-learning courses.
This finding seems comprehensible in view of the literature
that suggests open-ended learning tasks are better
addressed through collaboration; however, such collabora-
tion requires further competencies and represents a chal-
lenge, especially in new e-learning settings [87]. It is
possible that this effect is counteracted in the classroom
learning setting, where direct communication is available.
Regarding behavioral engagement, no statistically sig-

nificant effect was observed. Therefore, e-learning courses
with a larger share of open-ended tasks were not processed
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significantly more or less often. This appears contradictory
with prior research, where more open-ended questions in
classroom education led to greater participation by students
[83]. Also, in terms of learning outcomes, the results did
not indicate any influence on the degree of openness.
Overall, the results for RQ2 show few statistically

significant findings, which are particularly evident for
situational interest as a dependent variable in distance
learning as a learning setting. Particularly regarding the
degree of openness, both learning settings prove to be
astonishing and, in part, contrary to the literature, for
example, on the engagement of learners in the processing
of open tasks [83], independent of the design of the
learning courses with rather open or rather closed tasks.
The present study analyzes the influence of two design

features, the degree of openness and contextual relevance,
of learning tasks as part of e-learning courses on different
learning-related variables, such as behavioral engagement,
learning outcomes, or situational interest. Looking at the
results of the present study on RQ1 and RQ2 as a whole,
contextual relevance proves to be a much more influential
design feature than the degree of openness, particularly in
RQ1. While contextual relevance influences all dependent
variables, a corresponding influence of learning courses
with more open versus more closed tasks is only found
for the situational interest of the learners. The results for
RQ2, which only demonstrate particularly robust effects
due to the limitations described below, emphasize the
influence of the design features on the situational interest
of the learners.

Furthermore, they only indicate statistically significant
differences between the learning settings in two cases (degree
of openness and learning outcomes; contextual relevance and
situational interest). The main limitations to be considered
here are that, given the multilevel analysis with complex
models, a larger overall samplewould have been necessary to
detect further effects, especially for the sample size, which
was reduced once again when divided according to learning
settings. A targeted variation of the design features and the
construction of “extreme” learning courseswith, for example,
exclusively open or exclusively closed tasks, would probably
also have shown further effects, although their practical
benefit would have been questionable.
All in all, both influencing factors, namely the degree of

openness and integration of meaningful contexts expressed
as contextual relevance, do not claim to extensively predict
the dependent variables (behavioral engagement, learning
outcomes, and situational interest). Rather, the aim was to
find indications of optimal design for these two design
features. These findings can thus be interpreted as impli-
cations for the two design features of learning tasks, namely
context relevance and openness when designing e-learning
courses for physics education.
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