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Abstract

It is proved that every non-complete, finite digraph of connectivity number k
has a fragment F containing at most k critical vertices. The following result is
a direct consequence: every k-connected, finite digraph D of minimum out- and
indegree at least 2k + m − 1 for positive integers k, m has a subdigraph H of
minimum outdegree or minimum indegree at least m− 1 such that D − x is k-
connected for all x ∈ V (H). For m = 1, this implies immediately the existence
of a vertex of indgree or outdegree less than 2k in a k-critical, finite digraph,
which was proved in [17].
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1. Introduction

Rudolf Halin proved in 1969 that every minimally k-connected, finite
graph contains a vertex of degree k [1]. This important result inspired a lot of
further investigations on the existence and number of vertices of small degree in
minimally k-(vertex-) connected or k-edge -connected or critically k-connected
graphs and digraphs.

First we will explain these concepts more precisely. All graphs and digraphs
in this paper are assumed to be finite and do not contain parallel edges
( of the same direction). If parallel edges are allowed, we speak of multigraphs
and multidigraphs. A k-connected graph (or digraph ) is minimally [critically]
k-connected, if deleting any edge [vertex], the connectivity number becomes less
than k. For edge-connectivity and for multigraphs and multidigraphs we use
corresponding concepts.

A transfer of Halin’s result to digraphs was given by T. Kameda in [9],
showing that every minimally k-connected digraph has a vertex of indegree k
or outdegree k. This was improved in [13] to the fact that it always contains
even a vertex of outdegree k. D.R. Lick [7] proved that every minimally k-edge
connected multigraph has a vertex of degree k and it was shown in [10] that
a minimally k-edge-connected multidigraph has a vertex of in- and outdgree
k. Chartrand, Kaugars, and Lick [8] proved that every critically k-connected
graph has a vertex of degree at most 3k−2

2 and I proved in [17] that a critically
k-connected digraph has a vertex of outdegree or indegree less than 2k, but not
necessarily always one of outdegree less than 2k. The bound in the last two
results mentioned is best possible.

Whereas a critically k-edge-connected graph has a vertex of degree k by [14],
as far as I know, the corresponding concept for digraphs has not been considered
until now. But I conjecture that a critically k-edge-connected digraph has
always a vertex of outdegree or indegree less than 2k. This bound would be
best possible, as the slightly modified Example (6) in [18] shows.

There are still a lot of open problems, especially on the number of vertices
of small degree, considered also by R. Halin himself in [2], [3], [4], [5], and [6]. A
survey on results and conjectures on [generalized] multiple criticality of graphs
and digraphs is found in [20]. Perhaps the most interesting and fundamental
open problem in our context is the following.

Conjecture 1 [12]. Every minimally k-connected digraph has a vertex of
indegree and outdegree k.

The case k = 1 is the above mentioned result on minimally k-edge-connected
multidigraphs [10]. The case k = 2 was proved in [19]. For all k ≥ 3 the
conjecture is open. But it was shown in [19] that for k ≥ 2, every minimally
k-connected digraph contains a vertex z with min {d+(z), d−(z)} = k and
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max {d+(z), d−(z)} ≤ 2k − 2.

Before we state the main result of our paper, we should fix the terminology
and the notation not so common. For a digraph D, |D| denotes |V (D)| and
x ∈ D means x ∈ V (D). For subdigraphs H,G ⊆ D and any vertex set S, define
H ∩ S := V (H) ∩ S, and instead of V (H) ∩ V (G) = ∅ we write H ∩ G = ∅.
We call a digraph connected, if it is “strongly connected“ in the usual sense.
A path and a circuit in a digraph are always continuously directed. A digraph
D is k-connected iff |D| ≥ k + 1 and, for every pair a,b of distinct vertices,
there are at least k openly disjoint paths from a to b. So the complete digraph
↔
Kk+1 is k-connected but not (k+1)-connected, for all integers k ≥ 0. For such a
digraph D we say that it has the connectivity number k and we write κ(D) = k.
A vertex x is critical in D if κ(D − x) < κ(D), hence κ(D − x) = κ(D) − 1
holds. Define Cr(D) := {x ∈ D : x critical in D} and for H ⊆ D let be
Hcr := H ∩ Cr(D). A digraph D is critically k-connected or k-critical iff
κ(D) = k and Cr(D) = V (D). A separating set of a digraph D be always an
S ⊆ V (D) such that D - S is not (strongly) connected. By Menger’s theorem,
every non-complete digraph D has a separating set S with |S| = κ(D); we call
such an S a least separating set. It is easy to see that a vertex is critical in a
non-complete digraph D iff it is contained in a least separating set of D.

For a subdigraph H ⊆ D (which is always supposed to be not empty) or
a subset H ⊆ V (D), let be N+(H) := {y ∈ D : y 6∈ H and there is an
x ∈ H with (x, y) ∈ E(D)} the set of outneighbours of H in D, and be N−(D)
correspondingly the set of inneighbours of H in D. For an x ∈ D we write
( for instance ) N+(x) instead of N+({x}). For x ∈ D, d+(x) := |N+(x)| and
d−(x) := |N−(x)| denote the outdegree and indegree of x, respectively. The
minimum outdegree and the minimum indegree of a digraph D are denoted by
δ+(D) and δ−(D), respectively; furthermore, δ(D) := min{δ+(D), δ−(D)}. An
induced subgraph H of D is a positive fragment iff D − (V (H) ∪N+(H)) 6= ∅
and |N+(H)| = κ(D) hold. Correspondingly, we define a negative fragment,
and a fragment is a positive or negative fragment. Also without mentioning the
sign, we consider a fragment F always with a certain sign, but sometimes we
write sgnF for it. A subdigraph H can be a positive and at the same time a
negative fragment, but we consider these fragments different. If F is a positive
[ negative ] fragment of D, then F denotes the negative [positive] fragment
D − (V (F ) ∪ N+(F )) [D − (V (F ) ∪ N−(F ))]. Obviously, every non-complete
digraph has a positive fragment and a negative fragment.

Now we can state our main result.

Theorem 1: Every non-complete, finite digraph D has a positive or a neg-
ative fragment F with |F ∩ Cr(D)| ≤ κ(D).

The proof of this theorem is found in section 3. First we will give some con-
sequences and examples, and will compare the directed case with the undirected
one. The following result is an immediate consequence of Theorem 1.

Corollary 1 [17]: Every k-critical non - complete digraph has a positive or
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a negative fragment F with |F | ≤ k. Hence every k-critical digraph has a vertex
x of d+(x) < 2k or d−(x) < 2k

Originally, I was not especially interested in finding an easier proof for this
result, but I hoped to get a generalization of the following result to digraphs.

Theorem 2 [21]: Let G be a k-connected graph with δ(G) ≥ 2(k − 1 +
m)2 +m− 1 for positive integers k,m. Then there is a (non-empty ) subgraph
H ⊆ G with δ(H) ≥ m − 1 such that κ(G − A) ≥ k for all A ⊆ V (H) with
|A| ≤ m.

However, we have only succeeded in proving such a result for |A| = 1 for
digraphs.

Corollary 2: Every k-connected digraph D with δ(D) ≥ 2k + m − 1 for
positive integers k, m has a ( non-empty ) subdigraph H with δ+(H) ≥ m − 1
or δ−(H) ≥ m− 1 such that κ(D − x) ≥ k holds for all x ∈ H.

Proof: It is obvious for κ(D) > k. So we may assume D non-complete and
κ(D) = k. Then Theorem 1 delivers a positive or negative fragment F with
|F ∩ Cr(D)| ≤ k. But δ(D) ≥ 2k + m − 1 implies δsgnF (F ) ≥ k + m − 1 and
therefore, |F | ≥ k +m. Then H := F − Cr(D) has the asserted properties

For m = 1, this is again the result mentioned in the second half of Corollary
1. For m = 2, it says that in a k-connected digraph D with δ(D) ≥ 2k+1 there
is a circuit C such that deleting any x ∈ C from D maintains connectivity k.

It was shown in [15] that every non-complete graphG of connectivity number
k has a fragment F with F ∩ Cr(G) = ∅ or a fragment F with V (F ) ⊆ Cr(G)
and |F | ≤ k

2 . In the directed case, all fragments of a digraph D with κ(D) = k
can be arbitrarily large ( for fixed k ) in spite of |F ∩ Cr(D)| ≥ k for all
fragments F of D. Since it is known from [17] and [18] that the results of
Corollary 1 are best possible, there cannot be in Theorem 1 always a positive
or a negative fragment F with |F ∩ Cr(D)| < k. Example 1 shows once again
that |F ∩ Cr(D)| ≤ k and also the lower bound 2k +m− 1 in Corollary 2 are
best possible.

Example 1. Let K1, . . . ,Kn be disjoint complete digraphs of order at least
2k and let S1

i , S
2
i be disjoint k-element subsets of V (Ki) for i = 1, . . . , n. The

digraph D arises from
⋃n

i=1K
i by addition of all edges from S1

i to S2
i+1 for

i = 1, . . . , n ( mod n).
Then κ(D) = k holds, the minimal positive [negative ] fragments are the sub-
graphs Ki − S1

i [Ki − S2
i ] for i = 1, . . . , n. So Cr(D) =

⋃n
i=1(S

1
i ∪ S2

i ) holds
and for every minimal fragment F we have |F ∩ Cr(D)| = k. If we take all
Ki of order 2k, D is k-critical and has no vertex of indegree or outdegree less
than 2k − 1. If we take all Ki of order exceeding 2k, then there is no fragment
F with V (F ) ⊆ Cr(D), and we can make δ(D) arbitrarily large. (This is in
contrast to the undirected case, mentioned in the paragraph before Example
1.) If we choose all Ki of order 2k +m− 1 , then we have δ(D) = 2k +m− 2,
but there is no subdigraph H with δ+(H) ≥ m− 1 or δ−(H) ≥ m− 1 and with
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H ∩Cr(D) = ∅. So the lower bound 2k+m− 1 in Corollary 2 is best possible

We know from [17] and [18] that in a k-critical digraph with k ≥ 2, in general,
there need not be a vertex x with d+(x) < 2k, hence no positive fragment F
with |F | ≤ k. Therefore, also in Theorem 1, we cannot prescribe the sign of
the fragment F ( as also shown in Example 2). This suggests that the same
holds for H in Corollary 2. The following example shows that this is true, if
δ−(H) ≥ 2.

Example 2. Let a > k be positive integers. Let K be a complete digraph
with |K| > a + k. For i = 1, . . . , n (n ≥ |K|k ) choose a k-element vertex set Ci

of K, such that V (K) ⊆
⋃n

i=1Ci holds. For i = 1, . . . , n let Di = (Ai, Bi) be a
digraph with V (Di) = Ai ∪Bi, Ai and Bi are disjoint, and |Ai| = a, |Bi| = a2.
Let E(Di) consist of all edges from Bi to Ai and from every vertex of Ai to
exactly a vertices of Bi so that every vertex of Bi gets indegree 1. (Hence Di

is a directed bipartite multigraph.) Assume that V (K), V (D1), . . . , V (Dn) are
disjoint. Choose C ′i ⊆ V (K) of at least a+ k − 1 vertices for i = 1, . . . , n. Let
D arise from K ∪

⋃n
i=1Di by addition of all edges from Di to Ci and from C ′i

to Bi for i = 1, . . . , n.
Then κ(D) = k and Cr(D) = V (K) . Furthermore, δ(D) = a + k holds,
but there is no negative fragment F with |F ∩ Cr(D)| ≤ k, since a negative
fragment contains V (K)−V (Ci) for a certain i. ( For k = 1, this is in contrast
to 1-critical digraphs: these have a positive and a negative fragment of order 1,
i.e. a vertex of outdegree 1 and a vertex of indegree 1 (see [16] or [18]).) Since
all x ∈

⋃n
i=1Bi have indegree 1 in D − V (K), there is no H ⊆ D − V (K) with

δ−(H) ≥ 2

The next example proves that for k-critical digraphs D with fixed k ≥ 2,
δ−(D) can be even arbitrarily large. ( This is quite different from minimally k-
connected digraphs, which have a vertex of indegree k and a vertex of outdegree
k, as proved in [13]. ) Furthermore, it shows that in Corollary 2, high indegree
is not sufficient for the existence of a subdigraph H of large minimum outdegree
or minimum indegree not containing vertices of Cr(D).

Example 3: Let us take in Example 2 all Di
∼=
↔
Kk+m−1 for any positive

integers k,m, but the other notation K,Ci, C
′
i, a remain as there. Let D arise

from K ∪
⋃n

i=1Di by addition of k disjoint edges from Di to Ci for i=1,. . . , n
and of all edges from C ′i to Di.

Then κ(D) = k, δ−(D) ≥ a + k − 1, Cr(D) ⊇ V (K), and for k ≥ 2 as for
m ≥ 2, |Cr(D) ∩ Di| = k holds for i=1,. . . , n . For m = 1 and k ≥ 2, D is
k-critical, but changing the value of the integer a, we can make δ−(D) arbitrar-
ily large. Therefore, for fixed k ≥ 2, there is no upper bound for δ−(D) for all
k-critical digraphs D (dependent only on k). For a ≥ m ≥ 2, δ+(D) = k+m−2

and Di−Cr(D)) ∼=
↔
Km−1, and this does not change, if we enlarge a, and in this

way δ−(D). So we cannot find an H ⊆ D − Cr(D) with bigger minimum out-
or indegree by enlarging only the minimum indegree of D
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I conjectured in [18] that every k-critical digraph has at least two different
minimal fragments ( different at least by their sign) with |F | ≤ k, and similar
for vertices of in- or outdegree less than 2k. This conjecture is unproved and I
believe it is only a special case of the following more general conjecture.

Conjecture 2. Every non-complete digraph D with κ(D) = k has at least
two different minimal fragments F with |F ∩ Cr(D)| ≤ k.

The existence of two such fragments would be best possible, also for arbi-
trarily large vertex number. For k ≥ 2, this is shown by the Examples 5 and
6 in [18]. Simple examples for all k ≥ 1 are digraphs D with exactly one least
separating set S and the property that the components of D - S form a chain.

The following conjecture also remains open for all (k, l,m) with l > 1 and
m > 1.

Conjecture 3. For positive integers k,l,m, there is a least integer fk(l,m)
with the property that for all k-connected digraphs with δ(D) ≥ 2k + fk(l,m)
there is a non-empty subdigraph H with δ+(H) ≥ m−1 or δ−(H) ≥ m−1 such
that κ(D −A) ≥ k holds for all A ⊆ V (H) with |A| ≤ l.

Since there are k-critical digraphs D with δ(D) = 2k − 1 for every positive
integer k such that κ(D−A) < k for every non-empty A ⊂ V (D) ( e.g. we get

some from Example 1, if we take there Ki ∼=
↔
Kk and S1

i = S2
i for i=1,. . . , n ),

we must have fk(l,m) ≥ 0, if it exists. For l = 1, Corollary 2 together with
Example 1 shows fk(1,m) = m−1 for positive k and m. Example 2 also shows
that H in Conjecture 3 cannot be found always with δ−(H) ≥ m − 1 ≥ 2 or
with prescribed indegrees for special vertices. For instance, any subdigraph H
containing vertices of indegree at least 2 having odd distance in the (undirected)
multigraph underlying H, in general, cannot be found in D − Cr(D), even for
arbitrarily large δ(D).

This shows that a generalization of Proposition 1 in [21], suggested after
the Example on page 328 in [21], is not possible. That Proposition says that
every connected digraph D with δ(D) ≥ 2m for a positive integer m contains a
path P of order m such that D− V (P ) is connected. I asked there, if a similar
result holds for every orientation of an undirected path. Example 2 shows that
this is not the case, for instance, for the orientation P0 of an undirected path
P of length 5, which has two vertices of indegree 2 of distance 3 on P . For
given k ≥ 1, not every digraph D of connectivity number k and high δ(D)
does contain a subdigraph P0 ⊆ D − Cr(D). ( Hence, for such a D for k = 1,
D − V (P0) is unconnected for every P0 ⊆ D, if δ(D) ≥ 6. )

2. Further Notation and some Lemmas

For the remainder of the paper, D denotes always a finite, non-complete,
simple digraph of connectivity number κ(D) = k ≥ 1. Fragments F1 and F2
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are crossing , if sgnF1 = sgnF2, F1 ∩F2 6= ∅, and V (F1 ∩F2) ⊂ V (Fi) for i = 1,
2 hold. The set of all fragments of D is denoted by F(D). For any S ⊆ F(D),
F ⊆ D, and s ∈ {+,−} define S(F ) := {F ′ ∈ S : F ′ ⊆ F}, Ṡ(F ) := S(F )−{F},
S :=

⋃
F ′∈S

V (F ′) and Ss := {F ∈ S : sgnF = s}. For instance, F+(D) :=

F(D)+ is the set of all positive fragments of D. F is a minimal positive fragment
of D means that F is minimal in (F+(D),⊆), and it does not mean that it
is a minimal element of (F ,⊆), which is positive. ForF ′, F from F(D) with
sgnF ′ = −sgnF , we define F ′ ≤ F to mean V (F ′) ⊆ V (F ) ∪N sgnF (F ). Note
that in general F ′ ≤ F does not imply |F ′| ≤ |F |. Of course, F ′ ≤ F holds iff
F ′∩F = ∅. We will call an F ∈ F(D) good, if there is an F ′ ∈ F−sgnF (D) with
F ′ ≤ F . Let G(D) be the set of all good fragments of D. For H ⊆ D, we have
defined Hcr = H ∩ Cr(D).

If W is a path from a to b, we use W (a, b] and so on in the same way
as for intervals; for instance, W [a, b) means the path W − b. For a subdigraph
or a set of vertices H and an a ∈ D − H , an a,H-fan of order k is a set of
a,H -paths W1, . . . ,Wk in D so that the paths Wi − a are disjoint and Wi ∩H
consists exactly of the endvertex of Wi for i=1,. . . , k. An H,a-fan is defined
in an analogous way. For an H ⊆ D or H ⊆ V (D), D(H) is the subgraph of
D induced by H. In formulas, ∩ ties stronger than ∪, for instance, A ∪ B ∩ C
means A ∪ (B ∩ C).

The first lemma is well-known, easily proved, and found in many papers,
e.g. as Lemme on p. 1254 in [11] or Lemma 1 on p. 266 in [17]. We omit the
proof.

Lemma 1. Let F1, F2 ∈ F+(D) be with F1 ∩ F2 6= ∅. Then the following
statements are true.
(a) |N+(F2) ∩ F1| ≥ |N+(F1) ∩ F2| and |N+(F1) ∩ F2| ≥ |N+(F2) ∩ F1|.
(b) If also F1 ∩ F2 6= ∅, then F1 ∩ F2 is a positive fragment with

N+(F1 ∩ F2) = N+(F2) ∩ F1 ∪N+(F1) ∩N+(F2) ∪N+(F1) ∩ F2

and F1 ∩ F2 is a negative fragment with
N−(F1 ∩ F2) = N+(F1) ∩ F2 ∪N+(F1) ∩N+(F2) ∪N+(F2) ∩ F1.

Furthermore, F1 ∩ F2 = D(F1 ∪ F2) holds.

The good fragments play an essential role in our proof. It follows easily
from the definition, that G(D) is not empty, if and only if there are two disjoint
fragments of the same sign. We give an easy criterion for G(D) 6= ∅.

Lemma 2. If for an s ∈ {+,−} there are C ∈ Fs(D) and B minimal in
(Fs(D),⊆) with N s(C) ∩B 6= ∅, then G(D) 6= ∅ holds.

Proof. Say, C and B are positive fragments as above. If C ∩ B = ∅, then
B ≤ C and C ≤ B, hence {B,C} ⊆ G(D). So we may assume C∩B 6= ∅. Then
we see, C ∩ B = ∅, since otherwise B ∩ C ⊂ B would be in F+(D) by Lemma
1(b), but B is minimal. Hence {B,C} ⊆ G(D) follows as above

Lemma 3. Let be A,B1, B2 ∈ F+(D) with Bi ≤ A for i=1,2 and B1∩B2 6=
∅. Then |(N+(B1) ∪N+(B2)) ∩A| ≤ k holds.
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Proof. We may assume |A| > k. By hypothesis, b ∈ B1 ∩ B2 exists. The
inequality |A| > k and κ(D) = k imply the existence of an a ∈ A − N+(B1).
Since D is k-connected, there are k openly disjoint paths W1, . . . ,Wk from b to
a. Since b ∈ B1 ≤ A and a ∈ A− (N+(B1) ∪B1), for every i=1,. . . , k, there is
exactly one ti ∈ N+(B1) ∩Wi ⊆ Wi(b, a). Then Wi[b, ti) ⊆ B1. We now prove
the following.

Claim. Let i ≤ k be a positive integer. Then
(a) Wi(b, a) ∩ ((N+(B1) ∪N+(B2))−A) 6= ∅ or
(b) Wi(b, a) ∩N+(B1) ∩N+(B2) 6= ∅ holds.

Proof of the Claim. If Wi(b, a)∩N+(B2) = ∅, then b ∈ B2 implies Wi(b, a) ⊆
B2, hence ti ∈ B2. So (a) holds, since B2 ∩A = ∅.
IfWi(b, a)∩N+(B2) 6= ∅, let y be the first vertex ofN+(B2) on the pathWi(b, a).
If y = ti, then (b) holds. So we may assume y 6= ti. Then Wi(b, y) ⊆ B2

and Wi(b, ti) ⊆ B1, hence ti ∈ B2 or y ∈ B1 holds. Therefore, ti or y is in
(N+(B1) ∪N+(B2))−A, since Bj ∩A = ∅. Hence (a) holds.

If k1 is the number of the paths Wi(b, a) with property (b), then
|(N+(B1)∪N+(B2))∩A| ≤ (2k−k1)−(k−k1) = k, since Wi(b, a)∩Wj(b, a) = ∅
for i 6= j
Remark. One could also use Lemma 1(a) for the proof.

We now combine Lemma 1(b) and Lemma 3 into the form in which we will use
it.

Lemma 4. Let be A ∈ F+(D) with |A| > k and B1, B2 ∈ F+(D) with

Bi ≤ A for i = 1, 2. If B1 ∩ B2 6= ∅, then B1 ∩ B2 ≤ A and B1 ∩B2 =
D(B1 ∪B2) ≤ A are positive fragments.

Furthermore, N+(B1∩B2) = N+(B1)∩B2∪N+(B1)∩N+(B2)∪N+(B2)∩B1

and N+(B1 ∪B2) = N+(B1) ∩B2 ∪N+(B1) ∩N+(B2) ∪N+(B2) ∩B1 hold.

Proof. Since Bi∩A = ∅ for i = 1,2 and |A| > k, Lemma 3 implies B1∩B2 6=
∅. Then Lemma 4 follows from Lemma 1(b)

3. Proof of Theorem 1

Remember that D is always a finite, non-complete,simple digraph of connec-
tivity number k ≥ 1. We presuppose now further |Fcr| := |F ∩ Cr(D)| > k for
all F ∈ F(D). Since F(D) 6= ∅ contains a minimal fragment B and every frag-
ment contains critical vertices by assumption, also G(D) 6= ∅ holds by Lemma
2. If there is an F ∈ G(D), which is minimal in (FsgnF (D),⊆), then choose
such an F . Otherwise choose an F minimal in (G+(D),⊆) or in (G−(D),⊆).
Say, we have chosen in this way A ∈ G−(D) for an A ∈ F+(D). Since A is good,
the set B := {B ∈ F+(D) : B ≤ A} is not empty, so neither is B0 := {B : B
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minimal in (B,⊆)}.
In this whole section A is chosen as above.

Consider B ∈ B0. Since we have assumed |Bcr| > k, Bcr−N+(A) 6= ∅ holds.
Hence there is a fragment C ∈ F+(D) with N+(C) ∩ (B − N+(A)) 6= ∅. We
will show (1) C ∩B = ∅ and (2) C ≤ A, i.e. C ∈ B.

(1) Let be B ∈ B0 and C ∈ F+(D) with N+(C) ∩ (B −N+(A)) 6= ∅.
Then C ∩B = ∅ holds.

Proof. We assume C ∩ B 6= ∅ and deduce a contradiction to our choice of
A,B. We prove some properties.

(a) C ∩B = ∅.

If we had C ∩B 6= ∅, then by Lemma 1(b), C ∩B were a positive fragment,
which were properly contained in B, since N+(C) ∩B 6= ∅. But B was chosen
minimal positive.

Since B ≤ A means A ∩B = ∅, (a) implies

(b) A ∩ C ⊆ N+(B).
Next we show

(c) A ∩ C 6= ∅.

We assume A ∩ C = ∅, i.e. C ≤ A. Since |A| ≥ |Acr| > k, we can apply
Lemma 4 to C, B. This says that C ∩ B is a positive fragment. But this is
properly contained in the minimal positive fragment B, since N+(C) ∩B 6= ∅.
So (c) follows.
The last property we need is

(d) A ∩ C 6= ∅.

Let us assume A ∩ C = ∅. Using (b), we get

V (C) = C ∩N+(B) ∪ C ∩N+(A).
Using (c), Lemma 1(a) implies

|N+(C) ∩A| ≥ |N+(A) ∩ C|

and using our main assumption C ∩B 6= ∅

|N+(C) ∩B| ≥ |N+(B) ∩ C|.
Using the last two inequalities and the last equality we get

|C| ≤ |N+(C) ∩B|+ |N+(C) ∩A| ≤ |N+(C)| = k,
since A ∩B = ∅. This contradiction to our preassumption on D proves (d).

Lemma 1(b) applied to (c) and (d), shows A ∩ C ∈ F−(D). Since ∅ 6=
N+(C)∩ (B−N+(A)) ⊆ A, the negative fragment A∩C is properly contained
in A. Hence, A is not minimal in (F−(D),⊆). On the other hand, A ∩ C ≤ B
holds by (a), hence B ∈ G(D). Since B is minimal in (F+(D),⊆), but A is not
minimal in (F−(D),⊆), this contradicts our choice of A
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(2) Let be B ∈ B0 and C ∈ F+(D) with N+(C) ∩ (B −N+(A)) 6= ∅.
Then C ∈ B holds.

Proof. Let us assume C ∩ A 6= ∅. By (1), we know C ∩ B = ∅. Together
with B ≤ A, this implies

(a) B ⊆ (A ∪N+(A)) ∩ (C ∪N+(C)) = A ∩ C ∪ T
with T := A ∩N+(C) ∪N+(A) ∩ (C ∪N+(C)).

Our assumption C∩A 6= ∅ and Lemma 1(a) imply |N+(C) ∩A| ≤ |N+(A) ∩ C|,
hence |T | ≤ |N+(A)| = k. So, A ∩ C 6= ∅ follows from (a), since |B| > k.
Lemma 1(b) says now that A ∩ C ∈ F−(D) with N−(A ∩ C) = T . By (a), so
B ≤ A ∩ C, hence A ∩ C ∈ G−(D). But this contradicts the choice of A, since
A ∩ C is properly contained in A because N+(C) ∩ (B −N+(A)) 6= ∅

For B1, B2 ∈ B, B1 ∩B2 6= ∅ implies by Lemma 4 that B1 ∩B2 and B1 ∩B2

are fragments of D. Therefore, for B1 ∈ B0 and B2 ∈ B with B1 ∩ B2 6= ∅ we
have B1 ⊆ B2; in particular, the elements of B0 are disjoint. For every B ∈ B0
and x ∈ B∗cr := Bcr −N+(A) 6= ∅, there is a C ∈ F+(D) with x ∈ N+(C), and
by (2) we have C ∈ B. Hence,

(3)
⋃

C∈B
N+(C) ⊇

⋃
B∈B0

B∗cr =: S0.

Since all B ∈ B0 are disjoint, we know

(4) |S0| =
∑

B∈B0
|B∗cr| ≥ (

∑
B∈B0

|Bcr|)− |N+(A)| ≥ |B0|(k + 1)− k

by assumption on D.
We will show that (3) and (4) are contradictory.

First we construct a subset C ⊆ B without crossing elements, but with⋃
B∈C

N+(B) ⊇
⋃

B∈B0
B∗cr. We get such a subset C ⊆ B by applying successively

the following procedure: if there are in our subset, which we have obtained after
some steps, crossing fragments B1 6= B2 then replace B1 and B2 by B1∩B2 and
D(B1∪B2). This gives again a subset B′ ⊆ B, since B1∩B2 and D(B1∪B2) are
in B by Lemma 4. By Lemma 4 again, we have N+(B1 ∩B2)∪ N+(B1 ∪B2)
= N+(B1) ∪ N+(B2). Hence also

⋃
B∈B′

N+(B) ⊇ S0 holds and B′ has less

pairs of crossing fragments than the subset before (for details see Lemma 2 in
[17]). Continuing in this way, we get a C ⊆ B, which does not contain crossing
fragments. (An unknown referee pointed out that one can also see that this
process ends in a crossing free set of fragments in the following way: in every
step |B′| becomes smaller or |B′| does not change, but

∑
B∈B′

|B|2 gets bigger.)

By the construction of C using Lemma 4, we still have B0 ⊆ C and

(3a)
⋃

C∈C
N+(C) ⊇ S0.

Incomparable fragments C1, C2 in (C,⊆) are disjoint, since C is crossing -
free.
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For the deduction of some properties of C, some further notation is useful.
For C ∈ C define b(C) := |B0(C)| and N+(C) :=

⋃
C′∈C(C)

N+(C ′). For (pairwise)

incomparable C1, C2, ..., Cp in (C,⊆) we define the height h(C1, C2, ..., Cp) :=
(
∑p

i=1 |C(Ci)|)− p =
∑p

i=1 |Ċ(Ci)|.

(5) Let C1, C2, ..., Cp be incomparable in (C,⊆).
Then |

⋃p
i=1N

+(Ci)−
⋃p

i=1 B0(Ci)| ≥ k holds.

Proof. Let be T :=
⋃p

i=1N
+(Ci) and S :=

⋃p
i=1 B0(Ci). If |T ∩A| ≥ k holds,

then the inequality in (5) is true, since A ∩ S = ∅. So we may assume that
there is an a ∈ A − T , since |A| > k. Since κ(D) = k and |S| > k, there is an
S,a-fan P1, . . . , Pk. Let bi be the first vertex of Pi. Since bi ∈ S and the Cj are
disjoint, there is exactly one ji with bi ∈ B0(Cji) ⊆ Cji . Since a 6∈ T ∪ S, there
must be a ti ∈ (Pi − bi) ∩ N+(Cji). All these ti are distinct, since ti 6= a and
the Pi − a (i=1,. . . , k) are disjoint. Since (Pi − bi) ∩ S = ∅ holds, we conclude
|T − S| ≥ k

(6) Let C1, . . . , Cp be incomparable elements of (C,⊆).
Then |

⋃p
i=1N

+(Ci) ∩
⋃p

i=1 B0(Ci)| ≤ ((
∑p

i=1 b(Ci))− 1)k.

Proof. We induct on the height h(C1, . . . , Cp). Let be T and S as in the
last proof.

(a) h(C1, . . . , Cp) = 0.
Then we have Ci ∈ B0 for all i and N+(Ci) = N+(Ci) and B0(Ci) = V (Ci) holds
for i=1,. . . , p . Therefore, (5) implies |

⋃p
i=1N

+(Ci) ∩ S| = |T ∩ S| ≤ pk − k.

(b) h(C1, . . . , Cp) > 0.
We distinguish two cases.

(α) p =1.
Then C1 6∈ B0. Let C1, . . . , Cq be the distinct maximal elements of Ċ(C1) 6=
∅. From h(C1) > 0 we get q ≥ 1. Being maximal elements, C1, . . . , Cq are
incomparable w.r.t. ⊆. Since the height of C1, . . . , Cq is less than the height
of C1, we get by induction |

⋃q
i=1N

+(Ci)∩
⋃q

i=1 B0(Ci)| ≤ ((
∑q

i=1 b(C
i))− 1)k.

Of course,
⋃q

i=1 B0(Ci) = B(C1) and
∑q

i=1 b(C
i) = b(C1) hold. But N+(C1) ∩

B0(C1) = ∅, since B0(C1) ⊆ V (C1). So we get |N+(C1)∩B0(C1)| ≤ (b(C1)−1)k,

as claimed.

(β) p ≥ 2.
Now we have |N+(Ci)∩B0(Ci)| ≤ (b(Ci)−1)k for i=1,. . . , p by (α) or (a). Let

us consider a C ′i ∈ Ċ(Ci) and B ∈ B0(Cj) for i 6= j. Let us assume that there
is an x ∈ N+(C ′i) ∩ B. Then x ∈ Ci or x ∈ N+(Ci), since C ′i ⊆ Ci holds. But
x ∈ Ci is not possible, since otherwise x ∈ B∩Ci 6= ∅, contradicting B ⊆ Cj and
Ci∩Cj = ∅. So we conclude x ∈ N+(Ci). This means N+(Ci)∩

⋃p
j 6=i

j=1

B0(Cj) ⊆

N+(Ci). Therefore, N+(Ci)∩S ⊆ (N+(Ci)∩B0(Ci))∪N+(Ci). Since we know
from (5) that at least k elements of T are not contained in S, we conclude
|
⋃p

i=1N
+(Ci) ∩ S| ≤

∑p
i=1 |N+(Ci) ∩ B0(Ci)| + kp − k ≤

∑p
i=1(b(Ci) − 1)k +

12



kp− k =
∑p

i=1 b(Ci)k − k

Now we easily get a contradiction. Let C1, . . . , Cp be the maximal elements
of (C,⊆). Then these are incomparable and an application of (6) gives

(7) |
⋃

C∈C
N+(C) ∩ B0| ≤ (|B0| − 1)k.

On the other hand, from (3a) and (4) follows

(8) |
⋃

C∈C
N+(C) ∩ B0| ≥ |S0| ≥ |B0|(k + 1)− k.

But (7) and (8) are contradictory
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Paris Sér. A 284 (1977), 1253-1256.

13



[12] W. Mader, Connectivity and edge-connectivity in finite graphs, pp. 66-
95 in Surveys in Combinatorics (ed. B. Bolllobás), Cambridge University
Press 1979.

[13] W. Mader, Minimal n-fach zusammenhängende Digraphen, J. Combin.
Theory (B) 38 (1985), 102 - 117.

[14] W. Mader, Kritisch n-fach kantenzusammenhängende Graphen, J.Combin.
Theory (B) 40 (1986),152-158.

[15] W. Mader, Generalizations of critical connectivity of graphs, Discrete
Mathematics 72 (1988), 267 - 283.

[16] W. Mader, On critically connected digraphs, J. Graph Theory 13 (1989),
513 - 522.

[17] W. Mader, Ecken von kleinem Grad in kritisch n-fach zusammenhängenden
Digraphen, J. Combin. Theory (B) 53 (1991), 260-272.

[18] W. Mader, Critically n-connected digraphs, pp. 811- 829 in Graph Theory,
Combinatorics, and Applications, Vol.2 (eds. Y. Alavi, G. Chartrand, O.
R. Oellermann, A. J. Schwenk), John Wiley and Sons 1991.

[19] W. Mader, On vertices of outdegree n in minimally n-connected digraphs,
J. Graph Theory 39 (2002), 129 - 144.

[20] W. Mader, High connectivity keeping sets in graphs and digraphs, Discrete
Math. 302 (2005), 173-187.

[21] W. Mader, Connectivity keeping trees in k-connected graphs, J. Graph
Theory 69 (2012), 324 - 329.

14


