
Better Call the Plumber: Orchestrating
Dynamic Information Extraction Pipelines

Mohamad Yaser Jaradeh1?[0000−0001−8777−2780], Kuldeep
Singh2[0000−0002−5054−9881], Markus Stocker3[0000−0001−5492−3212], Andreas

Both4[0000−0002−9177−5463], and Sören Auer3[0000−0002−0698−2864]

1 L3S Research Center, Leibniz University Hannover, Hanover, Germany
jaradeh@l3s.de

2 Zerotha-Research & Cerence GmbH, Aachen, Germany
kuldeep.singh1@cerence.com

3 TIB Leibniz Information Centre for Science and Technology, Hanover, Germany
{markus.stocker, auer}@tib.eu

4 Anhalt University of Applied Sciences, Bernburg, Germany
andreas.both@hs-anhalt.de

Abstract. We propose Plumber, the first framework that brings to-
gether the research community’s disjoint information extraction (IE) ef-
forts. The Plumber architecture comprises 33 reusable components for
various Knowledge Graphs (KG) information extraction subtasks, such
as coreference resolution, entity linking, and relation extraction. Using
these components, Plumber dynamically generates suitable information
extraction pipelines and offers overall 264 distinct pipelines. We study
the optimization problem of choosing suitable pipelines based on input
sentences. To do so, we train a transformer-based classification model
that extracts contextual embeddings from the input and finds an ap-
propriate pipeline. We study the efficacy of Plumber for extracting the
KG triples using standard datasets over two KGs: DBpedia, and Open
Research Knowledge Graph (ORKG). Our results demonstrate the ef-
fectiveness of Plumber in dynamically generating KG information ex-
traction pipelines, outperforming all baselines agnostics of the underlying
KG. Furthermore, we provide an analysis of collective failure cases, study
the similarities and synergies among integrated components, and discuss
their limitations.

Keywords: Information Extraction · NLP Pipelines · Software Reusabil-
ity · Semantic Search · Semantic Web

1 Introduction and Motivation

In last one decade, publicly available KGs (DBpedia [2] and Wikidata [42] )
have become rich sources of structured content used in various applications, in-
cluding Question Answering (QA), relation extraction, and dialog systems [39,

? Corresponding Author



2 Jaradeh et al.

4]. The research community developed numerous approaches to extract triple
statements [44], keywords/topics [9], tables [45, 23, 22], or entities [35, 36] from
unstructured text to complement KGs. Despite extensive research, public KGs
are not exhaustive and require continuous effort to align newly emerging un-
structured information to the concepts of the KGs.
Research Problem: This work was motivated by an observation of recent ap-
proaches [35, 45, 14] that automatically align unstructured text to structured
data on the Web. Such approaches are not viable in practice for extracting and
structuring information because they only address very specific subtasks of the
overall KG information extraction problem. If we consider the exemplary sen-
tence Rembrandt painted The Storm on the Sea of Galilee. It was painted in
1633. (cf. Figure 1). To extract statements aligned with the DBpedia KG from
the given sentences, a system must first recognize the entities and relation sur-
face forms in the first sentence. The second sentence requires an additional step
of the coreference resolution, where It must be mapped to the correct entity
surface form (namely, The Storm on the Sea of Galilee). The last step requires
the mapping of entity and relation surface forms to the respective DBpedia en-
tities and predicates. There has been extensive research in aligning concepts in
unstructured text to KG, including entity linking [14, 17], relation linking [36,
38, 4], and triple classification [13]. However, these efforts are disjoint, and little
has been done to align unstructured text to the complete KG triples (i.e., repre-
sented as subject, predicate, object) [25]. Furthermore, many entity and relation
linking tools have been reused in pipelines of QA systems [39, 26]. The literature
suggests that once different approaches put forward by the research community
are combined, the resulting pipeline-oriented integrated systems can outperform
monolithic end-to-end systems [27]. The motivation of our work is also shared
with this similar integrative effort in the software architecture community [19]
For the KG information extraction task, however, to the best of our knowledge,
approaches aiming at dynamically integrating and orchestrating various existing
components do not exist.
Objective and Contributions: Based on these observations, we build a frame-
work that enables the integration of previously disjoint efforts on the KG-IE
task under a single umbrella. We present the Plumber framework (cf. Figure 2)
for creating Information Extraction pipelines. Plumber integrates 33 reusable
components released by the research community for the subtasks entity link-
ing (EL), relation linking (RL), text triple extraction (TE) (subject, predicate,
object), and coreference resolution (CR). Overall, there are 264 different compos-
able KG information extraction pipelines (generated by the possible combina-
tion of the available 33 components, i.e., for DBpedia 3 CRs, 8 TEs, 10 EL/RLs
gives 3*8*10=240, and 4*3*2=24 for the ORKG. Hence, 240+24=264 pipelines).
Plumber implements a transformer-based classification algorithm that intelli-
gently chooses a suitable pipeline based on the unstructured input text.

We perform an exhaustive evaluation of Plumber on the two large-scale
KGs DBpedia, and Open Research Knowledge Graph (ORKG) [24] to investi-
gate the efficacy of Plumber in creating KG triples from unstructured text. We



Better Call the Plumber 3

demonstrate that independent of the underlying KG; Plumber can find and
assemble different extraction components to produce better suited KG triple
extraction pipelines, significantly outperforming existing baselines. In summary,
we provide the following novel contributions: i) The Plumber framework is the
first of its kind for dynamically assembling and evaluating information extraction
pipelines based on sequence classification techniques and for a given input text.
Plumber is easily extensible and configurable, thus enabling the rapid creation
and adjustment of new information extraction components and pipelines. Re-
searchers can also use the framework for running IE components independently
for specific subtasks such as triple extraction and entity linking. ii) A collection
of 33 reusable IE components that can be combined to create 264 distinct IE
pipelines. iii) The exhaustive evaluation and our detailed ablation study of the
integrated components and composed pipelines on various input text will guide
future research for collaborative KG information extraction.

We motivate our work with a running example; the sentence Rembrandt
painted The Storm on the Sea of Galilee. It was painted in 1633. Multiple steps
are required to extract these formally represented statements from the given
text. First, the pronoun it in the second sentence should be replaced by The
Storm on the Sea of Galilee using a coreference resolver. Next, a triple ex-
tractor should extract the correct text triples from the natural language text,
i.e., <Rembrandt, painted, The Storm on the Sea of Galilee>, and <The

Storm on the Sea of Galilee, painted in, 1633>. In the next step, the
entity and relation linking component aligns the entity and relation surface forms
extracted in the previous step to the DBpedia entities: dbr:Rembrandt for Rem-
brandt van Rijn, and dbr:The Storm on the Sea of Galilee for The Storm on
the Sea of Galilee, and for relations: dbo:Artist for painted, and dbp:year for
painted in. Figure 1 illustrates our running example and shows three Plumber
IE pipelines with different results. In Pipeline 1, the coreference resolver is unable
to map the pronoun it to the respective entity in the previous sentence. Moreover,
the triple extractor generates incomplete triples, which also hinders the task of

Text: Rembrandt painted The Storm on the Sea of Galilee. It was painted in 1633.

Stanford 
Coref 

Resolver
OpenIE EARL

(It = The Storm) <Rembrandt, painted, Storm>
(Rembrandt = 
dbr:Artemisia_(Rembrandt)),
(Storm = 
dbr:September_Storm)

Pi
pe

lin
e 

1

Neural
Coref ClausIE DBpedia 

Spotlight
(It = The Storm on the 
Sea of Galilee)

<Rembrandt, 
painted, The Storm 
on the Sea of 
Galilee>

(Rembrandt = dbr:Rembrandt)

Pi
pe

lin
e 

2

Neural
Coref

ClausIE

Falcon

ReVerb

<Rembrandt, painted, 
The Storm on the Sea of 
Galilee>(It = The Storm on the Sea of Galilee)

<It, was painted in, 1633>
(Rembrandt = dbr:Rembrandt),
(The Storm on the Sea of 
Galilee = 
dbr:The_Storm_on_the_Sea_of
_Galilee)
(painted = dbo:Artist)Pi

pe
lin

e 
3

Fig. 1. Three example information extraction pipelines showing different results for the
same text snippet. Each pipeline consists of coreference resolution, triple extractors,
and entity/relation linking components.



4 Jaradeh et al.

the entity and relation linker in the last step. Pipeline 2 uses a different set of
components, and its output differs from the first pipeline. Here, the coreference
resolution component is able to correctly co-relate the pronoun it to The Storm
on the Sea of Galilee, and extract the text triple correctly. However, the overall
result is only partially correct because the second triple is not extracted. Also,
the linking component is not able to spot the second entity. Pipeline 3 correctly
extracts both triples. This pipeline employs the same component as the second
pipeline for coreference resolution but also includes an additional information
extraction component (i.e., ReVerb [15]) and a joint entity and relation linking
component, namely Falcon [35]. With this combination of components, the text
triple extractors were able to compensate for the loss of information in the sec-
ond pipeline by adding one more component. Using the extracted text triples,
the last component of the pipeline, a joint entity and relation linking tool, can
map both triple components correctly to the corresponding KG entities.

The reminder of this article is organized as follows. Related work is reviewed
in Section 2. Section 3 presents Plumber, which is extensively evaluated in
Section 4. Section 5 discusses the results, and Section 6 concludes and outlines
directions for future research and work.

2 Related Work

In the last decade, many open source tools have been released by the research
community to tackle IE tasks for KGs. These IE components are not only used
for end-to-end KG triple extraction but also for various other tasks, such as:
Text Triple Extraction: The task of open information extraction is a well
studied researched task in the NLP community [1]. It relies on NER (Named
Entity Recognition) and RE (Relation Extraction). SalIE [33] uses MinIE [21]
in combination with PageRank and clustering to find facts in the input text.
Furthermore, OpenIE [1] leverages linguistic structures to extract self-contained
clauses from the text. A comprehensive survey by Niklaus et al. [32] provides
detailed about such techniques.
Entity and Relation Linking: Entity and relation linking is a widely studied
researched topic in the NLP, Web, and Information Retrieval research commu-
nities [3, 4, 11]. Often, entity and relation linking is performed independently.
DBpedia Spotlight [10] is one of the first approaches for entity recognition and
disambiguation over DBpedia. TagMe [17] links entities to DBpedia using in-link
matching to disambiguate candidates entities. Others tools such as RelMatch [38]
do not perform entity linking and only focus on linking the relation in the text to
the corresponding KG relation. Recon [4] uses graph neural networks to map re-
lations between the entities with the assumption that entities are already linked
in the text. EARL [14] is a joint linking tool over DBpedia and models the task
as a generalized traveling salesperson problem. Sakor et al. [35] proposed Falcon,
a linguistic rules based tool for joint entity and relation linking over DBpedia.
Coreference Resolution: This task is used in conjunction with other tasks
in NLP pipelines to disambiguate text and resolve syntactic complexities. The



Better Call the Plumber 5

Stanford Coreference Resolver [34] uses a multi pass sieve of deterministic coref-
erence models. Clark and Manning [8] use reinforcement learning to fine-tune a
neural mention-ranking model for coreference resolution. And more recently [37].
Frameworks and Dynamic Pipelines: There have been few attempts in vari-
ous domains aiming to consolidate the disjoint efforts of the research community
under a single umbrella for solving a particular task. The Gerbil platform [41]
provides an easy-to-use web-based platform for the agile comparison of entity
linking tools using multiple datasets and uniform measuring approaches. OK-
BQA [26] is a community effort for the development of multilingual open knowl-
edge base and QA systems. Frankenstein integrates 24 QA components to build
QA systems collaboratively on-top of the Qanary integration framework [6].
Other ETL pipelines system exists such as Apache NiFi. Semantic Web Pipes [31]
and LarKC [16] are other prominent examples.
End-to-End Extraction Systems: More recently, end-to-end systems are
gaining more attention due to the boom of deep learning techniques. Such sys-
tems draw on the strengths of deep models and transformers [29]. Kertkeidka-
chorn and Ichise [25] present an end-to-end system to extract triples and link
them to DBpedia. Other attempts such as KG-Bert [44] leverage deep transform-
ers [29] for the triple classification task, given the entity and relation descriptions
of a triple. KG-Bert does not attempt end-to-end alignment of KG triples from
a given input text. Liu et al. [28] design an encoder-decoder framework with an
attention mechanism to extract and align triples to a KG.

3 Dynamic Information Extraction Pipelining Framework

Plumber has a modular design (see Figure 2) where each component is inte-
grated as a microservice. To ensure a consistent data exchange between com-
ponents, the framework maps the output of each component to a homogeneous
data representation using the Qanary [6] methodology. Plumber follows three
design principles of i) Isolation, ii) Reusability, and iii) Extensibility inspired
by [39, 41].

Dynamic pipeline selection: Plumber uses a RoBERTa [29] based clas-
sifier that given a text and a set of requirements, Plumber predicts a good
pipeline to extract KG triples. Rather than handcrafting features to train models
on, we let the RoBERTa model acts as intermediary that classifies the contextual
embeddings extracted from the input text into a class which represents one of the
possible pipelines. Regarding RoBERTa’s training, we run each input sequence
on all possible pipelines and compute the evaluation metrics F1-score (i.e., esti-
mated performance). RoBERTa is fed with the sentence and the sentence-level
performance with the best value among all pipelines as the target class. Hence,
in practice, the user points Plumber to a piece of text and internally it uses
RoBERTa to classify the text to a class (i.e., the pipeline) to execute against
the input text. We choose a transformer-based architecture due to its ability to
encode the contextual knowledge from the input text, providing more accurate
classification.



6 Jaradeh et al.

Stanford Resolver

DBpedia Spotlight

ReVerbTagMe

…….IE
 P

ip
el

in
es

 P
oo

l

Natural 
Language 

Text

Aligned 
TriplesPipeline 

Builder

Knowledge 
Graph

Pipeline 
Runner

 RoBERTa-based Pipeline Selector

Pipeline nPipeline 2Pipeline 1

…….
…….

…….

CR ComponentsIE
 C

om
po

ne
nt

s
 P

oo
l Stanford Resolver

Neuralcoref

…..

Pipeline Generator

TE Components

OpenIE

ReVerb

…..
EL/RL Components

EARL

Falcon

…..

Natural 
Language Text

E2E Components

T2KG

Seq2RDF

…..

Neuralcoref

ClausIE

Falcon 2.0

T2KG

Best Pipeline 
Configuration

Requirements

Fig. 2. Overview of Plumber’s architecture highlighting the components for pipeline
generation, selection, and execution. Plumber receives an input sentence and require-
ment (underlying KG) from the user. The framework intelligently selects a suitable
pipeline based on the contextual features captured from the input sentence.

Architecture: Plumber includes the following modules: i) IE Compo-
nents Pool: All information extraction components that are integrated within
the framework are parts of the pool. The components are divided based on their
respective tasks, i.e., coreference resolution, text triple extraction, as well as en-
tity and relation linking. These components have different input requirements
and output formats; thus, Plumber provides standard interfaces to facilitate
the interaction between pipeline components. ii) Pipeline Generator: This
module creates possible pipelines depending on the requirements of the compo-
nents (i.e., the underlying KG). Users can manually select the underlying KG
and, using the metadata associated with each component, Plumber aggregates
the components for the concerned KG. iii) IE Pipelines Pool: Plumber stores
the configurations of the possible pipelines in the pool of pipelines for faster re-
trieval and easier interaction with other modules. iv) Pipeline Selector: Based
on the requirements (i.e., underlying KG) and the input text, a RoBERTa based
model extracts contextual embeddings from the text and classifies the input into
one of the possible classes. Each class corresponds to one pipeline configuration
that is held in the IE pipelines pool. v) Pipeline Runner: Given the input
text, and the generated pipeline configuration, the module executes the pipeline
and produce the final KG triples.

4 Evaluation

In this section, we detail the empirical evaluation of the framework in comparison
to baselines on different datasets and knowledge graphs. As such, we study the
following research question: How does the dynamic selection of pipelines based
on the input text affect the end-to-end information extraction task?



Better Call the Plumber 7

4.1 Experimental Setup

Knowledge Graphs To study the effectiveness of Plumber in building dy-
namic KG information extraction pipelines, we use the following KGs during our
evaluation:
DBpedia [2] is containing information extracted automatically from Wikipedia
info boxes. DBpedia consists of approximately 11.5B triples [35].
Open Research Knowledge Graph [24] (ORKG) collects structured schol-
arly knowledge published in research articles, using crowd sourcing and auto-
mated techniques. In total, ORKG consists of approximately 984K triples.

Datasets Throughout our evaluation, we employed a set of existing and newly
created datasets for structured triple extraction and alignment to knowledge
graphs: the WebNLG [20] dataset for DBpedia, and COV-triples for ORKG.
WebNLG is the Web Natural Language Generation Challenge. The challenge
introduced the task of aligning unstructured text to DBpedia. In total, the
dataset contains 46K triples with 9K triples in the testing and 37K in the train-
ing set.
COV-triples is a handcrafted dataset that focuses on COVID-19 related schol-
arly articles. The COV-triples dataset consists of 21 abstracts from peer-reviewed
articles and aligns the natural language text to the corresponding KG triples into
the ORKG. Three Semantic Web researchers verified annotation quality, and
triples approved by all three researchers are part of the dataset. The dataset
contains only 75 triples. Hence, we use the WebNLG dataset for training, and
75 triples are used as a test set.
Components and Implementation The Plumber framework integrates 33 com-
ponents, the components span different IE tasks from Triple Extraction, Entity
and Relation Linking, and Coreference Resolution. Most of the components used
are open-sourced and they have been evaluated and used by the community in
their respective publications. Plumber’s code and all related resources are pub-
licly available online at https://github.com/YaserJaradeh/ThePlumber.
Baselines We include the following baselines:
T2KG [25] is an end-to-end static system aligns a given natural language text
to DBpedia KG triples.
Frankenstein [39] dynamically composes Question Answering pipelines over
the DBpedia KG. It employs logistic regression based classifiers for each com-
ponent for predicting the accuracy and greedily composes a dynamic pipeline of
the best components per task. We adapted Frankenstein for the KG information
extraction over DBpedia.

4.2 Experiments

The section summarizes a variety of experiments to compare the Plumber
framework against other baselines. Note, that evaluating the performance of in-
dividual components or their combination is out of this evaluation’s scope, since



8 Jaradeh et al.

they were already used, benchmarked, and evaluated in the respective publica-
tions. We report values of the standard metrics Precision (P), Recall (R), and
F1 score (F1). In all experiments, end-to-end components (e.g., T2KG) are not
part of Plumber.

Performance of Static Pipelines In this experiment, we report results of the
static pipelines, i.e., no dynamic selection of a pipeline based on the input text
is considered. We ran all 264 pipelines and Table 2 (T2KG & Static noted rows)
reports the performance of the best Plumber pipeline against the baselines.
Plumber static pipeline for DBpedia comprises of NeuralCoref [8] for corefer-
ence resolution, OpenIE [1] for text triple extraction, TagMe [17] for EL, and
Falcon [35] for RL tasks. Also, in case of Frankenstein, we choose its best per-
forming static pipeline. Results illustrated in the Table 2 confirm that the static
pipeline composed by the components integrated in Plumber outperforms all
baselines on DBpedia. We observe that the performance of pipeline approaches
is better than an end-to-end monolithic information extraction approaches. Al-
though the Plumber pipeline outperforms the baselines, the overall performance
is relatively low. All our components have been trained on distinct corpora in
their respective publications and our aim was to put them together to understand
their collective strengths and weaknesses. Note, Frankenstein addresses the QA
pipeline problem and not all components are comparable and can be applied in
the context of information extraction. Thus, we integrated NeuralCoref coref-
erence resolution component and OpenIE triple extraction component used in
Plumber static pipeline into Frankenstein for providing the same experimental
settings.

Static Pipeline for Scholarly KG In order to assess how Plumber performs
on domain-specific use cases, we evaluate the static pipelines’ performance on a
scholarly knowledge graph. We use the COV-triples dataset for ORKG. To the
best of our knowledge, no baseline exists on information extractions of research
contribution descriptions over ORKG. Hence, we execute all static pipelines in
Plumber tailored to ORKG to select the best one as shown in Table 2 (COV-
triples rows). Plumber pipelines over ORKG extract statements determining
the reproductive number estimates for the COVID-19 infectious disease from
scientific articles as shown below.

@prefix orkg: <http :// orkg.org/orkg/resource/>.
@prefix orkgp: <http :// orkg.org/orkg/property/>.

orkg:R48100 orkgp:P16022 "2.68" .

In this example, orkg:R48100 refers to the city of Wuhan in China in the ORKG
and orkgp:P16022 is the property “has R0 estimate (average)”. The number
“2.68” is the reproductive number estimate. Although COV-triples is a small
and manually annotated dataset, we believe that it sheds some light on how
Plumber will perform on different domains and datasets. Furthermore, it is
the first step in creating such a scholarly dataset for IE tasks.



Better Call the Plumber 9

Table 1. 10-fold CV of pipeline selection classifiers wrt. Precision, Recall, and F1
score.

Pipeline Selection
Approach

Dataset
Knowledge

Graph
Classification
P R F1

Frankenstein [39]
WebNLG DBpedia 0.732 0.751 0.741

COV-triples ORKG 0.832 0.858 0.845

Plumber
WebNLG DBpedia 0.877 0.900 0.888

COV-triples ORKG 0.901 0.917 0.909

Comparison of the Classification Approaches for Dynamic Pipeline
Selection In this experiment, we study the effect of the transformer-based
pipeline selection approach implemented in Plumber against the pipeline se-
lection approach of Frankenstein. For a comparable experimental setting, we
re-use Frankenstein’s classification approach in Plumber, keeping the under-
lying components precisely the same. We perform a 10-fold cross-validation for
the classification performance of the employed approach. Table 1 indicates that
the Plumber pipeline selection significantly outperforms baselines across the
board.

Performance Comparison for KG Information Extraction Task Our
third experiment focuses on comparing the performance of Plumber against
previous baselines for an end-to-end information extraction task. The results in
Table 2 illustrate that the dynamic pipelines built using Plumber for KG infor-
mation extraction outperform the best static pipelines of Plumber as well as
the dynamically selected pipelines by Frankenstein (rows noted with dynamic).
The end-to-end baselines, such as Kertkeidka-chorn and Ichise [25]. We also ob-
serve that in cross-domain experiments for COV-triples datasets, dynamically
selected pipelines perform better than the static pipeline. In the cross-domain
experiment, the static and dynamic Plumber pipelines are relatively better per-
forming than the other two KGs. Unlike components for DBpedia, components
integrated into Plumber for ORKG are customized for KG triple extraction.
We conclude that when components are integrated into a framework such as
Plumber aiming for the KG information extraction task, it is crucial to select
the pipeline based on the input text dynamically. The superior performance of
Plumber shows that the dynamic pipeline selection has a positive impact ag-
nostic of the underlying KG and dataset. This also answers our overall research
question.

4.3 Ablation Studies

Plumber and baselines render relatively low performance on all the employed
datasets. Hence, in the ablation studies our aim is to provide a holistic picture of
underlying errors, collective success, and failures of the integrated components.

In the first study, we calculate the proportion of errors in Plumber. The
modular architecture of the proposed framework allows us to benchmark each
component independently. We consider the erroneous cases of Plumber on the



10 Jaradeh et al.

test set of the WebNLG dataset. We calculate the performance (F1 score) of
the Plumber dynamic pipeline (cf. Table 2) at each step in the pipeline. The
results show that the coreference resolution components caused 21.54% of the
errors, 33.71% are caused by text triple extractors, 18.17% by the entity linking
components, and 26.58% are caused by the relation linking components.

We conclude that the text triple extractor components contribute to the
largest chunk of the errors over DBpedia. One possible reason for their limited
performance is that open-domain information extracting components were not
initially released for the KG information extraction task. Also, these components
do not incorporate any schema or prior knowledge to guide the extraction. We
observe that the errors mainly occur when the sentence is complex (with more
than one entity and predicate), or relations are not explicitly mentioned in the
sentence. We further analyze the text triple extractor errors. The error analysis
at the level of the triple subject, predicate, and object showed that most errors
are in predicates (40.17%) followed by objects (35.98%) and subjects (23.85%).

Further Analysis Aiming to understand why IE pipelines perform with low
accuracy, we conduct a more in-depth analysis per IE task. In the first analy-
sis, we evaluated each component independently on the WebNLG dataset. Re-
searchers [12, 40] proposed several criterion for micro-benchmarking tools/com-
ponents for KG tasks (entity linking, relation linking, etc.) based on the linguistic
features of a sentence. We motivate our analysis based on the following:

I) Text Triple Extraction: We consider the number of words (wc) in the in-
put sentence (a sentence is termed by “simple” with average word length of
7.41 [39]. Sentences with higher number of words than seven are complex sen-
tences). Furthermore, having a comma in a sentence (sub-clause) to separate
clauses is another factor. Atomic sentences (e.g., ”cats have tails”) are a type of
sentence that also affects triples extractors’ behavior. Moreover, nominal relation
as in ”Durin, son of Thorin” is another impacting factor on the performance.
Uppercase and lowercase mentions of the words (i.e., correct capitalization of
the first character and not the entire word) in a sentence are standard errors for
entity linking components. We consider this as a micro-benchmarking criteria.

Table 2. Overall performance comparison of static and dynamic pipelines for the KG
information extraction task.

System Dataset
Knowledge

Graph
Performance
P R F1

T2KG [25] WebNLG DBpedia 0.133 0.140 0.135

Frankenstein (Static) [39] WebNLG DBpedia 0.177 0.189 0.181

Plumber (Static)
WebNLG DBpedia 0.210 0.225 0.215

COV-triples ORKG 0.403 0.423 0.413

Frankenstein (Dynamic) [39]
WebNLG DBpedia 0.199 0.208 0.203

COV-triples ORKG 0.403 0.424 0.413

Plumber (Dynamic)
WebNLG DBpedia 0.287 0.307 0.297

COV-triples ORKG 0.411 0.437 0.424



Better Call the Plumber 11

II) Coreference Resolution: We focus on the length of the coreference chain
(i.e., the number of aliases for a single mention). Additionally, the number of clus-
ters is another criterion in the analysis. A cluster refers to the groups of mentions
that require disambiguation (e.g., ”mother bought a new phone, she is so happy
about it” where the first cluster is mother → she and the second is phone →
it). The presence of proper nouns in the sentence is studied as well as acronyms.
Furthermore, the demonstrative nature of the sentence is also observed as a fac-
tor. Demonstrative sentences are the ones that contain demonstrative pronouns
(this, that, etc.).

III) Entity Linking: The number of entities in a sentence (e=1,2) is a crucial
observation for the entity linking task. Capitalization of the surface form is an-
other criterion for micro-benchmarking entity linking tools. An entity is termed
as an explicit entity when the entity’s surface form in a sentence matches the
KG label. An entity is implicit when there is a vocabulary mismatch. For ex-
ample, in the sentence ”The wife of Obama is Michelle Obama.”, the surface
form Obama is expected to be linked to dbr:Barack Obama and considered as
an implicit entity [40]. The last linguistic feature is the number of words (w) in
an entity label (e.g., The Storm on the Sea of Galilee has seven words).

IV) Relation Linking: Similar to the entity linking criteria, we focus on the
number of relations in a sentence (rel=1,2). The type of relation (i.e., explicit, or
implicit) is another parameter. Covered relation (sentences without a predicate
surface form) is also used as a feature for micro-benchmarking: ”Which compa-
nies have launched a rocket from Cape Canaveral Air Force station?” where the
dbo:manufacturing relation is not mentioned in the sentence. Covered relations
highly depend on common sense knowledge (i.e., reasoning) and the structure of
the KG [40]. Lastly, the number of words (w<=N) in a predicate surface form
is also considered.

Figure 3 illustrates micro-benchmarking of various Plumber components
per task. We observe that across IE tasks, the F1 score of the components varies
significantly based on the sentence’s linguistic features. In fact, there exist no
single component which performs equally well on all the micro-benchmarking
criteria. This observation further validates our hypothesis to design Plumber
for building dynamic information extraction pipelines based on the strengths
and weaknesses of the integrated components. We also note in Figure 3 that all
the CR components report limited performance for the demonstrative sentences
(demonstratives). When there is more than one coreference cluster in a sentence,
all other CR components observe a discernible drop in F1 score. The Neural-
Coref [8] component performs best for proper nouns, whereas PyCobalt [18] per-
forms best for the acronyms feature (almost being tied by NeuralCoref). In the
TE task, Graphene [7] shows the most stable performance across all categories.
However, the performance of all components (except Dependency Parser) drops
significantly when the number of words in a sentence exceeds seven (wc>7). Case
sensitivity also affects the performance and all components observe a noticeable
drop in F1 score for lowercase entity mentions in the sentence. Similar behavior
is observed for entity linking components where case sensitivity is a significant



12 Jaradeh et al.

Falcon 0.7083 0.5344 0.7526 0.5983 0.6874 0.6128 0.4389 0.6571 0.7893 0.6874
TextRazor 0.4954 0.1647 0.5032 0.2049 0.3282 0.4980 0.1654 0.4554 0.2240 0.1826

TagMe 0.4776 0.2304 0.5069 0.1215 0.3531 0.5311 0.2106 0.5069 0.2170 0.3531
EARL 0.6127 0.4836 0.6660 0.5265 0.6015 0.5362 0.3840 0.5749 0.7092 0.5946

Spotlight 0.4694 0.1273 0.4620 0.1098 0.2878 0.4885 0.1044 0.4620 0.1671 0.2926
Spacy ANN 0.5116 0.5537 0.5695 0.4502 0.5143 0.4772 0.3283 0.4916 0.6063 0.5084e=1, upper case

e=1, low
er case

e=1, explicit

e=1, im
plicit

e=1, w
>2

e=2, upper case

e=2, low
er case

e=2, explicit

e=2, im
plicit

e=2, w
>2

(a) F1 score heatmap of the EL task

0.5428 0.3455 0.1722 0.2185 0.0993 0.3687 0.2477 0.1046 Ollie
0.6727 0.6096 0.3416 0.7486 0.7852 0.7038 0.6838 0.4369 OpenIE
0.6852 0.4928 0.6769 0.3105 0.2988 0.4880 0.4096 0.1335 ClausIE
0.6505 0.5853 0.1999 0.5043 0.5958 0.4060 0.1612 0.2948 MinIE
0.7709 0.6505 0.3792 0.6800 0.6223 0.7443 0.6983 0.7790 Graphene
0.6541 0.1630 0.5637 0.6496 0.1092 0.6255 0.5713 0.1806 ReVerb
0.4197 0.3497 0.3566 0.2617 0.2442 0.3009 0.2946 0.1633 POS Extractor
0.2165 0.3504 0.2452 0.0804 0.0191 0.2092 0.1183 0.0119 Dependency Extractorw

c <= 7

w
c > 7

sub-clause

atom
ic senetence

nom
inal relations

upper case

low
er case

acronym
s

(b) F1 score heatmap of the Text TE task

Stanford CR 0.3569 0.4655 0.2726 0.2007 0.4906 0.5845 0.1611
NeuralCoref 0.7384 0.8657 0.7886 0.4283 0.8391 0.6457 0.2610

PyCobalt 0.4366 0.2764 0.4494 0.3807 0.4435 0.6574 0.1196
HMTL 0.8485 0.7841 0.8385 0.7738 0.7643 0.4795 0.2722chain = 1

chain > 1

clusters = 1

clusters > 1

proper nouns

acronym
s

dem
onstratives

(c) F1 score heatmap of the CR task

0.5173 0.4102 0.3133 0.4073 0.5632 0.3611 0.2595 0.3243 Falcon RL
0.0765 0.1158 0.0199 0.0928 0.1048 0.0714 0.1013 0.0905 Rel Match
0.3440 0.2728 0.2083 0.2688 0.3746 0.2401 0.1725 0.2156 EARL RL
0.4139 0.3261 0.2491 0.3197 0.4478 0.2870 0.2108 0.2578 Spacy ANN RLrel=1, explicit

rel=1, im
plicit

rel=1, covered

rel=1, w
>2

rel=2, explicit

rel=2, im
plicit

rel=2, covered

rel=2, w
>2

(d) F1 score heatmap of the RL task

Fig. 3. Comparison of F1 scores per component for different IE tasks based on the
various linguistic features of an input sentence (number of entities, word count in a
sentence, implicit vs. explicit relation, etc.). Darker colors indicate a higher F1 score.

cause of poor performance. When the sentence has one entity and it is implicit
(e=1, implicit); all entity linking components face challenges in correctly linking
the entities to the underlying KG. Relation linking components also report lower
performance for implicit relations.

5 Discussion

Even though the dynamic pipelines of Plumber outperforms static pipelines,
the overall performance of Plumber and baselines for the KG information ex-
traction task remains low. Our detailed and exhaustive ablation studies suggest
that when individual components are plugged together, their individual perfor-
mance is a major error source. However, this behavior is expected, considering
earlier research works in other domains also observe a similar trend. As in 2015
Gerbil framework [41] and in 2018 Frankenstein [39]. Within two years, the com-
munity has released several components dedicated to solving entity linking and
relation linking [35, 14, 30], which were two loopholes identified by [39] for the
QA task.

We observe that state of the art components for information extraction still
have much potential to improve their performance (both in terms of runtime
and F1 score). It is essential to highlight that some of the issues observed in
our ablation study are very basic and repeatedly pointed out by researchers in
the community. For instance, Derczynski et al. [12] in 2015, followed by Singh
et al. [39] in 2018, showed that case sensitivity is a main challenge for EL tools.
Our observation in Figure 3 again confirms that case sensitivity of entity surface



Better Call the Plumber 13

forms remains an open issue even for newly released components. In contrast,
on specific datasets such as CoNLL-AIDA, several EL approaches reported F1
scores higher than 0.90 [43], showing that EL tools are highly customized to
particular datasets. In a real-world scenario like ours, the underlying limitations
of approaches are uncovered.

6 Conclusion and Future Work

In this paper, we presented the Plumber approach and framework for informa-
tion extraction. Plumber effectively selects the a suitable pipeline for a given
input sentence using the sentential contextual features and a state-of-the-art
transformer-based classification model. Plumber has a service-oriented archi-
tecture which is scalable, extensible, reusable, and agnostic of the underlying
KG. The core idea of Plumber is to combine the strengths of already existing
disjoint research for KG information extraction and build a foundation for a
platform to promote reusability for the construction of large-scale and semanti-
cally structured KGs. Our empirical results suggest that the performance of the
individual components directly impacts the end-to-end information extraction
accuracy.

This article does not focus on internal system architecture or employed al-
gorithms in a particular IE component to analyze the failures. The focus of the
ablation studies is to holistically study the collective success and failure cases
for the various tasks. Our studies provide the research community with insight-
ful results over two knowledge graphs, 33 components, 264 pipelines. Our work
is a step in the larger research agenda of offering the research community an
effective way for synergistically combining and orchestrating various focused IE
approaches balancing their strengths and weaknesses taking different application
domains into account. We plan to extend our work in the following directions:
i) extending Plumber to other KGs such as UMLS [5] and Wikidata [42]. ii)
addressing multilinguality with Plumber, and iii) creating high performing RL
components.

Acknowledgements. This work was co-funded by the European Research
Council for the project ScienceGRAPH (Grant agreement ID: 819536) and the
TIB Leibniz Information Centre for Science and Technology.

References

1. Angeli, G., Johnson Premkumar, M.J., Manning, C.D.: Leveraging linguistic struc-
ture for open domain information extraction. pp. 344–354. ACL (2015)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The Semantic Web. pp. 722–735 (2007)

3. Balog, K.: Entity linking. In: Entity-Oriented Search, pp. 147–188. Springer (2018)
4. Bastos, A., Nadgeri, A., Singh, K., Mulang, I.O., Shekarpour, S., Hoffart, J., Kaul,

M.: Recon: Relation extraction using knowledge graph context in a graph neural
network. In: Proceedings of The Web Conference (WWW). p. :N/A (2021)



14 Jaradeh et al.

5. Bodenreider, O.: The unified medical language system (umls): integrating biomed-
ical terminology. Nucleic acids research 32, D267–D270 (2004)

6. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
- A methodology for vocabulary-driven open question answering systems. vol. 9678,
pp. 625–641 (2016)

7. Cetto, M., Niklaus, C., Freitas, A., Handschuh, S.: Graphene: Semantically-linked
propositions in open information extraction. In: Proceedings of the 27th COLING.
pp. 2300–2311 (2018)

8. Clark, K., Manning, C.D.: Deep reinforcement learning for mention-ranking coref-
erence models. In: Proceedings of the 2016 EMNLP. pp. 2256–2262 (2016)

9. Cui, W., Liu, S., Wu, Z., Wei, H.: How hierarchical topics evolve in large text
corpora. IEEE TVCG 20(12), 2281–2290 (2014)

10. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and ac-
curacy in multilingual entity extraction. In: Proceedings of the 9th I-Semantics
(2013)

11. Delpeuch, A.: Opentapioca: Lightweight entity linking for wikidata (2019)
12. Derczynski, L., Maynard, D., Rizzo, G., Van Erp, M., Gorrell, G., Troncy, R.,

Petrak, J., Bontcheva, K.: Analysis of named entity recognition and linking for
tweets. Information Processing & Management 51, 32–49 (2015)

13. Dong, T., Wang, Z., Li, J., Bauckhage, C., Cremers, A.B.: Triple classification using
regions and fine-grained entity typing. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 33, pp. 77–85 (2019)

14. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: Joint entity and
relation linking for question answering over knowledge graphs. In: Lecture Notes
in Computer Science, pp. 108–126. Springer International Publishing (2018)

15. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: Proceedings of the 2011 EMNLP. pp. 1535–1545 (Jul 2011)

16. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Della
Valle, E., Fischer, F., Huang, Z., Kiryakov, A., Lee, T.K., Witbrock, M., Zhong,
N.: Towards larkc: A platform for web-scale reasoning. In: IEEE ICSC. pp. 524–529
(2008)

17. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments
(by wikipedia entities). pp. 1625–1628 (2010)

18. Freitas, A., Bermeitinger, B., Handschuh, S.: Lambda-3/pycobalt: Coreference res-
olution in python. https://github.com/Lambda-3/PyCobalt

19. Garcia, J., Mirakhorli, M., Xiao, L., Zhao, Y., Mujhid, I., Pham, K., Okutan, A.,
Malek, S., Kazman, R., Cai, Y., Medvidovic, N.: Constructing a shared infrastruc-
ture for software architecture analysis and maintenance. In: ICSA (2021)

20. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training
corpora for NLG micro-planners. pp. 179–188 (2017)

21. Gashteovski, K., Gemulla, R., del Corro, L.: MinIE: Minimizing facts in open
information extraction. In: Proceedings of the 2017 EMNLP. pp. 2630–2640 (2017)

22. Hou, Y., Jochim, C., Gleize, M., Bonin, F., Ganguly, D.: Identification of tasks,
datasets, evaluation metrics, and numeric scores for scientific leaderboards con-
struction. In: Proceedings of the 57th ACL. pp. 5203–5213 (2019)

23. Ibrahim, Y., Riedewald, M., Weikum, G., Zeinalipour-Yazti, D.: Bridging quanti-
ties in tables and text. In: 2019 IEEE 35th ICDE. pp. 1010–1021 (2019)

24. Jaradeh, M.Y., Oelen, A., Farfar, K.E., Prinz, M., D’Souza, J., Kismihók, G.,
Stocker, M., Auer, S.: Open Research Knowledge Graph: Next Generation Infras-
tructure for Semantic Scholarly Knowledge. Marina Del K-CAP 19 (2019)



Better Call the Plumber 15

25. Kertkeidkachorn, N., Ichise, R.: T2kg: An end-to-end system for creating knowledge
graph from unstructured text. In: AAAI Workshops. vol. WS-17 (2017)

26. Kim, J.D., Unger, C., Ngomo, A.C.N., Freitas, A., Hahm, Y.g., Kim, J., Nam, S.,
Choi, G.H., Kim, J.u., Usbeck, R., et al.: OKBQA Framework for collaboration on
developing natural language question answering systems (2017)

27. Liang, S., Stockinger, K., de Farias, T.M., Anisimova, M., Gil, M.: Querying knowl-
edge graphs in natural language (2020)

28. Liu, Y., Zhang, T., Liang, Z., Ji, H., McGuinness, D.: Seq2rdf: An end-to-end
application for deriving triples from natural language text (2018)

29. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Zettlemoyer, L., Stoyanov,
V.: Roberta: A robustly optimized bert pretraining approach (2019)

30. Mihindukulasooriya, N., Rossiello, G., Kapanipathi, P., Abdelaziz, I., Ravishankar,
S., Yu, M., Gliozzo, A., Roukos, S., Gray, A.: Leveraging semantic parsing for
relation linking over knowledge bases. ISWC (2020)

31. Morbidoni, C., Polleres, A., Tummarello, G., Le-Phuoc, D.: Semantic web pipes
(2007)

32. Niklaus, C., Cetto, M., Freitas, A., Handschuh, S.: A survey on open information
extraction. In: Proceedings of the 27th COLING. pp. 3866–3878 (2018)

33. Ponza, M., Del Corro, L., Weikum, G.: Facts that matter. In: Proceedings of the
2018 EMNLP. pp. 1043–1048. ACL (2018)

34. Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky,
D., Manning, C.: A multi-pass sieve for coreference resolution. In: EMNLP (2010)

35. Sakor, A., Onando Mulang’, I., Singh, K., Shekarpour, S., Esther Vidal, M.,
Lehmann, J., Auer, S.: Old is gold: Linguistic driven approach for entity and rela-
tion linking of short text. pp. 2336–2346. ACL (2019)

36. Sakor, A., Singh, K., Patel, A., Vidal, M.E.: Falcon 2.0: An entity and relation
linking tool over wikidata. In: CIKM (2020)

37. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning
embeddings from semantic tasks. Proceedings of the AAAI 33, 6949–6956 (2019)

38. Singh, K., Mulang, I.O., Lytra, I., Jaradeh, M.Y., Sakor, A., Vidal, M., Lange,
C., Auer, S.: Capturing knowledge in semantically-typed relational patterns to
enhance relation linking. In: Proceedings of the Knowledge Capture Conference,
K-CAP 2017, Austin, TX, USA, December 4-6, 2017. pp. 31:1–31:8 (2017)

39. Singh, K., Radhakrishna, A.S., Both, A., Shekarpour, S., Lytra, I., Usbeck, R.,
Vyas, A., Khikmatullaev, A., Punjani, D., Lange, C., Vidal, M.E., Lehmann, J.,
Auer, S.: Why reinvent the wheel: Let’s build question answering systems together.
p. 1247–1256. WWW ’18 (2018)

40. Singh, K., Saleem, M., Nadgeri, A., Conrads, F., Pan, J.Z., Ngomo, A.C.N.,
Lehmann, J.: Qaldgen: Towards microbenchmarking of question answering sys-
tems over knowledge graphs. In: ISWC. pp. 277–292 (2019)

41. Usbeck, R., Röder, M., et al., N.N.: Gerbil: general entity annotator benchmarking
framework. In: Proceedings of the 24th WWW. pp. 1133–1143 (2015)

42. Vrandečić, D., Krötzsch, M.: Wikidata: A Free Collaborative Knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

43. Yang, X., Gu, X., Lin, S., Tang, S., Zhuang, Y., Wu, F., Chen, Z., Hu, G., Ren,
X.: Learning dynamic context augmentation for global entity linking. In: EMNLP-
IJCNLP. pp. 271–281 (2019)

44. Yao, L., Mao, C., Luo, Y.: Kg-bert: Bert for knowledge graph completion (2019)
45. Yu, W., Li, Z., Zeng, Q., Jiang, M.: Tablepedia: Automating pdf table reading in

an experimental evidence exploration and analytic system. p. 3615–3619. WWW
’19


