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Abstract. Information extraction from scholarly articles is a challeng-
ing task due to the sizable document length and implicit information
hidden in text, figures, and citations. Scholarly information extraction
has various applications in exploration, archival, and curation services
for digital libraries and knowledge management systems. We present
MORTY, an information extraction technique that creates structured
summaries of text from scholarly articles. Our approach condenses the
article’s full-text to property-value pairs as a segmented text snippet
called structured summary. We also present a sizable scholarly dataset
combining structured summaries retrieved from a scholarly knowledge
graph and corresponding publicly available scientific articles, which we
openly publish as a resource for the research community. Our results
show that structured summarization is a suitable approach for targeted
information extraction that complements other commonly used methods
such as question answering and named entity recognition.

Keywords: Information Extraction · Scholarly Knowledge · Summa-
rization · Natural Language Processing · Literature Review Completion.

1 Introduction

By their very nature, scholarly articles tend to be dense with information and
knowledge [20]. The task of information extraction (IE) has been widely re-
searched by the community in a variety of contexts [3, 22, 13], including the
scholarly domain [35, 19]. However, information extraction from scholarly arti-
cles continues to suffer from low accuracy. Reasons include ambiguity of schol-
arly text, information representation in scholarly articles, and lack of training
datasets [29].

Other than retrospective information extraction, initiatives such as the ORKG [9],
Hi-Knowledge [11], and Coda [31] collect structured scholarly information by en-
gaging researchers in the knowledge curation process. In ORKG, information is
collected by experts that extract and structure the essential information from
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Fig. 1. Bird’s eye view on the complete workflow of employing structured summariza-
tion in the context of information extraction from scholarly documents and articles
(MORTY).

articles. However, experts might not use the exact wording from the original
article or might put forward a novel segment of text that did not exist before in
the original text.

Information extraction techniques [28] could play a supporting role through
automated extraction, suggestions to experts or autonomously adding extracted
information to a a data source (e.g. database or knowledge graph). However,
blindly extracting information (i.e. factual extractions) is not suitable for schol-
arly data due to the large amount of information condensed into little text. Blind
extraction refers to Open Information Extraction [8] that relies on propositions
and facts as well as common entities and relations between them. For scholarly
articles, a more targeted approach is required, whereby a system is able to ex-
tract a set of predefined properties and their corresponding values while ignoring
others.

We propose MORTY, a method that leverages summarization tasks con-
ducted by deep-learning language models to create structured summaries that
can be parsed into extracted information, stored in a knowledge graph. We
present, evaluate, and discuss MORTY. Furthermore, we highlight the research
problems, possible solutions, limitations of the approach, and review open ques-
tions and future prospects.

The core contributions of this article are: First, a dataset of paper full texts
with a list of property-value pairs of human-expert annotated information. Sec-
ond, an approach for information extraction from scholarly articles using struc-
tured summarization3.

2 Related Work

Information Extraction. Several information extraction methods have been
proposed by the community, each with their own advantages and disadvantages.

3 Code & data (with stats): https://github.com/YaserJaradeh/MORTY
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Ji et al. [12] proposed an end-to-end system that uses a multi-task model to
perform sentence classification and information extraction on legal documents.
TRIE [42] uses end-to-end system to jointly perform document reading and
information extraction on everyday documents such as invoices, tickets, and
resumes. Chua and Duffy [4] proposes a method for finding the suitable grammar
set for the parsing and the extraction of information. Specifically for scholarly
context, various systems has been created to extract and retrieve information
from publications and scholarly articles. exBERT [10] uses triple classification
to perform knowledge graph completion. Dasigi et al. [6] proposed a method to
retrieve information from papers to answer natural language questions. FNG-
IE [32] is an improved graph-based approach for the extraction of keywords from
scholarly big-data. Furthermore, Liu et al. [15] presents the TableSeer system
that is capable of metadata extraction from tables of scholarly nature.

Language Models. With regards to automated text summarization, var-
ious language models relying on attention mechanisms [34] displayed state-of-
the-art results superseding human performance. BERT [7] (scholarly counterpart
SciBERT [1]) are some of the most commonly used transformer models capa-
ble to automatically summarize text. Similarly, RoBERTa [16] is an optimized
approach to represent language and is capable of producing summarizations of
text. BART [14] is a sequence-to-sequence model trained as a denoising autoen-
coder, which improves on the pre-training phase. Zhang et al. [41] presents the
PEGASUS model trained for abstractive summary generation of text. These and
other models are usually built to handle “short” input sequences, e.g. 512-1K to-
kens. Other attempts address the issue of processing longer inputs. BigBird [40]
and Longformer [2] present models that are capable of handling a much larger
input, e.g. 4K-16K tokens. Other generational models aren’t created specifically
for one task; instead, they are capable of performing multiple tasks depending
on the input text. For instance, GPT2 [23] supports unconditional text gener-
ation. Raffel et al. [24] describe T5, a model that can perform summarization,
translation, and question answering based on keywords in the input text. Some
of these language models have been either pre-trained on scholarly data such
as PubMed4 and arXiv [5] datasets, or have been fine-tuned on such data for
empirical evaluation in their original publication. Our contribution in this ar-
ticle leverages the capabilities of automatic summarization for the objective of
information extraction form scholarly documents.

3 MORTY

Scholarly text is ambiguous and information dense. We illustrate the problem
by taking a look at the abstract of this article. If we want to extract a single
piece of information (i.e. a property) such as the “research problem” addressed
by the article, it is necessary to comprehend the text and look even behind the
textual representation. In this example, the research problem is “information
extraction from scholarly articles”. The method of looking up certain properties

4 https://www.nlm.nih.gov/databases/download/pubmed medline.html
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such as “research problem” in the text, proves insufficient because the phrase
may not exist as is or is spelled differently. This can be extend by looking up
synonyms for the property or by finding verbs that represent the same intent
(e.g., addresses, tackles, etc.). Other times, regardless of how the property is
represented, the value itself is implicit or not represented as expected, which
requires more abstractive answers than extractive ones [33].

We argue that these cases barely scratch the surface of the problem. Certain
properties could require values placed throughout the text, combined together,
and even morphed into dissimilar wording. Others, cannot be found in the text,
but are included in figures, tables, or even in citations [26, 37]. Furthermore,
some properties could be of annotation-nature, i.e. the property and the value
are not in the original text, but tacit knowledge of an expert annotating an
article.

MORTY leverages the capabilities of deep learning language models to com-
prehend the semantics of scholarly text and perform targeted information extrac-
tion via text summarization. Scholarly articles typically follow a certain struc-
ture. IMRaD [30] refers to Introduction, Methods, Results, Discussion. The con-
cept has been applied to abstracts for a high-level overview of the four essential
aspects of the work. Structured abstracts [18] follows the IMRaD principles by
including the same points in the abstract. This motivated us to incorporate
structure into automatic textual summaries, which can be easily parsed for the
sake of information extraction (a.k.a. structured summary).

Figure 1 depicts a high-level view of the MORTY approach to information
extraction on scholarly articles comprising several workflow phases. It starts with
pre-processing of the article text (i.e., the conversion from traditional PDF into
text as well as cleaning and removing some needless segments of the text). A
summarization model is then capable of rendering a large text snippet into a
much shorter structured summarization that contains pairs of properties and
their corresponding values. Later stages take care of parsing the produced sum-
mary via finding pre-defined syntactical patterns in the produced text. Then
interlinking extracted values to knowledge graph entities via exact lookup func-
tionalities. Lastly the newly extracted and aligned data gets added it to a des-
tination knowledge graph. The fundamental component of the approach is the
summarization module due to the fact that all other components of MORTY
are self-consistent. This article tackles the following research question (RQ):
How can we leverage structured summaries for the task of scholarly information
extraction?

4 Evaluation

Since the main component of MORTY is the structured summary generation,
we focus our evaluation on that component solely. Other components
of the approach are deterministic in behavior and can be disregarded for the
sake of this evaluation. We created a dataset using the ORKG infrastructure,
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and empirically evaluated the feasibility of the summarization task with various
models and approaches based on this dataset.

4.1 Dataset Collection

We require a source for human-curated annotations of scholarly articles. ORKG
is a knowledge graph that contains this sort of information. Hence, we leverage
the ORKG to create a dataset of scholarly articles’ texts with a set of property-
value pairs. First, we took a snapshot of the ORKG data5 and we filtered on
papers that are open access or have pre-prints on arXiv. This ensures restriction-
free access to the PDF files of articles. Second, we parse the PDF files using
GROBID [17] into text. Furthermore, we employ a heuristic to clean the text.
The heuristic involves the following steps: i) Remove a set of pre-defined sections
(such as abstract, related work, background, acknowledgments, and references);
ii) Remove all URLs from the text, as well as all Unicode characters; iii) Remove
tables, figures, footnotes, and citation texts. Lastly, we collect all annotations
from the ORKG excluding some properties that contain values of URIs and other
structural properties6. Afterwards that data was collected in a format that the
summarization model is trained on and can process. We split the data in 80-10-10
training-validation-testing split in favor of the testing set.

Table 1. Overview of models used in the evaluation, categorized per task. With the
number of parameters, the max input size they can handle, and what dataset they are
fine-tuned on beforehand to our training.

Model # of Params Input Size Finetuned on

Summarization

ProphetNet-large [38] 391M 2K CNN
BART-large [14] 460M 4K CNN
GPT2-large [23] 774M 2K -
Pegasus-large [41] 568M 2K Pubmed
BigBird-large [40] 576M 4K Pubmed
T5-large [24] 770M 4K -
Longformer-large [2] 459M 8K Pubmed

Question Answering

BERT-large [7] 335M 1K SQuAD2
Longformer-large [2] 459M 8K SQuAD2

Named Entity Recognition

BERT-large [7] 335M 1K CoNLL
RoBERTa-large [16] 355M 2K CoNLL

5 Data snapshot was taken on 02.02.2022.
6 Properties that are used solely for information organization and have no semantic
value.
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4.2 Baselines

Throughout the evaluation, multiple baselines were investigated (see Table 1).
Various language models were used that are capable and pre-trained on sum-
marization tasks. The maximum input size for each model varies depending on
its architecture. In our created dataset, the average entry contained around 5K
tokens, with a maximum around 9K and a minimum around 1.5K. Some of the
models we used (e.g. Pegasus) are capable of abstractive summarization, i.e. can
create summaries with words that don’t exist in the original input text. This is
important when annotated properties and values are not present in the text, but
are formulated differently.

Furthermore, the feasibility of the task is evaluated using two other categories
of NLP tasks. Extractive question answering (similarly to [39]) language models
are leveraged to try to extract values for certain questions. The questions are
formulated as follows: “what is the {property-label}?”. This type of baselines is
inherently flawed because some of the properties and values from the datasets are
not as is in the input text. Another method for evaluation is to perform named
entity recognition by recognizing the individual values as entities of interest and
then classifying them into one of the classes (properties).

4.3 Evaluation Results and Discussion

The evaluation took place on a machine with 2 GPUs RTX A6000 each with
a 48GB vRAM. Training scripts where adapted from the fine-tuning scripts of
each of model’s code repositories with the help of the Transformers [36] library.
The training used a batch size = 2 and epochs = 20 with early stopping enabled.

First, we evaluate the performance of various language models for structured
summarization. Table 2 shows the results of the Rouge F1 metric (following [41])
for all considered language models. Second, we evaluate the feasibility of the task
using techniques other than summarization, namely extractive question answer-
ing and using named entity recognition. Though the tasks of summarizations,
named entitiy recognition, and question answering are not directly comparable;
we include this analysis to show the validity of summarization as a candidate
for targeted IE tasks compared to other approaches. Table 3 describes the per-
formance of the two different approaches using two models for each case. Each
model has different maximum input size and for the QA task the models were
previously tuned on the SQuAD2 [25] and the CoNLL [27] datasets for the NER
task. For the QA metrics, the reported number are computed @1, meaning only
candidate results at the first place.

The results show that the task is viable using summarization and that struc-
tured summaries are able to extract the required information out of the scholarly
articles. When considering the normal summarization task, i.e. summarizing text
into a coherent shorter text snippet, the top model [21] at the time of writing
this article are performing with 51.05, 23.26, 46.47 for Rouge 1-2-L respectively7.

7 https://paperswithcode.com/sota/text-summarization-on-pubmed-1
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Fig. 2. Summarization metrics overview of used models including the inverse time
needed for training, and inverse memory consumption. Time and memory values are
normalized and inversed. Higher values are better.

Table 2. Rouge F1 scores for 1-gram, 2-
grams, and longest-gram variations of the
summarization models. Top best results are
indicated in bold, second best in italic.

Rouge-1 Rouge-2 Rouge-L

ProphetNet 31.1 12.5 23.7
BART 36.7 22.0 29.4
GPT2 16.1 3.6 9.3
Pegasus 27.1 11.7 21.2
BigBird 17.9 5.9 12.5
T5 12.2 2.8 7.9
Longformer 34.7 22.4 29.6

Table 3. Precision, recall, f1-score results
of other baseline models on the question an-
swering (QA) and named entity recognition
(NER) tasks.

Precision Recall F1-score

Question Answering

BERT 20.8 18.1 19.1
Longformer 23.7 22.8 23.2

Named Entity Recognition

BERT 17.2 17.0 17.0
RoBERTa 19.7 19.5 19.6

This kind of summarization is far easier than structured summarization since the
aim is merely coherent text creation, not structured summary of text fragments.
Examining Table 2 and Table 1, we note that input size affects the performance
of the model. The summarization model requires the processing of the complete
input article text to extract values from it, and if the model can not handle the
full article then it will suffer in performance metrics. We note that, BART and
Longformer summarization models performed best across all metrics.

ProphetNet and Pegaus performed well compared to other models, but they
were not able to beat Longformer in part due to limited maximum input size.
GPT2 model suffered due to its nature as a generative model. It was not able
to generate the structured summary rather generating more coherent text. Sur-
prisingly, although big models with a 4K max input size BigBird and T5 did not
perform comparatively to top models in the list.

Figure 2 depicts an overview of the Rouge metrics of the summarization
models as well as time and space requirement of each. Though Longformer is
the best performing model on average, it requires more time to train compared to
BART. On the other hand, BART requires almost twice the memory compared
to Longformer.
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Table 4. Examples: Expected vs. model predicted values.

Property Expected MORTY prediction

Preprocessing steps
Topic segmentation
Anaphora resolution
Pronoun resolution

Anaphora resolution

Data size 139 meetings 20 meetings

Summarization type Abstractive Abstractive

Evaluation metrics
ROUGE-2

ROUGE-SU4
F1

Study location Singapore The City of Singapore

In order to empirically judge if the summarization method is suitable for the
task of information extraction, we evaluate the approach against two categories of
tasks: Question Answering (QA) and Named Entity Recognition (NER). Table 3
shows the precision, recall, and f1-score metrics for two models in each category.
Due to the nature of the training data and the task itself, these two categories
are inherently flawed because they are extractive and not abstractive, meaning
that they aim at finding values from within the text, rather than compute with
novel values. Thus, these tasks are only able to retrieve parts of the values that
are in the text and the rest are unattainable to them. This explains why different
models in both tasks preform poorly.

Table 4 shows some examples of five properties from three different articles
with the expected values and the predicted values by the summarization model
(here Longformer). We observe that the model is able to extract partial values or
similar values but with different wordings, as well as exact values, and completely
different values. For instance, “Data size” is an annotation property, were the
expected value is not in the text, rather it is a summation of other values.
“Preprocessing steps” property aggregate values from multiple places in the text.
The remarks made in this section answers our research question.

5 Conclusion and Future Directions

The objective of this work was to leverage structured summarization for the task
of IE from scholarly articles. We evaluated various models on the summariza-
tion task, as well as compared against models performing question answering
and named entity recognition. The results show that summarization is a viable
and feasible approach for the IE task on scholarly articles. Based on our obser-
vations, we suggest the following open points in this domain: i) Enable longer
input sizes for large language models and evaluate them. ii) Experiment with
various structured summary formats and study their effect. iii) Incorporate ac-
tive learning with user feedback collected from a user interface within a scholarly
infrastructure. iv) Perform a user evaluation to study the efficacy of the IE task
on scholarly data for users.
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