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Abstract
This study presents a comparative analysis of three predictive models with an 
increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), 
generalised additive mixed models (GAMM), and the random forest spatiotemporal 
kriging models (RFSTK). These models are evaluated for their effectiveness in pre-
dicting PM

2.5
 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite 

differing methodologies, all models demonstrate proficient capture of spatiotempo-
ral patterns within air pollution data with similar out-of-sample performance. Fur-
thermore, the study delves into station-specific analyses, revealing variable model 
performance contingent on localised conditions. Model interpretation, facilitated 
by parametric coefficient analysis and partial dependence plots, unveils consistent 
associations between predictor variables and PM

2.5
 concentrations. Despite nuanced 

variations in modelling spatiotemporal correlations, all models effectively accounted 
for the underlying dependence. In summary, this study underscores the efficacy of 
conventional techniques in modelling correlated spatiotemporal data, concurrently 
highlighting the complementary potential of Machine Learning and classical statisti-
cal approaches.
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1 Introduction

The Lombardy region, situated in the heart of the Po Valley in Northern Italy, is 
known to be highly polluted due to the natural barrier created by the Alps hinder-
ing the dispersion of air pollutants (see, e.g., Pernigotti et al. 2012). Fine particulate 
matter ( PM2.5 ) has been identified as the most hazardous air pollutant (European 
Environmental Agency 2022a), representing a mix of air pollutants with a diameter 
less than 2.5 µm (see also Jerrett et al. 2005, for a review). Information about the 
air quality dynamics is essential for decision-makers to effectively mitigate adverse 
effects. Statistical and machine learning models can offer valuable insights into this 
behaviour and its consequences, including the identification of pollution sources and 
the factors influencing its behaviour and forecasting future pollution levels under 
various scenarios, such as changes in emissions or weather patterns. Moreover, the 
combination of different modelling techniques may further enhance the results. By 
leveraging the strengths of each approach, decision-makers can gain a more compre-
hensive understanding of air pollution and make more informed choices for mitiga-
tion strategies.

This paper compares three statistical and machine learning models with vary-
ing degrees of flexibility to elucidate daily PM2.5 concentrations in the Lombardy 
region. More precisely, hidden dynamic geostatistical models (HDGM), general-
ised additive mixed models (GAMM), and random forest spatiotemporal kriging 
(RFSTK) were utilised to describe the relationships between a large set of predic-
tors and PM2.5 concentrations. All three models employed in this study have been 
specifically developed to handle spatiotemporal data. HDGM incorporates a latent 
variable to capture spatiotemporal dependence, while external factors are included 
in a linear manner within the model. Conversely, GAMM allows for the nonlinear 
impact of exogenous predictors, which are estimated using splines. It incorporates 
spatiotemporal dependence by utilising a smoothing spline for spatial variation and a 
first-order autoregressive process for temporal dependence. Lastly, RFSTK employs 
a random forest (RF) to model the nonlinear effects of predictors and then a spati-
otemporal kriging model to account for the possible spatiotemporal dependence.

These models are frequently applied in diverse areas. First, HDGM has been 
primarily used for air pollution studies (see, e.g., Najafabadi et al. 2020; Taghavi-
Shahri et  al. 2020 for air pollution in Iran, and Maranzano et  al. 2023; Fassò 
et al. 2022; Calculli et al. 2015 for Italy). Notably, there are further applications 
in other fields, such as modelling bike-sharing data or coastal profiles (see Piter 
et al. 2022; Otto et al. 2021). HDGM is a linear mixed effects model with a spe-
cific structure of the random effects capturing the spatiotemporal dynamics of 
environmental data, which are widely applied in diverse areas (see, e.g., Jiang 
and Nguyen 2007 for an overview). Second, GAMM has been employed in vari-
ous areas, such as ecology (Knape 2016; Kneib et  al. 2011), psychology (Bono 
et  al. 2021), economics (Fahrmeir and Lang 2001), psycholinguistics (Baayen 
et  al. 2017), or event studies (Maranzano and Pelagatti 2023). Third, needless 
to say, models based on decision trees have demonstrated their effectiveness in 
capturing complex patterns in different fields (see, e.g., Belgiu and Drăguţ 2016 
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for an overview in remote sensing, or Qi 2012 for bioinformatics), particularly in 
combination with kriging approaches, e.g., in environmental (Sekulić et al. 2020; 
Chen et al. 2019; Guo et al. 2015), or air pollution studies (Liu et al. 2018, 2019). 
We refer the interested reader to the systematic literature review of Patelli et al. 
(2023) for a structured overview of these approaches. Furthermore, an interesting 
new approach is to use deep neural networks for the prediction and interpola-
tion of spatial data (see Nag et al. 2023; Daw and Wikle 2023). Hybrid models, 
integrating different models in one single framework and exhibiting good robust-
ness and adaptability, can combine the advantages of different models during the 
different stages of the modelling phase. Their adoption is rapidly increasing in 
various fields and predictions, including PM2.5 (e.g., Bai et al. 2022; Tsokov et al. 
2022; Sun and Xu 2022; Wang et  al. 2019; Ding et  al. 2021), greenhouse gas 
emissions (Javanmard and Ghaderi 2022), tea yield (Jui et al. 2022), depopulation 
in rural areas (Jato-Espino and Mayor-Vitoria 2023), or disease monitoring (Kishi 
et al. 2023) and calibration of citizen-science air quality data (Bonas and Castruc-
cio 2021).

All three models account for the intrinsic spatial, temporal, and spatiotemporal 
dynamics of the PM2.5 concentrations. This temporal and spatial dependence arises 
from the persistence of the particles in the atmosphere over a certain time and, 
simultaneously, from the displacement and spread of the particles to nearby areas, 
e.g., by wind (Merk and Otto 2020). Previous studies successfully employed sev-
eral statistical models to model air pollution scenarios in Northern Italy, such as 
generalised additive models (Bertaccini et  al. 2012), Bayesian hierarchical modes 
based on the stochastic partial differential equation approach (Cameletti et al. 2013; 
Fioravanti et al. 2021), or random forests (Stafoggia et al. 2019). In a comparative 
study for Northern Italy, Cameletti et al. (2011) studied the effectiveness of different 
statistical models in a Bayesian framework. Machine learning algorithms, includ-
ing random forests, are adept at capturing nonlinearities and interactions. Still, when 
applied to air quality modelling, the spatiotemporal nature of the phenomenon is 
often ignored (see, e.g., Fox et  al. 2020). Consequently, the model’s performance 
deteriorates, with worse outcomes than those obtained from Kriging with External 
Drift (KED), considered standard for modelling spatiotemporal phenomena. KED 
shows better results than random forest in Lombardy (Fusta Moro et al. 2022) and 
in the USA (Berrocal et al. 2020). On the other hand, machine learning algorithms 
outperform classical models if spatiotemporal dependence is not considered at all 
(Kulkarni et al. 2022). Lu et al. (2023) compared geostatistical and ML models for 
NO2 concentrations in Germany. Despite the limited number of studies comparing 
geostatistical and ML models, this subject is gaining increasing interest because the 
comparison provides valuable insights into the dynamics of the process, as we will 
illustrate below.

The remaining sections of this paper are organised as follows. Section 2 describes 
the general framework of the study and the data set used for our comparisons. Then, 
we explain the theoretical background of all considered models in Sect. 3. The com-
parative study is presented in Sect. 4, including fitting procedure (Sect. 4.1), residual 
analysis (Sect.  4.2), prediction performances within the cross-validation scheme 
(Sect. 4.3), and model interpretation (Sect. 4.4). Section 5 concludes the paper.
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2  Data

Our comparative analysis is based on the Agrimonia data set, a comprehensive 
daily spatiotemporal data set for air quality modelling available open-access on 
Zenodo (Fassò et al. 2023). Specifically, it includes air pollutant concentrations 
and important covariates for all 141 stations of the air quality monitoring net-
work in the Lombardy region and a 30 km buffer zone around the administrative 
boundaries. The data originates from multiple sources with different temporal 
and spatial resolutions. Using suitable aggregation and interpolation techniques 
described in Fassò et  al. (2023), the Agrimonia data set is available on a daily 
basis for all ground-level measurement stations in the study area. It spans six 
years, from 2016 to 2021, and includes daily air pollutant concentrations, weather 
conditions, emissions flows, land use characteristics, and livestock densities. We 
summarise all variables considered in this study in Table 1, including their main 
descriptive statistics.

The response variable is the PM2.5 concentration at the ground described in 
ensuing Sect.  2.1 in more detail, while the selected remaining variables of the 
Agrimonia data set serve as explanatory variables or features. They are summa-
rised and motivated in Sect. 2.2.

2.1  PM
2.5

 concentrations

The Agrimonia data set includes daily observations of several atmospheric pollut-
ants retrieved from the Italian air quality monitoring network. Not all monitoring 
stations are equipped with the same sensors, so we have excluded locations where 
stations were not measuring PM2.5 , which is the target pollutant of this study. The 
49 remaining stations are depicted in Fig. 1 (left) along with information about 
the type of surrounding area (rural, suburban, urban) and the primary nearest 
emission source (background, industrial, traffic), according to the EU classifica-
tion (European Environmental Agency 2022b). To depict the spatial variation of 
the PM concentrations, we coloured the stations according to the average daily 
concentration across the entire time period on the right-hand map in Fig. 1.

We consider the period from 2016 to 2020. The temporal variation of the 
observed PM2.5 concentrations, grouped by months and by type of area, is dis-
played through a series of boxplots in Fig. 2. The colours are chosen according 
to the type of the surrounding area. Not surprisingly, there is a clear seasonality 
with higher concentrations in winter due to meteorological conditions resulting in 
reduced air circulation. The median concentrations range between 10 µg/m−3 and 
40 µg/m−3 across the year. Thus, throughout the year, the median concentration 
was beyond the threshold of 5 µg/m−3 considered hazardous by the World Health 
Organisation guidelines (WHO 2021). From Fig.  2, it is clear that all different 
types of areas are similarly affected by poor air quality. This spatial homogeneity 
is also visually confirmed in the map of Fig. 1 where clusters of similar neigh-
bouring concentrations can be seen, suggesting a pronounced spatial dependence.
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To explore a possible spatiotemporal correlation, we estimate a spatiotempo-
ral variogram �(h, �) based on the sample variance of observations within certain 
distance ranges in space and time h and � (see, e.g., Cressie and Wikle 2015). 
Smaller values of the variogram for smaller distances indicate (short-term) sta-
tistical dependence. The spatiotemporal variogram of observed PM2.5 concen-
trations is depicted in Fig. 3. As expected, the variogram identifies an apparent 
correlation of the PM2.5 concentrations across time and space. More precisely, the 
values of the variogram for the first temporal lags indicate a pronounced temporal 
dependence within the first 5-6 days, i.e., approximately one week. Furthermore, 
we observe a noticeable spatial dependence since the variogram increases with 
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Fig. 1  Map of the 49 PM
2.5

 monitoring stations extracted from the Agrimonia data set. The purple line 
represents a 0.3◦ buffer around the administrative boundaries of the Lombardy region, the latter repre-
sented by the white line. Left: Stations are coloured according to the type of area. The shape indicates 
the main emission sources. Right: the stations are coloured according to the 2016–2020 average PM
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Fig. 2  Monthly boxplots of PM
2.5

 concentrations (on a log scale) measured in Lombardy, including the 
buffer area
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increasing spatial distances. It is important to note that this variation still includes 
spatial and temporal seasonalities and variations caused by exogenous factors.

2.2  Regressors

All models, which will later be used for the comparison, share the same set of 
regressors, including weather conditions and livestock densities. Based on an exten-
sive literature review on air pollution modelling, we carefully selected key weather 
variables and incorporated information regarding local-scale animal breeding. The 
specific variables considered are presented in Table  1 and their corresponding 
descriptive statistics. Furthermore, monthly indicator variables are included to cap-
ture the seasonality, as highlighted by Fig. 2. Below, we will provide a brief motiva-
tion for each variable and the descriptive statistics in Table 1 to offer an intuitive 
understanding of the explanatory variables.

Firstly, several studies have found that weather is a crucial factor in air quality 
modelling (Bertaccini et al. 2012; Ignaccolo et al. 2014; Merk and Otto 2020; Fassò 
et al. 2022; Grange et al. 2023; Chang and Zou 2022). Changes in weather conditions 
such as temperature, precipitation, and wind speed and direction can affect atmos-
pheric stability and turbulence, which can influence the transport and deposition of 

Fig. 3  Spatiotemporal variogram of the PM
2.5

 concentrations
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pollutants. For instance, temperature and boundary layer height are usually nega-
tively related to air pollutant concentrations. Similarly, we typically observe reduced 
PM concentrations during periods with increased precipitation or wind speed. On 
the contrary, the direction and size of the effect of the relative humidity are still 
debated, but it undoubtedly affects the PM2.5 concentrations (Zhang et al. 2017).

Secondly, we considered agricultural influences, which appear to impact air qual-
ity (e.g., Thunis et al. 2021; Lovarelli et al. 2020). The Livestock (LI) data used in 
this study provide information on the average density of pigs and cattle per munici-
pality (expressed as animals per  km2) in the vicinity of each station (within a radius 
of 10   km2). Including livestock data is essential to capture the impact of ammo-
nia ( NH3 ) emissions on air quality, as livestock farming is the major source of NH3 
emissions (up to 95%). Therefore, including LI data in air quality modelling can 
help better understand and mitigate livestock’s impact on air pollution levels.

Table 1  Variables selected from the Agrimonia data set 

Names are consistent with the data set (Fassò et al. 2023) and the accompanying data descriptor (Fassò 
et al. 2023)

Variable name and description [unit of measurement] Min Mean SD Max

Altitude 4 171.458 200.004 1194
  Height in relation to sea level [m]

AQ_pm25 0.506 20.896 16.353 182
  Fine particulate matter concentrations [µg/m−3]

WE_temp_2m − 20.650 12.916 8.233 32.880
  Air temperature at 2 m [°C]

WE_tot_precipitation 0 0.003 0.008 0.172
  Total precipitation [m]

WE_rh_mean 19.490 74.433 12.299 99.520
  Relative humidity [%]

WE_wind_speed_100m_mean 0.564 2.550 1.326 11.930
  Average wind speed at 100 m [m/s]

WE_blh_layer_max 13.790 1, 039.402 556.877 4, 421.000
  Daily maximum height of the air mixing layer layer 

m]
LI_pigs_v2 0.022 115.215 159.666 652.100

  Average density of pigs bred for the area (10  km2) 
surrounding the measurement stations [number/
km2]

LI_bovine_v2 1.543 46.241 47.463 178.800
  Average density of bovine bred for the area 

(10  km2) surrounding the measurement stations 
[number/km2]

LA_hvi 0.861 2.324 0.804 5.034
  High vegetation abundance  [m2/m2]

LA_lvi 0.865 2.208 0.560 3.662
  Low vegetation abundance  [m2/m2]
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3  Spatiotemporal statistical models and machine learning 
techniques

We consider the PM2.5 concentrations as realisations of a spatiotemporal stochastic 
process { Z(s, t) ∶ s ∈ D, t = 1, 2,… , T  }, where D is the spatial domain that contains 
a set of locations {si ∶ i = 1,… , n} (i.e., the ground-level measurement stations) and 
the temporal domain is discrete t = 1,… , T  (i.e., daily observations). Furthermore, 
we posit that Z(s,  t) might be influenced by external variables related to weather 
conditions, emissions, or agricultural activities. Throughout the remainder of the 
paper, the terms regressors, covariates, and features are used interchangeably. The 
spatiotemporal proximity of observations typically induces statistical dependence, 
and thus, the selected model candidates should appropriately incorporate this inher-
ent spatiotemporal dependence. To structure the model alternatives, we can decom-
pose the models into three terms, i.e.,

where S(s, t) is the large-scale component including the regressors, U(s, t) includes 
small-scale spatiotemporal effects, and �(s, t) comprises the measurement and mod-
elling errors, which are assumed to be a zero-mean white noise process.

3.1  Hidden dynamic geostatistical model

The first model selected is the HDGM, which serves as the comparative analy-
sis’ starting point or baseline method. It is a widely applied geostatistical model, 
first considered by Huang and Cressie (1996) as an extension of classical mixed-
effects models for univariate spatiotemporal data. Calculli et al. (2015) extended the 
HDGM to multivariate data. This modelling approach proved particularly useful for 
air quality modelling (e.g., Fassò and Finazzi 2011; Finazzi et al. 2013), as the com-
parative study of Cameletti et al. (2011) confirmed. The HDGM specifies the large-
scale effects as a linear regression model, i.e.,

where � = (�0,… , �p)
� is a vector of p fixed-effect coefficients, including the 

model intercept �0 , and X�(s, t) is the (s, t)-th entry of the fixed design matrix of the 
selected covariates/features. In other words, X�(s, t) is the vector of the observed 
covariates at location s and time point t.

The spatiotemporal dependence is modelled as small-scale effects by a geostatis-
tical process

where v is an unknown, homoscedastic scaling factor, which has to be estimated 
and describes the degree of the small-scale effects. Further, �(s, t) is a latent random 
variable with Markovian temporal dynamics given by

(1)Z(s, t) = S(s, t) + U(s, t) + �(s, t),

(2)S(s, t) = X�(s, t)
��,

(3)U(s, t) = v�(s, t) ,
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where gHDGM�(s, t − 1) is a hidden first-order autoregressive process with coeffi-
cient gHDGM . The temporal dependence is separated from the spatial interactions, 
which are modelled in �(s, t) . It is worth noting that this implies a separable space-
time covariance. Specifically, �(s, t) is a Gaussian process (GP) with zero mean, unit 
variance, and covariance matrix determined by an exponential spatial correlation 
function

with �HDGM being the range parameter, s and s′ are two distinct spatial locations, 
and the distance between them is given by the vector norm || ⋅ || . For this study, we 
will always employ the distance on the great circle, i.e., the length of the geodesic 
between s and s′ . The parameters of the random effects process �(s, t) are assumed to 
be in a space leading to a weakly stationary spatiotemporal process. Finally, �(s, t) is 
an identically distributed random error independent across space and time with zero 
mean and  constant variance �2

� .
The model parameter set � = {�, gHDGM , �HDGM , v, �

2
� } is estimated by the max-

imum-likelihood method using an expectation-maximisation (EM) algorithm (Cal-
culli et al. 2015). The estimation procedure is computationally implemented in the 
MATLAB software package D-STEM (see Wang et al. 2021).

3.2  Generalised additive mixed model

Compared to generalised additive models (GAM, Hastie and Tibshirani 1987), gen-
eralised additive mixed models (GAMM) include a random-effects component to 
describe correlated response variables, such as time series, spatial or spatiotemporal 
data. It extends the HDGM by allowing for linear and nonlinear regressive effects in 
a GAM fashion, i.e., the response variable linearly depends on smooth functions of 
the predictors. To be precise, the large-scale components are given by

with Xlinear(s, t)� linear being a linear parametric regression term of the first k covari-
ates, with a parameter vector � linear = (�0, �1,… , �k)

� , including the intercept term 
�0 . Moreover, 

∑m

j=1
�(j)(Xnonlinear,j(s, t))) is an additive term with nonlinear influence 

functions �(j) ∶ ℝ → ℝ of the j-th column in Xnonlinear,j for the remaining m regres-
sors. These nonlinear influences can be estimated along with the other model coef-
ficients, e.g., as regression splines or penalised splines (Fahrmeir et al. 2004).

The small-scale effects of the GAMM are specified as a first-order autoregres-
sive model for the temporal dependence and a smooth spatial surface for the spatial 
dependence, that is,

(4)�(s, t) = gHDGM�(s, t − 1) + �(s, t), �(s, t) ∼ GP ,

(5)�(||s − s�||;�HDGM) = exp(−||s − s�||∕�HDGM)

(6)
S(s, t) = Xlinear(s, t)

�� linear +

m∑

j=1

�(j)(Xnonlinear,j(s, t))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
nonlinear effects
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where gGAMM is the parameter representing the temporal dependence, where zero 
indicates no temporal correlation. The spatial dependence is modelled as a smooth 
surface C(s), which follows a Gaussian process with exponential covariance function 
with  range parameter �GAMM (Handcock and Wallis 1994). This structure is identical 
to the spatial term of the random effects model in HDGM as given by equation (5). 
In our case, �GAMM is estimated as proposed by Kammann and Wand (2003). The 
model estimation is computationally implemented in the package mgcv available in 
R (Wood 2017).

3.3  Random forest spatiotemporal kriging

For the third approach, RFSTK, we increase the flexibility of the model in the large-
scale component by considering a random forest (RF) algorithm. In other words, the 
third hybrid model combines an RF for the large-scale component S(s, t) with that of 
a spatiotemporal kriging model for U(s, t). The idea traces back to the combination 
of random forests and kriging, the so-called random forest residual kriging, which—
even if only considering spatial dependence—showed promising results compared 
to RF alone (e.g. Wang et al. 2019; Viscarra Rossel et al. 2014). For spatiotemporal 
data, RFSTK has been considered to model air quality, again showing good perfor-
mances (see Zhan et al. 2018; Shao et al. 2020).

Random forests are widely used tools in machine learning as an ensemble of mul-
tiple decision trees (Breiman 2001). They are constructed as an ensemble of multi-
ple decision trees, making them highly versatile and robust for a wide range of pre-
dictive tasks. In a regression problem, the prediction of the large-scale effect is 
obtained by averaging across the predictions of ntree decision trees. Each of these 
decision trees is trained or estimated from independent bootstrap samples Z∗

j
 of the 

input data. These bootstrap samples are created through random resampling without 
replacement (recommended for dependent variables, see Strobl et al. 2008) from the 
original dataset. The predictions of these individual decision trees 
Ê(Z∗

j
(si, t) ∣ X(si, t)) are then averaged to produce the final prediction. This ensemble 

approach helps to improve the robustness and generalisation of the model, reducing 
the risk of overfitting. Thus, the large-scale model is given by

where Ê(Z∗
j
(si, t) ∣ ⋅) is the prediction of the j-th decision tree. It is essential to 

emphasise that for regression trees within the random forest framework, the averag-
ing process should be conducted for each region of interest in the covariate space. 
This means that the model considers the different regions of the input space and 
provides predictions tailored to the characteristics of each region. Random forests 
excel at handling complex, nonlinear relationships and are widely used in various 

(7)U(s, t) =gGAMM(Z(s, t − 1) − S(s, t − 1) − C(s)) ,

(8)S(si, t) =
1

ntree

ntree∑

j=1

Ê(Z∗
j
(si, t) ∣ X(si, t) ∶ i = 1,… , n, t = 1,… , T),
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applications, including classification and regression tasks, as well as feature selec-
tion and data exploration.

The small-scale model of RFSTK is assumed to be a zero-mean, weakly station-
ary spatiotemporal Gaussian process

where the covariance matrix is obtained from a separable space-time correlation 
function given by

with ||s − s�|| and |t − t�| representing spatial and temporal distances between (s,  t) 
and (s�, t�) , respectively. That is, the exponential correlation functions are equiva-
lent to the spatial correlation function of the HDGM and GAMM, but the other 
two approaches consider an autoregressive temporal dependence, while the RFSTK 
employs a continuous correlation function for both the temporal and spatial depend-
ence. The parameters and decision trees are estimated in a two-step procedure. First, 
predictions for the large-scale component are obtained using an RF, computation-
ally implemented in the R package randomForest (Liaw and Wiener 2002). Sec-
ond, to adjust the predictions of the RF accounting for space-time interactions, the 
parameters of the separable space-time correlation function in (10) are estimated by 
variography on RF residuals, implemented in the R package gstat (Gräler et al. 
2016).

4  Comparative study

In the subsequent section, we present an application of each methodology on air 
quality data extracted from the Agrimonia data set (see Sect.  2). We start with 
exploring the model fitting process and examining the residuals. Subsequently, we 
evaluate the predictive performances of the models through cross-validation. Finally, 
our attention shifts to the interpretation of each model and its comparison. Drawing 
upon this comparison, we offer practical suggestions for integrating the modelling 
outcomes into other environmental analyses. All source codes can be found in the 
supplementary material.

4.1  Model fitting

To ensure the comparability of the results across all three model alternatives, we 
considered all predictors listed in Table  1 in their original scale. Transformations 
such as a logarithmic transformation of the response variable did not generally yield 
better prediction results and model fits. This suggests an additive structure in the 
large-scale effects, and its coefficients can directly be interpreted as marginal (lin-
ear) effects.

The large-scale component S(s,  t) of HDGM models the regressors’ influ-
ence through linear relationships while the small-scale U(s,  t) captures the 

(9)U(s, t) = �̃�(s, t) ∼ GP,

(10)�(||s − s
�||, |t − t

�|) = �(||s − s
�||, �

RFSTK
s
) ⋅ �(|t − t

�|, �
RFSTK

t
)
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spatiotemporal dependence through a latent variable. The large-scale component 
S(s,  t) of GAMM captures nonlinear effects by estimating a functional relation-
ship between the predictors and the response variable. Identifying predictors 
requiring nonlinear relationships entailed simulating model residuals from a lin-
ear regression model and graphing them alongside their corresponding predictors, 
including confidence intervals, as suggested in Fasiolo et  al. (2020). A smooth 
nonlinear effect is estimated if a pattern outside the confidence bands is detected. 
In this study, all continuous variables, except for altitude, required a smooth term 
represented by a penalised thin plate regression spline. The spatial dependence is 
modelled within the GAMM as a two-dimensional smooth surface C(s) governed 
by a zero-mean Gaussian process with an exponential covariance function, while 
the temporal dependence is represented by an autoregressive term of order one. 
The model is estimated through the restricted maximum likelihood method using 
the package mgcv in R (Wood 2011).

To optimise the RF algorithm, we evaluate the out-of-bag root mean squared 
error across various hyperparameter settings, including the number of trees ntree , 
the number of candidate predictors for building each tree, and the size of the final 
leaves of each tree. Our findings indicate that utilising default settings (500 trees, 
the number of candidate variables equal to one-third of the number of the pre-
dictors, and final leaf size of 5) within the R package randomForest (Liaw 
and Wiener 2002) is suitable. Finally, RF predictions are adjusted by adding RF 
residual predictions obtained by fitting an ordinary spatiotemporal kriging model 
by using the R package gstat (Gräler et al. 2016).

To highlight the difference between the model fits, we compared the in-sample 
(i.e. using the entire data set) predictive performance of all the models, separately 
for the large-scale component (LS) and the full model (FM), including the space-
time effects. The comparison was based on the root mean squared errors (RMSE), 
mean absolute errors (MAE), and the coefficient of determination  R2. The results 
are reported in Table  2. HDGM generally had better prediction capabilities 
and lower computational costs than the other models when considering the full 
model. For comparison, RFSTK model had relatively good prediction capabilities 
but was computationally intensive, particularly when including the spatiotem-
poral kriging. For our dataset, the GAMM model had the lowest in-sample fit. 
Since C(s) serves as the constant model intercept in GAMM, we incorporated 

Table 2  In-sample performance of the three models assessed by RMSE (in µg/m3), and the adjusted 
coefficient of determination  R2

The fit of the only  large-scale component (LS) is compared to the full model (FM)

HDGM GAMM RFSTK

LS FM LS FM LS FM

RMSE [µg/m−3] 11.92 1.814 11.456 8.468 8.245 5.361
MAE [µg/m−3] 0.068 − 0.002 − 0.002 − 0.003 − 0.129 − 0.019
R2 0.469 0.988 0.509 0.732 0.746 0.893
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C(s) in the LS component (i.e., S(s, t) + C(s) ) to enable direct comparisons with 
the regression terms in HDGM.

In general, the informativeness of the in-sample results can be questionable 
due to the potential sensitivity of models to the training data or overfitting. To 
address this issue, we evaluated prediction performances within a cross-valida-
tion scheme, which is explained in Sect. 4.3. For instance, this analysis revealed 
that the HDGM could generalise the estimated relation to obtain outperforming 
out-of-sample predictions across space, while we observe a serious overfit in the 
in-sample case due to the flexibility of the random-effects model. We will focus 
on this result in more detail below.

Fig. 4  In-sample residual diagnostics for the three models
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4.2  Residual analysis

The residual distributions of the full model (FM) are symmetric and slightly lepto-
kurtic, which means there is a greater chance of extreme values than a normal distri-
bution, indicating that all models are less reliable at predicting extreme events. This 
is not surprising as they are designed to predict the mean level of the distribution 
and not for modelling the extremes.

The model uncertainties across time, shown in Fig. 4a, where the standard devia-
tion of the full model residuals is depicted for each month, reveal that all three mod-
els have varying uncertainty throughout the year. More precisely, the PM concentra-
tions in the winter periods could be less accurately predicted than in the summer 
periods. Therefore, when the models are implemented for forecasting or scenario 
analysis, it is recommended to use a heteroscedastic model to not underestimate the 
prediction accuracy in the winter months (or overestimate for the summer period). 
For instance, spatiotemporal stochastic volatility models could be estimated for the 
residual process, as demonstrated in Otto et al. (2023) for much simpler mean mod-
els. However, in this paper, our focus will be on the comparison of the mean predic-
tions of the three models.

Furthermore, we investigated the spatial and temporal dependence of the residu-
als, estimating temporal autocorrelation functions (ACF) and spatiotemporal vari-
ograms. The results are shown in Fig. 4c and b. Different patterns were observed 
across the three models. While HDGM shows a small negative correlation at the 
beginning, indicating a slight overestimation of the temporal dependence, the spatial 
correlation is satisfactorily captured. On the contrary, GAMM leads to significantly 
lower temporal correlations in the residuals but does not capture the spatial depend-
ence, as highlighted by the variogram through the bottom line for time lag 0. The 
RFSTK is characterised by a more pronounced positive autocorrelation for the first 
3-4 lags, as shown by the correlogram (ACF), consistently with the model specifica-
tion that does not consider an autoregressive term. The spatiotemporal correlation 
was clearly captured, as confirmed by the flat variogram. It is worth noting that the 
scales of the variograms differ significantly. This is because the prediction perfor-
mances of the models also differ significantly in the in-sample case.

4.3  Cross‑validation and comparison of predictive performance

Three factors—randomness of partition, mutual independence of test errors, and 
independence between the training set and test set—are crucial considerations in the 
context of cross-validation. We employed the leave-one-station-out cross-validation 
(LOSOCV) scheme, which is a variation of the commonly used leave-one-out cross-
validation (LOOCV) approach applied in the spatiotemporal framework (e.g., Meyer 
et al. 2018; Nowak and Welsh 2020). For this method, a complete time series of a 
single station withheld is not used in the model’s training but is used to evaluate the 
model’s prediction performance. In this way, the validation blocks are sufficiently 
large not to destroy the spatiotemporal dependence. In general, utilising a LOOCV 
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provides an assessment of model performance but may overlook the temporal cor-
relation of errors. By adopting a LOSOCV scheme, we gain the ability to examine 
the autocorrelation of errors at each station. This approach unveils distinct behav-
iours among stations, influenced, for instance, by factors like atmospheric stabil-
ity, thereby accounting for temporal dependence. All stations within the Lombardy 
region were used for validation, except for the station “Moggio.” It is located in the 
mountains with unique climatic conditions that are not well-represented by all other 
stations. After implementing the LOSOCV approach, we obtained prediction results 
from the full models for the 31 stations included in the validation process. It is worth 
noting that we applied the identical cross-validation scheme for each model so that 
the results are directly comparable.

The prediction performances assessed in the LOSOCV scheme in terms of mean 
squared errors (MSE), RMSE, MAE, and  R2 are summarised in Table  3. HDGM 
is confirmed to be the best model, but, compared to the in-sample residuals in 
Table 2, the uncertainty is on a realistic level with an RMSE comparable to the other 
models. That is, the overfit in the in-sample data did not affect the generalisation 
ability of the HDGM. This could be due to the linear structure in the large-scale 
component. While a more flexible model (e.g., random forest or artificial neural 
networks) could produce extremely bad predictions in areas of insufficient training 
data or overfitting, the linear structure of the HDGM regression term prevents us 
from obtaining such extreme predictions. Generally, we observe satisfactory pre-
diction performances for all three model alternatives, with GAMM and the RFSTK 
approach being in second and third place, respectively. The substantial difference 
between the in-sample residuals from the model trained on the entire dataset and the 
errors from the LOSOCV scheme highlights the importance of validating prediction 
uncertainty through a cross-validation scheme, which accounts for the spatiotem-
poral nature of the data. Interestingly, the GAMM obtained a similar fit in terms of 
the coefficient of determination in both the in-sample case and the cross-validation. 
Thus, we would not overestimate the prediction capabilities when only looking at 
the in-sample fit. In contrast to the other models, the GAMM incorporates a rela-
tively ‘weaker’ small-scale structure, capturing spatiotemporal dependence with a 
smooth spatial surface, serving as a relatively simple constant intercept. This design 
prevents overfitting and, thereby, results in similar training and testing performance.

Eventually, we compare the prediction performances for each station separately 
because we observed that the order of the best-fitting model is not homogeneous 
across space. For this reason, Fig. 5 displays the cross-validation RMSE on a map 
by the size of differently coloured circles. That is, the colour of the smallest circle 
at each station corresponds to the model with the best prediction performance, 

Table 3  Prediction performance 
indices evaluated with the 
LOSOCV scheme [µg/m3]

MSE RMSE MAE R2

HDGM 35.373 5.948 4.376 0.879
GAMM 78.042 8.834 6.239 0.733
RFSTK 53.099 7.286 5.119 0.819
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whereas the largest circles show the worst predictions. Below, we will discuss 
two selected cases with interesting behaviour: “Lecco-Via Sora” (station 706) and 
“Como - Via Cattaneo” (station 561). Furthermore, we depict the cross-validation 
prediction errors across time for these two stations in Fig. 6.

HDGM and RFSTK performed worse than GAMM at the station “Lecco - Via 
Sora” (station ID 706). This is because Lecco is characterised by good air quality, 
but its neighbouring areas are affected by high PM2.5 concentrations. The GAMM 
model, which does not include strong, time-varying spatial interactions, was able 
to capture this difference in air quality better than the HDGM and RFSTK mod-
els. This is confirmed by the fact that the 15-day moving average of the test errors 
(calculated as observed minus predicted) displayed in Fig.  6 shows that both 
HDGM and RFSTK overestimate the PM2.5 concentrations at this station.

At the other selected station, “Como - Via Cattaneo” (station ID 561), the 
RFSTK model performed the worst while HDGM showed the best performance. 
The reason may lie in its poor ability to capture temporal dependence well. The 
concentrations of PM2.5 at this station are very stable over time, and the RFSTK 
model does not fully capture this stability. This is shown by the 15-day mov-
ing average of the test errors in Fig. 6, which shows that RFSTK underestimates 

Fig. 5  Prediction performances expressed as RMSE calculated for each station within the LOSOCV 
scheme. The stations “Lecco - Via Sora” (ID 706) and “Como - Via Cattaneo” (ID 561) are labelled

Fig. 6  15 days moving averages on the prediction errors (in   µg/m−3) for each model (HDGM, GAMM 
and RFSTK from left to right)
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PM2.5 concentrations, especially in the winter periods, when the air circulation is 
at its lower limit and temporal stability is the highest.

These results highlight the need to select the model according to the local con-
ditions carefully. The best model for one location may not be the best for another. 
Moreover, model averaging could additionally improve the predictions.

4.4  Model interpretation

In the following three sections, we delve into the outcomes derived from our mod-
els, offering a comprehensive interpretation of each estimated model.

4.4.1  HDGM

Table  4 summarises the estimated � parameters of the large-scale component of 
HDGM. Except for bovine density (LI_bovine_v2), all coefficients significantly 
differ from zero. The signs of the majority of the coefficients are consistent with 

Table 4  Estimated coefficients of the large-scale component of the HDGM model

Variable Coefficient Std. Err t-value p-value

(Intercept) 39.626 1.399 28.332 < 0.0001
February − 7.222 1.316 5.490 < 0.0001
March − 15.298 1.474 10.378 < 0.0001
April − 21.569 1.552 13.898 < 0.0001
May − 27.608 1.596 17.295 < 0.0001
June − 27.662 1.666 16.602 < 0.0001
July − 27.493 1.690 16.270 < 0.0001
August − 29.316 1.681 17.436 < 0.0001
September − 27.611 1.628 16.956 < 0.0001
October − 20.335 1.555 13.080 < 0.0001
November − 16.602 1.493 11.117 < 0.0001
December − 8.526 1.349 6.318 < 0.0001
Altitude − 0.007 < 0.001 20.180 < 0.0001
WE_wind_speed_100m_mean − 1.946 0.048 40.520 < 0.0001
WE_tot_precipitation − 159.416 7.145 22.310 < 0.0001
WE_temp_2m 0.505 0.037 13.595 < 0.0001
WE_rh_mean 0.186 0.008 24.188 < 0.0001
WE_blh_layer_max − 0.003 < 0.001 19.628 < 0.0001
LI_pigs_v2 0.005 0.001 9.288 < 0.0001
LI_bovine_v2 0.003 0.002 1.147 0.251
LA_lvi − 4.441 0.225 19.698 < 0.0001
LA_hvi −0 .494 0.141 3.507 < 0.0001
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our expectations: summer months are related to reductions of PM2.5 concentrations 
(about − 27/29  µg/m−3), every 1 m/s of wind speed is related to a decrease of 2 µg/
m−3 of PM2.5 , and every 10 mm of precipitation are related to an expected decrease 
of 1.6 µg/m−3 of PM2.5 . Moreover, each degree Celsius increase in temperature is 
related to an increase of 0.5  g/m−3 of PM2.5 , which seems counter-intuitive at first 
glance. However, the temperature effect should be interpreted together with the 
monthly fixed effects. The relative humidity is positively related to PM2.5 , so high 
humidity levels ( 100% ) are associated with an increase of 18 µg/m−3 with respect to 
extremely dry air. The maximum height of the boundary layer is negatively associ-
ated with PM2.5 ; every increase of 1000  m is related to an expected decrease of 3   
g/m−3 of PM2.5.

Regarding the agricultural impact, we observe that the number of pigs in the ter-
ritory is positively associated, and an increase of 1000 animals per  km2 corresponds 
to an expected increase of 5   g/m−3 of PM2.5 . Both vegetation indices are negatively 
related to PM2.5 , while low vegetation (e.g. bushes) has a stronger effect than higher 
vegetation (e.g. trees).

The small-scale effect of the HDGM is defined by a latent variable �(s, t) in (4), 
which has an autoregressive structure of order one and a Gaussian process with 
exponential covariance function given by (5). The spatial range parameter �HDGM 
describes the decay of the exponential correlation function and is estimated to be 
equal to 0.79◦ . Thus, there is a large spatial correlation (i.e., > 0.37 ) for surround-
ing stations in an area of 80 kilometres. The estimate of the temporal autoregressive 
parameter is equal to ĝHDGM = 0.72 . This indicates that the time series has low-fre-
quency components with relatively gradual changes over time.

4.4.2  GAMM

The estimated coefficients of our second model, the GAMM, are presented in 
Table 5. In the first section of the table, the estimated coefficients for the linear part 
of the model (including the monthly fixed effects) are reported, while the second 
part summarises the effective degrees of freedom of the nonlinear effects as a meas-
ure of complexity/non-linearity. Compared to HDGM, the monthly fixed effects 
are slightly smaller, indicating that the seasonal variation is better captured by the 
weather variables, which enter the model nonlinearly. Complex nonlinear relation-
ships with large degrees of freedom characterised the smooth terms of the penalised 
thin plate regression splines. All of them are significant except for the density of 
bovine. To illustrate the difference between the linear effects in the HDGM and the 
nonlinear effects in GAMM, we depict some selected regression splines in Fig.  7 
along with the estimated linear functions of the HDGM. These curves correspond 
to the marginal effect of variables neglecting the spatiotemporal correlation (i.e., 
without the influence of neighbouring sites). In general, we observe a similar ten-
dency for both models. An exceptional notice would be the height of the boundary 
layer, which has a negative effect for up to 500 kilometres, and afterwards, the effect 
changes to be positive. By contrast, the effect is negative for the HDGM, which 
mimics the effect in the areas where most observations are located. The grey con-
tour lines in Fig. 7 additionally illustrate the estimated kernel density of the couple 
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Table 5  Estimated coefficients of the large-scale component of the GAMM

Linear relationships (A) are identified by the � coefficients, while for nonlinear relationships (B), the 
complexity of the curve is described by the effective degrees of freedom (edf)

A: Linear effects Coefficient Std. Err. t-value p-value

(Intercept) 37.3052 0.4541 82.1536 < 0.0001
February − 7.2787 0.3559 − 20.4496 < 0.0001
March − 11.6052 0.4169 − 27.8335 < 0.0001
April − 14.6751 0.5173 − 28.3679 < 0.0001
May − 20.5547 0.6097 − 33.7147 < 0.0001
June − 22.0366 0.6978 − 31.5800 < 0.0001
July − 23.2506 0.7287 − 31.9076 < 0.0001
August − 24.5223 0.6813 − 35.9908 < 0.0001
September − 22.7519 0.5743 − 39.6143 < 0.0001
October − 18.9167 0.4687 − 40.3605 < 0.0001
November − 15.8692 0.4005 − 39.6225 < 0.0001
December − 11.4140 0.3541 − 32.2379 < 0.0001
Altitude − 0.0023 0.0012 − 1.9378 0.0526

B: Nonlinear effects edf Ref.df F-value p-value

WE_temp_2m 8.5851 8.5851 267.3673 < 0.0001
WE_tot_precipitation 7.2891 7.2891 210.3836 < 0.0001
WE_rh_mean 8.0060 8.0060 602.4805 < 0.0001
WE_wind_speed_100m_mean 6.5219 6.5219 214.0715 < 0.0001
WE_blh_layer_max 8.8552 8.8552 278.6934 < 0.0001
LI_pigs_v2 7.9422 7.9422 7.2958 < 0.0001
LI_bovine_v2 3.7865 3.7865 1.2020 0.2962
LA_hvi 8.4121 8.4121 23.1429 < 0.0001
LA_lvi 7.4114 7.4114 82.1857 < 0.0001
Longitude, Latitude 27.7758 32.0000 19.0023 < 0.0001

Fig. 7  Regression splines (continuous lines), including their 95% confidence intervals (coloured shad-
ows), and HDGM regression coefficients (dashed lines) for relevant weather regressors (i.e., boundary 
layer height, relative humidity, temperature, and wind speed). Grey contour lines represent the estimated 
two-dimensional kernel densities of the PM

2.5
 concentrations and the corresponding regressors
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( PM2.5 , WE_regressor). We note that the confidence intervals around the fitted 
curves are smaller in areas with higher density.

The GAMM smooth spatial surface C(s) is displayed in Fig. 8. This smoothing 
spline C(s) capturing the spatial dependence identifies correlated areas. Our study 
shows higher concentrations of PM2.5 in the area of Como and the area of Brescia, 
while in the southwest, corresponding to the Ligurian border, lower concentrations. 
Furthermore, the estimated range parameter of the exponential covariance function 
is �̂�GAMM = 1.16◦ , which corresponds to approximately 110  km. Hence, it is in a 
similar range to the other two models. Furthermore, the autoregressive parameter 
is estimated as ĝGAMM = 0.67 , similar to HDGM and indicating a medium temporal 
persistence across one day. In this sense, the models show similar spatiotemporal 
dynamics as the HDGM.

4.4.3  RFSTK

The interpretability of the RFSTK model can be challenging due to its intricate 
nature. However, the variable importance factor (VIF) can help to identify the most 
important variables. To determine the VIF, the mean decrease accuracy technique 
is employed, which assesses the variables’ importance by measuring the increase 
in MSE (IncMSE) when the values of the regressors are permuted (Breiman 2001). 
The results are depicted in Fig. 9.

Like the previous models, the random forest cannot fully capture the seasonality 
by the included (weather) regressors, as we can see by the high importance of the 
monthly effects. The most important variables after the month are the height of the 
boundary layer, the temperature and the (low) vegetation index. The bovine density 
is the least important variable, and indeed, it was not significantly different from 
zero for the other two models.

Fig. 8  Estimated smoothing spline Ĉ(s) of GAMM, which corresponds to the PM
2.5

 predicted on a regu-
lar grid using the large scale of GAMM, where all regressors are set to 0. Stations are marked with a 
black cross, Lombardy boundaries are shown in grey, and the black line marks the surrounding buffer 
zone
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For the RFSTK, the spatiotemporal dependence is captured by considering a 
spatiotemporal Gaussian process with a separable exponential covariance function 
for space and time. The corresponding variogram model is fitted to the RF residu-
als. For our analysis, we obtained exponential decay parameters of �̂�RFSTKt

= 0.78 
days and �̂�RFSTKs

= 0.48◦ for time and space, respectively, the latter corresponds to 
approximately 50 km. The spatial range parameters are smaller than HDGM because 
the large scale (RF) explains more variation than the linear large-scale term of 
HDGM, as shown in Tab. 2.

4.5  Model comparison

Intriguing observations arise when comparing the results of the three models. First, 
the temporal variation plays an essential role in all three models, as evidenced by the 
magnitude of the temporal dummy coefficients in HDGM and GAMM (with Janu-
ary as the worst month for air quality) and ‘month’ receiving the highest ranking in 
the VIF of RFSTK. This suggests that weather variables alone are insufficient for 
capturing all seasonal variability, even considering the most important weather vari-
ables. Interestingly, temperature, which is usually negatively associated with PM2.5 , 
was found to be positively related to PM2.5 conditional on the month. This is due to 
the opposing effect of temperature and monthly indicator variables. Furthermore, 
surprisingly, the significance tests in both HDGM and GAMM on livestock densities 

Fig. 9  Variable Importance Factor (measured as IncMSE) for the 11 selected features in the large-scale 
component of the RFSTK
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suggested that bovine livestock density is not related to PM2.5 concentrations, while 
pig density is.

In Fig.  10, we depict partial dependence plots (PDPs) (Friedman 2001) for 
selected covariates of all three models along with two-dimensional kernel density 
estimates of the pairs of PM2.5 concentrations and the corresponding regressors in 
the hot (summer and spring) and cold (autumn and winter) months as yellow and 
purple contours, respectively. PDPs allow us to compare the relationships identified 
within the large-scale of each model and highlight the transition from linear to more 
complicated relationships. Contrary to the marginal effects, these PDPs account for 
the typical range of the other predictors. This is accomplished by associating a fixed 
value of a regressor across all observations with the mean of predicted PM2.5 con-
centrations. The mean of prediction is calculated for different fixed values of the 
regressor, typically moving from the minimum to the maximum on an equidistant 
grid. In other words, PDPs show how the predicted outcome of the changes as a sin-
gle predictor variable is varied while all other variables are held constant.

It is worth noting that all three models demonstrate similar trends, even though 
they have different levels of flexibility. For example, they all show that PM2.5 con-
centrations are higher in cold periods. However, slight differences exist in the mod-
els’ behaviour, especially for temperature. This suggests there may be nonlinear 
influences or interactions between temperature and other variables. For example, 
temperature may have a different impact on PM2.5 concentrations in different alti-
tudes or seasons. RFSTK can capture these interactions more effectively than the 

Fig. 10  PDP calculated on the large-scale of all three models. Contour lines represent kernel density esti-
mation of the couple ( PM

2.5
 , WE_regressor), in yellow for hot months and purple for cold months
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other two models, which is why its PDP is flatter. This suggests that RFSTK is bet-
ter at capturing the complex relationships between PM2.5 concentrations and other 
variables.

This finding has important implications for the development of air quality mod-
els. It suggests that machine learning (ML) techniques can be used to improve 
the performance and interpretability of classic geostatistical approaches, such as 
HDGM or GAMM. This is because ML techniques can identify nonlinearities and 
interactions that are difficult to identify using traditional methods. In the second 
step, the more interpretable models could include the nonlinear effects and inter-
actions, e.g. GAMM. The comparison of PDPs also highlights the complementary 
nature of ML techniques and classic approaches. ML techniques are better at captur-
ing complex relationships, while traditional approaches are easier to interpret and 
allow for straightforward uncertainty estimation. Thus, we advertise combining ML 
techniques and classic approaches for modelling and predicting PM concentrations.

5  Conclusion

This study compares three statistical models to model and predict Lombardy’s 
daily PM2.5 concentrations and simultaneously provide an intuitive interpretation of 
the influencing factors. The models considered are HDGM, GAMM and RFSTK. 
All three models used are designed to handle spatiotemporal data, although each 
employs different methods to model external factors and spatiotemporal depend-
ence. The models can generally be divided into large-scale components, small-scale 
spatiotemporal effects, and measurement and modelling errors. The large-scale com-
ponents account for external influences, whereas the small-scale components model 
the spatiotemporal correlation, and the modelling errors contain the unexplained 
variation of the process.

The large-scale component of the three models showed significant monthly fixed 
effects for all three models, with negative coefficients for all months. As expected, 
January was confirmed to be the month with the worst air quality. Furthermore, we 
used partial dependence plots to compare relationships within the large-scale of 
the three models and highlight the transition from linear to more complex relation-
ships. The generalised additive mixed model and the random forest approach exhibit 
similar patterns as they can handle nonlinear relationships. The geostatistical model 
is constrained by its linear specification, which fits in areas with sufficiently many 
observations of the covariates. At the same time, linear specification prevents mak-
ing unreliable predictions, even in regions with few observations for the model esti-
mation. Thus, the hidden dynamic geostatistical showed the best performances in 
the cross-validation study with an average RMSE of 6.31 µg/m3.

By comparing marginal effects, it is possible to better understand potential inter-
actions and nonlinearities, thereby improving the model’s specification. Indeed, the 
HDGM can produce good results due to its ability to incorporate latent variables. 
Still, at the same level of predictive performances, it is preferable to have a model 
that explains more on a large scale, extending the degree of interpretability. Thus, it 
can be highly beneficial to detect nonlinear behaviours or interactions by machine 
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learning, which can then be used to improve the specification of the “simpler” but 
faster model integrated with a more efficient spatiotemporal correlation structure. 
ML techniques and classic statistical models can be used in complementary ways. 
To further improve the forecasting performance, ensemble forecasts from different 
statistical and ML models could be considered in future research.

The comparison of models in the field of air quality highlighted that the spati-
otemporal correlation is a crucial aspect that requires careful consideration. How-
ever, this correlation is also very sensitive. If not handled properly, it can lead to 
overfitting the model to the specific data used, thereby hindering its ability to gen-
eralise the discovered relations. This limitation was illustrated by the discrepancy 
in the performance of the HDGM model when evaluated on the entire data set ver-
sus when assessed using the leave-one-station-out cross-validation approach. In our 
analysis, we applied similar models for the spatiotemporal interactions and small-
scale effects, which are readily implemented in existing software. In future research, 
a more detailed comparison of the small-scale model specification across different 
model alternatives would be interesting.

In conclusion, our findings suggest that classic approaches, such as the hidden 
dynamic geostatistical model, yield the best predictive performance while being 
computationally efficient. However, more complex algorithms like random forest 
can enhance the identification of nonlinear and interaction effects. Therefore, these 
methods can be used complementary, ushering in a new era where newly developed 
techniques support traditional and well-established practices.
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