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Abstract
The principle of linearized stability and instability is established for a classicalmodel describ-
ing the spatial movement of an age-structured population with nonlinear vital rates. It is
shown that the real parts of the eigenvalues of the corresponding linearization at an equi-
librium determine the latter’s stability or instability. The key ingredient of the proof is the
eventual compactness of the semigroup associated with the linearized problem, which is
derived by a perturbation argument. The results are illustrated with examples.
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1 Introduction

The dynamics of a population structured by space and age is described by a density function
u = u(t, a, x) ≥ 0, where t ≥ 0 refers to time, a ∈ J := [0, am] is the age variable with
maximal age am ∈ (0,∞) (individuals may attain age greater than am but are no longer
tracked in the model), and x ∈ � is the spatial position within a domain � ⊂ R

n . Then

ū(t, x) :=
∫ am

0
�(a, x) u(t, a, x) da

is the weighted local overall population with weight � (i.e. the total number of individuals
at time instant t and spatial position x when � ≡ 1). Assuming that the death rate m =
m(ū(t, x), a) ≥ 0 and the birth rate b = b(ū(t, x), a) ≥ 0 depend on this quantity and on
age, the governing equations for the density u are
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∂t u + ∂au = divx
(
d(a, x)∇xu

) − m(ū(t, x), a)u , t > 0 , a ∈ (0, am) , x ∈ �,

(1.1a)

u(t, 0, x) =
∫ am

0
b(ū(t, x), a)u(t, a, x) da , t > 0 , x ∈ �, (1.1b)

Bu(t, a, x) = 0 , t > 0 , a ∈ (0, am) , x ∈ ∂� , (1.1c)

u(0, a, x) = u0(a, x) , a ∈ (0, am) , x ∈ �, (1.1d)

where

Bu := (1 − δ)u + δ∂νu , δ ∈ {0, 1} ,
means either Dirichlet boundary conditions u|∂� = 0 if δ = 0 or Neumann boundary
conditions ∂νu = 0 if δ = 1. Note that the evolution problem (1.1) exhibits hyperbolic
(due to the aging term) and parabolic (due to the diffusion) features and involves a nonlocal
condition (1.1b) with respect to age.

Since many years linear and nonlinear age-structured populations with spatial diffusion
have been the focus of intensive research, see e.g. [25, 30] and the references therein. In
particular, problems of the form (1.1) [9, 17, 18, 21] or variants thereof such as models
including nonlocal diffusion [13] or compartmental models for infectious diseases spreading
[5–7, 10, 11, 14] have been studied by various authors addressing questions related e.g. to
well-posedness or qualitative aspects under different assumptions (none of these reference
lists is close to being complete though). The present paper contributes to the study of stability
of equilibria to (1.1). While most research so far on stability of equilibria in age-structured
diffusive populations apply the principle of linearized stability in an ad-hoc fashion, the aim
of the present paper is to provide a proof therefor.

The existence of (nontrivial) equilibria (i.e. time-independent solutions) to (1.1) has been
established under fairly general conditions by the author in a series of papers using fixed
point methods [22] or bifurcations techniques [20, 22, 24]. A principle of linearized stability
for age-structured populations without spatial diffusion was established in [16], see also [29].
As for the case including spatial diffusion a criterion for linearized stability was derived in
a recent paper [28]. Herein, we shall refine and simplify considerably this stability result
and complement it with an instability result. In particular, we show that the spectrum of the
linearization (as an unbounded operator) indeed consists of eigenvalues only whose real parts
determine stability and instability.

To give a first flavor of our findings we present a paraphrased version for the particular
case of the trivial equilibrium φ = 0. In the next section we will state a more general version
for an arbitrary equilibrium.

Writing the unique strong solution v to the heat equation

∂av = divx
(
d(a, x)∇xv

)
, (a, x) ∈ J × �, v(0, x) = v0(x) , x ∈ �,

subject to the boundary condition Bv = 0 on ∂� and the initial value v0 ∈ Lq(�) in the
form v(a) = �∗(a, 0)v0, a ∈ J , we define by

Q0 :=
∫ am

0
b(0, a) exp

(
−

∫ a

0
m(0, σ ) dσ

)
�∗(a, 0) da

a (compact and positive) operator on Lq(�) and denote by r(Q0) its spectral radius. Then
the stability property of the trivial equilibrium is determined according to:

123



Journal of Dynamics and Differential Equations

Proposition 1.1 Let q > n and assume that

d : J × �̄ → (0,∞) , b : R × J → (0,∞) , m : R × J → R
+

are (sufficiently) smooth functions.

(a) If r(Q0) < 1, then the trivial equilibrium to (1.1) is exponentially asymptotically stable
in L1

(
(0, am),W 1

q (�)
)
.

(b) If r(Q0) > 1, then the trivial equilibrium to (1.1) is unstable in L1
(
(0, am),W 1

q (�)
)
.

In case of Neumann boundary conditions (i.e. δ = 1), the spectral radius is

r(Q0) =
∫ am

0
b(0, a) exp

(
−

∫ a

0
m(0, s)ds

)
da .

Proposition 1.1 is a special case of Proposition 5.1 below. In fact,we canprove amuchmore
general result for an arbitrary equilibrium. For this purpose, we shall consider problem (1.1)
in an abstract setting and introduce the notation1

A(a)w := divx
(
d(a, ·)∇xw

)
, w ∈ E1 ,

where e.g. E1 := W 2
q,B(�) with q ∈ (1,∞) denotes the Sobolev space of functions w ∈

W 2
q (�) satisfying the boundary condition Bw = 0 on ∂�. Then A(a) is for each a ∈ J the

generator of an analytic semigroup on the Banach lattice E0 := Lq(�) with compactly and
densely embedded domain E1. The abstract formulation of (1.1) now reads

∂t u + ∂au = A(a)u − m(ū(t), a)u , t > 0 , a ∈ (0, am) , (1.2a)

u(t, 0) =
∫ am

0
b(ū(t), a) u(t, a) da , t > 0 , (1.2b)

u(0, a) = u0(a) , a ∈ (0, am) , (1.2c)

with

ū(t) :=
∫ am

0
�(a) u(t, a) da .

We then shall focus on (1.2) and present our main stability result for this problem. Later we
interpret our findings for the concrete equation (1.1) and variants thereof. The regularizing
effects from the diffusion, reflected in (1.2) by the operator A, are of great importance
since they will allow us to handle the nonlinearities under mild assumptions (mainly on the
regularity of the vital rates m and b).

2 Main Results

General Assumptions and Notations

Set J := [0, am]. Throughout the following, E0 is a real Banach lattice ordered by a closed
convex cone E+

0 (in the followingwe do not distinguish E0 from its complexification required
at certain points) and

E1
d

↪−↪→ E0 ,

1 We suppress the x-variable consistently in the abstract formulation by considering functions with values in
function spaces on �. In particular, the data m, b, � may include an x-dependence and u(t, a) ∈ E0.
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that is, E1 is a densely and compactly embedded subspace of E0. We write L(E1, E0) for
the Banach space of bounded linear operators from E1 to E0, set L(E0) := L(E0, E0), and
denote by L+(E0) the positive operators. For a (possibly unbounded) operator

A : dom(A) ⊂ E0 → E0

we mean by D(A) its domain dom(A) endowed with the graph norm. For θ ∈ (0, 1) and an
admissible interpolation functor (·, ·)θ (see [3]), we put Eθ := (E0, E1)θ and equip it with
the order naturally induced by E+

0 . We use the notion

Eθ := L1(J , Eθ ) , θ ∈ [0, 1] ,
and observe Eθ ↪→ E0 for θ ∈ [0, 1]. We assume that there is ρ > 0 such that

A ∈ Cρ
(
J ,H(E1, E0)

)
(2.1a)

and

A(a) is resolvent positive for each a ∈ J , (2.1b)

whereH(E1, E0) is the subspace of L(E1, E0) consisting of all generators of analytic semi-
groups on E0 with domain E1. Then (2.1) and [3, II.Corollary 4.4.2] imply that A generates
a positive, parabolic evolution operator

{
�(a, σ ) ∈ L(E0) ; a ∈ J , 0 ≤ σ ≤ a

}
,

on E0 with regularity subspace E1 in the sense of [3, Section II.2.1] (see Appendix B for a
summary of the most important properties of parabolic evolution operators).

Well-Posedness

Before stating our main stability result, let us recall the well-posedness of the nonlinear
problem (1.2) established in [21, 28]. In the following, let α ∈ [0, 1) be fixed. We assume
for the birth and the death rate that

[
v̄ → b(v̄, ·)] ∈ C1−

b

(
Eα, L

+∞
(
J ,L(Eα, E0)

))
, (2.2a)[

v̄ → m(v̄, ·)] ∈ C1−
b

(
Eα, L

+∞
(
J ,L(Eα, E0)

))
, (2.2b)

where C1−
b stands for locally Lipschitz continuous maps that are bounded on bounded sets.

The weight function � is such that

� ∈ C
(
J ,L+(Eθ )

)
, θ ∈ {0, α, ϑ} , (2.2c)

for some ϑ ∈ (0, 1) (if α ∈ (0, 1), then it suffices to take ϑ = α). We use the notation

v̄ :=
∫ am

0
�(a) v(a) da ∈ Eθ , v ∈ Eθ .

Observe that integrating (1.2) formally along characteristics yields the necessary condition
that a solution u : R

+ → E0 with initial value u0 ∈ E0 satisfies the fixed point equation

u(t, a) =
{
�(a, a − t) u0(a − t) + GF(u)(t, a) , a ∈ J , 0 ≤ t ≤ a ,

�(a, 0) Bu(t − a) + GF(u)(t, a) , a ∈ J , t > a ,
(2.3a)
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where F(u) := −m(ū, ·)u and

Gv(t, a) :=
∫ t

(t−a)+
�(a, a − t + s) v(s, a − t + s) ds (2.3b)

for v : R
+ → Eα , and where Bu satisfies the Volterra equation

Bu(t) =
∫ t

0
b(ū(t), a)�(a, 0)Bu(t − a) da +

∫ am

t
b(ū(t), a)�(a, a − t) u0(a − t) da

+
∫ am

0
b(ū(t), a)GF(u)(t, a) da

(2.3c)

for t ≥ 0 (we set b(v̄, a) := 0 whenever a /∈ J ). That is, u(t, 0) = Bu(t) for t ≥ 0 by (2.3a),
while (2.3c) implies

Bu(t) =
∫ am

0
b(ū(t), a) u(t, a) da , t ≥ 0 .

The following result was established in [28] (see also [21]):

Proposition 2.1 Suppose (2.1) and (2.2). For every u0 ∈ Eα there exists a unique maximal
solution u = u(·; u0) ∈ C

(
I (u0),Eα

)
to problem (1.2) on somemaximal interval of existence

I (u0) = [0, Tmax (u0)); that is, u(t; u0) satisfies (2.3) for t ∈ I (u0). If

sup
t∈I (u0)∩[0,T ]

‖u(t; u0)‖Eα
< ∞

for every T > 0, then the solution exists globally, i.e., I (u0) = R
+. Finally, if u0 ∈ E

+
α , then

u(t; u0) ∈ E
+
α for t ∈ I (u0).

Proof This is [28, Proposition 2.1]. �
Note that assumptions (2.1) and (2.2) are not really restrictive and satisfied for (sufficiently)

smooth functions m, b, � and diffusion operators as in the introduction, see Sect. 5.

Linearized Stability and Instability

In the following, an equilibrium (i.e. a time-independent solution) φ ∈ C(J , Eα) to (1.2) is
a mild solution (see (B.3b)) to

∂aφ = A(a)φ − m(φ̄, a)φ , a ∈ (0, am) , φ(0) =
∫ am

0
b(φ̄, a) φ(a) da . (2.4)

Clearly, φ ≡ 0 is always an equilibrium. As pointed out above, fairly general conditions
sufficient for the existence of at least one positive non-trivial equilibrium φ ∈ E1∩C(J , Eα)

were presented in earlier works [20, 22, 24].
An equilibrium φ ∈ C(J , Eα) to (1.2) is said to be stable in Eα provided that for

every ε > 0 there exists δ > 0 such that, if u0 ∈ BEα
(φ, δ), then Tmax (u0) = ∞ and

u(t; u0) ∈ BEα
(φ, ε) for every t ≥ 0, where u(·, u0) denotes the maximal solution to (1.2)

from Proposition 2.1. The equilibrium φ ∈ C(J , Eα) is asymptotically exponentially stable
in Eα , if it is stable and there are r > 0 and M > 0 such that

‖u(t; u0) − φ‖Eα
≤ Me−r t‖u0 − φ‖Eα

, t ≥ 0 ,

for u0 ∈ BEα
(φ, δ). Finally, an equilibrium φ ∈ C(J , Eα) is unstable inEα , if it is not stable.
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Assumptions

Let φ ∈ E1 ∩ C(J , Eα) be a fixed equilibrium to (1.2). We assume that the death and the
birth rate are continuously Fréchet differentiable at φ̄. More precisely, for α ∈ [0, 1) still
fixed, we assume that

Eα → L∞
(
J ,L(Eα, E0)

)
, z �→ m(z, ·) is differentiable at φ̄ ∈ E1 , (2.5a)

Eα → L∞
(
J ,L(Eα, E0)

)
, z �→ b(z, ·) is differentiable at φ̄ ∈ E1 , (2.5b)

such that for v ∈ E0 we can write (with ∂ indicating Fréchet derivatives with respect to φ̄)

m(v̄, ·)v − m(φ̄, ·)φ = m(φ̄, ·)(v − φ) + ∂m(φ̄, ·)[v̄ − φ̄]φ + Rm(v − φ) (2.5c)

and

b(v̄, ·)v − b(φ̄, ·)φ = b(φ̄, ·)(v − φ) + ∂b(φ̄, ·)[v̄ − φ̄]φ + Rb(v − φ) , (2.5d)

where for the reminder terms Rm : Eα → E0 and Rb : Eα → E0 there exists an increasing
function do ∈ C(R+,R

+) with do(0) = 0 such that do(r) > 0 for each r > 0 with

‖Rm(v)‖E0 + ‖Rb(v)‖E0 ≤ do(r) ‖v‖Eα
, ‖v‖Eα

≤ r , (2.5e)

and

‖Rm(v1) − Rm(v2)‖E0 + ‖Rb(v1) − Rb(v2)‖E0 ≤ do(r) ‖v1 − v2‖Eα
,

‖v1‖Eα
, ‖v2‖Eα

≤ r . (2.5f)

For technical reasons, we assume for the birth rate that (for some ϑ ∈ (0, 1), see (2.2c))

b(φ̄, ·) ∈ C
(
J ,L(E0)

) ∩ L∞
(
J ,L(Eθ )

)
, θ ∈ {0, α, ϑ} , (2.5g)

and [
z �→ ∂b(φ̄, ·)[z]φ] ∈ L(

Eθ ,Eθ

)
, θ ∈ {0, α, ϑ} , (2.5h)

while for the death rate we impose that

m(φ̄, ·) ∈ Cρ
(
J ,L(Eβ, E0)

)
(2.5i)

for some β ∈ [0, 1) and [
a �→ ∂m(φ̄, a)[·]φ(a)

] ∈ C
(
J ,L(E0)

)
. (2.5j)

The fact that we can handle nonlinearities m and b being defined on interpolation spaces Eα

guarantees great flexibility in concrete applications. Indeed, the assumptions imposed above
are rather easily checked in problems such as (1.1) since they are mainly assumptions on the
regularity of the data (see Sect. 5 for details).

In [28] it was shown that the stability of an equilibrium φ can be deduced from the (formal)
linearization of (1.2) at φ given by

∂tv + ∂av = A(a)v − m
(
φ̄, a

)
v − ∂m

(
φ̄, a

)[v̄(t)]φ(a) , t > 0 , a ∈ (0, am) ,

(2.6a)

v(t, 0) =
∫ am

0
b
(
φ̄, a

)
v(t, a) da +

∫ am

0
∂b

(
φ̄, a

)[v̄(t)]φ(a) da , t > 0 , (2.6b)

v(0, a) = v0(a) , a ∈ (0, am) , (2.6c)

123



Journal of Dynamics and Differential Equations

with ∂ indicating Fréchet derivatives with respect to φ̄. More precisely, according to [28],
an equilibrium φ is locally asymptotically stable if the semigroup associated with the lin-
earization (2.6) has a negative growth bound. The characterization of the latter, however,
was left open. The aim of the present research now is to refine and improve this stability
result and complement it with an instability result. Concretely, we prove that the real parts
of the eigenvalues of the generator of the semigroup associated with the linearization (2.6)
determine stability or instability of the equilibrium. Thus, we establish the classical principle
of linearized stability for (1.2).

In the following, an eigenvalue of the generator associated with (2.6) means a number
λ ∈ C for which there is a nontrivial mild solution w ∈ C(J , E0), w �≡ 0, to

λw + ∂aw = A(a)w − m(φ̄, a)w − ∂m(φ̄, a)[w̄]φ(a) , a ∈ (0, am) , (2.7a)

w(0) =
∫ am

0
b(φ̄, a)w(a) da +

∫ am

0
∂b(φ̄, a)[w̄]φ(a) da . (2.7b)

Here is the main result:

Theorem 2.2 Let α ∈ [0, 1). Assume (2.1), (2.2), and (2.5), where φ ∈ E1 ∩ C(J , Eα) is
an equilibrium to (1.2). The following hold:

(a) If Re λ < 0 for any eigenvalue λ to (2.7), then φ is exponentially asymptotically stable
in Eα .

(b) If Re λ > 0 for some eigenvalue λ to (2.7), then φ is unstable in Eα .

Theorem 2.2 follows from Theorem 4.1 below and is an extension of [16, Theorem 2],
[29, Theorem 4.13] to the case with spatial diffusion. We point out again that the ability to
work in the spaces Eα (instead of only in E0) allows us to treat general nonlinearities in the
vital rates m and b, see Sect. 5.

Statement (a) of Theorem 2.2 refines the stability result of [28, Theorem 2.2]. Indeed, one
of our main achievements herein is the characterization of the growth bound of the semigroup
associated with (2.6) in terms of the spectral bound of the semigroup generator. Moreover,
with the instability statement (b) we complete [28, Theorem 2.2] and so provide a concise
characterization of stability or instability of an equilibrium to (1.2) via the linear eigenvalue
problem (2.7). Actually, we shall later see in Sect. 4 that the latter can be rephrased in a
somewhat more accessible way for applications.

The crucial key for the proof of Theorem2.2 is to show that the semigroup onE0 associated
with the linear problem (2.6) (as well as its restriction to Eα) is eventually compact. As a
consequence the growth bound of the semigroup and the spectral bound of the corresponding
generator coincide and further fundamental spectral properties of the generator can be derived.
We emphasize that, even though the semigroup associated with (2.6) when m ≡ 0 is known
to have this eventual compactness property (see [26]), it is by no means obvious that this
property is inherited when including a nontrivial death rate m. This is due to the fact that, on
the one hand, a perturbation of the generator of an eventually compact semigroup does not
in general generate again an eventually compact semigroup, and, on the other hand, that the
perturbation ∂m(φ̄, a)[w̄]φ(a) appearing in (2.6a) constitutes a nonlocal perturbation with
respect to w. In order to establish the fundamental compactness property nonetheless, we
make use of the particular form of this perturbation, see (4.1d).
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In Sect. 3 we first focus on the linear problem (2.6) and prove the eventual compactness of
the corresponding semigroup on E0 and of its restriction to Eα . This and the implied spectral
properties of the generator are summarized in Theorem 3.3 and Corollary 3.5.

In Sect. 4 we use the crucial fact derived in [28] that the difference u(·; u0) − φ can be
represented in terms of the linearization semigroup associated with (2.6), see (4.13). Since
the growth bound of the linearization semigroup is determined by the spectral bound of the
semigroup generator as shown previously in Sect. 3, this yields statement (a) of Theorem 2.2.
Moreover, the construction of backwards solutions to problem (1.2) in Lemma 4.5 under the
assumptions of statement (b) of Theorem 2.2 then leads to the instability result. This part
of the proof is inspired by [29, Theorem 4.13]. In Proposition 4.7 we give an alternative
formulation of the eigenvalue problem (2.7).

In Sect. 5 we consider concrete examples and prove, in particular, Proposition 1.1 on
the stability analysis of the trivial equilibrium to problem (1.1). Moreover, we provide an
instability result for a nontrivial equilibrium, see Proposition 5.4.

Finally, two appendices are included. In Appendix A we provide the technical and thus
postponed proof of Proposition 3.4. In Appendix Bwe briefly summarize the main properties
of parabolic evolution operators which play an important role in our analysis and are used
throughout.

3 The Linear Problem

In order to prepare the proof of Theorem 2.2 we focus our attention first on the linear problem

∂t u + ∂au = A�(a)u , t > 0 , a ∈ (0, am) , (3.1a)

u(t, 0) =
∫ am

0
b�(a) u(t, a) da , t > 0 , (3.1b)

u(0, a) = ψ(a) , a ∈ (0, am) , (3.1c)

where A� satisfies

A� ∈ Cρ
(
J ,H(E1, E0)

)
(3.2)

for some ρ > 0 and where we impose for the birth rate that there is ϑ ∈ (0, 1) with

b� ∈ L∞
(
J ,L(Eθ )

)
, θ ∈ {0, ϑ} . (3.3)

We then denote by

{
��(a, σ ) ∈ L(E0) ; a ∈ J , 0 ≤ σ ≤ a

}

the parabolic evolution operator on E0 with regularity subspace E1 generated by A� (see
Appendix B) and use the notation

‖b�‖θ := ‖b�‖L∞(J ,L(Eθ )) .
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3.1 Preliminaries

Wefirst recall some of the results from [26]. Formal integrating of (3.1a) along characteristics
entails that the solution

[S(t)ψ](a) := u(t, a) , t ≥ 0 , a ∈ J ,

to (3.1) for given ψ ∈ E0 = L1(J , E0) is of the form

[
S(t)ψ

]
(a) :=

{
��(a, a − t) ψ(a − t) , a ∈ J , 0 ≤ t ≤ a ,

��(a, 0) Bψ(t − a) , a ∈ J , t > a ,
(3.4a)

with Bψ := u(·, 0) satisfying the linear Volterra equation

Bψ(t) =
∫ t

0
χ(a) b�(a)��(a, 0) Bψ(t − a) da

+
∫ am−t

0
χ(a + t) b�(a + t)��(a + t, a) ψ(a) da , t ≥ 0 ,

(3.4b)

where χ is the characteristic function of the interval (0, am). Note that Bψ is such that

Bψ(t) =
∫ am

0
b�(a)

[
S(t)ψ

]
(a) da , t ≥ 0 . (3.5)

It follows from [26] that there is a unique solution

[ψ �→ Bψ ] ∈ L(
E0,C(R+, E0)

)
(3.6)

to (3.4b) and that (S(t))t≥0 defines a strongly continuous semigroup on E0 enjoying the
property of eventual compactness and exhibiting regularizing effects induced by the parabolic
evolution operator ��. Moreover, its generator can be characterized fully. We summarize
those properties which will be important for our purpose herein:

Theorem 3.1 Suppose (3.2) and (3.3).
(a) (S(t))t≥0 defined in (3.4) is a strongly continuous, eventually compact semigroup on

the space E0 = L1(J , E0).
If A�(a) is resolvent positive for every a ∈ J and if b� ∈ L∞

(
J ,L+(E0)

)
, then the

semigroup (S(t))t≥0 is positive.

(b) In fact, given α ∈ [0, 1), the restriction (S(t)|Eα
)t≥0 defines a strongly continuous

semigroup on Eα , and there are Mα ≥ 1 and κα ∈ R such that

‖S(t)‖L(Eα) + tα‖S(t)‖L(E0,Eα) ≤ Mα e
κα t , t ≥ 0 . (3.7)

(c) Denote by A the infinitesimal generator of the semigroup (S(t))t≥0 on E0. Then ψ ∈
dom(A) if and only if there exists ζ ∈ E0 such that ψ ∈ C(J , E0) is the mild solution to

∂aψ = A�(a)ψ − ζ(a) , a ∈ J , ψ(0) =
∫ am

0
b�(a)ψ(a) da . (3.8)

In this case, Aψ = ζ .
Finally, the embedding D(A) ↪→ Eα is continuous and dense for α ∈ [0, 1).

Proof This follows from [26, Theorem 1.2, Corollary 1.3, Theorem 1.4]2. �
2 The positivity assumption [26, Assumption (1.5)] is in fact not needed in order to prove [26, Theorem 1.4],
since for Re λ > 0 large, (1 − Qλ)

−1 ∈ L(E0) is ensured by the fact that ‖Qλ‖L(E0) < 1.
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That ψ ∈ C(J , E0) ⊂ E0 is the mild solution to (3.8) with ζ ∈ E0 means that

ψ(a) = ��(a, 0)ψ(0) −
∫ a

0
��(a, σ ) ζ(σ ) dσ , a ∈ J .

The spectrum of the generator A has been investigated in [26] when the generated semi-
group (S(t))t≥0 is positive. In the following, let

s(A) := sup {Re λ ; λ ∈ σ(A)}
be the spectral bound of the generator A and

ω0(A) := inf

{
ω ∈ R ; sup

t>0

(
e−ωt‖etA‖L(E0)

)
< ∞

}

be the growth bound of the corresponding semigroup S(t) = etA, t ≥ 0.

Proposition 3.2 Suppose (3.2) and (3.3). Let A�(a) be resolvent positive for every a ∈ J
and b� ∈ L∞

(
J ,L+(E0)

)
such that b�(a)��(a, 0) ∈ L+(E0) is strongly positive3 for a in

a subset of J of positive measure. Then

s(A) = ω0(A) = λ0 ,

where λ0 ∈ R is uniquely determined from the condition r(Qλ0) = 1 with r(Qλ) denoting
for λ ∈ R the spectral radius of the strongly positive compact operator Qλ ∈ L(E0) given
by

Qλ :=
∫ am

0
e−λa b�(a)��(a, 0) da .

Proof This is [26, Corollary 4.3]. �

3.2 Eventual Compactness of the Perturbed Semigroup

If B ∈ L(E0), then G := A + B generates also a strongly continuous semigroup on E0,
which, however, is not necessarily eventually compact even though the semigroup generated
by A is. Nonetheless, we next shall prove that for particular (nonlocal) perturbations of the
form

[Bψ](a) :=
∫ am

0
q(a, σ ) ψ(σ) dσ , a ∈ J , ψ ∈ E0 , (3.9a)

with q(a, σ ) = q(a)(σ ) satisfying

q ∈ C
(
J , L∞(J ,L(E0))

)
, (3.9b)

the semigroup generated by G = A+B is eventually compact. This yields more information
on the spectrum of G and implies, in particular, that the spectral bound s(G) and the growth
bound ω0(G) coincide. This we shall apply later on to the linearization of problem (1.2) in
which the perturbation operator B has the particular form (3.9). Note that B ∈ L(E0) with

‖B‖L(E0) ≤ am ‖q‖∞ , ‖q‖∞ := ‖q‖C(J ,L∞(J ,L(E0))) .

3 Recall that if E is an ordered Banach space, then T ∈ L(E) is strongly positive if T z ∈ E is a quasi-interior
point for each z ∈ E+ \ {0}, that is, if 〈z′, T z〉E > 0 for every z′ ∈ (E ′)+ \ {0}.
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For the birth rate we impose additionally that

b� ∈ C
(
J ,L(E0)

)
. (3.9c)

We then shall prove the following theorem which is fundamental for our purpose:

Theorem 3.3 Suppose (3.2), (3.3), (3.9), and letA be the generator of the semigroup (S(t))t≥0

defined in (3.4).Then the semigroup (T(t))t≥0 on E0 generated by G := A + B is eventually
compact. In particular,

s(G) = ω0(G) (3.10)

and the spectrum σ(G) = σp(G) is countable and consists of poles of the resolvent R(·,G)

of finite algebraic multiplicities (in particular, σ(G) is a pure point spectrum). Moreover, for
each r ∈ R, the set {λ ∈ σ(G) ; Re λ ≥ r} is finite.

Finally, if A�(a) is resolvent positive for every a ∈ J , if b� ∈ L∞
(
J ,L+(E0)

)
, and if

B ∈ L+(E0), then the semigroup (T(t))t≥0 is positive, and if s(G) > −∞, then s(G) is an
eigenvalue of G.

Theorem 3.3 relies on the following crucial observation:

Proposition 3.4 Suppose (3.2), (3.3), and (3.9). Set

VS(t)ψ :=
∫ t

0
S(t − s)B S(s)ψ ds , t > 0 , ψ ∈ E0 .

Then VS : (0,∞) → K(E0), i.e. VS(t) is a bounded compact operator on E0 for every
t ∈ (0,∞).

The proof of Proposition 3.4 uses the explicit form of the semigroup (S(t))t≥0 in (3.4) and
the particular form of the perturbation B in (3.9a), but is rather technical and thus postponed
to Appendix A.

Proof of Theorem 3.3

Recall thatS(t) = etA andT(t) = et(A+B). Theorem3.1 ensures that the semigroup (S(t))t≥0

is eventually compact. Therefore, since B ∈ L(E0) and since VS is compact on (0,∞)

according to Proposition 3.4, we infer from [12, III.Theorem 1.16 (ii)] (with k = 1) that
also (T(t))t≥0 is eventually compact. This implies (3.10) due to [12, IV.Corollary 3.11]
while the remaining statements regarding the spectrum of G = A + B now follow from [12,
V.Corollary 3.2].

Finally, if A�(a) is resolvent positive for every a ∈ J and b� ∈ L∞
(
J ,L+(E0)

)
, then

Theorem 3.1 entails that S(t) = etA is positive. Since B ∈ L+(E0), it is well-known that the
semigroup T(t) = et(A+B) is positive as well, e.g. see [4, Proposition 12.11]. Since E0 is a
Banach lattice, this implies that s(G) is an eigenvalue of G if s(G) > −∞ according to [4,
Corollary 12.9]. This yields Theorem 3.3. �

We can derive now also properties of the semigroup (T(t))t≥0 restricted to Eα .

Corollary 3.5 Suppose (3.2), (3.3), (3.9), and letAbe the generator of the semigroup (S(t))t≥0

defined in (3.4). Let (T(t))t≥0 be the strongly continuous semigroup on E0 generated by
G = A + B. For every α ∈ [0, 1), the restriction

(
T(t)|Eα

)
t≥0 is a strongly continuous,

eventually compact semigroup on Eα . Its generator Gα is the Eα-realization of G. For the
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corresponding (point) spectra it holds that σ(G) = σ(Gα). Moreover, for every ω > s(G)

there is Nα ≥ 1 such that

‖T(t)‖L(E0) + ‖T(t)‖L(Eα) + tα‖T(t)‖L(E0,Eα) ≤ Nαe
ωt , t ≥ 0 . (3.11)

Proof (i) It was shown in [26, Theorem 1.2] that the semigroup (T(t))t≥0 on E0 generated
by G = A + B is given by

T(t)φ = S(t)φ +
∫ t

0
S(t − s)B T(s) φ ds , t ≥ 0 , φ ∈ E0 , (3.12)

and that there are Cα ≥ 1 and ςα ≥ 0 such that

‖T(t)‖L(E0,Eα) ≤ Cα e
ςα t t−α , t > 0 . (3.13)

We then infer from (3.7) and (3.12) that

‖T(t)φ‖Eα
≤ Mαe

κα t‖φ‖Eα
+ Mα‖B‖L(Eα,E0)

∫ t

0
eκα(t−s) (t − s)−α ‖T(s)φ‖Eα

ds , t ≥ 0 ,

for φ ∈ Eα so that Gronwall’s inequality implies

‖T(t)‖L(Eα) ≤ cαe
ω1t , t ≥ 0 , (3.14)

for some cα ≥ 1 and ω1 > 0. Moreover, since

‖T(t)φ − φ‖Eα
≤ ‖S(t)φ − φ‖Eα

+
∫ t

0
‖S(t − s)‖L(E0,Eα) ‖B‖L(Eα,E0) ‖T(s)φ‖Eα

ds

for t ≥ 0 and φ ∈ Eα , the strong continuity of
(
T(t)|Eα

)
t≥0 on Eα follows from the strong

continuity of (S(t)|Eα
)t≥0 on Eα guaranteed by Theorem 3.1 and from (3.7) and (3.14).

Therefore,
(
T(t)|Eα

)
t≥0 is a strongly continuous semigroup on Eα . Writing

T(t)|Eα
= T(t − t0)T(t0)|Eα

and noticing that T(t0) ∈ L(E0) is compact for t0 large due to Theorem 3.3 while T(t − t0) ∈
L(E0,Eα) by (3.13) for t > t0, we deduce that

(
T(t)|Eα

)
t≥0 is eventually compact on Eα .

(ii) Denote by Gα the generator of the restricted semigroup to Eα so that T(t)|Eα
= etGα

for t ≥ 0. We prove that Gα is the Eα-realization of G. To this end, denote the latter by GEα

and let ζ ∈ dom(Gα). Then

1

t

(
T(t)ζ − ζ

) = 1

t

(
etGα ζ − ζ

)
→ Gαζ in Eα ↪→ E0 as t → 0 ,

hence ζ ∈ dom(G) and

Gζ = Gαζ ∈ Eα . (3.15)

Consequently, ζ ∈ dom(GEα
) and GEα

ζ = Gαζ .
Conversely, let ψ ∈ dom(GEα

) and λ ∈ ρ(G)∩ ρ(Gα) (this is possible since both G and
Gα are semigroup generators). Then

ψ ∈ dom(G) = dom(A) ⊂ Eα

by Theorem 3.1 and Gψ ∈ Eα . Thus, since (λ − G)ψ ∈ Eα and since λ ∈ ρ(Gα), there is
a unique ζ ∈ dom(Gα) such that (λ − Gα)ζ = (λ − G)ψ . Since (λ − Gα)ζ = (λ − G)ζ

by (3.15) and since λ ∈ ρ(G), we conclude ψ = ζ ∈ dom(Gα). Therefore, Gα = GEα
; that

is, Gα coincides with the Eα-realization of G.
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(iii)We claim thatσ(G) = σ(Gα), wherewe recall that bothσ(G) = σp(G) andσ(Gα) =
σp(Gα) are point spectra since both G and Gα generate eventually compact semigroups by
Theorem 3.3 respectively (i). Let λ ∈ σ(G). Then there is ψ ∈ dom(G) \ {0} with

Gψ = λψ ∈ dom(G) = dom(A) ⊂ Eα

by Theorem 3.1. From (ii) we deduce that ψ ∈ dom(Gα) with Gαψ = λψ . Therefore,
λ ∈ σ(Gα).

Conversely, let μ ∈ σ(Gα). Then there is ζ ∈ dom(Gα) \ {0} with Gαζ = μζ . Since
Gαζ = Gζ , we conclude that μ ∈ σ(G).

(iv) Consider now ω > s(G). Since G and Gα both generate eventually compact semi-
groups, it follows from (iii) and [12, IV. Corollary 3.11] that

ω0(G) = s(G) = s(Gα) = ω0(Gα) .

Thus, for ω − ε > s(G) with ε > 0 there is cα ≥ 1 such that

‖T(t)‖L(E0) + ‖T(t)‖L(Eα) ≤ cαe
(ω−ε)t , t ≥ 0 . (3.16)

On the one hand, it follows from (3.13) and (3.16) for t > 1 that

‖T(t)‖L(E0,Eα) ≤ ‖T(1)‖L(E0,Eα) ‖T(t − 1)‖L(E0) ≤ Cα e
ςα cα e

(ω−ε)(t−1)

≤ cα Cα e
−ω+ε

(
sup
s>0

sαe−εs
)

t−α eωt .

On the other hand, due to (3.13) we have, for 0 < t ≤ 1,

‖T(t)‖L(E0,Eα) ≤ Cα e
ςα t−α ≤ Cα e

ςα e|ω| t−α eωt .

Consequently, there is Nα ≥ 1 such that

‖T(t)‖L(E0,Eα) ≤ Nα t
−α eωt , t > 0 ,

and the assertion follows. �
Remark 3.6 One can show that A + B has compact resolvent for any B ∈ L(E0) (not neces-
sarily satisfying (3.9)). We refer to a forthcoming paper [27].

4 Linearized Stability for the Nonlinear Problem: Proof of Theorem 2.2

The development of this section is based upon the treatment of linearized stability in [28],
which, in turn, is based on the treatment of the case without spatial diffusion in [16]. In fact,
we follow the exquisite exposition in [29, Section 4.5] of this case.

For the reminder of this section, let φ ∈ E1 ∩ C(J , Eα) be a fixed equilibrium to the
nonlinear problem (1.2) and assume (2.1), (2.2), and (2.5). As pointed out in Sect. 2 we
shall derive statements on the stability or instability of φ from information on the (formally)
linearized problem (2.6), that is, from information on

∂tv + ∂av = A(a)v − m
(
φ̄, a

)
v − ∂m

(
φ̄, a

)[v̄(t)]φ(a) , t > 0 , a ∈ (0, am) ,

v(t, 0) =
∫ am

0
b
(
φ̄, a

)
v(t, a) da +

∫ am

0
∂b

(
φ̄, a

)[v̄(t)]φ(a) da , t > 0 ,

v(0, a) = v0(a) , a ∈ (0, am) .
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In the following, we demonstrate that this linear problem fits into the framework of
Sect. 3. More precisely, the solution v is given by a semigroup (Tφ(t))t≥0 generated
by an (unbounded) operator of the form Aφ + Bφ as in Theorem 3.3 with perturbation
Bφw = −∂m(φ̄, a)[w̄]φ(a). Moreover, if u(·; u0) is the solution to the nonlinear prob-
lem (1.2) provided by Proposition 2.1, then the difference u(·; u0)− φ can be represented in
terms of this semigroup (Tφ(t))t≥0, see Proposition 4.4 below. This will be the key for our
stability and instability results stated in Theorem 2.2 (see also Theorem 4.1 below).

We focus our attention on the linearization (2.6). Regarding the linearized age boundary
conditions (2.6b) we point out that∫ am

0
b(φ̄, a) ζ(a) da +

∫ am

0
∂b(φ̄, a)[ζ̄ ]φ(a) da =

∫ am

0
bφ(a)ζ(a) da , ζ ∈ E0 ,

where we set

bφ(a)v := b(φ̄, a)v +
∫ am

0
∂b(φ̄, σ )[�(a)v]φ(σ) dσ , a ∈ J , v ∈ E0 , (4.1a)

so that

bφ ∈ C
(
J ,L(E0)

) ∩ L∞
(
J ,L(Eθ )

)
, θ ∈ {0, α, ϑ} ,

according to (2.5g), (2.5h), and (2.2c). We also introduce

Aφ(a)v := A(a)v − m(φ̄, a)v , v ∈ E1 , a ∈ J , (4.1b)

and infer from (2.1), (2.5i), and [3, I.Theorem 1.3.1] that

Aφ ∈ Cρ
(
J ,H(E1, E0)

)
.

Therefore, Aφ and bφ satisfy (3.2), (3.3), and (3.9c). Moreover, we define Bφ ∈ L(E0) by

[Bφζ ](a) := −∂m(φ̄, a)[ζ̄ ]φ(a) , a ∈ J , ζ ∈ E0 , (4.1c)

and infer from (2.5a), (2.5j), and (2.2c) that

[Bφζ ](a) = −∂m(φ̄, a)

[∫ am

0
�(σ )ζ(σ ) dσ

]
φ(a) =

∫ am

0
q(a, σ )ζ(σ ) dσ , a ∈ J ,

(4.1d)

for ζ ∈ E0, where q ∈ C
(
J ,C(J ,L(E0))

)
is given by

q(a, σ )v := −∂m(φ̄, a)[�(σ )v]φ(a) , a, σ ∈ J , v ∈ E0 .

Hence, (3.9a) and (3.9b) also hold, and we are in a position to apply the results from the
previous section with A� and b� replaced by Aφ respectively bφ . Throughout the reminder
of this section we thus assume (see Theorem 3.1) that

Aφ is the generator of the semigroup associated with (3.1) and the data

Aφ and bφ introduced in (4.1a)–(4.1b). Moreover, (Tφ(t))t≥0 is the strongly

continuous semigroup on E0 generated by Gφ := Aφ + Bφ.

(4.1e)

Theorem 3.3 implies that (Tφ(t))t≥0 is eventually compact and the spectrum consists of
eigenvalues only, i.e. σ(Gφ) = σp(Gφ). Moreover, the characterization of Aφ (and thus
of Gφ) in Theorem 3.1 (c) and (4.1) imply that the eigenvalue problem for Gφ corresponds
exactly to (2.7).
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We shall then prove the following reformulation of Theorem 2.2 regarding the stability of
equilibria to the nonlinear problem (1.2):

Theorem 4.1 Let α ∈ [0, 1) and let φ ∈ E1 ∩C(J , Eα) be an equilibrium to (1.2). Assume
(2.1), (2.2), (2.5), and use the notation (4.1). The following hold:

(a) If Re λ < 0 for any λ ∈ σp(Gφ), then φ is exponentially asymptotically stable in Eα .
(b) If Re λ > 0 for some λ ∈ σp(Gφ), then φ is unstable in Eα .

Proof of Theorem 4.1 (a): Stability

Assumptions (2.1), (2.2), (2.5) ensure that we are in a position to apply [28, Theorem 2.2],
where it was shown that the equilibrium φ is exponentially asymptotically stable in Eα

provided that there is ωα(φ) > 0 such that

‖Tφ(t)‖L(Eα) + tα‖Tφ(t)‖L(E0,Eα) ≤ Me−ωα(φ)t , t > 0 . (4.2)

Now, the supposition Re λ < 0 for any λ ∈ σp(Gφ) ensures a negative spectral bound
s(Gφ) < 0 so that Corollary 3.5 implies (4.2). This proves Theorem 4.1 (a). �

Preparation of the Proof of Theorem 4.1 (b): Instability

The proof of the instability result requires some preliminaries. First of all, we infer from the
supposition of Theorem 4.1 (b) and due to Theorem 3.3, that the set

�+ := σ(Gφ) ∩ [Re λ > 0]
is nonempty and finite; that is, �+ is a bounded spectral set. Let

0 < ω < inf(Re�+) . (4.3)

This yields the following spectral decomposition:

Lemma 4.2 Assume (4.3). There is a projection P ∈ L(E0) yielding a decomposition

E0 = E
1
0 ⊕ E

2
0 , {0} �= E

1
0 := P(E0) ⊂ D(Gφ) ⊂ Eα , E

2
0 := (1 − P)(E0) ,

(4.4a)

such that Gφ |
E
1
0

∈ L(E1
0). Moreover, there are M ≥ 1 and δ > 0 such that

‖Tφ(t)P‖L(E0,Eα) ≤ Me(ω+δ)t , t ≤ 0 , (4.4b)

and

‖Tφ(t)(1 − P)‖L(E0,Eα) ≤ M t−α e(ω−δ)t , t > 0 . (4.4c)

Proof Since �+ is a bounded spectral set, it follows from [15, Proposition A.1.2] (or [29,
Proposition 4.15]) that there is a projection P ∈ L(E0) such that (4.4a) holds (noticing that
dom(Gφ) = dom(Aφ) ⊂ Eα by Theorem 3.1, see also [26, Corollary 3.4]) and such that

G
1
φ := Gφ |

E
1
0

∈ L(E1
0) .

Moreover,

G
2
φ : dom(Gφ) ∩ E

2
0 → E

2
0 , ψ �→ Gφψ
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with

σ(G1
φ) = �+ , σ (G2

φ) = σ(Gφ) \ �+ (4.5a)

and

(λ − G
i
φ)

−1 = (λ − Gφ)
−1|

E
i
0
, i = 1, 2 , λ ∈ ρ(Gφ) . (4.5b)

Choose δ > 0 such that

sup{Re λ ; λ ∈ σ(G2
φ)} < ω − 2δ < ω + δ < inf{Re λ ; λ ∈ �+} .

It follows from (4.5) that G1
φ and G

2
φ generate strongly continuous semigroups on E

1
0 respec-

tively E
2
0 such that

etG
1
φ = etGφ |

E
1
0

= etGφ P|
E
1
0
, etG

2
φ = etGφ |

E
2
0

= etGφ (1 − P)|
E
2
0

(4.6)

for t ≥ 0. In fact, etG
1
φ is extended to R by (see also [15, Proposition 2.3.3])

etG
1
φ = 1

2π i

∫
�

eλt (λ − Gφ)
−1 dλ , t ∈ R , (4.7)

where � is a positively oriented smooth curve in ρ(Gφ) enclosing �+ with Re λ ≥ ω + δ

for every λ ∈ �. Using (4.7), we have, for ψ ∈ E0,

‖etG1
φ Pψ‖E0 ≤ 1

2π
|�| sup

λ∈�

‖(λ − Gφ)
−1‖L(E0) e

(ω+δ)t ‖ψ‖E0 , t ≤ 0 .

Similarly, since

Gφ e
tG1

φ = 1

2π i

∫
�

λ eλt (λ − Gφ)
−1 dλ , t ∈ R ,

we have

‖Gφe
tG1

φ Pψ‖E0 ≤ 1

2π
|�| sup

λ∈�

‖λ (λ − Gφ)
−1‖L(E0) e

(ω+δ)t ‖ψ‖E0 , t ≤ 0 .

Combining the two estimates we find N ≥ 1 such that

‖etG1
φ Pψ‖D(Gφ) = ‖etG1

φ Pψ‖E0 + ‖Gφe
tG1

φ Pψ‖E0 ≤ N e(ω+δ)t ‖ψ‖E0 , t ≤ 0 .

Consequently, since D(Gφ) ↪→ Eα according to [26, Corollary 3.4], we deduce (4.4b).
Finally, since (etGφ )t≥0 is an eventually compact semigroup on E0 by Theorem 3.3, it

follows from (4.6) that also (etG
2
φ )t≥0 is an eventually compact semigroup on E

2
0, hence

ω0(G
2
φ) = s(G2

φ) due to [12, IV.Corollary 3.11] and therefore ω0(G
2
φ) < ω − 2δ by the

choice of δ. Thus, there is N1 ≥ 1 such that

‖etGφ (1 − P)‖L(E0) ≤ N1 e
(ω−2δ)t , t ≥ 0 . (4.8)

Noticing that also

‖etGφ (1 − P)‖L(E0,Eα) ≤ ‖etGφ‖L(E0,Eα) ‖(1 − P)‖L(E0) ≤ N2 t
−α eω1t , t > 0 , (4.9)

for some ω1 > 0 and N2 ≥ 1 due to (3.11), we may use (4.8)–(4.9) and argue as in part (iv)
of the proof of Corollary 3.5 to conclude (4.4c). This proves Lemma 4.2. �
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For the next step we introduce for a given function h ∈ C([0, T ], E0) and γ ∈ R (sticking
to the notation of [28, Definition (5.3)]) the function W γ,h

0,0 by setting

W γ,h
0,0 (t, a) :=

{
0 , (t, a) ∈ R × J , t ≤ a ,

e−γ a �φ(a, 0) B
γ,h
0,0 (t − a) , (t, a) ∈ [0, T ] × J , t > a ,

(4.10a)

where Bγ,h
0,0 ∈ C([0, T ], E0) satisfies

Bγ,h
0,0 (t) =

∫ t

0
bφ(a) e

−γ a �φ(a, 0) B
γ,h
0,0 (t − a) da + h(t) , t ∈ [0, T ] , (4.10b)

with the understanding that bφ(a) = 0 whenever a /∈ J . Here, �φ denotes the parabolic
evolution operator associated with Aφ . Let �φ ∈ R be such that

‖�φ(a, σ )‖L(Eα) + (a − σ)α‖�φ(a, σ )‖L(E0,Eα) ≤ M∗ e�φ(a−σ) , 0 ≤ σ ≤ a ≤ am ,

for some M∗ ≥ 1 (see (B.2)). Then we have:

Lemma 4.3 Let h ∈ C
([0, T ], E0

)
, γ ∈ R, and θ ∈ [0, 1). Then W γ,h

0,0 ∈ C((−∞, T ],Eθ )

and there are constants μ = μ(φ) > 0 and c0 = c0(φ) > 0 (both independent of T , γ ,
and h) such that

‖W γ,h
0,0 (t, ·)‖Eθ

≤ c0

∫ t

0
e(�φ+μ−γ )(t−a) (t − a)−θ ‖h(a)‖E0 da , t ∈ [0, T ] . (4.11)

Proof This is [28, Lemma 5.7]. �

Now, let u0 ∈ Eα be arbitrary and set

w := u(·; u0) − φ , w0 := u0 − φ ,

where u(·; u0) ∈ C
(
I (u0),Eα

)
is the uniquemaximal solution to the nonlinear problem (1.2)

provided by Proposition 2.1. Then, using the expansions (2.5c) and (2.5d) of m respectively
b and the notation from (4.1), we derive that w ∈ C(I (u0),Eα) is the generalized solution
(in the sense of (2.3), see [28, Proposition 4.2]) to

∂tw + ∂aw = Aφ(a)w + [Bφw(t, ·)](a) + Rm(w(t)) , t ∈ I (u0) , a ∈ J , (4.12a)

w(t, 0) =
∫ am

0
bφ(a)w(t, a) da + hw(t) , t ∈ I (u0) , (4.12b)

w(0, a) = w0(a) , a ∈ J , (4.12c)

where hw ∈ C(I (u0), E0) is defined as

hw(t) :=
∫ am

0
Rb(w(t))(a) da , t ∈ I (u0) , (4.12d)

and reminder terms Rm and Rb stemming from (2.5).
The characterization of the generator Aφ given in Theorem 3.1 (c) gives rise to a repre-

sentation of w = u(·; u0) − φ in terms of the semigroup (Tφ(t))t≥0. In fact, the following
result was established in [28] (see also [16] for the non-diffusive case). It is fundamental for
the investigation of stability properties of the equilibrium φ.
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Proposition 4.4 Given u0 ∈ Eα let u(·; u0) ∈ C
(
I (u0),Eα

)
with I (u0) = [0, Tmax (u0)) be

the unique maximal solution to the nonlinear problem (1.2) provided by Proposition 2.1. Set
w = u(·; u0) − φ and w0 = u0 − φ. Then w ∈ C(I (u0),Eα) can be written as

w(t) = Tφ(t)w0 +
∫ t

0
Tφ(t − s)

((
γ + Bφ

)
W γ,hw

0,0 (s, ·) + Rm(w(s))
)
ds

+ W γ,hw
0,0 (t, ·)

(4.13)

for t ∈ I (u0) and every γ ∈ R, where hw ∈ C(I (u0), E0) stems from (4.12d) and

W γ,hw
0,0 ∈ C

(
(−∞, Tmax (u0)),Eα

)

from (4.10).

Proof This is [28, Proposition 6.1]. �

In the following, assume (4.3) and let the projection P ∈ L(E0) and the constants M and
δ be as in Lemma 4.2. Further, let �φ , c0, and μ be as in Lemma 4.3. Choose then γ > 0
such that

κ := ω − �φ − μ + γ > 0

and set

R0 := c0�(1 − α)

κ1−α
+ M

δ

(
1 + δα�(1 − α)

)(‖γ + Bφ‖L(E0)

c0
κ

+ 1
)
, (4.14)

where � denotes the Gamma function. Recalling the function do from (2.5e) and (2.5f), we
may choose r > 0 and w0 ∈ E

1
0 is such that

R0 do(r) <
‖w0‖Eα

r
<

1

2M
≤ 1

2
. (4.15)

In order to prove the instability of φ, we now show the existence of a sequence (uk0)k≥1

such that uk0 → φ in Eα and

inf
k≥1

‖u(k; uk0) − φ‖Eα
> 0 .

To this end, we first derive backwards solutions to problem (1.2):

Lemma 4.5 Let r > 0 andw0 ∈ E
1
0 be as in (4.15). Then, for each integer k ≥ 1, there exists

a unique function vk ∈ C
(
(−∞, k],Eα

)
such that

vk(t) = Tφ(t − k)w0 + W
γ,hvk
0,0 (t, ·)

−
∫ k

t
Tφ(t − s)P

((
γ + Bφ

)
W

γ,hvk
0,0 (s, ·) + Rm(vk(s))

)
ds (4.16)

+
∫ t

−∞
Tφ(t − s)(1 − P)

((
γ + Bφ

)
W

γ,hvk
0,0 (s, ·) + Rm(vk(s))

)
ds

for t ≤ k and satisfying

‖vk(t)‖Eα
≤ reω(t−k) , t ≤ k . (4.17)
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Proof Let k ≥ 1 be fixed. We introduce the complete metric space Z = (Z , dZ ) by

Z := {
v ∈ C

(
(−∞, k],Eα

) ; ‖v(t)‖Eα
≤ reω(t−k) , t ≤ k

}
equipped with the metric

dZ (v, v̄) := sup
t≤k

(
e−ω(t−k)‖v(t) − v̄(t)‖Eα

)
, v, v̄ ∈ Z ,

and claim that

H(v)(t) := Tφ(t − k)w0 + W γ,hv
0,0 (t, ·)

−
∫ k

t
Tφ(t − s) P

((
γ + Bφ

)
W γ,hv

0,0 (s, ·) + Rm(v(s))
)
ds

+
∫ t

−∞
Tφ(t − s) (1 − P)

((
γ + Bφ

)
W γ,hv

0,0 (s, ·) + Rm(v(s))
)
ds

defines a contraction H : Z → Z . Indeed, for v ∈ Z we have ‖v(t)‖Eα
≤ r for t ≤ k and

thus, invoking (2.5e),

‖Rm(v(t))‖E0 ≤ do(r) ‖v(t)‖Eα
≤ do(r) r e

ω(t−k) , t ≤ k , (4.18a)

and, together with (4.12d),

‖hv(t)‖E0 ≤ ‖Rb(v(t))‖E0 ≤ do(r) ‖v(t)‖Eα
≤ do(r) re

ω(t−k) , t ≤ k .

Therefore, (4.11) implies for v ∈ Z , t ≤ k, and θ ∈ {0, α} that

‖W γ,hv
0,0 (t, ·)‖Eθ

≤ χR+(t)c0do(r)r
∫ t

0
e(�φ+μ−γ )(t−a) (t − a)−θ eω(a−k) da

≤ c0�(1 − θ)

κ1−θ
do(r)re

ω(t−k) . (4.18b)

We then use (4.4), (4.18), and (4.14) to derive

‖H(v)(t)‖Eα

≤ ‖Tφ(t − k)P‖L(Eα) ‖w0‖Eα
+ ‖W γ,hv

0,0 (t, ·)‖Eα

+
∫ k

t
‖Tφ(t − s)P‖L(E0,Eα)

(
‖γ + Bφ‖L(E0) ‖W γ,hv

0,0 (s, ·)‖E0 + ‖Rm(v(s))‖E0

)
ds

+
∫ t

−∞
‖Tφ(t − s)(1 − P)‖L(E0,Eα)

(
‖γ + Bφ‖L(E0) ‖W γ,hv

0,0 (s, ·)‖E0 + ‖Rm(v(s))‖E0

)
ds

≤ Me(ω+δ)(t−k) ‖w0‖Eα
+ c0�(1 − α)

κ1−α
do(r) r e

ω(t−k)

+ M r do(r)
(
‖γ + Bφ‖L(E0)

c0
κ

+ 1
) ∫ k

t
e(ω+δ)(t−s) eω(s−k) ds

+ M r do(r)
(
‖γ + Bφ‖L(E0)

c0
κ

+ 1
) ∫ t

−∞
e(ω−δ)(t−s) eω(s−k) (t − s)−α ds

≤ Meω(t−k) ‖w0‖Eα
+ c0�(1 − α)

κ1−α
do(r) r e

ω(t−k)

+ M

δ
r do(r)

(
1 + δα�(1 − α)

)(‖γ + Bφ‖L(E0)
c0
κ

+ 1
)
eω(t−k)

=
(
M

r
‖w0‖E

1
0

+ R0do(r)

)
r eω(t−k)
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so that (4.15) implies

‖H(v)(t)‖Eα
≤ r eω(t−k) , v ∈ Z , t ≤ k .

That is, H : Z → Z . Next, notice from (2.5f) that, for v1, v2 ∈ Z ,

‖Rm(v1(t)) − Rm(v2(t))‖E0 ≤ do(r) dZ (v1, v2) e
ω(t−k) , t ≤ k , (4.19a)

while from (4.12d) and (2.5f),

‖hv1(t) − hv2(t)‖E0 ≤ ‖Rb(v1(t)) − Rb(v2(t))‖E0 ≤ do(r) dZ (v1, v2) e
ω(t−k) , t ≤ k .

Therefore, since the mapping [h → W γ,h
0,0 ] is linear, it follows from (4.11) that

‖W γ,hv1
0,0 (t, ·) − W

γ,hv2
0,0 (t, ·)‖Eα

≤ c0�(1 − α)

κ1−α
do(r)dZ (v1, v2)e

ω(t−k) , t ≤ k . (4.19b)

Using then (4.19) we derive similarly as above that, for v1, v2 ∈ Z ,

‖H(v1)(t) − H(v2)(t)‖Eα
≤ R0 do(r) dZ (v1, v2) e

ω(t−k) , t ≤ k ,

so that (4.15) implies

dZ
(
H(v1), H(v2)

) ≤ 1

2
dZ (v1, v2) , v1, v2 ∈ Z .

Consequently, H : Z → Z is indeed a contraction, and Lemma 4.5 follows from Banach’s
fixed point theorem. �

In fact, for positive times we have a simpler representation of vk :

Corollary 4.6 Let r > 0 and w0 ∈ E
1
0 be as in (4.15). Then vk ∈ C

(
(−∞, k],Eα

)
from

Lemma 4.5 satisfies

vk(t) = W
γ,hvk
0,0 (t, ·) + Tφ(t)vk(0)

+
∫ t

0
Tφ(t − s)

((
γ + Bφ

)
W

γ,hvk
0,0 (s, ·) + Rm(vk(s))

)
ds

for 0 ≤ t ≤ k.

Proof Define for t ≤ k

q(t) := (
γ + Bφ

)
W

γ,hvk
0,0 (t, ·) + Rm(vk(t)) , p(t) := W

γ,hvk
0,0 (t, ·)

so that

vk(t) − p(t) = Tφ(t − k)w0 −
∫ k

t
Tφ(t − s) P q(s) ds +

∫ t

−∞
Tφ(t − s) (1 − P) q(s) ds .
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Then q ∈ C((−∞, k],E0) and p ∈ C((−∞, k],Eα) by Lemma 4.3. However, we may
approximate q, p uniformly on compact intervals by continuously differentiable functions
with compact support and w0 by a sequence in dom(Gφ) to justify the formal computation

d

dt

(
vk(t) − p(t)

) = Gφ Tφ(t − k)w0 + Pq(t)

−
∫ k

t
GφTφ(t − s)P q(s) ds

+
∫ t

−∞
GφTφ(t − s)(1 − P)q(s) ds + (1 − P)q(t)

= Gφ

(
vk(t) − p(t)

) + q(t) .

Thus, for 0 ≤ t ≤ k,

vk(t) − p(t) = Tφ(t)
(
vk(0) − p(0)

) +
∫ t

0
Tφ(t − s)q(s) ds

and since p(0) = W
γ,hvk
0,0 (0, ·) = 0, the assertion follows. �

We are now in a position to provide the proof of Theorem 4.1 (b).

Proof of Instability: Theorem 4.1 (b)

In order to prove instability, we may assume without loss of generality that all solutions
u(·; u0) to (1.2) provided by Proposition 2.1 exist globally – that is, Tmax (u0) = ∞ –
whenever the initial values u0 are close to the equilibrium φ. We set

uk0 := vk(0) + φ , k ≥ 1 ,

and note from (4.17) that

‖uk0 − φ‖Eα
= ‖vk(0)‖Eα

≤ re−ωk → 0 , m → ∞ .

Hence Tmax (uk0) = ∞ as just agreed. Letwk := u(·; uk0)−φ ∈ C(R+,Eα). Then Lemma 4.6
and Proposition 4.4 entail that both wk, vk ∈ C([0, k],Eα) satisfy the fixed point equation

z(t) = Tφ(t)
(
uk0 − φ

) +
∫ t

0
Tφ(t − s)

((
γ + Bφ

)
W γ,hz

0,0 (s, ·) + Rm(z(s))
)
ds + W γ,hz

0,0 (t, ·)

for t ∈ [0, k]. It is easily seen that Gronwall’s inequality ensures uniqueness in C([0, k],Eα)

of this fixed point equation, hence vk = wk on [0, k]. Thus, we deduce from (4.16), (4.4),
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and (4.18) that

‖u(k; uk0) − φ‖Eα
= ‖wk(k)‖Eα

= ‖vk(k)‖Eα

≥ ‖w0‖Eα
− ‖W γ,hvk

0,0 (k, ·)‖Eα

−
∫ k

−∞
‖Tφ(k − s)(1 − P)‖L(E0,Eα)

×
(
‖γ + Bφ‖L(E0) ‖W γ,hvk

0,0 (s, ·)‖E0 + ‖Rm(vk(s))‖E0

)
ds

≥ ‖w0‖Eα
− c0�(1 − α)

κ1−α
do(r)r

− M
(
‖γ + Bφ‖L(E0)

c0
κ

+ 1
)
do(r)r

∫ k

−∞
e(ω−δ)(k−s)eω(s−k) (k − s)−αds

= ‖w0‖Eα
− c0�(1 − α)

κ1−α
do(r)r

− M

δ1−α
�(1 − α)

(
‖γ + Bφ‖L(E0)

c0
κ

+ 1
)
do(r)r =: ξ0 ,

where, due to (4.15) and (4.14),

ξ0 >

(
R0 − c0�(1 − α)

κ1−α
− M

δ1−α
�(1 − α)

(
‖γ + Bφ‖L(E0)

c0
κ

+ 1
))

do(r) r > 0 .

Consequently, we have shown that there exists a sequence (uk0)k≥1 such that uk0 → φ in Eα

as k → ∞ while ‖u(k; uk0) − φ‖Eα
≥ ξ0 for k ≥ 1. This proves that φ is unstable in Eα and

thus Theorem 4.1 (b). �

Rephrasing the Eigenvalue Problem

According to Theorem 4.1, the stability of an equilibrium φ is determined from the eigen-
values of the operator Gφ = Aφ + Bφ . Clearly, λ ∈ C is an eigenvalue of Gφ = Aφ + Bφ

if and only if there is some ψ ∈ dom(Aφ) such that (λ − Aφ − Bφ)ψ = 0. Now, due to
Theorem 3.1 (c) and (4.1), this is equivalent to ψ ∈ C(J , E0) solving (in a mild sense)

∂aψ = ( − λ + Aφ(a)
)
ψ + (Bφψ)(a) , a ∈ J , (4.20a)

ψ(0) =
∫ am

0
bφ(a) ψ(a) da . (4.20b)

Note that (4.20a) entails

ψ(a) = e−λa�φ(a, 0)ψ(0) +
∫ a

0
e−λ(a−σ) �φ(a, σ )(Bφψ)(σ ) dσ , a ∈ J , (4.21)

which, when plugged into (4.20b), yields
(
1 −

∫ am

0
bφ(a) e

−λa �φ(a, 0) da

)
ψ(0) =

∫ am

0
bφ(a)

∫ a

0
e−λ(a−σ) �φ(a, σ )(Bφψ)(σ ) dσda .

(4.22)

Recall from (4.1c) that

[Bφψ](a) = −∂m(φ̄, a)[ψ̄]φ(a) , a ∈ J .
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We thus introduce

Kφ,λ(a)ψ̄ :=
∫ a

0
e−λ(a−σ) �φ(a, σ ) ∂m(φ̄, σ )[ψ̄]φ(σ) dσ , a ∈ J , (4.23)

and then obtain from (4.22) that

(
1 −

∫ am

0
bφ(a) e

−λa �φ(a, 0) da

)
ψ(0) = −

∫ am

0
bφ(a)Kφ,λ(a) da ψ̄ .

Moreover, (4.21) implies that ψ̄ satisfies

(
1 +

∫ am

0
�(a)Kφ,λ(a) da

)
ψ̄ =

∫ am

0
e−λa �(a)�φ(a, 0) da ψ(0) .

Therefore, λ ∈ C is an eigenvalue of Gφ = Aφ + Bφ if and only if there is a nontrivial
eigenvector (ψ(0), ψ̄) ∈ E0 × E0 in the sense that

⎛
⎜⎝
1 −

∫ am

0
e−λa bφ(a)�φ(a, 0) da

∫ am

0
bφ(a)Kφ,λ(a) da

−
∫ am

0
e−λa �(a)�φ(a, 0) da 1 +

∫ am

0
�(a)Kφ,λ(a) da

⎞
⎟⎠

(
ψ(0)
ψ̄

)
= 0 , (4.24)

where Kφ,λ is defined in (4.23) with�φ denoting the evolution operator associated with Aφ

given by

Aφ(a)v = A(a)v − m(φ̄, a)v , v ∈ E1 , a ∈ J ,

and

bφ(a)v = b(φ̄, a)v +
∫ am

0
∂b(φ̄, σ )[�(a)v]φ(σ) dσ , a ∈ J , v ∈ E0 .

Consequently, we obtain from Theorem 4.1:

Proposition 4.7 Let α ∈ [0, 1). Assume (2.1), (2.2), (2.5) and let φ ∈ E1 ∩C(J , Eα) be an
equilibrium to (1.2). The following hold:

(a) If Re λ < 0 for every λ ∈ C for which there is a nontrivial (ψ(0), ψ̄) ∈ E0 × E0

satisfying (4.24), then the equilibrium φ is exponentially asymptotically stable in Eα .
(b) If there are λ ∈ CwithRe λ > 0 and a nontrivial (ψ(0), ψ̄) ∈ E0×E0 satisfying (4.24),

then the equilibrium φ is unstable in Eα .

It is worth emphasizing that the (spectral radius of the) compact operator

Qλ(φ) :=
∫ am

0
e−λa bφ(a)�φ(a, 0) da ∈ K(E0) (4.25)

occurring in the linear eigenvalue problem (4.24) plays a particular role in the analysis. This
becomes also apparent in the next section where we will focus on applications. For λ = 0 one
may interpret its spectral radius r(Q0(φ)) as the expected number of offspring per individual
during its life span at equilibrium.
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5 Examples

In order to shed some light on the previous results, we consider concrete examples.We impose
for simplicity stronger assumptions than actually required4. In the following, � ⊂ R

n is a
bounded domain with smooth boundary and outer unit normal ν. We consider

∂t u + ∂au = divx
(
d(a, x)∇xu

) − m
(
ū(t, x), a, x

)
u , t > 0 , (a, x) ∈ (0, am) × �,

(5.1a)

u(t, 0, x) =
∫ am

0
b
(
ū(t, x), a, x

)
u(t, a, x) da , t > 0 , x ∈ �, (5.1b)

Bu(t, a, x) = 0 , t > 0 , (a, x) ∈ (0, am) × ∂� , (5.1c)

u(0, a, x) = u0(a, x) , (a, x) ∈ (0, am) × �, (5.1d)

where

Bu := (1 − δ)u + δ∂νu , δ ∈ {0, 1} ,
either refers to Dirichlet boundary conditions u|∂� = 0 if δ = 0 or Neumann boundary
conditions ∂νu = 0 if δ = 1 and

ū(t, x) =
∫ am

0
�(a, x) u(t, a, x) da , t ≥ 0 , x ∈ � .

We set J = [0, am] and assume for the data that

q > n , 2α ∈ (n/q, 2) \ {δ + 1/q} , ρ > 0 , (5.2a)

d ∈ Cρ,1(J × �̄, (0,∞)
)
, (5.2b)

m ∈ C4,ρ,2(
R × J × �̄,R

+)
, (5.2c)

b ∈ C4,0,2(
R × J × �̄, (0,∞)

)
, (5.2d)

� ∈ C0,2(J × �̄,R
+)

. (5.2e)

Note that one may choose 2α = 1 in the following. We introduce E0 := Lq(�) and

E1 := W 2
q,B(�) := {v ∈ W 2

q (�) ; Bw = 0 on ∂�} .
Then E1 is compactly embedded in the Banach lattice E0 and, for real interpolation with
θ ∈ (0, 1) \ {1/2},

Eθ := (
Lq(�),W 2

q,B(�)
)
θ,q

.= W 2θ
q,B(�)

:=
{{

v ∈ W 2θ
q (�) ; Bw = 0 on ∂�

}
, δ + 1/q < 2θ ≤ 2 ,

W 2θ
q (�) , 0 ≤ 2θ < δ + 1/q ,

while, for complex interpolation with θ = 1/2,

E1/2 := [
Lq(�),W 2

q,B(�)
]
1/2

.= W 1
q,B(�) .

Setting

A(a, x)w := divx
(
d(a, x)∇xw

)
, w ∈ W 2

q,B(�) , a ∈ J , x ∈ �,

4 In particular, the results require less regularity assumptions than imposed in (5.2) and also apply to any other
uniformly elliptic second-order differential operator.
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it follows from (5.2b) and e.g. [1] that A ∈ Cρ
(
J ,H(

W 2
q,B(�), Lq(�)

))
while themaximum

principle ensures that A(a) is resolvent positive for each a ∈ J . Therefore, (2.1) holds. It
follows from (5.2a), (5.2c), (5.2d), and [23, Proposition 4.1] that

[v �→ b(v, ·, ·)] , [v �→ m(v, ·, ·)] ∈ C1(W 2α
q,B(�), L∞(J ,W 2η

q,B(�))
)
,

2η ∈ (0, 2α) \ {δ + 1/q} ,
with(

∂b(v, ·)[h])(a)(x) = ∂1b(v(x), a, x)h(x) , (a, x) ∈ J × �, v, h ∈ W 2α
q,B(�) ,

and correspondingly for m. In particular, using the continuity of pointwise multiplication

W 2η
q,B(�) × W 2α

q,B(�) → Lq(�) ,

we deduce that (2.5a)–(2.5f) are valid and hence also (2.2a) and (2.2b). Clearly, (5.2e)
implies (2.2c). Moreover, if φ ∈ E1 = L1

(
J ,W 2

q,B(�)
)
is an equilibrium to (5.1), then

φ̄ =
∫ am

0
�(a, ·) φ(a, ·) da ∈ W 2

q,B(�)

due to (5.2e), hence b(φ̄, ·, ·) ∈ L∞
(
J ,W 2

q,B(�)
)
. Since pointwise multiplication

W 2
q,B(�) × W 2α

q,B(�) → W 2α
q,B(�)

is continuous [2], we deduce (2.5g). Moreover, since ∂1b(φ̄, ·, ·) ∈ L∞
(
J ,W 2−ε

q,N (�)
)
for

every ε > 0 small and since pointwise multiplication

W 2−ε
q,N (�) × W 2θ

q,N (�) → W 2θ
q,N (�)

is continuous for θ = 0, α, we obtain (2.5h) and similarly (2.5j). Clearly, (5.2c) implies (2.5i).
Consequently, assumptions (2.1), (2.2), and (2.5) are all satisfied owing to (5.2).

Recall for (a, x) ∈ J × � that

Aφ(a, x)w = divx
(
d(a, x)∇xw

) − m(φ̄(x), a, x)w , w ∈ W 2
q,B(�) ,

and

bφ(a, x) = b(φ̄(x), a, x) +
∫ am

0
∂1b(φ̄(x), σ, x) φ(σ, x) dσ �(a, x) .

Moreover,

(Bφψ)(a, x) = −∂1m(φ̄(x), a, x) φ(a, x)
∫ am

0
�(σ, x) ψ(σ, x) dσ , (a, x) ∈ J × � .

The Trivial Equilibrium

For the particular case of the trivial equilibrium φ = 0, we observe that (with dot referring
to the suppressed x-variable)

b0(a) = b(0, a, ·) , A0(a) = A(a) − m(0, a, ·) .
Then v(a, ·) = �0(a, 0)v0, a ∈ J , is for each v0 ∈ Lq(�) the unique strong solution to the
heat equation

∂av = divx
(
d(a, x)∇xv

) − m(0, a, x)v , (a, x) ∈ J × �, v(0, x) = v0(x) , x ∈ �,
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subject to Dirichlet boundary conditions if δ = 0 or Neumann boundary conditions if δ = 1.
Also note that B0 = 0 and K0,λ = 0 in (4.23). The eigenvalue equation (4.24) then reduces
to

(1 − Qλ(0))ψ(0) = 0 ,

where

Qλ(0) =
∫ am

0
e−λa b(0, a, ·)�0(a, 0) da

is a strongly positive compact operator on Lq(�) for λ ∈ R due to [8, Corollary 13.6] and
the strict positivity of b(0, ·) assumed in (5.2d). As for its spectral radius r(Qλ(0)) we note
that the mapping

R → (0,∞) , λ �→ r(Qλ(0))

is continuous and strictly decreasing with

lim
λ→−∞ r(Qλ(0)) = ∞ , lim

λ→∞ r(Qλ(0)) = 0

according to [26, Lemma 3.1]. Thus, there is a unique λ0 ∈ R such that r(Qλ0(0)) = 1. In
fact, it follows from [26, Proposition 4.2] that λ0 = s(G0); that is, λ0 coincides with the
spectral bound of the generator G0 = A0 (see Proposition 3.2).

Consequently, we can state the stability of the trivial equilibrium according to Proposi-
tion 4.7 as follows:

Proposition 5.1 Assume (5.2). Then:

(a) If r(Q0(0)) < 1, then the trivial equilibrium φ = 0 to (5.1) is exponentially asymptoti-
cally stable in the phase space L1

(
J ,W 2α

q,B(�)
)
.

(b) If r(Q0(0)) > 1, then the trivial equilibrium φ = 0 to (5.1) is unstable in the phase
space L1

(
J ,W 2α

q,B(�)
)
.

Proposition 1.1 is the special case of Proposition 5.1 with α = 1/2 and x-independent
vital ratesm ∈ C4,ρ

(
R× J , (0,∞)

)
and b ∈ C4,0

(
R× J , (0,∞)

)
, noticing that in this case

�0(a, 0) = exp

(
−

∫ a

0
m(0, σ ) dσ

)
�∗(a, 0) ,

where v(a, ·) = �∗(a, 0)v0, a ∈ J , is for given v0 ∈ Lq(�) the unique strong solution to
the heat equation

∂av = divx
(
d(a, x)∇xu

)
, (a, x) ∈ J × �, v(0, x) = v0(x) , x ∈ �,

subject to Dirichlet boundary conditions if δ = 0 or Neumann boundary conditions if δ = 1.
It is worth pointing out for the case of x-independent vital rates m and b and Neumann

boundary conditions B = ∂ν (i.e. δ = 1) that the constant function 1 := [x �→ 1] belongs
to W 2

q,N (�) (with subscript N referring to the Neumann boundary conditions) and satisfies
�∗(a, 0)1 = 1. Therefore,

Q0(0)1 =
∫ am

0
b(0, a) e− ∫ a

0 m(0,s)ds da 1
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so that 1 is a positive eigenfunction of the strongly positive compact operator Q0(0). Krein-
Rutman’s theorem (e.g., see [8, Theorem 12.3]) implies

r(Q0(0)) =
∫ am

0
b(0, a) e− ∫ a

0 m(0,s)ds da .

Consequently, we obtain from Proposition 5.1:

Corollary 5.2 Assume (5.2) with x-independent vital rates m = m(ū, a) and b = b(ū, a) and
δ = 1 (case of Neumann boundary conditions). Set

r0 :=
∫ am

0
b(0, a) e− ∫ a

0 m(0,s)ds da .

(a) If r0 < 1, then the trivial equilibrium φ = 0 to (5.1) is exponentially asymptotically
stable in L1

(
J ,W 2α

q,N (�)
)
.

(b) If r0 > 1, then the trivial equilibrium φ = 0 to (5.1) is unstable in L1
(
J ,W 2α

q,N (�)
)
.

In particular, if the death rate dominates the birth rate in the sense that

b(0, a) ≤ m(0, a) , a ∈ J ,

then

r0 =
∫ am

0
b(0, a) e− ∫ a

0 m(0,s)ds da ≤
∫ am

0
m(0, a) e− ∫ a

0 m(0,s)ds da = 1 − e− ∫ am
0 m(0,s)ds < 1 .

Hence, the trivial equilibrium is stable.
We also remark the following result on global stability of the trivial solution in the special

case of Corollary 5.2 (a). It is the analogue to the non-diffusive case from [16, Theorem 4].

Corollary 5.3 Assume (5.2) with δ = 1 (case of Neumann boundary conditions) and assume
that there are b∗ ∈ C(J , (0,∞)) and m∗ ∈ Cρ(J ,R

+) such that

b(r , a, x) ≤ b∗(a) , m(r , a) ≥ m∗(a) , (r , a, x) ∈ R × J × �̄ , (5.3a)

and ∫ am

0
b∗(a) e− ∫ a

0 m∗(s)ds da < 1 . (5.3b)

Moreover, assume that there is C∗ > 0 such that

|∂1b(r , a, x)| + |m(r , a, x)| + |∂1m(r , a, x)| ≤ C∗ , (r , a) ∈ R × J × �̄ . (5.3c)

Then the maximal solution u(·; u0) to (5.1) exists globally for each u0 ∈ L1(J ,W 1
q (�)) with

u0 ≥ 0 and u(t; u0) → 0 in L1(J , Lq(�)) as t → ∞.

Proof Note that

A�(a, x)w := divx
(
d(a, x)∇xw

) − m∗(a)w , w ∈ W 2
q,N (�) , (a, x) ∈ J × �,

and b� := b∗ satisfy (3.2) and (3.3). We then denote by (S(t))t≥0 the corresponding positive
semigroup on E0 = L1(J , Lq(�)) defined in (3.4) for these A�, b� (see Theorem 3.1). As
in the proof of Corollary 5.2, supposition (5.3b) implies that the semigroup (S(t))t≥0 has a
negative growth bound ω0 < 0 (see Proposition 3.2).
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Let u0 ∈ E1/2 = L1(J ,W 1
q (�)) with u0 ≥ 0 be arbitrary and u(·; u0) ∈ C(I (u0),E1/2)

be themaximal, positive solution to problem (5.1) (guaranteed by Proposition 2.1).We simply
write u = u(·; u0) and note that u satisfies (in a mild sense)

∂t u + ∂au = A�(a) + f (t, a, x) , t ∈ I (u0) , a ∈ (0, am) , x ∈ �,

u(t, 0, x) =
∫ am

0
b�(a)u(t, a, x) da + h(t, x) , t ∈ I (u0) , x ∈ �,

Bu(t, a, x) = 0 , t ∈ I (u0) , a ∈ (0, am) , x ∈ ∂� ,

where we have introduced the negative functions f ∈ C(I (u0),E0) and h ∈ C(I (u0), E0)

by

f (t, a, x) := (
m∗(a) − m(ū(t, x), a, x)

)
u(t, a, x) ≤ 0 ,

h(t, x) :=
∫ am

0

(
b(ū(t, x), a, x) − b�(a)

)
u(t, a, x) da ≤ 0 .

Here, in a mild sense means that u satisfies

u(t) = S(t)u0 +
∫ t

0
S(t − s) f (s) ds + W 0,h

0,0 (t, ·) , t ∈ I (u0) , (5.4)

according to [28, Corollary 5.8], whereW 0,h
0,0 ∈ C(I (u0),E0) stems from Lemma 4.3. Since

f (t, ·, ·) ≤ 0 and W 0,h
0,0 (t, ·) ≤ 0 for t ∈ I (u0) due to (5.3a) and (4.10), it follows from (5.4)

and the positivity of (S(t))t≥0 that

0 ≤ u(t) ≤ S(t)u0 , t ∈ I (u0) ,

in the Banach lattice E0 = L1(J , Lq(�)). Therefore,

‖u(t)‖E0 ≤ ‖S(t)‖L(E0) ‖u0‖E0 ≤ c0 e
ω0t ‖u0‖E0 , t ∈ I (u0) . (5.5)

Assumption (5.3c) ensures that there is a constant C1 > 0 such that

‖ f (t)‖L1(J ,W 1
q (�)) + ‖h(t)‖W 1

q (�) ≤ C1
(
1 + ‖u(t)‖L1(J ,W 1

q (�))

)
, t ∈ I (u0) , (5.6)

while (3.7) yields for every T > 0 a constant c(T ) > 0 such that

‖S(t)‖L(L1(J ,W 1
q (�))) ≤ c(T ) , t ∈ [0, T ] . (5.7)

It then readily follows from (5.4), (5.6), (5.7), Lemma 4.3, and Gronwall’s inequality that

‖u(t)‖L1(J ,W 1
q (�)) ≤ c1(T ) , t ∈ I (u0) ∩ [0, T ] ,

for every T > 0. Proposition 2.1 now implies that the solution u exists globally, i.e. I (u0) =
[0,∞). Consequently,wemay let t→∞ in (5.5) anduseω0 < 0 to conclude thatu(t; u0)→0
in the phase space E0 = L1(J , Lq(�)). �

Corollary 5.2 is not restricted to the particular case of Neumann boundary conditions (just
replace the left-hand side of (5.3b) by the corresponding spectral radius).
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An Instability Result

We provide the analogue to [16, Theorem 6]:

Proposition 5.4 Assume (5.2). Consider a positive equilibrium

φ ∈ L1
(
J ,W 2

q,B(�)
) ∩ C(J ,W 2α

q,B(�)) , φ ≥ 0 ,

to (5.1) for which

∂1b(φ̄(x), a, x) ≥ 0 , ∂1m(φ̄(x), a, x) ≤ 0 , (a, x) ∈ J × � . (5.8)

If s(Gφ) �= 0, then φ is unstable in L1
(
J ,W 2α

q,B(�)
)
.

Proof (i) Observe that (5.2d), (5.2e), (5.8), and the positivity of φ entail the strict positivity
bφ > 0 and that Bφ is a positive operator on E0 = L1(J , Lq(�)). Moreover, the maximum
principle ensures that Aφ(a) is resolvent positive for a ∈ J . Theorem 3.3 now implies that
Gφ = Aφ + Bφ is resolvent positive. We then claim that for its spectral bound we have
s(Gφ) > −∞. Indeed, since Bφ ≥ 0, it follows from [4, Proposition 12.11] that s(Gφ) ≥
s(Aφ). Next, the strict positivity bφ > 0 and [8, Corollary 13.6] imply that bφ(a)�φ(a, 0) is
strongly positive on Lq(�) for a ∈ J . Thus, for λ ∈ R, the operator

Qλ(φ) =
∫ am

0
e−λa bφ(a)�φ(a, 0) da

is compact and strongly positive on Lq(�). As in the previous section we infer from [26,
Lemma 3.1] that the mapping [λ �→ r(Qλ(φ))] is continuous and strictly decreasing on R

with

lim
λ→−∞ r(Qλ(φ)) = ∞ , lim

λ→∞ r(Qλ(φ)) = 0 ,

and then from [26, Proposition 3.2] that s(Aφ) = λ0 with λ0 ∈ R being the unique real
number such that r(Qλ0(φ)) = 1. Thus s(Gφ) ≥ λ0 and s(Gφ) is an eigenvalue of Gφ .

(ii) Let now λ > 0 be large enough, i.e. λ > max{s(Gφ), 0} with r(Qλ(φ)) < 1. Set

v := (λ − Gφ)
−1φ

and note that v ≥ 0 since Gφ is resolvent positive and λ > s(Gφ), see [4, Remark 12.12 (b)].
Then Theorem 3.1 (c) entails that v satisfies (in the sense of mild solutions)

∂av = (−λ + Aφ(a))v + Bφv + φ , a ∈ J , v(0) =
∫ am

0
bφ(a)v(a) da .

Thus, since Bφv ≥ 0, we deduce

v(a) ≥ e−λa �φ(a, 0) v(0) +
∫ a

0
e−λ(a−σ) �φ(a, σ ) φ(σ ) dσ , a ∈ J , (5.9)

and, when plugging this into the initial condition,

v(0) ≥
∫ am

0
bφ(a) e

−λa �φ(a, 0) da v(0) +
∫ am

0
bφ(a)

∫ a

0
e−λ(a−σ) �φ(a, σ ) φ(σ ) dσ da

≥
∫ am

0
b(φ̄, a) e−λa �φ(a, 0) da v(0) +

∫ am

0
b(φ̄, a)

∫ a

0
e−λ(a−σ) �φ(a, σ ) φ(σ ) dσ da ,

(5.10)
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where we used that bφ(a) ≥ b(φ̄, a) due to (5.8). Now, the equilibrium φ satisfies

φ(a) = �φ(a, 0)φ(0) , a ∈ J , φ(0) = Q0(φ)φ(0) .

Therefore, using the evolution property

�φ(a, σ )�φ(σ, 0) = �φ(a, 0) , 0 ≤ σ ≤ a ≤ am ,

we infer that ∫ a

0
e−λ(a−σ) �φ(a, σ ) φ(σ ) dσ = 1

λ

(
1 − e−λa)�φ(a, 0) φ(0) (5.11)

and thus∫ am

0
b(φ, a)

∫ a

0
e−λ(a−σ) �φ(a, σ ) φ(σ ) dσ da = 1

λ

(
1 − Qλ(φ)

)
φ(0) . (5.12)

From (5.10) and (5.12) it then follows that

(
1 − Qλ(φ)

)
v(0) ≥ 1

λ

(
1 − Qλ(φ)

)
φ(0)

and thus, since
(
1−Qλ(φ)

)−1 ≥ 0 as r(Qλ(φ)) < 1, we conclude that λv(0) ≥ φ(0). Using
this along with (5.11) in (5.9) we derive λv(a) ≥ φ(a) for a ∈ J . By definition of v, this
means that

λ
(
λ − Gφ

)−1
φ ≥ φ , λ � 0 .

Invoking the exponential representation of the semigroup we obtain

etGφφ = lim
n→∞

(
1 − t

n
Gφ

)−n

φ ≥ φ , t ≥ 0 ,

from which ‖etGφ‖L(E0) ≥ 1 for t ≥ 0, since E0 = L1(J , Lq(�)) is a Banach lattice. This
implies that s(Gφ) = ω0(Gφ) ≥ 0. By supposition, we then even have s(Gφ) > 0. Since
s(Gφ) is an eigenvalue of Gφ , we conclude from Theorem 4.1 that φ is unstable. �

A simple consequence is:

Corollary 5.5 Assume (5.2). Consider a positive equilibrium

φ ∈ L1
(
J ,W 2

q,B(�)
) ∩ C(J ,W 2α

q,N (�)) , φ ≥ 0 ,

to (5.1) for which (5.8) holds. If r(Q0(φ)) > 1, then φ is unstable in L1
(
J ,W 2α

q,N (�)
)
.

Proof It has been observed in the proof of Proposition 5.4 that s(Gφ) ≥ λ0, where λ0 ∈ R

is the uniquely determined from the condition r(Qλ0(φ)) = 1. Since [λ �→ r(Qλ(φ))] is
strictly decreasing on R and r(Q0(φ)) > 1, we necessarily have λ0 > 0. �
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Appendix A. Proof of Proposition 3.4

We provide here the proof of Proposition 3.4 which is fundamental for Theorem 3.3. We thus
impose (3.2), (3.3), (3.9), and recall that we consider nonlocal perturbations

[Bζ ](a) :=
∫ am

0
q(a, σ ) ζ(σ ) dσ , a ∈ J , ζ ∈ E0 ,

for some q(a, σ ) = q(a)(σ ) satisfying

q ∈ C
(
J , L∞(J ,L(E0))

)
.

Then B ∈ L(E0) with

‖B‖L(E0) ≤ am ‖q‖∞ , ‖q‖∞ := ‖q‖C(J ,L∞(J ,L(E0))) .

For the birth rate we recall that b� ∈ C
(
J ,L(E0)

)
. We begin with an auxiliary result:

Lemma A.1 Suppose (3.2), (3.3), and (3.9). Given ψ ∈ E0, let Bψ ∈ C(R+, E0) be defined
as in (3.4b). Then, given T > 0, there is cB(T ) > 0 such that

‖Bψ(τ)‖Eθ ≤ cB(T ) τ−θ ‖ψ‖E0 , τ ∈ (0, T ] , θ ∈ {0, ϑ} . (A.1)

Moreover, given ε > 0 and κ ∈ (0, am/2), there is δ := δ(T , κ, ε) > 0 such that

‖BBζ (τ1) − BBζ (τ2)‖E0 ≤ ε‖ζ‖E0 , τ1, τ2 ∈ [κ, T ] with |τ1 − τ2| ≤ δ ,

whenever ζ ∈ E0.

Proof Estimate (A.1) follows for θ = 0 from the fact that [ψ �→ Bψ ] ∈ L(
E0,C(R+, E0)

)
,

see (3.6). It is derived from Gronwall’s inequality as shown for both cases θ = 0, ϑ in [26,
Formula (2.2)].

In order to prove the continuity property of BBζ for ζ ∈ E0, set ψ := Bζ ∈ E0. We write

Bψ(τ) =
∫ τ

(τ−am )+
b�(τ − a)��(τ − a, 0) Bψ(a) da

+
∫ (am−τ)+

0
b�(τ + a)��(τ + a, a) ψ(a) da

=: B1ψ(τ) + B2ψ(τ) (A.2)

for τ ≥ 0 and note from (B.2) that

c1 := max
0≤σ≤a≤am

‖��(a, σ )‖L(E0) < ∞ . (A.3)
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Choose δ1 := δ1(T , ε, κ) ∈ (0,min{am/2, κ}) such that

2 c1 cB(T ) ‖b‖L∞(J ,L(E0)) max{T , 1} δ1 ≤ ε

4‖B‖L(E0)

. (A.4)

Due to Lemma B.1 we may choose δ2 := δ2(T , ε, κ) > 0 such that

T cB(T ) ‖b‖L∞(J ,L(E0)) ‖��(s1, 0) − ��(s2, 0)‖L(E0) ≤ ε

4‖B‖L(E0)

(A.5)

for s1, s2 ∈ [δ1, T ∧ am] with |s1 − s2| ≤ δ2 and

‖b�(s̄1) − b�(s̄2)‖L(E0) c1 max{cB(T )T , 1} ≤ ε

4‖B‖L(E0)

(A.6)

for s̄1, s̄2 ∈ [0, am] with |s̄1 − s̄2| ≤ δ2. Set

δ0 := δ0(T , ε, κ) := min{δ1, δ2} > 0 .

Then, for κ ≤ τ2 ≤ τ1 ≤ T with |τ1 − τ2| ≤ δ0 we note that (τ1 − am)+ < τ2 − δ1 and
obtain from (A.1)–(A.6)

‖B1ψ(τ1) − B1ψ(τ2)‖E0

≤
∫ (τ1−am )+

(τ2−am )+
‖b�(τ2 − a)‖L(E0) ‖��(τ2 − a, 0)‖L(E0) ‖Bψ(a)‖E0 da

+
∫ τ2

(τ1−am )+
‖b�(τ1 − a) − b�(τ2 − a)‖L(E0) ‖��(τ1 − a, 0)‖L(E0) ‖Bψ(a)‖E0 da

+
∫ τ2−δ1

(τ1−am )+
‖b�(τ2 − a)‖L(E0) ‖��(τ1 − a, 0) − ��(τ2 − a, 0)‖L(E0) ‖Bψ(a)‖E0 da

+
∫ τ2

τ2−δ1

‖b�(τ2 − a)‖L(E0) ‖��(τ1 − a, 0) − ��(τ2 − a, 0)‖L(E0) ‖Bψ(a)‖E0 da

+
∫ τ1

τ2

‖b�(τ1 − a)‖L(E0) ‖��(τ1 − a, 0)‖L(E0) ‖Bψ(a)‖E0 da

≤ ‖b�‖L∞(J ,L(E0)) c1 cB(T ) ‖ψ‖E0 |(τ1 − am)+ − (τ2 − am)+|
+ sup

s1,s2∈[0,am ]
|s1−s2|≤δ0

‖b�(s1) − b�(s2)‖L(E0) c1 cB(T ) T ‖ψ‖E0

+ ‖b�‖L∞(J ,L(E0)) sup
s1,s2∈[δ1,am ]
|s1−s2|≤δ0

‖��(s1, 0) − ��(s2, 0)‖L(E0) cB(T ) T ‖ψ‖E0

+ 2 ‖b�‖L∞(J ,L(E0)) c1 δ1 cB(T ) T ‖ψ‖E0 + ‖b�‖L∞(J ,L(E0)) c1 cB(T ) ‖ψ‖E0 |τ1 − τ2|
≤ ε

‖B‖L(E0)

‖ψ‖E0 .

Consequently, using ψ = Bζ with B ∈ L(E0) we derive

‖B1ψ(τ1) − B1ψ(τ2)‖E0 ≤ ε ‖ζ‖E0 , κ ≤ τ2 ≤ τ1 ≤ T , |τ1 − τ2| ≤ δ0 . (A.7)

For B2ψ we use Lemma B.1 to find η := η(ε, κ) > 0 such that

‖b�‖L∞(J ,L(E0)) ‖��(a + τ1, a) − ��(a + τ2, a)‖L(E0) ≤ ε

4‖B‖L(E0)

,
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whenever κ ≤ τ2 ≤ τ1 ≤ T , a ∈ [0, (am − τ1)+], |τ1 − τ2| ≤ η. Let δ3 > 0 with

‖q‖∞ δ3 ≤ ε

4

and set

δ := δ(T , ε, κ) := min{δ0, η, δ3} .

Then we obtain for κ ≤ τ2 ≤ τ1 ≤ T with |τ1 − τ2| ≤ δ that

‖B2ψ(τ1) − B2ψ(τ2)‖E0

≤
∫ (am−τ1)+

0
‖b�(a + τ1) − b�(a + τ2)‖L(E0) ‖��(a + τ1, a)‖L(E0) ‖ψ(a)‖E0 da

+
∫ (am−τ1)+

0
‖b�(a + τ2)‖L(E0) ‖��(a + τ1, a) − ��(a + τ2, a)‖L(E0) ‖ψ(a)‖E0 da

+
∫ (am−τ2)+

(am−τ1)+
‖b�(a + τ2)‖L(E0) ‖��(a + τ2, a)‖L(E0) ‖ψ(a)‖E0 da

≤ sup
s1,s2∈[0,am ]
|s1−s2|≤δ

‖b�(s1) − b�(s2)‖L(E0) c1 ‖ψ‖E0

+ ‖b�‖L∞(J ,L(E0)) sup
a∈[0,(am−τ1)+]

‖��(a + τ1, a) − ��(a + τ2, a)‖L(E0) ‖ψ‖E0

+ ‖b�‖L∞(J ,L(E0)) c1

∫ (am−τ2)+

(am−τ1)+
‖ψ(a)‖E0 da .

Since ψ = Bζ we get from (3.9) that

∫ (am−τ2)+

(am−τ1)+
‖ψ(a)‖E0 da ≤

∫ (am−τ2)+

(am−τ1)+

∫ am

0
‖q(a, σ )ζ(σ )‖E0 dσda

≤ ‖ζ‖E0 ‖q‖∞ |(am − τ2)+ − (am − τ1)+| .

Gathering the previous computations and using (A.6) and ψ = Bζ with B ∈ L(E0), we
deduce that

‖B2ψ(τ1) − B2ψ(τ2)‖E0 ≤ ε ‖ζ‖E0 . (A.8)

for κ ≤ τ2 ≤ τ1 ≤ T with |τ1−τ2| ≤ δ. Consequently, LemmaA.1 follows from (A.2), (A.7),
and (A.8). �

Proof of Proposition 3.4

For the proof of Proposition 3.4 we suppose (3.2), (3.3), and (3.9). We have to show that
VS(t) ∈ K(E0) for each t > 0, where

VS(t)ζ :=
∫ t

0
S(t − s)B S(s)ζ ds , ζ ∈ E0 .
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To this end we use Simon’s criterion for compactness in E0 = L1(J , E0) (see [19, Theo-
rem 1]). Note first from (3.7) that, for t > 0 and ζ ∈ E0,

‖VS(t)ζ‖E0 ≤
∫ t

0
‖S(t − s)‖L(E0) ‖B‖L(E0) ‖S(s)‖L(E0) ‖ζ‖E0 ds

≤ M2
0 ‖B‖L(E0) e

κ0t t ‖ζ‖E0 ,

so that VS : (0,∞) → L(E0).
Let t ∈ (0, T ) be fixed and consider a sequence (φ j ) j∈N with ‖φ j‖E0 ≤ k0 for j ∈ N.

Then (VS(t)φ j ) j∈N is bounded in E0 as just shown.
(a) We introduce

ψ
j
s := B S(s)φ j , s > 0 , j ∈ N .

Note that [s �→ ψ
j
s ] ∈ C

(
(0,∞),E0

)
with, recalling (3.9),

‖ψ j
s (a)‖E0 ≤ ‖q(a, ·)‖L∞(J ,L(E0)) ‖S(s)φ j‖E0 , a ∈ J , s ∈ (0, T ] , j ∈ N ,

Hence, invoking (3.7),

‖ψ j
s (a)‖E0 ≤ c0(T ) k0 , a ∈ J , s ∈ (0, T ] , j ∈ N , (A.9)

where c0(T ) := ‖q‖∞M0 e|κ0|T , and then

‖ψ j
s ‖E0 ≤ am c0(T ) k0 , s ∈ (0, T ] , j ∈ N . (A.10)

Together with (A.1) this yields

‖B
ψ

j
s
(τ )‖Eθ ≤ cB(T ) am c0(T ) k0 τ

−θ , s, τ ∈ (0, T ] , j ∈ N , θ ∈ {0, ϑ} .(A.11)
Let 0 < h < min{am/2, t}. Then, due to (3.4) we have

∫ am−h

0

∥∥[VS(t)φ j ](a + h) − [VS(t)φ j ](a)
∥∥
E0

da

≤
∫ am−h

0

∫ t

0

∥∥∥[S(t − s)ψ j
s ](a + h) − [S(t − s)ψ j

s ](a)
∥∥∥
E0

ds da

≤
∫ am−h

0

∫ t

(t−a)+
‖��(a + h, a + h − t + s) − ��(a, a − t + s)‖L(E0)

× ‖ψ j
s (a + h − t + s)‖E0 ds da

+
∫ am−h

0

∫ t

(t−a)+
‖��(a, a − t + s)‖L(E0) ‖ψ j

s (a + h − t + s) − ψ
j
s (a − t + s)‖E0 ds da

+
∫ am−h

0

∫ (t−a)+

(t−a−h)+

∥∥��(a + h, a + h − t + s)ψ j
s (a + h − t + s)

− ��(a, 0)Bψ
j
s
(t − s − a)

∥∥
E0

ds da

+
∫ am−h

0

∫ (t−a−h)+

0

∥∥��(a + h, 0)B
ψ

j
s
(t − s − a − h)

− ��(a, 0)Bψ
j
s
(t − s − a)

∥∥
E0

ds da

=: I + I I + I I I + I V . (A.12)

We then treat each integral separately. Let ε > 0 be arbitrary in the following.
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(i) Choose κ := κ(ε, T , t) ∈ (0,min{am/2, t}) such that

2c1 c0(T ) k0 (T + am) κ ≤ ε

6

and η1 := η1(T , ε, κ) ∈ (0, am) such that (see Lemma B.1)

sup
(a1,σ1),(a2,σ2)∈Sκ|(a1,σ1)−(a2,σ2)|≤η1

‖��(a1, σ1) − ��(a2, σ2)‖L(E0) c0(T ) k0 am T ≤ ε

6
.

Then, from (A.9), (A.3) we have, for 2h < η1,

I ≤ c0(T )k0

∫ κ

0

∫ t

(t−a)+
‖��(a + h, a + h − t + s) − ��(a, a − t + s)‖L(E0) ds da

+ c0(T )k0

∫ am−h

κ

∫ t−κ

(t−a)+
‖��(a + h, a + h − t + s) − ��(a, a − t + s)‖L(E0) ds da

+ c0(T )k0

∫ am−h

κ

∫ t

t−κ

‖��(a + h, a + h − t + s) − ��(a, a − t + s)‖L(E0) ds da

≤ 2c1c0(T )k0(T + am)κ

+ c0(T )k0

∫ am−h

κ

∫ t−κ

(t−a)+
‖��(a + h, a + h − t + s) − ��(a, a − t + s)‖L(E0) ds da

≤ 2c1c0(T )k0(T + am) κ

+ c0(T ) k0 am T sup
(a1,σ1),(a2,σ2)∈Sκ|(a1,σ1)−(a2,σ2)|≤η1

‖��(a1, σ1) − ��(a2, σ2)‖L(E0)

and therefore

I ≤ ε

3
, 2h < η1 . (A.13)

(ii) We choose η2 := η2(T , ε) > 0 according to (3.9) such that

c1 sup
τ1,τ2∈J

|τ1−τ1|≤η2

‖q(τ1, ·) − q(τ2, ·)‖L∞(J ,L(E0))
am T M0 e

|κ0|T k0 ≤ ε

3
.

We then use (A.3), recall ψ j
s = B S(s)φ j , and invoke (3.9) and (3.7) to get, for h < η2,

I I ≤ c1

∫ am−h

0

∫ t

(t−a)+

∫ am

0

∥∥(
q(a + h − t + s, σ ) − q(a − t + s, σ )

)[S(s)φ j ](σ )
∥∥
E0

dσdsda

≤ c1

∫ am−h

0

∫ t

(t−a)+
‖q(a + h − t + s, ·) − q(a − t + s, ·)‖L∞(J ,L(E0))

‖S(s)φ j‖E0 ds da

≤ c1 sup
τ1,τ2∈J

|τ1−τ1|≤η2

‖q(τ1, ·) − q(τ2, ·)‖L∞(J ,L(E0))
am T M0 e

|κ0|T k0

and therefore

I I ≤ ε

3
, h < η2 . (A.14)

(iii) It follows from (A.3), (A.9), and (A.11) that

I I I ≤ c1 c0(T ) k0 am
(
1 + cB(T ) am

)
h . (A.15)
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(iv) Finally, we choose κ̄ := κ̄(ε, T ) ∈ (0, am/2) such that

2c1 a
2
m cB(T ) c0(T ) k0 κ̄ ≤ ε

6

and invoke then (A.9) and Lemma A.1 to find η3 := η3(T , ε) > 0 such that

‖B
ψ

j
s
(τ1) − B

ψ
j
s
(τ2)‖E0 ≤ ε

6c1amT
, τ1, τ2 ∈ [κ̄, T ] with |τ1 − τ2| ≤ η3 .

LetC(ϑ) > 0 be the constant from (B.4) (for� replaced by��). Using the previous estimate
along with (A.3) and (A.11) we then derive, for h < η3,

I V ≤
∫ am−h

0

∫ (t−a−h−κ̄)+

0
‖��(a + h, 0) − ��(a, 0)‖L(Eϑ E0) ‖B

ψ
j
s
(t − s − a − h)‖Eϑ ds da

+
∫ am−h

0

∫ (t−a−h−κ̄)+

0
‖��(a, 0)‖L(E0) ‖B

ψ
j
s
(t − s − a − h) − B

ψ
j
s
(t − s − a)‖E0 ds da

+
∫ am−h

0

∫ (t−a−h)+

(t−a−h−κ̄)+

{
‖��(a + h, 0)‖L(E0) ‖B

ψ
j
s
(t − s − a − h)‖E0

+ ‖��(a, 0)‖L(E0) ‖B
ψ

j
s
(t − s − a)‖E0

}
ds da

≤ C(ϑ) hϑ cB(T ) am c0(T ) k0

∫ am−h

0

∫ (t−a−h−κ̄)+

0
(t − s − a − h)−ϑ ds da

+ c1 am T
ε

6c1amT
+ 2c1 a

2
m cB(T ) c0(T ) k0 κ̄

and therefore

I V ≤ ε

3
+ C(ϑ) cB(T ) am c0(T ) k0 am T 1−ϑ hϑ , h < η3 . (A.16)

(v) Consequently, we conclude from (A.12)–(A.16) that

lim
h→0

sup
j∈N

∫ am−h

0

∥∥[VS(t)φ j ](a + h) − [VS(t)φ j ](a)
∥∥
E0

da ≤ ε

and thus, since ε > 0 was arbitrary,

lim
h→0

sup
j∈N

∫ am−h

0

∥∥[VS(t)φ j ](a + h) − [VS(t)φ j ](a)
∥∥
E0

da = 0 . (A.17)

(b) Finally, for j ∈ N we have from (B.2), (A.11), and (A.9) that
∫ am

0
‖[VS(t)φ j ](a)‖Eϑ da ≤

∫ am

0

∫ (t−a)+

0
‖�(a, 0)‖L(E0,Eϑ ) ‖B

ψ
j
s
(t − s − a)‖E0 ds da

+
∫ am

0

∫ t

(t−a)+
‖�(a, a − t + s)‖L(E0,Eϑ ) ‖ψ j

s (a − t + s)‖E0 ds da

≤ Mϑ

(
cB(T ) am + 1

)
c0(T ) k0

∫ am

0
e�a a−ϑ da .

Since the right-hand side is finite and due to the compact embedding of Eϑ in E0 we conclude
that{∫ a2

a1
[VS(t)φ j ](a) da ; j ∈ N

}
is relatively compact in E0 for 0 < a1 < a2 < am .

(A.18)
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We now infer from (A.17), (A.18), and [19, Theorem 1] that the sequence (VS(t)φ j ) j∈N is
relatively compact in E0 = L1(J , E0). Since t > 0 was arbitrary, this yields Proposition 3.4.

�

Appendix B. Parabolic Evolution Operators

Parabolic evolution operators are thoroughly treated in [3] to whichwe refer.We only provide
here their most important properties that we have used in the previous sections.

Basic Definition

Let E1 ↪→ E0 be a densely injected Banach couple, J = [0, am], and
J! := {(a, σ ) ∈ J × J ; 0 ≤ σ ≤ a} , J ∗

! := {(a, σ ) ∈ J × J ; 0 ≤ σ < a} .
We consider

A : J → A(E0)

with dom(A(a)) = E1 for each a ∈ J , whereA(E0)means the closed linear operators in E0.
Following [3, Section II.2.1] we say that A generates a parabolic evolution operator �

on E0 with regularity subspace E1, provided that � : J! → L(E0) is such that

� ∈ C
(
J!,Ls(E0)

) ∩ C
(
J ∗
!,L(E0, E1)

)
(B.1a)

satisfying

�(a, a) = 1E0 , �(a, σ ) = �(a, s)�(s, σ ) , (a, s), (s, σ ) ∈ J! , (B.1b)

and, for a ∈ J ,

�(·, a) ∈ C1((a, am),L(E0)
)
, �(a, ·) ∈ C1([0, a),Ls(E1, E0)

)
(B.1c)

with

∂1�(a, σ ) = A(a)�(a, σ ) , ∂2�(a, σ ) = −�(a, σ )A(σ ) , (a, σ ) ∈ J ∗
! . (B.1d)

In the following, let

A ∈ Cρ
(
J ,H(E1, E0)

)

be fixed with ρ > 0. Then [3, II. Corollary 4.4.2] ensures that A generates a unique parabolic
evolution operator � on E0 with regularity subspace E1 in the above sense.

Basic Estimates

Given an interpolation space Eθ = (E0, E1)θ with θ ∈ [0, 1], there are � ∈ R and Mθ ≥ 1
such that

‖�(a, σ )‖L(Eθ ) + (a − σ)θ ‖�(a, σ )‖L(E0,Eθ ) ≤ Mθe
�(a−σ) , (a, σ ) ∈ J! , (B.2)

according to [3, II. Lemma 5.1.3].
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Solvability of Cauchy Problems

For x ∈ E0 and f ∈ L1(J , E0), the mild solution v ∈ C(J , E0) to the Cauchy problem

∂av = A(a)v + f (a) , a ∈ J̇ := (0, am] , v(0) = x , (B.3a)

is given by

v(a) = �(a, 0)x +
∫ a

0
�(a, σ ) f (σ ) dσ , a ∈ J . (B.3b)

If x ∈ Eϑ for some ϑ ∈ [0, 1] and f ∈ Cθ (J , E0) + C(J , Eθ ) with θ ∈ (0, 1] (with
admissible interpolation functors), then

v ∈ C(J , Eϑ) ∩ C1( J̇ , E0) ∩ C( J̇ , E1)

is a strong solution to (B.3a). Actually, if, in addition, x ∈ E1, then

v ∈ C1(J , E0) ∩ C(J , E1) .

See [3, II. Theorem 1.2.1, Theorem 1.2.2].

Continuity Properties

Given ϑ ∈ (0, 1), there is C(ϑ) > 0 such that

‖�(a + h, 0) − �(a, 0)‖L(Eϑ ,E0) ≤ C(ϑ)hϑ , 0 ≤ a ≤ a + h ≤ am , (B.4)

according to [3, II. Equation (5.3.8)]. Moreover:

Lemma B.1 For ε > 0 and κ ∈ (0, am) given, there is η := η(ε, κ) > 0 such that

‖�(a1, σ1) − �(a2, σ2)‖L(E0) ≤ ε , (a1, σ1), (a2, σ2) ∈ Sκ , |(a1, σ1) − (a2, σ2)| ≤ η ,

where Sκ := {(a, σ ) ∈ !∗
J ; κ ≤ a − σ }.

Proof This follows from the fact that � ∈ C
(
!∗

J ,L(E0)
)
is uniformly continuous on the

compact subset Sκ of !∗
J . �

Positivity

If E0 is an ordered Banach space and A(a) is resolvent positive5 for each a ∈ J , then [3,
II. Theorem 6.4.1, Theorem 6.4.2] imply that the evolution operator � is positive, that is,
�(a, σ ) ∈ L+(E0) for each (a, σ ) ∈ J!.

5 An operator A ∈ A(E0) is resolvent positive, if there is λ0 ≥ 0 such that (λ0,∞) ⊂ ρ(A) and

(λ − A)−1 ∈ L+(E0) , λ > λ0 .
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