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Abstract: Forecasts and their corresponding optimized operation plans for energy plants never match
perfectly, especially if they have a horizon of several days. In this paper, we suggest a concept to
cope with uncertain load forecasts by reserving a share of the energy storage system for short-term
balancing. Depending on the amount of uncertainty in the load forecasts, we schedule the energy
system with a specific reduced storage capacity at the day-ahead market. For the day of delivery, we
examine the optimal thresholds when the remaining capacity should be used to balance differences
between forecast and reality at the intraday market. With the help of a case study for a simple
sector-coupled energy system with a demand for cooling, it is shown that the energy costs could
be reduced by up to 10% using the optimal reserve share. The optimal reserve share depends on
the forecast quality and the time series of loads and prices. Generally, the trends and qualitative
results can be transferred to other systems. However, of course, an individual evaluation before the
realization is recommended.

Keywords: multienergy system; energy storage system; day-ahead and intraday energy market;
energy management; uncertain load forecast

1. Introduction

The subject of the current paper is electricity purchasing and scheduling different
components of a sector-coupled energy system at the day-ahead and intraday market, con-
sidering uncertain load forecasting. The topic is important because even if the purchasing
at day-ahead electricity markets operates perfectly, deviations of the load from the forecast
will necessitate short-term balancing transactions at an intraday market. Depending on the
deviation, these can be economically disadvantageous.

The optimal dispatch problem of energy systems is a classical research topic addressed
in several review papers about energy management systems [1,2]. The most prominent
approaches are optimization based. Therefore, the scheduling problem is solved either for
the considered scheduling horizon (e.g., Nemati et al. [3], Li et al. [4]) or for a receding
horizon via model predictive control (e.g., Kaya et al. [5]). In the latter one, uncertainties in
load forecasts are either explicitly addressed via robust control [6–8] or compensated in a
subsequent step, e.g., the real-time operation [9,10]. If multiple horizons are considered,
such as day-ahead and real-time operation, hierarchical model predictive control is often
used [5,9,11]. In contrast with these scientific efforts, rule-based strategies are often used for
implementation. These have the advantage that they are not based on frequently deviating
forecasts and are also easy to implement [12]. Generally speaking, simple algorithms are
repeatedly evaluated to determine the scheduling. For example, a threshold value is often
set for buying or selling energy and is compared with the current market price. In this
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context, for example, Ejeh et al. [12] proposes a methodology to define the optimal charging
and discharging electricity price for electrical energy storage systems.

The current literature analyzes different energy systems under various market con-
ditions. If an electricity market is considered, it is mainly modeled via fluctuating price
signals such as the day-ahead market or intraday market [13]. Some authors focus on purely
electric components such as photovoltaic power plants (PV), wind turbines, or batteries,
e.g., Nemati et al. [3], Zhuang et al. [14]. In contrast, others investigate sector-coupled
multienergy systems with additional heating or cooling demands, incorporating compo-
nents such as combined heat and power plants (CHP), heat pumps, compression chillers,
and thermal storage systems [5,8,15–18]. Even chemical plants such as air separation units
have been considered in [19,20]. Vasilj et al. [6] consider a market for district heating, and
Chen and Garcia [21] a generic setting with different markets for different goods such
as steam. In contrast with the approaches mentioned above, some studies also explicitly
address several electricity markets, where electricity is traded at different sequential closing
times for a specific fulfillment date. Most prominently, the day-ahead and intraday mar-
kets are analyzed by Yin et al. [22], Xu et al. [23], Ji et al. [24], and Abdeltawab et al. [25],
but Nguyen Duc and Nguyen Hong [26] also address balance capacity. Again, most authors
focus on electrical systems, and only a few analyze sector-coupled energy systems. For
example, [9] investigates a system consisting of a PV and a CHP controlled by a hierarchi-
cal control algorithm, and Wang et al. [10] analyze multistage energy management for a
system consisting of a CHP, electric boiler, PV, and wind turbines and electrical and thermal
storage systems.

In the present paper, we analyze a setting with two sequential electricity markets,
the day-ahead and intraday markets, and a sector-coupled energy system with a demand
for cooling from an existing plant [18] and cold storage system, focusing on handling
uncertain load forecasts. As stated, this setting has seldom been analyzed before. Due
to the discussed issues within the realization of only optimization-based strategies, we
analyze a setting that is optimization based at the day-ahead market and rule based for the
intraday operation. Therefore, an easy-to-implement realization of the intraday operation is
ensured. Part of the energy storage system is treated as reserve storage to provide flexibility
in the short-term balancing of forecast errors. This reserve part is not used at the day-ahead
market. Chen and Garcia [21] use a similar approach regarding reserve storage but analyze
another system setup.

In the analyzed system setup, there is a general trade-off between the flexibility at
the day-ahead market and the ability to compensate for deviations between forecast and
reality. Therefore, we want to investigate the following research questions: (1) Under which
conditions in terms of prognosis quality does the reservation of reserve storage capacity
make sense? (2) How large should this reserve storage share be, depending on the forecast
quality? We analyze a simple sector-coupled energy system to answer these questions
and show the idea behind the method and the potential of reserve storage. However,
the method can be transferred to any sector-coupled or multienergy system, including a
storage system in any infrastructure. The case study is based on an actual application in
the form of an office campus.

In all, the contribution of the present paper can be summarized as follows:

• Formal definition of the approach to reserve a storage share for short-term operation;
• Model-based evaluation with a simple sector-coupled energy system and systemati-

cally generated load profiles;
• Quantification of the potential of the proposed method and the corresponding neces-

sary reserve share with a real case study.

The paper is structured as follows: Section 2 presents the general approach and
underlying model of the considered system, as well as the methods for trading in both
markets of interest. In Section 3, the focus is on evaluating the base case for generated
load curves and variable dimensions. The results are compared with measured data for
verification in Section 4.
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2. General Approach, Methods, and Model

This section discusses the general approach, the necessary definitions, and model
equations. The investigated example system and the corresponding model equations are
introduced in the second part. Lastly, the concrete procedure for purchasing electricity and
the storage system’s operation is defined.

2.1. General Approach

We consider two electricity markets, i.e., the day-ahead market and the continuous
trading within the intraday market. However, the proposed method can also be applied
to similar market settings. The uncertainty of a load forecast could be compensated by
holding reserve storage for the operation of the plant and short-term action at the intraday
market. In the following, the term load curve means time series in demands of cold.

Figure 1 shows a sketch of the present approach. In the first step, electricity is pur-
chased from the day-ahead market based on a load forecast. From this, the costs at the day-
ahead market and a day-ahead schedule for the system operation are identified. Moreover,
in the second step, the actual load curve has to be fulfilled, and short-term compensation
trades have to be performed, considering the short-term prices at the intraday market.
The steps are explained in detail in the following.

Figure 1. Sketch for the present approach of two-step, sequential market trades, including
forecast errors.

2.1.1. Electricity Purchasing on Day-Ahead Market

Time series for load forecasts and knowledge about the quality and uncertainty of
these are the basis for purchasing electricity at the day-ahead market. Depending on
the forecast quality, parts of the storage system are not included in the trading strategy.
However, they are kept as reserve storage for short-term deviations from the load fore-
cast. In practice, this can be done for a thermal storage system by lowering its maximal
temperature set point and raising its minimal temperature set point, resulting in a less
usable energy capacity (c.f. reserve in the upper and lower parts of the storage system).
With this information, the operation power of the components is planned, and the necessary
electricity is purchased on the day-ahead market.

In the present paper, the trading strategy at the day-ahead market is not the focus.
However, it must be taken into account to pay for the reduction in flexibility by setting
reserve storage. Therefore, an optimization-based approach with a perfect prediction of
day-ahead energy prices is used here. Details regarding this implementation are discussed
in Section 2.2.

2.1.2. Operation and Trades at Intraday Market

In the second step, the schedule for the single components needs to be updated based
on the actual load curves, which can differ from the load forecast. Therefore, the previously
defined reserve storage is used, and additional trades at the intraday market can be placed
(c.f. Figure 1). In this step, any advanced control strategies could be used. The present
analysis uses a rule-based control approach. Section 2.2 gives detailed definitions for the
selected example system.
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2.1.3. Investigated System and Model Equations

The following analysis uses a simple sector-coupled energy system to show the
method’s idea and the reserve storage’s potential. The case study is based on an actual
application in the form of an office campus. The system structure is sketched in Figure 2. It
needs to fulfill a specific demand for cooling for a consumer. Therefore, a power-to-cold
plant is used, realized by a compression refrigeration machine, in the following power-
to-cold plant. It is fed with electricity from a public grid. Additionally, a thermal energy
storage system for the cold demand is assumed.

Figure 2. Sketch of the investigated energy system.

We describe the system using model equations for each component and the coupling
points. For simplicity and to illustrate principal effects, linear models with constant effi-
ciencies and neglecting self-discharge are considered. The governing equations describing
the model are presented and explained for all relevant system components.

2.1.4. Power-to-Cold Plant

The power-to-cold plant converts electric power Pel
P2c,in into thermal power Pth

P2c,out, i.e.,

Pel
P2c,in = Pth

P2c,out/ηP2C, (1)

where ηP2C is a constant coefficient of performance of the plant. Since the power-to-cold
plant can only consume power and refeeding into the grid is physically not possible,
the following equation holds:

0 ≤ Pel
P2c,in. (2)

Additionally, the operation range of the plant is limited by the maximum installed
power Pmax

P2c,out:
0 ≤ PP2c,out ≤ Pmax

P2c,out. (3)

2.1.5. Energy Storage System

The power-to-cold system is coupled with a thermal energy storage system. This
results in the following energy balance in discretized form:

Es(tk) = Es(tk−1) + ηEPth
s,char(tk) · ∆t − 1

ηE
Pth

s,dis(tk) · ∆t, (4)

where Es(tk) is the stored energy at a specific point in time tk, ηE is the charge and discharge
efficiency, and Pth

s,char and Pth
s,dis are the charge and discharge power, respectively. We

assume the initial value of Es to be zero since the storage system only comes into play when
appropriate price signals are received. Again, the operation range of the storage system is
limited to the maximum charging and discharging power Pmax

s :

0 ≤ Pth
s,char ≤ Pmax

s , (5)

0 ≤ Pth
s,dis ≤ Pmax

s , (6)

and the capacity of the energy storage system is limited by the energy capacity Emax
s :

0 ≤ Es ≤ Emax
s . (7)
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2.1.6. Power Balances

Each form of power must be balanced. For the electricity, it holds

0 = Pel
grid − Pel

P2c,in. (8)

The realized electricity supply from the grid Pel
grid is the sum of purchased power at

the two markets. For the cold balance, it yields

Pdem = Pth
P2c,out + Pth

s,dis − Pth
s,char. (9)

Therefore, Pdem is the cooling demand of the customer that needs to be provided by
the energy system.

2.2. Scheduling and Trading
2.2.1. Day-Ahead Market

As described in Section 2.1, the electricity is purchased at the day-ahead market based
on the load forecast. We want to evaluate the influence of the reserve capacity and not focus
on different bidding strategies. Therefore, we assume an optimal energy purchase and
schedule for the components. The resulting optimization problem is defined as follows:

min
Pel

grid,DA,Pth
s,dis,Pth

s,char

n

∑
k=1

Ce,DA(tk) · Pel
grid,DA(tk) · ∆t, (10)

with ∆t = tk − tk−1. The objective function is the cost of purchasing energy from the
grid over the evaluated period. Here, Ce,DA describes the time-dependent price signals at
the day-ahead market, and Pgrid,DA · ∆t the corresponding purchased energy. The model
equations, Equations (1)–(9), are also considered as equality and inequality constraints.
However, in (9), only the forecast for the demand Pfor can be taken into account.

2.2.2. Intraday Market

The second step of the operation is to compensate for deviations in the load forecast
with the help of the reserve storage or by compensation trades at the day-ahead market.
As mentioned before, we assume a rule-based approach since upcoming loads are known
only on a short-term basis. Table 1 summarizes the control rules for the traded power
Pel

grid,ID and the charge and discharge power of the storage system. They depend on the
differences ∆P between the forecast Pfor and the actual demand Pdem,

∆P = Pdem − Pfor, (11)

as well as the current price at the intraday market Ce,ID. The combinations result in nine
cases (c.f. Table 1). The columns represent the additional and reduced demand and the case
where the demand equals the forecast. The rows differentiate whether the current energy
price at the intraday market is below a maximum purchase price Clim−

e , above a minimum
price for sale Clim+

e , or within these limits. Within these rules, the following help variables
are used. The set point for the maximum possible discharge and charge power can be
limited either by the energy content of the storage system or by the maximum charge and
discharge power, respectively,

Pset
s,dis = min

(
Es · ηE

∆t
, Pmax

s

)
(12)

and
Pset

s,char = min
(

Emax
s − Es

ηE · ∆t
, Pmax

s

)
. (13)

The given system design makes it physically impossible to feed stored thermal energy
into the electricity grid. Therefore, energy can only be sold by offering energy purchased at
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the day-ahead market over the same period. Therefore, the maximum amount of energy
that can be sold at any time is limited by

Pmax
sell (t) = −Pel

grid,DA(t). (14)

Table 1. Rule-based operation and trading on the intraday market.

Demand Lower than Forecast ∆P < 0 Demand Equal to Forecast ∆P = 0 Demand Lower than Forecast ∆P > 0

Pr
ic

e
lo

w
er

th
an

m
ax

im
um

bu
y

pr
ic

e
C

e
<

C
lim

-
e

Storage empty OR storage (partially)
charged:

Storage empty OR storage (partially)
charged:

Storage empty OR storage (partially)
charged:

Charge storage as much as possible using
excess energy and energy bought at the in-
traday market. If excess energy cannot be
stored completely, sell as much excess en-
ergy as possible at the intraday market.

Charge storage as much as possible using
energy bought at the intraday market.

Buy as much energy as possible at the intra-
day market to meet the demand and charge
the storage.

The equations that result from this are

Pset
grid,ID = min

(
∆P + Pset

s,char, Pmax
P2C − Pgrid,DA

)
Pgrid,ID = max

(
Pset

grid,ID, Pmax
sell

)
Ps,dis = 0
Ps,char = Pset

grid,ID − ∆P

The equations that result from this are

Pgrid,ID = max
(

Pset
s,char, Pmax

P2C − Pgrid,DA

)
Ps,dis = 0
Ps,char = Pgrid,ID

The equations that result from this are

Pgrid,ID = max
(

∆P + Pset
s,char, Pmax

P2C − Pgrid,DA

)
Ps,dis = 0
Ps,char = min

(
Pgrid,ID − ∆P, Pset

s,char

)

Pr
ic

e
in

ra
ng

e
C

lim
-

e
≤

C
e
≤

C
lim

+
e

Storage empty:
Sell as much excess energy as possible at the
intraday market.

Storage empty OR storage (partially)
charged:
Run the original operation plan as sched-
uled, no intervention.

Storage empty OR storage (partially)
charged:
Buy energy at the intraday market to meet
demand.

Storage (partially) charged:
Use as much energy as possible from the
storage to meet the demand and sell excess
energy at the intraday market.
The equations that result from this are

Pset
grid,ID = ∆P

Pgrid,ID = max
(

Pset
grid,ID, Pmax

sell

)
Ps,dis = 0

The equations that result from this are

Pgrid,ID = 0
Ps,dis = 0
Ps,char = 0

The equations that result from this are

Pgrid,ID = ∆P
Ps,dis = 0
Ps,char = 0

Ps,char =

{
min

(
−∆P + Pgrid,ID, Pset

s,char

)
if Pgrid,ID > ∆P

0 else

Pr
ic

e
hi

gh
er

th
an

m
in

im
um

se
ll

pr
ic

e
C

e
>

C
lim

+
e

Storage empty:
Sell as much excess energy as possible at the
intraday market.

Storage empty:
Run the original schedule, no intervention.

Storage empty:
Buy energy at the intraday market to meet
the demand.

Storage (partially) charged:
Use as much energy as possible from the
storage to meet the demand and sell excess
energy at the intraday market.

Storage (partially) charged:
Use as much energy as possible from the
storage to meet the demand and sell excess
energy at the intraday market.

Storage (partially) charged:
Use as much energy as possible from the
storage to meet the demand. If the demand
can be fulfilled with storage energy, sell ex-
cess energy at the intraday market. If the
demand exceeds stored energy, buy energy
at the intraday market.

The equations that result from this are

Pset
grid,ID = ∆P − Pset

s,dis

Pgrid,ID = max
(

Pset
grid,ID, Pmax

sell

)
Ps,dis =

{
0 if Pgrid,ID > ∆P
Pgrid,ID − ∆P, else

The equations that result from this are

Pset
grid,ID = −Pset

s,dis

Pgrid,ID = max
(

Pset
grid,ID, Pmax

sell

)
Ps,dis = −Pgrid,ID
Ps,char = 0

The equations that result from this are

Pset
grid,ID = min

(
∆P − Pset

s,dis, Pmax
P2C − Pgrid,DA

)
Pgrid,ID = max

(
Pset

grid,ID, Pmax
sell

)
Ps,dis = min

(
∆P − Pgrid,ID, Pset

s,dis

)
Ps,char = 0

Ps,char =

{
min

(
−∆P + Pgrid,ID, Pset

s,char

)
if Pgrid,ID > ∆P

0 else
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2.3. Evaluation

In the analysis, we vary the share of the reserve storage to find an optimal trade-
off between flexibility at the day-ahead market and reserve storage to compensate for
deviations in the load forecast. For a fair comparison, the total electricity costs at the
day-ahead and intraday markets are summed up and compared with the system without
reserve storage, i.e.,

Cp,tot =
n

∑
k=1

Ce,DA(tk) · Pgrid,DA(tk) · ∆t +
n

∑
k=1

Ce,ID(tk) · Pgrid,ID(tk) · ∆t. (15)

2.4. Definition of Forecast Quality

The optimal reserve storage share depends on the load forecast quality. For a perfect
forecast, no reserve storage is necessary, and in case of significant deviations, it is assumed
that higher reserve shares could be beneficial. Different definitions of forecast quality can be
chosen, where the most straightforward approach might be the use of the mean difference
between the load forecast and the actual demand. Another method would be using the
standard deviation σ over all analyzed time steps of this difference. Even though these
approaches might work to characterize load curves with similar mean values, comparing
load cycles with a larger variation of those is not suitable. Other more advanced ways to
define forecast quality might be, for example, the use of robust measures of scale. However,
to keep focus on the topic of this article in the present analysis, we took a slightly adapted
form of the coefficient of variation fCV to quantify forecast quality. It is defined by the
standard deviation between the load forecast Pfor and the realized demand Pdem normed to
the mean value µ of the demand Pdem:

fCV =
σ(|Pdem − Pfor|)

µ(Pdem)
. (16)

This index is easy to evaluate and can be adapted to other cases.

3. Results for Generated Case Study

In this chapter, the input data for the investigated case study is first described and then
analyzed concerning different aspects. The last part of this section discusses the influence
of plant dimensioning.

3.1. Definition of Case Study

The case study is defined by the plant configuration and dimensioning of the plants
that must be operated. These parameters are given in Table 2. They are adapted from the
implemented system.

Table 2. Technical parameters of the system for the base case.

Parameter Variable Value

Coefficient of performance ηp2c 3.67
Rated power of power-to-cold plant Pmax

P2c,out 2000 kW
Energy capacity of storage system Emax

s 5000 kWh
Rated power of storage system (charge and discharge) Pmax

s 500 kW
Storage system efficiency for charge resp. discharge process ηE 0.90

Furthermore, price signals for the investigated markets, load curves, and forecast time
series need to be fixed for the evaluation. These will be discussed in the following.

The present study considers the day-ahead market for electricity purchasing and the
intraday market for short-term compensation of differences. At the day-ahead market,
bids from suppliers and consumers are collected until noon of the day before fulfillment.
Subsequently, the EPEX Spot energy exchange awards the respective bids. A demand not
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covered by the day-ahead market, e.g., due to short-term changes in the anticipated load or
due to deviating generation from renewable energies, can be covered by continuous intra-
day trading up to 5 min before delivery. The price determination takes place individually
between the trading partners [13]. For the present analysis, the price data from October
2020 to October 2021 is taken from Bundesnetzagentur [27] for the day-ahead market and
internal data for the realized intraday trading. Figure 3 shows an example of the time series
of the prices for June 2021.

Jun 01 Jun 04 Jun 07 Jun 10 Jun 13 Jun 16 Jun 19 Jun 22 Jun 25 Jun 28 Jul 01

Time 2021   

-100

-50

0

50

100

150

200

250

300

350

Day-Ahead

Intraday

Figure 3. Price signals for the June 2021 day-ahead market (Ce,DA, [27]) and intraday trading (Ce,ID,
source: internal data).

For the present analysis, we need different load curves and prognoses with different
qualities, which we want to vary systematically. Since only limited data are available, we
choose to generate different load curves with a given characteristic and vary the introduced
coefficient of variation while keeping the mean value of the load curves constant.

The load curves employed are simulated by steady-state, Gaussian stochastic processes
modeled by the spectral representation method based on the work conducted by Shinozuka
and Deodatis [28]. For this purpose, a given load curve P0

dem(tj) in discrete time tj with
j = 0, . . . , N − 1, where N is the data set size, is first decomposed into its frequency
spectrum using the discrete Fourier transform to extract its characteristics, i.e.,

Sn =
N−1

∑
j=0

P0
dem(tj) · e−inω0 j, (17)

where ω0 = 2π/N and i is the imaginary unit. From the two-sided spectrum conserved in
this way, a new random load curve can be simulated using the spectral representation

P̃(k)
dem(t) =

√
2

N−1

∑
n=0

An cos
(

ωnt − Φ(k)
n

)
; (18)

see Equation (35) in [28] for details. P̃(k)
dem(t) is the k-th realization of the stochastic process

Pdem(t), which represents the realized demand. The simulated load curves are based on
a load curve P0

dem(tj) recorded over 3 days at a power-to-cold plant in an office campus,
as shown in Figure 4.
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Figure 4. Load curve recorded from power-to-cold plant (EUREF campus, Berlin).

By transforming the input signal into the frequency domain and preserving the spec-
trum, the characteristics of the input signal are preserved. At the same time, any load
curve simulated in this way has a random shape due to reverse transformation into the
time domain—c.f. Equations (17) and (18). By varying the input signal amplitude using
a suitable coefficient, arbitrary load curves with different coefficients of variation can be
generated. A parameter study adapted to the plant types investigated in Section 4 provided
reasonable values for fCV between 0.3 and 1.

Figure 5 shows three selected examples for the generated load curves resulting in
coefficients of variation of (a) 0.3, (b) 0.7, and (c) 1. A larger coefficient of variation leads to
larger amplitudes in the load curve, leading to a lower assumed forecast quality.
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d
e
m

 i
n

 k
W

 (c)

Figure 5. Selected simulated load curves for different coefficients of variation: (a) 0.3, (b) 0.7, and (c) 1.

3.2. Results for Base Case

The given case study should investigate under which conditions a storage reservation
is beneficial and what share of the storage system should be reserved. Therefore, Figure 6
shows savings or losses of the costs Cp,tot for different reserve shares and input signals
compared with no reserve storage—c.f. Equation (15). The potential savings are in the
order of several percent of the total costs. It is significant, especially if large amounts of
electricity must be purchased to operate the system.
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Figure 6. Relative effect of keeping reserve storage on energy costs for the base case independent of
the reserve share and the forecast quality in terms of coefficient of variation fCV.

The following general trend becomes visible for low coefficients of variation (i.e.,
a good forecast quality). A reserve share of 10% to 30% is reasonable, and the savings can
be generated compared with the case without reserve storage. For larger reserve shares,
even losses are possible. The reason is the reduced flexibility at the day-ahead market
and consequently more expensive electricity purchasing. The benefits of real-time control
cannot compensate for this. For worse forecast quality, this trend is declining, and more
benefits can be generated from the reserve storage. For the case with a coefficient of
variation of 1, taking the complete storage system as reserve storage is advantageous.

From the results presented, the optimal reserve share was determined as a function of
the coefficient of variation. Figure 7 shows that the optimal reserve share is increasing for
an increasing coefficient of variation and thus for worse forecasts.
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Figure 7. Optimal reserve share depending on the coefficient of variation for the base case.

3.3. Variation of Technical Parameters

In the base case, we investigated the forecast quality’s influence on the reserve capac-
ity’s optimal share. However, the setup of the system will influence the results. Therefore,
in the first step, the arithmetic mean value of the load curve is changed to 50% and 300%
of the initial value, whereas the dimension of the power-to-cold plant and the storage
system remains as in the base case. Figure 8a shows the optimal reserve share for both in
comparison with the base case (black). Due to the power limits of the power-to-cold plant
and the used load curve simulation, large coefficients of variation cannot be evaluated for
the case with high mean values of the demand (300%).
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Figure 8. Optimal reserve share depending on the coefficient of variation for (a) changed mean loads
and (b) changed storage capacities.

For all evaluated cases, the found trend is the same: the optimal reserve share increases
for increasing fCV. The largest value of fCV also results in the largest optimal reserve share
in each case. In both new cases, the optimal reserve share is partly below and partly above
the base case value. Thus, a clear trend for the exact numbers cannot be derived, but the
qualitative course remains unchanged.

The second aspect to be highlighted is the influence of the storage system size. For this
purpose, tests were carried out with lower and higher storage capacities. The storage
capacity in the base case was assumed to be 5000 kWh. It corresponds to a minimal charge
time of 2.5 h when operating the power-to-cold system at maximum power. In the analysis,
it is changed to 50% and 200% of the storage capacity of the base case. This means that
the storage system can be fully charged in 1.25 and 5 h, respectively, with unchanged
maximum output. Figure 8b shows the optimal reserve share for these compared with the
base scenario.

Again, the storage capacity does not change the results qualitatively: the optimal
reserve share increases with an increasing coefficient of variation fCV. The trend in the
scenario with a large storage capacity in the fCV = 0.7 range is unclear. Since this represents
an individual case, we assume that it results from special correlations of price and demand.
For reduced storage capacities, the optimal reserve share is lower than in the base case.
On the other hand, the case of increased storage capacity needs to be clarified. Here,
deviations of up to fCV = 0.7 result in a lower optimum reserve share than in the base case,
and for larger values, the optimum reserve share is more prominent than in the base case.

The variation of the technical parameters shows a general correlation between the
selected uncertainty measure fCV and the optimal reserve share in the sense that in nearly
all cases, larger values of fCV lead to a larger optimal reserve share. However, a direct
correlation or scalability of the optimal reserve share with the mean value of the load or
the storage system size could not be determined. Nevertheless, these examples show that
keeping a significant reserve in case of greater uncertainty does make sense. The actual
storage capacity seems to play a rather subordinate role here. A general recommendation for
the reserve share based only on the uncertainty factor fCV was not possible since correlations
between price signal and demand significantly impact overall results. Nevertheless, some
recommendations for the reserve share as a function of the coefficient of variation can be
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derived from the present results. From a coefficient of variation of around 0.75–0.9, setting
the reserve share to half or even more of the storage capacity is recommendable.

4. Results with Measured Data

The last aspect of the present analysis is comparing the discussed results based on
generated load curves (Section 3) with measured data. With this, we want to verify the
algorithm’s applicability to real cases. The analysis performed in this section is based on the
load data recorded at the EUREF campus within the project “WindNODE”. Additionally,
the plant operator provided three load forecasts generated by different machine learning
algorithms. Complete data sets are available for June to September 2021.

In the following, the analysis’s input signals are introduced and then evaluated
and discussed.

4.1. Input Signals

The load data were recorded at a real energy plant site [13,18]. The load forecasts were
created by [18] using machine learning methods implemented in the Python module Scikit-
learn, which integrates a wide range of machine learning algorithms and is distributed
under the simplified BSD license [29]. The data have an hourly resolution and the fea-
tures weekday, differentiation weekday/weekend, load curve, and outdoor temperatures
(c.f. [18]). The outdoor temperatures were obtained from http://openweathermap.org
(acssess on 1. October 2021) for the corresponding longitude and latitude of the site in
hourly resolution. The training was performed with approximately 1 year of data (1 Oc-
tober 2020 to 1 September 2021 training data, 1 September 2021 to 11 October 2021 test
data) with the methods gradient boost regression [29,30], XGBoost [31], and random forest
regression [32]—several methods were tried by [18], and the chosen ones delivered the
best results. Figure 9 shows the measured load demand and the prognosis by the gradient
boost method.
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Figure 9. Gradient boost demand forecast compared with the actual power demand for July 2021.

This study takes the recorded price signals for the day-ahead and the intraday market
for the corresponding times.

4.2. Results

The machine learning forecasts are evaluated with the approach and the scheduling
rules described in Section 2. They are compared with the results for generated load
curves analyzed with the approach of the base case study (c.f. Section 3). The mean
values and the coefficient of variation of the measured data and the forecast are used for
good comparability. Figure 10 shows the achieved savings or losses over the respective

http://openweathermap.org
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reserve share for the measured load curves and the respective generated data sets for the
investigated months.
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Figure 10. Results of simulated and real demand forecasts for the months of (a) June 2021, (b) July
2021, (c) August 2021, and (d) September 2021.

A differentiated picture emerges over the 4 months investigated. While the qualitative
improvements in the results of the measured load data in Figure 10a for June 2021 are very
similar to the improvements in the generated load data, there are deviations in Figure 10b
for July 2021. In the case of the measured data, the most significant improvements in
results are achieved in the range of 40–50% reserve share. In contrast, in the case of the
generated load curves, the storage system should be used entirely for the reserve (reserve
share of 100%).

In August and September 2021 (Figure 10c,d), the analysis with the forecast methods
XGBoost and gradient boost show a noncontinuous course with high savings at large
reserve shares. We assume that this phenomenon is caused by the correlation of exceptional
price and demand signals at certain times. Therefore, we consider this result to be unrep-
resentative. Besides this outlier, in August, the optimal reserve share for the measured
profiles is at low and medium values (25% for random forest and 55% for gradient boost).
At the same time, the most considerable improvement in results for all three generated
load curves was obtained at a reserve share of 70%. In September 2021, again disregarding
the outliers, the generated and measured load data trajectories resemble each other. Thus,
in all cases, the maximum improvements in results are obtained at very high reserve shares
of 85% to 100%.

The comparison of the available measured and generated load data allows for two con-
clusions. On the one hand, the algorithm developed is suitable for achieving improvements
in results even under real conditions. On the other hand, it is not easy to make general
recommendations for suitable reserve shares based on the available data since the ratio
of the price signals also has a significant influence in addition to the forecast inaccuracy.
Therefore, the evaluation should be carried out for short periods to obtain the best possible
recommendation for selecting a reserve storage share.
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5. Conclusions and Outlook

The present paper shows a concept to handle uncertain load forecasts by reserving a
share of the available energy storage system for short-term balancing. Due to the reservation
of a particular share of the energy storage system, the flexibility at the day-ahead market
is limited, with the benefit of more flexibility at the short-term intraday trading market.
To show the effects, we analyzed a simple sector-coupled energy system. It is based on a
real example system for cooling an office campus with the help of a power-to-cold plant.

With the help of the case study, we showed that it is economically reasonable to reserve
a particular share of the energy storage system. Additionally, we quantify the benefit by
up to 10% of the energy costs for the given setting, which can be saved with an optimal
reserve share. This effect was shown systematically with generated data and verified with
measured data from the EUREF campus to show the real potential. The concrete value of
the optimal share depends not only on the forecast quality but also on the dimensioning of
the components. Furthermore, some exceptional cases regarding the price signals and the
load curves yielded different results. Therefore, we did not find a scalability rule for this,
and a general recommendation for reserve share is impossible. However, the qualitative
trend is that a larger reserve share is optimal for increasing uncertainty. For a coefficient of
variation of around 0.75–0.9, setting the reserve share to half or even more of the storage
capacity is recommendable.

The present study’s results could be further strengthened if additional measurement
data are used. Therefore, the different influences and the robustness of the approach could
be studied and compared with other approaches, such as model predictive control (MPC)–
based operation. Moreover, other plant setups, e.g., with a power-to-heat plant, could give
further insights into the suggested approach’s potential.

Overall, the described approach is easier to implement than optimization-based meth-
ods and offers cost-saving potential. The operator must regularly compute the optimal
reserve share for the available data set for best results.
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