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Abstract: In keyboard writing, typing skills are considered an important prerequisite of 

proficient text production. We describe the design, implementation, and application of a 

standardized copy-typing task in order to measure and assess individual typing fluency. A 

test-retest analysis indicates the instrument’s reliability.  

While the task has been developed across eleven different languages and the related 

keyboard layouts, we here refer to a corpus of Dutch copy tasks (N = 1682). Analyses show 

that copying speed non-linearly varies with age. Bayesian analyses reveal differences in the 

typing performance and the underlying distributions of inter-key intervals between the 

different task components (e.g., lexical vs. non-lexical materials; high-frequent vs. low-

frequent bigrams).  

Based on these findings it is strongly recommended to include copy-task measures in the 

analysis of keystroke logging data in writing studies. This supports a better comparability and 

interpretability of keystroke data from more complex or communicatively-embedded 

writing tasks across individuals. Further potential applications of the copy task for writing 

research are explained and discussed. 

Keywords: copy task; typing skills; writing processes; writing fluency; transcription processes; 

motor skills 
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1. Introduction 

Since the introduction of the personal computer in the 1980s, typing has gradually 

taken a more prominent place in text composition. Both in personal and 

professional contexts typing has become the most important text production mode 

(Brandt, 2014). The importance and the impact of typing fluency on writing 

performance has been demonstrated in many studies (e.g., Aldridge & Fontaine, 

2019; Johansson, Wengelin, Johansson, & Holmqvist, 2010; Van Weerdenburg, 

Tesselhof, & Van der Meijden, 2019; Weigelt-Marom & Weintraub, 2018). These 

researchers contend that writers with a certain level of keyboarding automatization 

are more productive, in line with the findings in studies on graphomotor 

automatization in handwriting (see, e.g., Limpo, Vigário, Rocha, & Graham, 2020). 

More fluent typing ability allows writers to reduce the cognitive cost that is related 

to the motor component of text production, freeing up the writer’s attention to 

focus on other writing components (see also Alves, Castro, de Sousa, & Strömqvist, 

2007). When typing skills are automatized, motor skills only minimally affect higher 

cognitive levels of writing processes, allowing for cascading activation of other 

processes (like planning or revision). All these writing components compete for the 

same working memory capacity and interact with each other (Kellogg, 2001). 

Therefore, it is not surprising that younger students (from grades 4, 5 and 6) who 

participated in a touch-typing course produced narrative texts with a higher quality 

compared to their non-trained peers (Van Weerdenburg et al., 2019). This finding 

was also supported by Tate, Warschauer and Kim (2019), who reported a positive 

effect of keyboarding fluency – and prior computer use – on writing quality for 

grade 8 students. 

As most writers have shifted to digital composition, writing researchers have 

shifted their methods accordingly. A good example is the use of keystroke logging 

to observe writing processes. In recent years, keystroke logging has become one of 

the mainstream research methods in writing studies (Lindgren & Sullivan, 2019). 

Keystroke logging records every keystroke and mouse click or movement related 

to the production of the text. These logging data are time coded, making it possible 

to exactly reconstruct the writing process and analyze the writing-process dynamics 

from different perspectives (Leijten & Van Waes, 2013). Because keystroke logging 

is unobtrusive, it is suitable for both ethnographic and experimental writing studies.  

Pausing behavior is one of the main cognitive indicators used in keystroke 

logging research (Wengelin, 2006). Shorter latencies of finger movements between 

subsequent keys are often referred to as ‘interkey intervals’ (IKIs) or ‘interkey 

latencies’; longer latencies as ‘pauses’; long latencies during the logged process that 

are not directly related to writing, e.g., answering a phone call, are referred to as 

'downtime' (see Figure 1). Latency values below 30 ms could be considered as 

'noise' as they normally do not relate to deliberate typing actions. However, the 
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alignment between keystroke logging data and cognitive models of writing is not 

straightforward (Galbraith & Baaijen, 2019). Cognitive processes underlying pausing 

are often quite difficult to interpret (Chukharev-Hudilainen, 2014; Conijn, Roeser, 

& Van Zaanen, 2019; Wengelin, 2006). One of the reasons is the large variability in 

writers’ typing proficiency (see below). To distinguish keystroke-transition 

durations that are associated with low levels of activation from those associated 

with higher levels of activation, researchers use a fixed pause threshold: often 2 

seconds, sometimes 500 ms (e.g., Aldridge & Fontaine, 2019; Chukharev-Hudilainen, 

2014), or – when, focusing on higher level processes – even 5 or 10 seconds (e.g., 

Schumacher, Klare, Cronin, & Moses, 1984). However, using thresholds leads 

consequently to a different ‘filtering’ of pauses or interkey latencies, which makes 

comparisons of research results difficult. This is, for instance, shown in fluency 

analyses using a gradually increasing threshold of 200, 500, 1000 and 2000 ms (Van 

Waes & Leijten, 2015). In their studies, Medimorec and Risko (2016, 2017) and Allen 

et al. (2016) explored functions of pauses (or non-scribal periods). They set different 

thresholds to define discrete time intervals (e.g., 300–999, 1000–1999, and >2000 ms). 

These approaches bear the problem, however, that such thresholds do not 

adequately reflect individual differences in typing skills.  

 
Figure 1: Schematic representation of latency in relation with low- and high-level cognitive 

writing processes, including the comparison of two writers’ cases. 
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For instance, when one writer’s optimal interkey latency is measured around 120 ms 

(see Figure 1; writer X) and another's is around 340 ms (writer Y), the threshold 

filtering – whatever measure chosen – affects the pause analysis differently. 

Especially when we are interested in lower level cognitive activities, we contend 

that it is important to consider interparticipant differences in typing skill when 

conducting pause analyses. 

Taking these considerations into account, it is surprising that few researchers 

have developed instruments to adequately measure typing skills (Weigelt-Marom 

& Weintraub, 2018). A wide variety of tests exist in the context of typing courses, but 

most of them are limited to rather rough measurements such as words or characters 

per minute (often combined with an accuracy percentage). Moreover, most of these 

tests are based on product measurements (final product based on a timed task). As 

typing competence is a layered concept (Van Waes, Leijten, Mariën, & Engelborghs, 

2017; Roeser, De Maeyer, Leijten, & Van Waes, 2021), we explored approaches to 

define the latency range that underlies the writer’s typing competence in more 

detail.  

To our knowledge, one of the few process-oriented studies on keyboard-

copying abilities are those by Grabowski and colleagues (Grabowski, 2008; Wallot 

& Grabowski, 2013) in which they developed a set of three different tasks with 

varying complexity and cognitive demands. Their copy task consisted of three 

subtasks. In the first task, participants were shown a printed text with the first line 

of a well-known German nursery rhyme. They had to copy this line twelve times 

from memory. The second task consisted of a text with 156 words which had to be 

copied from paper. Finally, in the third task participants had to write a description 

of the route from where they live to university. Only the third task required 

planning components; the first two task were designed to eliminate planning and 

formulation processes as far as possible. 

The copy task introduced in this article includes five components addressing 

different aspects of typing proficiency. Differences between tasks are based on the 

degrees of lexicality, bigram frequency, and keyboard spread (left-right, adjacency, 

repetitiveness; see Section 4.1 and Table 1 for an overview). To standardize this copy 

task across different languages, parallel forms with corresponding task 

characteristics were developed for eleven languages.  

This paper describes the design principles of our copy task in detail and, more 

specifically, the choices that have been made in designing a multi-component copy 

task. First, however, we briefly review the theoretical framework in which we situate 

typing skills in the context of (cognitive) writing-process research. This is necessary 

to inform the methodological significance of copy-task assessment for writing 

process research that we will propose subsequent to the findings of the reported 
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study. In the second part of this paper, we present results based on a corpus analysis 

of copy tasks collected from 1682 Dutch participants (i.e. about 1 million 

keystrokes). We report on different analyses that each address a perspective 

characterizing an aspect of the underlying corpus. For instance, age-related 

performance, but also differences between the different components the copy task 

consists of (e.g., with respect to frequency and lexicality; test-retest comparisons). 

These analyses aim at contributing to our understanding of how biomechanical 

constraints and linguistic text characteristics interact during the writing process. 

Moreover, we used advanced statistical methods that are novel in this domain, i.e. 

Bayesian statistical inference and in particular mixture modeling. By introducing 

these techniques, we aim to illustrate the suitability of this type of data analysis in 

writing research in general, and in copy-task studies in particular. Finally, in the 

closing discussion section, we discuss some theoretical, methodological, and 

practical implications of a standardized copy task and explain potential applications 

in various fields of keystroke logging and writing research.  

1.1 Typing skills in the context of text production 

Keystroke logging research mainly resorts to measuring interkey intervals or pauses 

to analyze and further comprehend writing. However, pauses are difficult to 

interpret because they are multi-determined by the variety of cognitive processes 

involved during text production.  

Producing a text requires several high-level central cognitive processes for 

planning content, formulating the linguistic surface, and for revision by assessing 

whether the text fits with the communicative goals, the selected linguistic register, 

the intended audience, etc. However, also peripheral motor processes are engaged 

to handwrite or type the sequences of graphemes that constitute the written trace. 

Once the appropriate graphemes are selected by spelling processes, they are 

stored into an orthographic working memory and, finally, conveyed to motor 

execution (Rapp, Purcell, Hillis, Capasso, & Micelli, 2016). When handwriting, motor 

execution requires three hierarchical steps to determine characteristics of the 

selected allographs (e.g., uppercase, lowercase, cursive script), the number of 

strokes forming each allograph, and the execution of the required movement 

sequences. In contrast to handwriting, typing movements are less complex (Van 

Galen, 1991). For instance, there is no allograph selection and no related motor 

programs (except for specific finger combinations to produce, for example, an 

uppercase letter). Although typing requires simpler movements for reaching and 

pressing the appropriate keys, it however requires bimanual and finger 

coordination for pressing key combinations. 

Learning to typewrite is therefore different from learning handwriting. In 

contrast to novice handwriters, novice typists do not learn the motoric parameters 

of letters (stroke order, direction). To type a word, they encode a first letter, find 
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the correct key, select a finger to press that key, press the key, and encode the next 

letter to type, etc. This requires efforts to translate each letter to a keystroke 

(Yamaguchi & Logan, 2014). In contrast, skilled typists activate multiple keystrokes 

in parallel while using more than one finger from each hand and press the 

appropriate keys without looking at the keyboard (Crump & Logan, 2010). Expert 

typists can type up to 100 words per minutes; typing contests often see typists 

producing around 150 words per minute (Logan, 2018). 

Learning to typewrite requires associations between (1) words and letters, (2) 

letters and keys, and (3) keys and fingers (Yamaguchi & Logan, 2014). Skilled typing 

is hierarchically controlled with an outer loop that operates on the word-level, 

whereas an inner loop operates on the letter- or keystroke-level (Logan & Crump, 

2011). This depends on our ability to chunk information. While practicing and 

acquiring knowledge of words, typists chunk letters depending on their co-

occurrence. In skilled typists, chunking occurs at the perceptual level, in memory, 

and at the motor level (Yamaguchi & Logan, 2014) and scales up units of processing 

from letters to words, which results in more fluent typing with bursts of key presses. 

Specifically, in skilled typing, the word context activates sequences of keypresses 

which are retrieved on-the-fly from long-term memory (Logan, 2018), as evidenced 

by the sensitivity of keystroke-transition durations to the co-occurrence frequency 

of letter combinations (i.e., bigrams) and as a function of typing proficiency. This 

explains why words are typed faster than non-words (Van Waes et al., 2017; Wallot 

& Grabowski, 2013). It is also worth noting that the intervals between successive 

keypresses executed with fingers of the same hand are on average slower than 

when the involved hands alternate (Logan; 2003; Salthouse, 1984).  

Skilled typists have poor explicit knowledge of both the locations of the keys on 

the keyboard, and the finger they use to press a key, which is common in several 

areas of expertise. Their most frequent errors consist in difficulties in finger 

coordination and not in miss-aimed movements (Logan, 2018). Proficient or skilled 

typists (i.e., screen gazers) use both hands and several fingers of each hand fluently 

– which is called touch-typing – without looking at the key but mainly looking at the 

computer screen (Johansson et al., 2010) or, in the case of copying, on other 

adjacent materials. By contrast, novice typists (i.e., keyboard gazers or hunt-and-

peck typists) alternate their attention between the keyboard for searching keys, 

spending less time processing their developing text. As a consequence, this might 

affect their unfolding mental representation of the text (Haas, 1989; Olive & 

Passerault, 2012). 

Importantly, all writing processes compete for a common and limited working 

memory (Kellogg, 2001; McCutchen, 2000). Hence, low skills in typing may affect 

central processes because they occupy working memory resources (Bouriga & 

Olive, in press; Grabowski, 2010; Mangen, Anda, Oxborough, & Brønnick, 2015; Van 

Weerdenburg et al., 2019). As a consequence, writers with low transcription skills 
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encounter difficulties activating high-level writing processes during handwriting 

and typing. They need to suspend transcription when preparing or revising their 

texts (the thinking-then-writing strategy; Olive, 2014). Conversely, advanced 

transcription skills free up working memory resources which can be allotted to 

planning, formulating, and reviewing the text while transcribing (the thinking-

while-writing strategy; Olive, 2014). This simultaneous coordination of central 

writing processes and transcription has been found in skilled handwriting (Olive & 

Kellogg, 2002) and in skilled typing (Alves, Castro, & Olive, 2008), resulting in longer 

transcription periods (Alves et al., 2007).  

In sum, a less-developed typing proficiency draws resources away from the 

central writing processes that are responsible for preparing the text for 

transcription. This leads to texts of lower quality (Van Weerdenburg et al., 2019) and 

other difficulties in managing the writing processes. A recent meta-analysis by Feng, 

Libdener, Ji, and Joshi (2017) confirmed that keyboarding skills are positively 

associated with the development of writing for a variety of writing measures, 

supporting the idea that low typing skills negatively contribute to text generation. 

As a methodological consequence, keystroke logging studies that focus on text 

production need to control for individual differences in typing skills in order to 

maintain the focus on planning, formulating, and revising the text. One possibility 

to address these individual differences is to assess typing skills by asking writers to 

complete tasks that do not engage central writing processes. Copy tasks have been 

used in text production research for that purpose (Berninger et al., 1992; Grabowski, 

2008). Copy tasks do not require planning, formulation, and revision and hence, 

central writing processes are controlled. Performance at a copy task is therefore 

mainly determined by the writer’s typing skills (and, if necessary, short-term 

memory capacity to memorize a portion of the stimulus string while it is copied). 

Additionally, to target the different factors that influence typing processes, it is 

necessary to control for the materials to be copied. The copy task we present was 

specifically designed for that purpose.  

1.2 Copy tasks in writing research 

The analysis of keystrokes is a well-developed subdiscipline in the domain of 

biometrics (for a review, see Banerjee & Woodard, 2012). Researchers approach 

keyboard dynamics using statistical analyses, neural networks, pattern recognition, 

learning algorithms and search heuristics to describe, identify and classify typing 

patterns.  

Also, several tasks have been developed in the domain of writing research to 

assess handwriting and typing fluency (Cooper, 1983; Gentner, 1983; Salthouse, 

1986). The most well-known tasks are (full) text, sentence, phrase and letter copying. 

We briefly introduce each of these tasks before introducing the copy-task used in 
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this paper. This overview functions as a framework for the copy-task presented here 

because our copy-task draws on aspects of all previously introduced variations. 

In text copy tasks, participants are usually instructed to retype a text as precisely 

and as accurately as possible. This type of task has been used, for instance, by Van 

Weerdenburg et al. (2019). In their intervention study, the authors used this task as 

part of a pretest-posttest design in order to assess pupils’ typing skills. The study 

investigated the effects of taking a touch-typing course on spelling and narrative-

writing skills. As expected, they found an effect on typing skill, and the experimental 

group also outperformed the control group with respect to spelling and narrative-

writing skills. 

A recent example of a sentence copy task can be found in a study by Dhakal and 

colleagues in which they describe their 136 million keystrokes corpus (Dhakal, Feit, 

Kristensson & Oulasvirta, 2018). Participants had to copy-type 15 sentences 

randomly drawn from a set of 1525 sentences taken from two corpora: the Enron 

mobile email corpus (Vertanen & Kristensson, 2011) and the English gigaword 

newswire corpus (Graff & Cieri, 2003). The sentences were selected according to a 

set of criteria (e.g., containing at least 3 words and maximally 70 characters). 

Participants had to transcribe the sentences directly from the screen, one by one. 

The study aimed at identifying typing patterns to differentiate between typing 

profiles. Using unsupervised cluster analysis, the authors were able to divide the 

participants (N = 168,000) into eight groups based on differences in performance, 

accuracy, hand and finger use, and rollover (i.e., pressing the next key before the 

release of the previous one).  

In this study the sentence copy task was presented on screen. In other studies, 

however, texts had to be ‘copied’ from memory. For instance, in Grabowski’s (2008) 

study participants had to repeat the first sentence of a well-known nursery rhyme. 

Because these sentences were learned by heart, it is likely that they can easily be 

recalled with minimal central influences, such as those from reading, and thus 

making typing skills more likely to directly affect copying. This material facilitated 

comparison of the typing performance of touch and non-touch typists. 

Fewer researchers have used phrases in designing copy tasks. However, an 

influential study that is frequently used in technical research evaluating text entry 

methods has been presented by MacKenzie and Soukoreff (2003). They developed 

a collection of 500 prompts which consisted of combination of noun phrases (NPs) 

and sentences (without punctuation), 16 to 43 characters in length. For instance, 

“the back yard of our house”, or “this is a very good idea”. Utility programs are also 

provided to compute statistical properties of the phrase set selected (e.g., with 

respect to word frequency). Their corpus is made available on the internet. 

Finally, a typical example of a letter copy task has been developed by Berninger 

and her colleagues. Their alphabet task is widely used as a copy task in handwriting 

research, in order to assess children’s handwriting skills (Berninger & Rutberg, 1992; 
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Berninger et al., 1992). In this task, pupils have to write down the alphabet in order 

using only lowercase manuscript letters. Scoring is based on the number and rate 

of letters correctly produced in the right order within the first 15s or 60s.This task 

has been frequently used in research on the development of handwriting because 

it turned out to be predictive of other writing-related performances. 

In the next section, we present a copy task that combines different aspects of 

the tasks described above.  

2. Description of the Inputlog copy task 

The copy task presented here was developed as a lean instrument to measure and 

assess typing skills in a series of well-defined transcription conditions within a 

limited time. The copy task at hand is a combination of components that consist of 

a short sentence, three-word combinations and letter clusters. The task is 

developed for online use and is freely available for researchers as part of Inputlog, 

a keystroke logging program used in writing and translation studies (Leijten & Van 

Waes, 2013; Inputlog is freely available for researchers at www.inputlog.net; see 

Appendix A for more details).  

The copy task was first developed in Dutch (Van Waes et al., 2017), then further 

developed in collaborations within the European Literacy Network, a European 

Commission COST action. It is now available for eleven languages (Dutch, English, 

French, German, Italian, Norwegian, Polish, Portuguese, Spanish, Turkish, and 

Welsh) and three keyboard layouts (AZERTY, QWERTY, and QWERTZ).  

To allow for comparisons across languages, we created a set of guiding design 

principles and implemented them as consistently as possible. Subsequently, 

however, in the analysis section we will only refer to the Dutch copy-task corpus. 

Below we briefly describe the Inputlog copy task. For a more detailed (technical) 

description, see Van Waes, Leijten, Pauwaert, and Van Horenbeeck (2019) and the 

materials on the Github repository (https://github.com/lvanwaes/Inputlog-Copy-

Task). 

2.1 Design of the components 

The default copy task consists of five components, addressing different levels of 

lexicality as well as word and bigram frequency (Table 1). Moreover, the location of 

the keys on the keyboard is a design factor (e.g., left-right; adjacency). Participants 

are guided through the flow by a sequential interface. They are instructed to copy-

type the given prompts as quickly and accurately as possible. They are not required 

to correct errors. At the start, the participant selects the language for the copy task 

and completes some background information. A privacy notice is included, in line 

with the privacy policy of the General Data Protection Regulation (GDPR) of the 

European Union.  



 

VAN WAES ET AL.  MEASURING AND ASSESSING TYPING SKILLS |  116 

 

 

The copy task starts with a brief introduction to instruct and inform the 

participant about the task, then guides them through the different components. 

Finally, a brief questionnaire is presented in which the following topics are 

addressed: handedness, hardware and software used for the test, dominant 

language, reading or writing difficulties, and familiarity with this task. For the 

handedness test we chose the reduced Edinburgh handedness test (Oldfield, 1971; 

Veale, 2014).  

The main part of the copy task consists of seven tasks grouped in five 

components: (1) a tapping task, (2) a sentence copy-task, (3a-c) three-word 

combinations with high-frequency bigrams (repeated three times for different 

combinations); (4) a three-Word combination with low-frequency bigrams, and (5) 

a series of four consonant groups. On average the complete task takes about five 

to ten minutes. 

Table 1. Overview of the five components of the copy task. 

Components Description 

Tapping task press the 'd' and 'k' key alternatively during 15 s 

Sentence copy a sentence during 30 s 

Word combination HF 1-3 copy a combination of three words 7 times  

(high-frequent bigrams) 

Word combination LF 4 copy a combination of three words 7 times  

(low-frequent bigrams) 

Consonant groups copy four blocks of six consonants once 

Tapping task 
The first component, the Tapping task, is a non-lexical task that intends to measure 

the fastest possible motor speed by pressing two keys with alternating hands (viz. 

'd' and 'k', resp. a left-right and right-left hand combination). Participants are asked 

to type the 'd'-'k' key combination for 15 seconds (Salthouse, 1984). A time circle at 

the top right corner is used as time indicator. Finger-tapping tasks are commonly 

used to study the human motor system. They are simple enough to be used to study 

individuals with neuropathologies affecting the motor system (Witt, Laird, & 

Meyerand, 2008).  

Sentence copy task 
The next component, the sentence task, intends to measure the typing skills related 

to copying a series of short and high-frequent words in sentence context (Pinet, 

Dubarry, & Alario, 2016; Pinet, Ziegler, & Alario, 2016). For example, “the cat was 
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sleeping under the apple tree”, in the English copy task. Participants are asked to 

repetitively type this sentence for 30 seconds. Repetitive typing reduces the 

reading-writing interaction that characterizes most existing copy tasks. As the 

stimulus is very simple, participants tend to produce the sentence from memory. In 

contrast with, for instance, nursery rhymes, no proper names and no infrequent 

(written) words were included. The prompted sentence consists, in all currently 

available languages, of seven to nine short, high-frequency words.  

Three-word combination  
In this task, four three-word combinations have to be copy-typed seven times each: 

the first three three-word combinations target the repetitive production of mainly 

high-frequent bigrams; the fourth contains low-frequent bigrams. These word 

combinations allow us to strictly control several bigram characteristics, which is not 

possible in an open copy task with pre-existing natural texts.  

Table 2 gives an example of the presented word combinations (of the English 

version), together with their characteristics selected from previous studies (Dhakal 

et al., 2018; John, 1996; Logan & Crump, 2011; Ostry, 1983; Pinet et al., 2016; Salthouse, 

Table 2. Examples of the word combination prompts in the English UK (QWERTY) copy task 

including the controlled characteristics. 

 

 

word  

combination 

1 

word 

 combination 

2 

word  

combination 

3 

word  

combination 

4 

Word 1 (numerical) four seven five some 

Word 2 (adjective) interesting wonderful important awkward 

Word 3 (noun) questions surprises behaviors zigzags 

#characters 24 23 23 18 

High-frequent bigrams  

(HF – e.g., 'nt') 

19 18 18 8 

Low-frequent bigrams  

(LF – e.g., 'gz') 

0 0 0 4 

Left-Left (LL – e.g., 'es') 4 6 1 5 

Left-Right (LR – e.g., 'fo') 4 6 2 3 

Right-Right (RR – e.g., 'ou') 4 2 5 1 

Right-Left (RL – e.g., 'us') 3 4 2 2 

Adjacent keys (e.g., 'io') 7 6 3 4 

Repetitive keys  0 0 0 0 
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1986; Wobbrock & Myers, 2006). For instance, Salthouse (1986) has clearly demon-

strated that high-frequency bigrams are typed faster than low-frequency bigrams 

(see also Pinet et al., 2016). Word combinations were controlled for keyboard 

characteristics because Logan (1999, 2003) has shown that bigrams requiring the 

coordination of both hands are executed faster than same-hand bigrams. Also, 

Gentner et al. (1988) showed that keystroke transitions are affected by the keyboard 

layout (adjacency and same-finger key repetition, cf. also Hess, Mousikou, & 

Schroeder, 2020). 

Consonant groups 
The final component, the Consonants task, measures typing skills in another non-

lexical context (Grabowski, Weinzierl, & Schmitt, 2010). Participants are asked to 

copy four blocks of six consonants once. The blocks are identical for all languages: 

tjxggl pgkfkq dtdrtt npwdvf. These strings of consonants do not have a meaning and 

cannot be phonologically encoded (beyond letter names), which inhibits 

phonological and semantic chunking. 

2.2 Implementation 

The copy task is a web-based application (platform independent), developed as a 

separate JavaScript component. Using the design principles described above, the 

task has been developed for eleven languages and implemented by considering 

national keyboard layouts. The stored logging file is an XML-file which can be used 

for further analysis.  

Within the Inputlog analysis component, a default copy-task analysis provides a 

large variety of perspectives to interpret the logged data. About 900 variables are 

being provided representing descriptive statistical data for within-bigram transition 

time (or inter-key interval) at the component level, trial level and related to the 

manipulated bigram characteristics (frequency, adjacency, repetition, hand 

combination needed to type the bigram). Apart from means, medians and standard 

deviations, also geometric means and confidence intervals are presented. 

Correctness scores indicate response quality. Time and trial filters are applied. 

Finally, the output is available as a non-aggregated CSV file containing a full list 

of the typed bigrams enriched with information about the component (and trial) in 

which they were composed, their interkey-interval duration, frequency class, and 

keyboard location.  

3. Method 

As part of a series of research studies using keystroke logging, we collected a corpus 

of Dutch copy tasks. The corpus consists of keystroke data of 1682 participants 
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completing the copy task. We first present some general information to 

characterize this corpus data set. Next, we explore the test-retest reliability of the 

copy-task components, before we present an analysis in Bayesian mixed effects 

models with extension to mixture models. This analysis aims at characterizing the 

data from each copy-task component and differences between them. 

3.1 Participants and age distribution 

For the present analysis, we used the Dutch corpus of copy-task data. The data were 

collected from 1682 participants (1107 females, 495 males, 80 unknowns) aged 

between 13 and 83 years old (median = 21 years; SD = 11.81) in the context of various 

research projects, research courses and training schools. The age groups are not 

equally represented because most of these studies took place at secondary schools 

or universities: 78.94% of the participants are 23 or younger. The age distribution of 

the copy-task corpus can be found in Figure 2A showing a bimodal, positively 

skewed distribution. This figure shows that the majority of our participants were 

younger than 23, a large proportion was between 20 and 30, and the right tail 

showing a smaller number of participants older than 30.  

The distribution of participants’ age and their inter-keystroke intervals can be 

found in Figure 2B. This distribution is illustrated in different colors for each copy-

task component illustrating the relationship between the participants' performance 

on the copy task components and their age. For each component, we observed a 

nonlinear relationship between age and keystroke latencies (Bosman, 1993; Van 

Waes et al, 2017).  

Handwriting research has shown that automaticity is reached at about the age 

of fourteen (Berninger & Winn, 2006; Graham & Harris, 2000; Medwell & Wray, 2014). 

In our keyboarding corpus, typing performance is the fastest at a later stage, viz. 

between 21 and 30. From the age of 30 onward, typing speed seems to gradually 

slow down. In the higher age group of this corpus it is important to notice that 

typing skills might differ considerably. The effect of age on the keystroke transitions 

at the component level shows that the evolution pattern is more or less consistent 

for each of the components. Interestingly, all components relate highly similar to 

each other across lifespan. However, as the lexical components (i.e. Sentence task 

and Word-combination tasks) are characterized by a slight increase of speed at the 

initial stage (between the age of 14 and about 25), this trend is less explicit for the 

non-lexical tasks (Tapping task and Consonants task). This graph suggests different 

functions for lexical and non-lexical tasks. Lexical tasks show longer IKIs for 

younger participants, followed by a speed-up that is not seen in the non-lexical 

tasks. Thus, age-related fluency progression seems to affect the lexical components 

more than the non-lexical components in our corpus. Note, these initial 

observations are merely descriptive and not central to this paper but open for 

further investigations. 
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Figure 2: Panel A shows a histogram with the age distribution of the copy-task corpus. Panel B 

shows the distribution of inter-keystroke intervals and the relationship between age and inter-

keystroke intervals (IKIs), both log-scaled. For visualisation data were aggregated on 

participant-level and IKIs were capped at 3,500 msecs. Lexical tasks were indicated by solid 

lines and non-lexical tasks were displayed with dashed lines. Age information was available 

for 1,612 participants.  
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3.2 Materials  

The Dutch copy-task corpus contains 1,447,310 inter-keystroke intervals (per logfile: 

mean = 700.54; SD = 78.56) characterized by a set of variables (see Section 2.2). R-

scripts, Stan code and dataset are available on Github (https://github.com/ 

jensroes/Copy-task-analysis) and can be used for reproducing and extending the 

presented analysis for further investigation involving the copy-task data.  

3.3 Data analysis  

The aim of this analysis is to provide population parameter-estimates for all copy-

task components. This is achieved in two steps: First, we assessed the test-retest 

reliability of the copy-task data. Second, and importantly, we inferred inter-

keystroke intervals for each copy-task component after controlling for variability 

specific to the sample (i.e. bigrams and participants) and accounting for process 

disfluencies. The inferred data were then used to determine differences in inter-

keystroke intervals between copy-task components. For example, typing 

differences are specific to frequency (HF vs LF bigrams), lexical information 

(Tapping vs HF bigrams), syntactic structure (HF bigrams in an adjective-noun 

combination vs. a simple sentence) or increased cognitive demands (LF bigrams vs. 

Consonants task).  

The inter-keystroke intervals (IKIs), i.e. the latency between two consecutive 

keystrokes, were analyzed in Bayesian linear mixed-effects models (see, e.g., 

Gelman & Hill, 2007; Gelman et al., 2014; Kruschke, 2014; Lambert, 2018; McElreath, 

2016) using the Stan package in R (Carpenter et al., 2016; Hoffman & Gelman, 2014; 

Stan Development Team, 2015a, 2015b). These models were extended to a mixture 

model (Farrell & Lewandowsky, 2018; Vasishth, Chopin, Ryder, & Nicenboim, 2017).1 

The rationale for using mixture models for the copy-task data can be illustrated 

with the following example. Baaijen, Galbraith, and de Glopper (2012) used a 

mixture model approach to analyze pause length in text production. They found 

that pause length is determined by a combination (i.e. mixture) of three normal 

distributions (i.e. Gaussians) of which each has a specific share in the data, i.e. 

mixing proportion. They found that pause durations of 330 ms have a mixing 

proportion of .65, pauses of 735 ms a proportion of .26, and those with durations of 

2697 ms have a proportion of .09. In other words, pausing in text writing is a 

combination of three processes that are represented in 65%, 26% and 9% of the 

data, respectively. We can infer these pauses reflect the varying demands of 

cognitive processes. 

As highlighted in the introduction of this paper, keystroke data – as well as many 

other lower-level tasks – are a combination of different cognitive processes which 

cascade from higher into lower levels of representation. We extended our analysis 

to mixture models as they constitute a modeling framework that elegantly maps 

onto this combination of cognitive processes (Baaijen et al., 2012; Vasishth et al., 
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2017). Mixture models allow us, therefore, to detect keystroke-intervals that 

correspond to different underlying (mental) processes. Instead of removing 

disfluencies using fixed thresholds, we can use statistical models to estimate the 

ratio of fluent and disfluent keystroke transitions. This is important as disfluencies 

are a natural part of the writing process and may reflect higher-level planning. 

Copy-typing – similar to text production – comprises a mixture of cognitive 

processes. For example, copy-typing requires visually encoding the target string, 

buffering a mental representation as well as activating and executing the relevant 

motor code. In the Tapping task, we would expect only a small amount of data to 

be subject to higher-level demands while the majority of data will represent fluent 

typing. In the Consonants task, on the other hand, the data are expected to reflect 

a mixture of typing execution, visual encoding and mental buffering. Mixture 

models provide a principled approach to account for keystroke intervals that are 

reflective for typing execution on the one hand and higher-level planning on the 

other hand to provide reliable population estimates. 

From a statistical viewpoint, mixture models assume that the underlying data 

generating process is a combination of Gaussian distributions (i.e. normal 

distributions). In contrast, statistical methods such as linear regression models 

assume the data represents a single underlying normal distribution. While 

regression models estimate one population mean and variance from the data, a 

mixture model with two mixture components would estimate the mean and the 

variance for two components involved in the underlying data generating process. 

This is achieved by introducing an additional (latent) model parameter – the mixing 

proportion – which captures the probability to which data are attributed to either 

distribution.  

In psychological terms, the use of Bayesian mixture-models allows us to match 

the keystroke data to the assumed underlying combination of cognitive processes, 

after excluding variance that is subject to participant and bigram-specific 

variability.2  

 

3.4 Data preprocessing  

For this analysis, the keystroke data were minimally trimmed. Missing data (0.01%) 

and inter-keystroke intervals equal to zero (0.02%) were removed as well as non-

targeted bigrams (4.25%). The overall median score for correctly typed bigrams 

across participants was 96.35% (interquartile range (IQR) = 3.03). The overall 

accuracy was lowest in the low-frequency (LF) bigram task (median = 89.66%, IQR = 

14.04) and highest in the Tapping task (median = 98.6%, IQR = 4.28).   

The following analysis data were aggregated across repetitions rendering one 

inter-keystroke interval per letter combination (i.e. bigram) per participant. The 

analysis was performed on a random subset of 500 participants (i.e. about half a 
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million keystrokes). We chose a random subset for two reasons. First, our analysis 

focuses on analyzing data with a minimum amount of aggregation to address 

known sources of random variance. A realistic estimation of random variation in 

Bayesian models is computationally difficult. Using a subset is beneficial to reduce 

the computational power needed. Second, 500 participants is a large sample for the 

investigation of typing processes. In practice, most researchers will not be able to 

use a sample as large as the entire copy-task corpus. For the aims of the analysis 

outlined below, there are no benefits of extending the analysis to the entire corpus. 

The presented results should be reproducible with any other subset obtained from 

the corpus. All scripts are available online for further investigations of the entire 

copy-task corpus. 

4. Results  

First, we present an overall characterization of the copy-task data in our corpus. 

Next, we evaluate the copy task’s reliability in a test-retest analysis. Finally, we 

evaluate the distribution characteristics of fluent and disfluent keystroke transitions 

for each copy-task component and their respective differences.3 

4.1 Overall interkey latency 

Table 3 presents descriptive statistics directly taken from the aggregated Inputlog 

copy-task analysis. The table shows that the overall correctness score for the data 

collected is 94.2% indicating that the participants strived at completing the copy 

tasks very accurately. The overall mean IKI latency – calculated across all copy-task 

components and restricted to the targeted bigrams only – is 169 ms (SD = 84), with 

an average rate of 392 (SD = 96) characters per minute.  

Table 3: Overall IKI descriptives (in ms) for targeted bigrams (overall and for lexical 

components only). 

  
Mean SD lower 2.5% CI higher 2.5% CI 

IKI bigrams: overall     

  mean 169 84 165 172 

  median 137 62 134 139 

  converted logmean (trimmed) 141 64 138 143 

  characters per minute 392 96 388 396 

IKI bigrams: lexical components     

  mean 152 75 149 155 

  median 134 61 132 137 

  converted logmean (trimmed) 134 62 132 137 

  characters per minute 438 110 434 442 
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When we limit the results to the lexical task components, we notice a slight increase 

of typing speed: the mean IKI is 152 ms (SD = 75). The report also shows the trimmed 

log mean. As pausing data are right-skewed, a geometric mean provides a better 

representation of a person’s typing performance. The values for the log-based 

means are respectively 141 ms (SD = 64) overall and 134 ms (SD = 62) for the lexical 

task components (Sentence and Word combination tasks).  

Figure 3 shows boxplots of the inter-keystroke intervals for each of the copy-

task components with the individual data as jittered dots. The distributions show 

both the central tendency and dispersion of the data. The non-lexical tasks 

demarcate the limits of the inter-keystroke intervals. The purely motoric tapping 

component shows very short keystroke latencies and the Consonants task involving 

memory storage and eye-hand coordination shows particularly long keystroke 

intervals. The lexical components show a clear difference between the LF bigram 

task on the one side and the HF bigrams and Sentence task on the other side. 

 

Figure 3: Boxplots of the inter-keystroke intervals (IKI) for each copy-task component of the 

full copy-task corpus. For visualization purposes, the data were capped at 3,500 ms and shown 

on a log scale. 
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In addition to the differences between components shown in Figure 3, there are 

clear differences in the variance between the components. In particular, the 

Consonants task shows a wide dispersion. The dark area around the boxplots for 

the Sentence and HF bigram task illustrates a dense distribution of the inter-

keystroke intervals around a center. While most components seem to be associated 

with a specific variance, the Sentence copy task and the HF bigram task show similar 

distributions. In other words, the variance of the majority of copy-task components 

is unequal (i.e. heteroscedasticity). 

4.2 Test-retest reliability  

Measure stability was assessed in a test-retest design: 245 participants completed 

the copy task twice with a time-lag interval of at least one week (195 males, 45 

females, 5 unknowns; median age = 22 years, range: 15, 73).  

We used Bayesian linear mixed-effects models to evaluate whether, first, 

participants were faster during the completion of the second session, and second, 

whether we could predict the IKI data from the second session from the IKIs 

produced in the first session. Models were fitted with the copy-task component as 

fixed effect and random intercepts for participants and bigrams. We calculated the 

estimated population mean and the 95% highest posterior density interval (HDPI) 

expressing the range of values that contains the true parameter value with a 

probability of 95% (see Appendix B).  

First, comparison of the first and second sessions revealed a small speed-up 

effect of -11 ms for the Tapping component. The HDPI interval indicates that the 

speed-up effect for the Tapping task has a 95% probability to be between -20 ms 

and -3 ms. In other words, there is negligible evidence for 0 ms as a plausible 

parameter value. Similarly, we found a speed-up effect for LF bigrams of -12 ms (95% 

HPDI: -24, -4) and for the Consonants task of -9 ms (95% HPDI: -15, -4). Neither HPDI 

included 0 ms as plausible parameter value, thus indicating support for a systematic 

but small speed-up effect of around 10 ms. The speed-up effect for the Sentence 

task (-2 ms; 95% HPDI: -5, 0) and HF bigrams (-1 ms; 95% HPDI: -3, 1) has a small 

magnitude and the HPDIs includes 0 as possible parameter value.  

These differences are too small to suggest a strategic change in participants’ 

responses but seem related to task familiarity. The population means for each 

session are illustrated in Figure 4. Although there is a systematic speed-up in some 

copy-task components, the effect does not change the overall pattern of the copy-

task components. 
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Figure 4: Estimated population mean for each session shown by copy-task component. Dots 

indicate the most probable parameter value and error bars show 95% HPDIs. 

 

Second, for all copy-task components we found evidence for a positive predictive 

relationship between IKIs from the first session and the second session. This was 

supported for the Tapping component (0.34; 95% HPDI: 0.25, 0.41), the Sentence 

component (0.44; 95% HPDI: 0.41, 0.46), the HF-bigrams task (0.6; 95% HPDI: 0.57, 

0.62), the LF-bigrams task (0.49; 95% HPDI: 0.43, 0.55), and the Consonants task (0.3; 

95% HPDI: 0.28, 0.32).  

These results confirm the reliability of all five copy-task components. The 

general pattern observed in IKIs was reproduced in a second session in spite of a 

systematic but small typing advantage in the second session. This can be explained 

in terms of hesitations that might be related to accommodation to the novelty of 

the copy task environment. Further we found evidence for a positive predictive 

relationship between IKIs from the first session and IKIs from the second sessions, 

supporting a strong test-retest reliability. 

4.3 Comparing models of inter-keystroke intervals 

In the following analysis, we compared four models fitted to the copy-task data. The 

aim of these models was to derive population estimates for each copy-task 

component by accounting for the possibility that the data for each component arise 



127 | JOURNAL OF WRITING RESEARCH 

 

from a mixture of distributions. Finally, we tested for differences between the 

parameter estimates of the copy-task components. 

First, we fitted a linear mixed-effects model with an intercept term only (a null 

model). This model was compared to a model with each copy-task component as 

fixed effect. A comparison of these two models allows us to determine the 

predictive performance of each copy-task component (see Appendix B). Next, we 

implemented a model that assumed that each copy-task component has its own 

variance parameter. This assumption was carried over into the mixture model. In 

other words, the mixture model was constrained, such that the distribution of 

longer IKIs has a larger variance. The reason for this was that larger values from 

reaction-time data in particular (Wagenmakers & Brown, 2007) and human motor 

behavior in general (Schöner, 2002; Wing & Kristofferson, 1973) are associated with 

a larger variance.  

To compare the fit of the different models, we used leave-one-out cross-

validation which allows us to test the predictive ability of models, by penalizing 

models with more parameters (see Farrell & Lewandowsky, 2018; Lambert, 2018; Lee 

& Wagenmakers, 2014; McElreath, 2016). We determined the out-of-sample 

predictive performance via Pareto smoothed importance-sampling leave-one-out 

cross-validation (Vehtari, Gelman, & Gabry, 2015, 2017). This predictive performance 

was estimated as the sum of the 'expected log pointwise predictive density' (elpd). 

Model comparisons can be found in Table 4. The difference between the predictive 

quality of the best fitting model compared to the remaining models was expressed 

as 𝛥𝑒𝑙𝑝𝑑. A negative difference 𝛥𝑒𝑙𝑝𝑑 indicates that the predictive performance of a 

model is lower compared to the best fitting model. 

Table 4: Predictive performance of four Bayesian models, three Bayesian linear mixed-effects 

models (BLMM) and one Mixture of Gaussians (MoG) model with two mixture components. 

The model fit was ordered starting with the model with the highest predictive performance 

on the top. Differences in model fit assessed as expected log pointwise predictive density 𝛥𝑒𝑙𝑝𝑑 (SE = standard error) are shown with reference to the model with the highest predictive 

performance. 

Model 𝜟𝒆𝒍𝒑𝒅 SE 

MoG 0 0 

BLMM (unequal variance) -1,128.49 73.79 

BLMM (equal variance) -4,304.25 118.00 

BLMM (intercept-only) -4,554.04 120.44 

 

The mixture model showed a higher predictive performance than the linear mixed-

effects models with an increase in predictive performance of more than 𝛥𝑒𝑙𝑝𝑑= 

1,000 compared to the best fitting linear mixed-effects model. In other words, 

modeling the keystroke intervals as mixture processes largely improved the model 

fit compared to mixed-effects models. The Bayesian linear mixed-effects model with 
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unequal variance for each copy-task component rendered a higher predictive 

performance compared to the equal variance standard linear mixed-effects models. 

The lowest predictive performance was observed for the intercept-only model. 

Including the copy-task components as model parameter improved the predictive 

performance of the model. Allowing varying variance parameters increases the 

predictive performance of the models as well as the addition of mixture 

components. In other words, it is important for the statistical model to acknowledge 

that there is a different variability associated with the intervals of each component.  

The estimates for each copy-task component are summarized in Figure 5. For 

each copy-task component, the most probable parameter estimate (estimated 

population mean) and 95% HPDIs are shown indicating the range in which the 

population mean is contained with a 95% probability. Values are shown for each 

mixture component. For all copy-task components, except HF bigrams, two mixture 

components were detected, representing fluent and less fluent keystroke 

transitions. For HF bigrams, however, the centers of the mixture components are 

almost identical.  

We compared the estimates of the Bayesian linear mixed-effects model to the 

estimates of each mixture component. The parameter estimate of the first mixture 

component (K1) is similar to the estimates of the Bayesian linear mixed-effects 

model in the Tapping task, the Sentence and the HF bigrams task, and the LF bigram 

task. In the Tapping, Sentence and LF bigram task, the second mixture component 

(K2) accounts for 13% of longer keystroke intervals. In the HF bigrams task, both 

mixture components are consistent with the parameter estimates of the linear 

mixed-effects models. However, the Consonants task shows shorter IKIs for K1 and 

longer estimates for K2 compared to the linear mixed-effects model. This indicates 

that the estimates of the linear mixed-effects model were biased. In sum, for the 

majority of copy-task components, both mixture and linear mixed-effects models 

provide reasonably similar estimates. However, the linear mixed-effects model 

provides a misleading estimate for the Consonants task which is better captured as 

a mixture of two processes. 

The estimated population mean of the mixing proportion and their 95% HPDIs 

are shown in the panel labels of Figure 5 for each copy-task component. This mixing 

proportion can be understood as the probability to observe relatively long latencies 

(i.e. disfluencies) which ranges between 0 and 1.  

As the model is constrained to be bimodal, we know that the estimated 

population mean of fluent keystroke transitions is 1 – x, where x is the mixing 

proportion displayed in the panel stripes of Figure 5. For the Consonants task, this 

means that the two distinct distributions appear with a probability of 31% for 

shorter IKIs (fluent typing) and 69% for longer IKIs (hesitant typing).  
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Figure 5: Comparison of parameter estimates of the Bayesian linear mixed-effects model 

(BLMM) and the mixture model (Mixture of Gaussians [MoG]) showing the estimated 

population mean and 95% HPDIs. Mixture components are indicated by subscripts. For each 

copy-task component the estimated population mean of the mixing proportion is shown with 

95% HPDIs in the panel strips. 
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For the Sentence task, longer IKIs have a probability of 24%. The mixing proportion 

or the remaining copy-task components is relatively small. In other words, the 

majority of the copy-typing processes is reflected by one mixture component 

whereas the smaller proportion may be attributed to occasional pausing, 

disfluencies or possibly slower initial keystrokes due to processing on higher 

cognitive levels. The HPDIs indicate a larger uncertainty about the parameter 

estimate in the Tapping task and the LF-bigram task than in the remaining three 

tasks. This variability is indicating flexibility of IKIs specific to either of these two 

components rather than an overall variability in relatively fast and slow tasks. This 

is because the Consonants task shows less variability compared to the distribution 

of the LF-bigram task, even though the former is cognitively more demanding. Also, 

as the Tapping task allows fast typing, a slowdown is more likely than in tasks that 

exhibit a more consistent typing speed, viz. the Sentence task, the HF-bigram task, 

and the Consonants task. 

The differences between copy-task components were assessed in pairwise 

comparisons. The population estimate for these differences (with 95% HPDI) can 

be found in Figure 6. The differences are shown for the population estimates of the 

first mixture component (fluent typing) and the second mixture component (long 

IKIs). Also, we show the differences in the probability of long IKIs. Numbers above 

the intervals show P(𝛥𝜇 < 0), the probability that the posterior difference between 

the copy-task components is smaller than zero; a value approaching 0 indicates a 

low probability that the true difference is smaller than 0 and a value approaching 1 

indicates a high probability. 

As shown in Figure 6 we found differences for fluent IKIs across copy-task 

components; no notable differences were seen for fluent IKIs in the Consonants 

task compared to the LF-bigrams task, and Tapping compared to both the Sentence 

task and the HF-bigrams task. Comparing fluent IKIs for the Sentence task and the 

HF-bigrams task rendered a very small but consistent difference. Comparing the 

population estimates for the mixture component of long keystrokes rendered 

longer disfluencies for the Consonants task compared to the Tapping task, the 

Sentence task, and the HF-bigrams task, but not compared to LF bigrams. The latter 

showed longer disfluencies compared to HF-bigrams task. The remaining 

comparisons show no notable difference. The probability of long IKIs was found to 

be larger in the Consonants task compared to all other copy-task components. The 

remaining components show small or no substantial differences.  

In summary, in all copy-task components we observe a mixture of two processes 

in which one is reflected in short and the other in relatively long intervals. Longer 

intervals can be attributed to inhibitions on higher levels of processing which 

delays keystroke intervals. 

 

 



131 | JOURNAL OF WRITING RESEARCH 

 

 
Figure 6: Difference between estimated population IKIs of all copy-task 

components shown for both mixture components, representing fluent 

IKIs and long IKIs, and in the lower panel the differences in the mixing 

proportion of long IKIs. Error bars indicate 95% HPDIs. Numbers in the 

graph show the posterior probability that the true difference is smaller 

than zero P(𝛥𝜇 < 0). Values of P(𝛥𝜇 < 0) < .001 or P(𝛥𝜇 < 0) > .999 were 

omitted. 

 



 

VAN WAES ET AL.  MEASURING AND ASSESSING TYPING SKILLS |  132 

 

 

Shorter intervals are representative for uninhibited typing execution. After 

accounting for the possibility that copy-typing underlies a mixture of two processes 

resulting in fluent IKIs and slow IKIs we made the following observation: fluent 

copy-typing is less affected by lexical information than it is affected by the 

frequency of bigrams; disfluent keystroke transitions in copy-typing were primarily 

associated with difficulty in the absence of lexical information. In particular, we 

found that the reduced frequency of groups of non-lexical bigrams slowed down 

the typing speed compared to both purely motoric copy-typing and lexical tasks 

that involve high frequency bigrams. This is supported by the finding that neither 

lexical information in low-frequent bigrams (LF bigrams vs Consonants task) nor 

lexical information in high-frequent bigrams (Tapping task vs HF bigrams and 

Sentence task) affects the typing speed. Conversely, the frequency of the involved 

bigrams has a strong impact on the typing speed (Tapping, HF bigrams, Sentence 

task on the one side and LF bigrams and Consonants on the other side). This is 

important as it shows that lexical information per se (HF bigrams, Sentence 

component) does not radically change the typing speed compared to purely 

motoric typing (Tapping task).  

This is, however, not to say that lexical information does not affect copy-typing 

at all. Indeed, we observed that keystroke transitions in the Consonants task were 

more frequent compared to the Tapping task, the HF-bigrams task, the Sentence 

task, and LF-bigrams task. Although these comparisons showed longer pauses in 

Consonants tasks for the Tapping, HF-bigrams, and the Sentence task, pauses were 

equally long in the Consonants and the LF-bigrams task. Similarly, pauses were 

found to be longer in LF-bigrams task compared to HF-bigrams task but not more 

frequent.  

Further, for almost all copy-task components, long intervals were in the minority 

except for the Consonants task data; while less data were attributed to shorter 

intervals, they were still systematically shorter than copy-typing in the remaining 

components. This pattern reflects the cognitive demands involved in typing low-

frequency bigrams and encoding, or updating, memory representations of the 

target bigrams. In other words, for low frequency bigrams, lexical information 

facilitates copy-typing.  

4.4 Summary  

We demonstrated that an extension from linear mixed-effects models to mixture 

models can be used to evaluate typing characteristics of a population for each copy-

task component and their respective differences. Mixture-process models allow us 

to model keystroke intervals as a combination of fluent keystroke transitions and 

long intervals reflecting inhibition at higher levels of activation. Hence, mixture 

models show an elegant mapping between typing data and the assumed underlying 

mental process that feeds into the motor execution. Accounting for this mixture 
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process, we showed that lexicality does not affect copy-typing as much as frequency 

information does. Further we proved the test-retest reliability of the copy task. We 

observed a small but systematic speed-up effect for individuals performing in a 

second session of the copy task; this difference did not affect the overall pattern 

across copy-task components.  

 

5. Conclusion and Discussion 

5.1 Age and cohort effects 

We have already, in the theory section, refered to the potential of copy tasks for the 

decomposition of the writing process into bio-mechanical, linguistic, and cognitive 

components (Grabowski, 2008) that determine resulting patterns of keystroke 

latencies. Over and above these theoretical implications, we observed a non-linear 

relation between age and keystroke transitions. However, we do not yet know 

whether a cohort effect has additional influence on the observed typing skill 

development. Not long ago, it was far from common that almost all people have 

typing experience; rather, particularly high-education professionals would have 

secretaries or stenotypists for the manual execution of writing who underwent a 

special training. Now, whole generations of younger people are in active contact 

with – virtual or physical – keyboards from their early years on, but they frequently 

acquired their skills rather autodidactically, life-long remaining “advanced typing 

laypersons”. As a result, there are many different, though functional typing 

strategies between professional touch-typing and effortful hunt-and-peck typing. 

This situation may affect the slope of the speed curves towards the higher ages, 

when these generations become older. Discussing further these age-related 

differences is beyond the scope of this paper. However, they might provide an 

interesting avenue for future research. For example, the reproducibility of the 

observed differences depending on lexicality of the stimulus can be directly 

explored through analyses of existing copy-task data from languages other than 

Dutch.  

5.2 Possible applications of a standardized copy task 

In the introduction, we described the problems associated with pause thresholds 

that are often crucial for the attribution of different indications when interpreting 

IKI intervals (cf. Medimorec & Risko, 2017). For the copy task, we can be quite sure 

about the sources and influences of the observed patterns of temporal typing 

progression. Since the task is standardized, interindividual differences depend on 

skill variation and, at best, on different experiences with basic linguistic properties 

such as letter combination frequencies. Therefore, the individual copy-task results 

can be used to better interpret the logging protocols of other, more complex 
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writing tasks in focus. Either, pause thresholds can be more subtly defined 

according to the individual typing baselines (not only in terms of simple typing 

speed and basic mechanics, but also differentiated for, e.g., high and low bigram or 

word frequencies), allowing for a better indication of other, more demanding 

cognitive processes that are reflected in the temporal typing patterns. Or, the 

relevant copying parameters are introduced as covariates in the analyses of the 

respective research questions. Moreover, having standardized copy-task results 

would also inform the researcher about the skill-related homogeneity or 

heterogeneity of the participants.  

Beyond simple typing-speed measures, there is no simple vademecum for 

researchers with respect to a general recommendation on which particular task 

variable to include. We used a Bayesian mixture-models analysis to identify two 

distributions from the data representing a mixture of fluent and disfluent keystroke 

transitions (see Roeser et al., 2021, for a detailed discussion). We contend that 

identifying disfluent keystroke transitions might be helpful to correct estimates for 

fluent transitions. For instance, when analysing typing data, the estimated length of 

fluent transitions in the lexical components (e.g. HF-bigrams or the Sentence task) 

can be used as typing-skill indicator. If the focus is not on low-level processes, 

disfluent transitions in the LF-bigrams task might be of interest. Data from non-

lexical components, the Tapping and the Consonants task, could serve as a more 

stretched reference for low-level fluency and disfluency. Moreover, they can be 

considered as a theoretically relevant outcome variable representing inhibition at a 

higher level of cognitive activation at the level of intra-word transitions. We suggest 

these possibilities for future research. 

Nevertheless, it appears feasible to finally develop a standardized copy task with 

norms for languages and across age, as soon as data sets of sufficient size exist 

beyond the Dutch sample presented here. The observed reliabilities of the task 

components support the assumption that individual typing skills have sufficiently 

stable characteristics that would not vary from one typing situation to the other. 

Moreover, as the task is systematically constructed, it shows construct validity and 

face validity. However, additional external validation can be achieved by comparing 

our results to other copy tasks, e.g. tasks that are used for the vocational assessment 

of typing proficiency, and to typical copy-typing results established elsewhere (e.g., 

Wu & Liu, 2008). Note, however, that the copy task that we introduced produces 

meaningful results also for typing strategies other than “perfect” touch-typing. It is 

the individual typing strategy, or proficiency, that can help to understand and 

analyze more complex writing processes and their respective results. Lower typing 

skills, as indicated, e.g., by longer inter-keystroke intervals, do not necessarily make 

the resulting products worse, but they will change the production process and the 

contexts and resources a writer may need to achieve a sufficient text quality. 
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With respect to research applications, the standardized development and 

description of a multilingual copy task can be seen as a first contribution to a 

classification of writing tasks in general. Research on writing processes uses 

different, often unique tasks (e.g., instructions, descriptions, narrations, essays) that 

lead to quite different result patterns with different requirements regarding the 

identification of interpretable data structures. Having a consistent description and 

classification of writing tasks, the typical process patterns they evoke, and the 

relevant factors responsible for the emerging variation, would allow us to run 

comparable studies that focus on specific problems that are worth to be 

investigated in greater depth. In general, this can create a more coherent picture of 

what we know about writing processes from keystroke logging. 

There are also further applications that do not refer to writing-process research 

in a narrow sense. First, the repeated assessment of typing skills via the copy task 

can indicate not only whether trainees show progress after a typing-skill training 

but also whether sufficient automatization has been acquired, or improved. For 

instance, with respect to the representation of language-specific frequency 

phenomena as indicated by faster copying of words that contain high-frequency 

bigrams. Mastering a second language may also lead to an increasing differentiation 

of the observed temporal writing patterns. Further, the copy task can be used for 

other diagnostic purposes, e.g. in the clinical field (e.g., aphasia, dementia or 

dyslexia), as soon as we know about the specific interference on typing patterns 

associated with certain impairments. For example, Van Waes et al. (2017) found first 

indications that a general cognitive impairment as associated with age has partly 

different effects on the copy task than a beginning Alzheimer’s disease. Testing 

patients that suffer from aphasia, with or without an accompanying agraphia 

(Behrns, Hartelius & Wengelin, 2009), may also help to identify some of the 

particular difficulties of language use that could be addressed by individual neuro-

linguistic rehabilitation training. 

5.3 Further research 

This paper presented an analysis of the Dutch sample of a copy-task corpus. Due to 

the systematic cross-linguistic construction principles, there will be further data 

sets available that open at least three novel opportunities: (1) the comparison 

between the targeted languages with respect to generalized findings such as the 

dependence of IKIs on bigram frequency; (2) the identification of effects or patterns 

pertaining to the respective language or group of languages, along with the search 

for appropriate explanations that may relate to linguistic characteristics, but also, 

e.g., to the keyboard layout in use or to orthographical conventions such as noun 

capitalization in German; (3) the correction against language-specific patterns 

which eliminates single-language effects in order to make existing data cross-

linguistically comparable. Nevertheless, there are linguistic characteristics that may 
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yield unique overall patterns of IKIs. For example, languages differ with respect to 

the consonant clusters they allow at the onset and the coda of a syllable. If a 

language like Italian has mostly open syllables without a coda, there are necessarily 

less different bigrams, with relatively higher frequencies of occurrence, than in a 

language like German where more complex consonant clusters are possible on 

both sides of the nucleus (e.g., ”Strumpf” [stocking] or “geplantscht” [plashed]) 

which necessarily leads to a larger variety of bigrams with lower relative 

frequencies. 

Effects in the temporal writing patterns do not only occur with typing, but also 

with handwriting. For example, bigram-based effects, but also effects of syllable 

boundaries (which may separate otherwise coherent bigrams) have been observed 

in handwriting studies as well (Kandel, Peereman, Grosjacques, & Fayol, 2011; 

Nottbusch, Grimm, Weingarten, & Will, 2005; Sausset, Lambert, Olive, & Larocque, 

2012). When compared to handwriting results, a standardized copy task can identify 

effects across the two writing modalities, indicating that they do not (only) rely on 

practise and mechanical fluency, but also on linguistic representations above the 

level of motor execution (Van Galen, 1991), or even on a phonological level. In turn, 

this may reveal information on how – i.e., through which kinds of writing tasks – to 

support children during the development of writing fluency (which is obviously not 

restricted to the mastery of orthography). Still, we do not know much about the 

principles by which low-level writing skills may transfer from handwriting to typing 

or vice versa, and how integrated early writing instruction should be didactically 

conceptualized. It should be clear from our results that it needs more than mere 

touch-typing training to bring pupils and students closer to the typing proficiency 

they need to manage the requirements of our modern digital world. 

Finally, the use of a standardized copy task can detect differences in the writing 

convenience across the different keyboard technologies. Desktop keyboards have 

different pressure points, and more clearly separated keys, than notebook 

keyboards, while tablet and smartphone keypads allow for, and call for, different 

movement patterns, namely touching an area rather than pressing a key (Palin et al., 

2019). It is not yet predictable whether traditional keyboards will remain the 

predominant tool for the production of complex texts, involving the entire range of 

high- and low-level processes described in the theories and models on written 

language production (for a review of these models, see Alamargot & Chanquoy, 

2001). 

 

Notes 
1. As Bayesian data analysis is novel in the domain of writing research, we 

illustrate central theoretical differences in Appendix B, comparing between a 

frequentist and a Bayesian analysis in linear mixed-effects models. 
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2. All reported models include random intercepts for participants and bigrams to 

account for individual differences between both participants’ typing ability and 

differences between individual bigrams (e.g. frequency, hand combination, 

adjacency). To avoid over-parametrization of the models we did not include 

random by-participants slopes for copy-task components (see Baayen, 

Davidson, & Bates, 2008; Bates et al., 2015a), unless stated differently. Further, 

all models were fitted with weakly informative regulating priors (see Lambert, 

2018). Six thousand iterations (3,000 warm-up) were run for 3 Markov chain 

Monte Carlo chains. Model convergence was tested via the Rubin-Gelman 

statistic (Gelman & Rubin, 1992), traceplots and cross-validation (Vehtari, 

Gelman, & Gabry, 2015, 2017).  

3. For an example of how this analysis of the copy task can be used as a diagnostic 

tool, see Appendix D. 
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Appendix A: Using the Inputlog copy task 
 

The copy task has been developed as part of Inputlog 8. The task itself is accessible 

via the 'Record component'; the analyses are provided in the 'Analysis component' 

(see Inputlog manual for more details). Inputlog is made available for researchers 

on https://www.inputlog.net (see the download section for more information on the 

installation procedure).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Introductory page of the copy task webtool. 

However, as this component is programmed in Javascript, the copy task itself – not 

the analysis – is also directly accessible as a webtool via 

https://inputlog.uantwerpen.be/WebSite/copytask/tasks.html (see Figure A1). The 
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source code is downloadable via GitHub (https://github.com/lvanwaes/Inputlog-

Copy-Task). For a more elaborate, technical description, see Van Waes, Leijten, 

Pauwaert, and Van Horenbeeck (2019).  

The default copy task described in this paper is made available in eleven 

languages. However, if researchers want to translate/transpose the default copy task 

into another language or want to expand or customize the current copy task, they 

can use the so called 'Copy task creator', also made available as an integrated tool 

in Inputlog 8. Moreover, this copy task creator is also made available as an isolated, 

stand-alone tool (see Github). The copy task creator consists of several building 

blocks that can be combined into a customized task flow.  
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Appendix B: Comparing Bayesian and Frequentist linear mixed-effects models 
 

This appendix compares the interpretation of a standard Frequentist linear mixed-

effects model analysis and its Bayesian equivalent. In particular, we will see that 

even though the numeric results of both analyses are relatively similar, their 

interpretation is fundamentally different. 

The advantages of Bayesian data analysis for hypothesis testing are well 

documented in the literature (Dienes, 2014; Kruschke, 2014; Kruschke, Aguinis, & 

Joo, 2012; Kruschke & Liddell, 2018; Nicenboim & Vasishth, 2016; Sorensen, 

Hohenstein, & Vasishth, 2015). Bayesian inference is based on posterior (i.e. 

statistically inferred) samples which allows a fundamentally different theoretical 

interpretation than with Frequentist quantities (see for detailed discussions 

Kruschke, 2014; Lambert, 2018; McElreath, 2016; Nicenboim & Vasishth, 2016). An 

attractive property of Bayesian statistics is the fact that posterior samples are 

associated with a probability distribution. In other words, Bayesian inference allows 

us to determine the most probable population estimate (i.e. maximum a posteriori) 

for each copy-task component or their differences. Along with this estimate, we can 

calculate the shortest interval containing 95% of the posterior probability mass. This 

interval is called the 95% Highest Posterior Density Interval (HPDI) and indicates 

the 95% range that contains the true parameter value. Although frequentist 

confidence intervals are often mistaken to have similar properties, they do not 

provide any information about the probability of an inferred parameter value (see 

Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Morey, Hoekstra, Rouder, Lee, & 

Wagenmakers, 2015). 

We will illustrate the differences between Bayesian and Frequentist model 

estimates in a linear mixed-effect model analysis of the copy-task components. The 

model is fitted on the log-transformed inter-keystroke intervals with copy-task 

component as fixed effects and random intercepts for participants and bigrams. To 

evaluate the fit of this model, we fitted an intercept-only model without copy-task 

component as fixed effect. 

The linear mixed-effects model performed in the R package lme4 (Bates et al., 

2015b) showed a statistically significant fit (F(5) = 4,152.96, p < .001; AIC = 47,498.07). 

This model, with copy-task component as fixed effect, rendered a better fit 

compared to the intercept-only model and was found more informative (𝜒ହଶ = 580.64, 𝛥AIC = 572.64). The Bayesian linear mixed effects model with copy-task component 

as fixed effect rendered a higher predictive performance compared to an intercept-

only model (𝛥elpd = -249.80, SE = 25.02). This model comparison provides inference 

akin to the Frequentist linear mixed-effects model. 

The coefficients for each copy-task component estimated by the Frequentist 

and Bayesian linear mixed effects model ([B]LMM) are shown in Figure B1. The 

estimate of Bayesian model is the maximum a posteriori, the most probable 
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parameter estimate, or population mean. The lower and upper bound are the 95% 

confidence intervals for the Frequentist model and the 95% highest posterior 

density interval (HPDI) for the Bayesian model. The parameter estimates and the 

associated intervals show a general difference between the Tapping task, the HF 

bigram component, and the Sentence task one the one hand, and the LF bigram 

component and the Consonant copy task on the other hand. 

Figure B1: Model estimates of the inter-keystroke intervals (IKI) for each copy-task component 

estimated in a Bayesian and Frequentist linear mixed effects model ([B]LMM). Dots show the 

population estimate and intervals show 95% CIs for the LMM and 95% HPDIs for the BLMM. 

Overall, the coefficients are numerically very similar. However, the interpretation 

associated with the two statistical frameworks is crucially different. The estimate of 

Bayesian model represents the most probable parameter estimate of the unknown 

population mean. The Frequentist estimate it is not associated with a probability 

distribution. The same holds for the lower and upper bounds of the error bars. The 

lower and upper bound for the Frequentist model are the 95% confidence intervals 

(CI). For the Bayesian model, the interval shows the 95% Highest Posterior Density 

Interval (HPDI). Although the intervals look very similar the interpretation is 

different. The HPDI is defined as the shortest interval containing 95% of the 

posterior probability mass and represents the area in which the largest amount of 

posterior estimates lie. Bayesian HPDIs, probability/percentile intervals and 

credible intervals all provide the probability range in which the true parameter 

value lies with the highest certainty. 95% CIs have a more involved definition and 
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can be understood to represent the  intervals that would contain the true parameter 

value if we were to repeat an experiment a large, if not infinite, number of times 

under the same conditions. Therefore, 95% CIs cannot be understood as intervals 

that contain a true parameter value with a probability of 95%, whereas Bayesian 

posterior intervals do have this interpretation. 

As Bayesian models provide probability distributions of population estimates, 

we can derive inference directly from the model’s posterior, as shown in Figure B2. 

From these distributions we can calculate the probability of observing keystroke 

intervals below or above a particular threshold or within a particular range. For 

example, from the posterior shown in Figure B2 we can determine that in the 

Tapping task the probability of observing keystroke intervals below 100 ms is 0.16, 

below 80 ms is 0.02 and below 50 ms is virtually 0. For the Consonants component, 

the probability of observing keystroke intervals for all of these thresholds is 0. In 

contrast, the probability to observe keystroke intervals above 350 ms in the 

Consonants task is 0.03 but 0 in the Tapping task. 

 

 

Figure B2: Histograms of the posterior probability distribution of inter-keystroke intervals (IKI) 

generated from the BLMM. 
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Appendix C: Data trimming 
Deviating interkey intervals were not removed from the analysis for the following 

reasons. A bottom threshold defined at 30 ms which has been argued to indicate 

unintentional double strokes or continuous key pressing does not apply because 

non-targeted bigrams were removed. As can be seen in the left panel of Figure B1, 

any other threshold on the lower end would need to be arbitrary and is difficult to 

be justified for the data. As for an upper threshold, following Hoaglin and Iglewicz 

(1987), we may consider 1827 ms.* 

The right panel of Figure C1 illustrates the distribution of data above the 

determined threshold. This proposal, however, hinges on the assumption that the 

data follow a normal distribution which we know is not the case. Data are positively 

skewed which results from the fact that the data are zero bound (Baayen, 2008). In 

other words, inter-keystroke intervals can be infinitely slow but not faster than or 

equal to 0 ms. More generally, trimming on the upper end would affect in particular 

the data of participants that are slow typists (e.g. many elderly participants) and 

those copy-task components that are more challenging (e.g. the Consonants task) 

but extreme values in faster components, such as the Tapping task, or in usually fast 

typists would be disregarded.  

Instead of removing those values, we used statistical methods that are capable 

of accounting for large values (i.e. mixture models presented in the results section 

of the main text) and that is associating extreme data with a lower posterior 

probability (see Appendix B). 

Figure C1: Distribution of inter-keystroke intervals shown on the lower (left panel) and upper 

(right panel) extreme. Graphs show the density distribution of the data in the top panel and 

the jittered individual data points on the lower panel. 
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Note 
* Hoaglin and Iglewicz (1987) defined outliers based on the differences between 

quartile 3 (Q3) and quartile 1 (Q1). This interval is multiplied by factor 2.2. The 

upper threshold for outliers is then calculated by adding this score to Q3. We 

applied this formula to the slowest component, i.e. the Consonant task. This 

resulted in the following calculation: ((Q3 − Q1) × 2.2) + Q3 = ((772.93 − 293.59) × 

2.2) + 772.93 = 1,827.47. 
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Appendix D: Copy-task as a diagnostic tool 
Mixed-effects models allow us to estimate varying intercepts for each participant. 

The parameter estimates for each individual can be used to identify those 

individuals that are relatively fast or slow typists compared to the remainder of the 

sample. In other words, we can use this analysis to test the typing performance and 

isolate individuals that vary from the remainder of the sample. Figure D1 shows a 

caterpillar plot for the deviation estimates for each participant extracted from the 

mixture model analysis. 

 

Figure D1: Participant deviation from the model intercept. Each error bar represents the 95% 

HPDI for one participant. Participants with large deviations (estimated population mean > 3 × 

SD) were labeled with their participant ID. 

 

For each participant we plotted the 95% HPDI interval showing the deviation from 

the overall intercept (population mean) marked by the dashed line. As the 

distribution of these deviations is normal, it allows us to identify those individuals 

that are relatively slow or fast. In Figure D1 relatively fast individuals are shown on 

the left side (with shorter IKIs compared to the population mean) and relatively slow 

individuals are shown on the right (with longer IKIs compared to the population 

mean). HPDIs that did not fall into the normal distribution of those deviations were 

labelled with the participants’ ID. For example, the slowest typist in the sample 

shown were participants 236 and 437.  

The logic of this analysis can be extended to isolate individuals with difficulty in 

certain copy-task components, e.g., to identify individuals with specific difficulties 

on the motor level (Tapping), in lexical typing tasks (HF/LF bigrams, Sentence task), 
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or tasks that involve eye-hand coordination and a memory component (Consonants 

task). To illustrate how we can use the copy-task as a diagnostic tool we focused on 

a group that typically shows more difficulty. We selected the 2.5% oldest 

participants in the full copy-task corpus (N = 80, 32 males, 48 females; median age = 

67 years, range: 60 – 83). We fitted a Bayesian linear mixed-effects model with copy-

task component as fixed effect and random intercepts for bigrams and participants 

with by-participants slopes for each copy-task component. The results of this model 

can be found in Figure D2. Figure D2 shows a caterpillar plot for the deviation 

estimates from the overall intercept (shown as dashed line) for each participant 

plotted against age. Those individuals that showed a relatively slow performance 

were labeled with their participant ID (similar to Figure D1) 

 

 

Figure D2: Participant deviation from the overall intercept with 95% HPDIs. Age is shown on 

the x-axis. For each component, participant IDs are shown for individuals that show slower 

IKIs compared to the remainder of the sample (estimated population mean > 3 × SD). 

For each participant we plotted the 95% HPDI interval showing the deviation from 

the overall intercept marked by the dashed line. Figure D2 illustrates that participant 

74 shows more difficulty in most copy-task components, except the Tapping task. 

In contrast, participants 10, 18, and 36 show difficulty in the Tapping task but in none 
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of the other copy-task components. Participant 14 shows difficulty in the Sentence 

and HF bigrams task only. Participant 6 shows difficulty in the LF bigrams and 

Consonants task. Participant 8 shows difficulty across all copy-task components. In 

other words, we can detect participants that have difficulty related to the properties 

of certain copy-task components. 


