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I. Introduction

There is an ever-growing interest in characterizing the aerodynamic and aeroelastic behavior of highly-flexible

aeronautical/mechanical structures, developing complex motions in space, and immersed in low-subsonic flows. The

diversity of such systems is large, and to illustrate its enormous variety, we can mention some examples such as:

high-altitude long-endurance (HALE) aircraft involving unconventional configurations (joined wings and strut-braced

wings) [1, 2], helicopters rotors [3], high-aspect-ratio wings [4, 5], horizontal- and vertical-axis wind-turbines [6, 7],

and some constructions like suspension bridges [8, 9]. As for those physical systems the flow separation mainly occurs

on highly flexible structural members, the aeroelastic behavior is untreatable through closed-analytic approaches. The

involved intrinsic features make it necessary to describe them by a fully-unsteady three-dimensional flow strongly

coupled with the structure under consideration. Structural and flow solvers are the two main subdomains of any staggered

(or partitioned) framework intended for aeroelastic simulations [10].

High-fidelity solvers, such as those based on computational fluid dynamics (CFD) techniques, have been successfully used

and are possibly the best option from the point of view of accuracy. However, solving the full Navier-Stokes equations

for three-dimensional unsteady flows with highly deformable boundaries remains challenging and time-consuming. An

interesting alternative is the unsteady vortex-lattice method (UVLM), which has been gaining ground in the study of

unsteady problems, in which free-wake methods become a necessity due to the geometric complexity of the systems

under analysis [11–15]. Although this method has been implemented in different flavors, all its variants are based on the

same theoretical principles and, therefore, those codes with similar capabilities should show very good agreement [16].

Due to the excellent trade-off between computational cost and accuracy, UVLM-based solvers have also been successfully

integrated into aeroelastic simulation frameworks. In such an aeroelastic context, we can distinguish between two

different approaches depending on the numerical time integration scheme selected to integrate the governing equations:

explicit formulas or predictor-corrector schemes and implicit algorithms. The former group relies almost entirely on

multi-step predictor-corrector pairs such as: Euler methods, Adams-Bashforth/Moulton methods, and Hamming’s

fourth-order predictor-corrector method. These procedures have been successfully implemented into UVLM-based

aeroelastic frameworks to study a large number of engineering applications [17–22]. They are simple to implement

and do not require any linearization of the equations of motion, but at expenses of some restrictions and numerical

issues. First, they are limited to structural models, where elastic displacements are small and disaggregated from rigid

body motions [18, 19, 21, 23]. Second, they do not preserve energy or momenta, so the solution may degrade over

time. Third, predictor-corrector formulas are multi-step methods requiring starting schemes, i.e. first-order formulas

at 𝑡1, second-order formulas at 𝑡2, and so on until reaching the desired order of accuracy. Such a procedure severely

compromises the order of accuracy of the solution, i.e., the order of the entire numerical scheme will be conditioned by

the lowest order formula present in the method [24].
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As mechanical/aeronautical systems become increasingly complex, linear and standard multibody approaches (e.g.,

floating frames of reference or co-rotational formulations) are no longer suitable for treating highly flexible slender

structures. Consequently, advanced aeroelastic environments depend on more sophisticated structural models such

as: ANCFs [25, 26], geometrically exact beam formulations [27, 28], and their variants [29, 30]. This is when using

the second group of integration schemes, the implicit methods, becomes mandatory. These integrators generally

have very good stability properties; some of them identically preserve energy as well as linear and angular momenta

[31]. Essentially, when dealing with nonlinear systems, implicit schemes require gradient-based solution methods,

which require linearization of the governing equations, i.e., linearizing the structural and the aerodynamic equations.

Although this is a standard procedure in computational mechanics, linearization of the UVLM poses several challenges.

Mauermann [32] developed a linearized form of the UVLM, focusing on obtaining a formulation based on aerodynamic

states to study the dynamic behavior of aircraft under wake vortex encounters. Later, Murua et al. [33] presented a

linearized version of the UVLM based on frozen bound- and free-vortex sheet geometries (during the linearization

process), but the dependence on the surface’s velocity and the change in its normal direction was catered for. Their

work aimed to solve nonlinear aeroelastic problems through the formulation of a linear state-space UVLM. On this

basis, Hesse et al. [34, 35] introduced a reduced-order aeroelastic strategy to study the dynamics of flexible aircraft, and

Hilger and Ritter [36] developed a linearized aerodynamic model intended for monolithic-based aeroelastic state-space

formulations. Lately, Maraniello and Palacios [37, 38] developed a general linear UVLM-state-space framework

along with a model-order reduction technique and a parametric reduced-order modeling for the UVLM. Although

both works are based on [33], they considered a more general linearization process where the assumption of a frozen

geometry has been removed, but the assumption of a frozen wake is still retained. Regarding the aerodynamic loads,

their linearizations are computed from a combination of the Joukowski method (steady component) and the unsteady

Bernoulli equation (unsteady component). To some extent, Stanford and Beran [11] resembles a linearization procedure

to perform sensitivity analyses within a UVLM-optimization approach for maximizing the propulsive efficiency in

flapping wings under lift and thrust constraints.

Despite all these relevant works and efforts made in the context of linearization, reduced-order models, and linear

state-space formulations of the UVLM, to the best of our knowledge, there is no contribution regarding a linearization

methodology intended for a general nonlinear aeroelastic framework based on UVLM flow solvers. Our methodology

differs from those already published in several aspects: (i) the solution procedure for the nonlinear aeroelastic equations,

(ii) the time integration method, (iii) the linearized aerodynamic loads, (iv) the aeroelastic approach, and (v) the structural

mechanical model. We solve the nonlinear equations directly using an implicit integration scheme based on discrete-time

derivatives, specifically the “average vector field” method and employing the gradient-based Newton method. In

this sense, our approach improves the accuracy, numerical convergence, and global robustness for investigating
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highly nonlinear aeroelastic scenarios, especially those characterized by highly nonlinear geometric effects (e.g., large

displacements, large rotations, large velocity gradients, etc.). The integration scheme adopted in this work naturally

ensures the preservation of physically important features, such as the linear and angular momenta and the total energy.

Here, we propose a procedure to take into account the contribution of the surrounding flow to the tangent matrices by

performing a full linearization of the unsteady Bernoulli equation with respect to generalized structural coordinates

and velocities. Like Maraniello and Palacios [37, 38], our approach assumes a frozen wake. While most of the works

reported in the literature combine the aerodynamic and structural models monolithically, our aeroelastic approach is

based on a strong bidirectional fluid-structure interaction derived with respect to the structural model’s state variables

(generalized coordinates and generalized velocities). In this way, our approach provides high versatility when coupling

an aerodynamic model with our structural model. Furthermore, the resulting system’s Jacobian provides reliable

information on the behavior of aeroelastic stability and can be used to predict, to a good extent, flutter and/or divergence

velocities without conducting full aeroelastic simulations.

The objective of our work and the final results constitute a first attempt to consistently integrate the UVLM into a

nonlinear aeroelastic framework ruled by an implicit integrator based on discrete-time derivatives. Although there are

more works addressing aeroelastic studies based on implicit integration schemes where the contributions to the tangent

matrices coming from the UVLM are neglected [39, 40], it is not clear how such simplification affects the results, the

robustness of the simulation framework and/or the convergence properties of the integrator. In this sense, our work aims

to shed some light on this issue by providing a systematic way of including the contribution of the UVLM during the

linearization of the equations of motion, thus allowing us to evaluate some of the inherent effects of neglecting such

contributions. To the best of our knowledge, such a development has not appeared in the existing literature yet.

The remainder of this work is organized as follows: In Sec. II, we present detailed aspects of the modeling process

behind the UVLM. In addition, we fully describe a procedure to analytically linearize the aerodynamic loads obtained

using a standard UVLM-based flow solver. We briefly review the nonlinear aeroelastic framework, including general

aspects of the nonlinear structural model in Sec. III. In Sec. IV, we present showcases intended for verifying our

approach for the analytical computation of tangent matrices associated with the UVLM. Finally, concluding remarks are

collected in Sec. V to close the paper.

II. Aerodynamic model

A. General aspects

Let us consider a body B immersed in a low-subsonic flow. When the Reynolds number 𝑅𝑒 is sufficiently large, the

viscous effects can be confined to those regions close to the solid surfaces; these vorticity-dominated regions are called

boundary layers. Part of the vorticity contained in the boundary layers is shed downstream into the flow field, where it
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can only be transported by the fluid particles but can neither be created nor destroyed. This transported vorticity forms

the wakes behind the body. The thickness of the boundary layers and wakes tends to zero as the 𝑅𝑒 −→ ∞. Thus, the

boundary layers and wakes are continuous bound and free vorticity sheets. The absolute velocity of a fluid particle,

which occupies the position r at instant 𝑡, is denoted by V(r, 𝑡). The fluid surrounding B is assumed to be inviscid and

irrotational over the entire flow field, excluding the body’s solid boundaries and its wakes. Under these assumptions, the

unknown velocity, pressure, and density fields are governed by the well-known Euler equation,

𝜕𝑡V(r, 𝑡) + (V(r, 𝑡) · ∇) V(r, 𝑡) = − 1
𝜌𝐹

∇ 𝑝(r, 𝑡), (1)

where 𝜕𝑡 (·) stands for partial time derivative, 𝜌𝐹(r, 𝑡) is the fluid density field, and 𝑝(r, 𝑡) is the pressure field. Because of

the low-subsonic flow condition, the Mach number is lower than 0.3; thus, the flow is considered incompressible. Such

a condition allows us to add an extra pure kinematical relationship, which states that the velocity field is divergence-free.

Such a relation is known as the continuity equation for incompressible flows,

∇ · V(r, 𝑡) = 0. (2)

Eq. (2) gives rise to much simplification in the equations of fluid mechanics. Such an incompressibility assumption

reduces the thermo-mechanical problem of the motion of an inviscid fluid to a purely mechanical problem [41]. In

addition, the velocity field can be expressed by using Helmholtz’s decomposition as the superposition of a contribution

coming from a scalar potential 𝜑(r, 𝑡) and another contribution from a vector potential 𝚿(r, 𝑡) [42],

V(r, 𝑡) = ∇𝜑(r, 𝑡) + ∇ ×𝚿(r, 𝑡) = V𝜑(r, 𝑡) + V𝜓(r, 𝑡), (3)

where the scalar potential component of the velocity is irrotational, and the vector potential component captures any

vorticity effect. Introducing the velocity relationship Eq. (3) into the continuity equation allows us to obtain the

following partial differential (PDE),

∇ · V(r, 𝑡) = ∇ · ∇𝜑(r, 𝑡) + ∇ · (∇ ×𝚿(r, 𝑡)) = ∇2𝜑(r, 𝑡) = 0, (4)

which is the well-known Laplace equation for the scalar potential. Furthermore, Eq. (2), known from gauge theory as

the Coulomb gauge condition [43], implies that the solenoidal field V(r, 𝑡) can also be written as the curl of another
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vector potential 𝚿1(r, 𝑡), that is to say,

V(r, 𝑡) = ∇ ×𝚿1(r, 𝑡) = ∇𝜑(r, 𝑡) + ∇ ×𝚿(r, 𝑡), (5)

which shows that ∇𝜑(r, 𝑡) = ∇ × [𝚿1(r, 𝑡) −𝚿(r, 𝑡)] = ∇ ×𝚿2(r, 𝑡). Such a relation allows us to determine the velocity

field associated with ∇𝜑 by solving either PDE Eq. (4) or the following equivalent Poisson’s equation,

∇ × [∇ ×𝚿2(r, 𝑡)] = ∇ (∇ ·𝚿2(r, 𝑡)) − ∇2𝚿2(r, 𝑡) = 0, then ,∇2𝚿2(r, 𝑡) = q(r, 𝑡), (6)

provided q(r, 𝑡) = ∇ (∇ ·𝚿2(r, 𝑡)) is known and then considered as a source term. On the other hand, by introducing

Eq. (3) into the definition of the vorticity field 𝛀(r, 𝑡) = ∇ × V(r, 𝑡) and stipulating that ∇ ·𝚿(r, 𝑡) = 0, we obtain the

following PDE,

∇2𝚿(r, 𝑡) = −𝛀(r, 𝑡), (7)

which is a vector Poisson equation relating the vector potential to the vorticity.In addition, the velocity field in Eq. (3)

can also be thought of as composed of three components: i) the free-stream velocity, V∞; ii) the velocity associated

with the continuous bound-vortex sheets, V𝐵(r, 𝑡); and iii) the velocity associated with the free-vortex sheets (or wakes)

being shed from the sharp edges (separation zones, SZs) of B, V𝑊 (r, 𝑡). Without loss of generality, in this work, we

assume that the field V𝐵 and the free-stream component are absorbed by ∇𝜑 while the field V𝑊 is identified with ∇×𝚿.

That is,

∇𝜑(r, 𝑡) = ∇𝜑1(r, 𝑡) + ∇𝜑2(r, 𝑡) = V𝐵 + V∞ , and ,∇ ×𝚿(r, 𝑡) = V𝑊 . (8)

Although equations Eq. (3) and Eq. (4) do not directly include time-dependent terms, they can be introduced through

the boundary conditions, e.g. the non-penetration or permeability condition.

1. Boundary conditions

The governing equations of the problem are completed with the following boundary conditions (BCs):

• Regularity at infinity: This condition requires that the velocity field associated with the flow disturbance, due to the

motion of B through the fluid, to decay away from the body and its wakes. Mathematically it is expressed as follows,

lim
∥r−r𝐵 ∥→∞

∥V𝐵(r, 𝑡) + V𝑊 (r, 𝑡)∥ = 0, (9)

where ∥r − r𝐵∥ is the distance between a point belonging to the body and an arbitrary point r.
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• Non-penetration condition: it requires that, over the entire surface of B, the normal component of the fluid velocity

relative to the body’s surface must be zero,

[V∞ + V𝐵(r, 𝑡) + V𝑊 (r, 𝑡) − V𝑆(r, 𝑡)] · n̂ = 0, (10)

where V𝑆(r, 𝑡) is the velocity of the body (also called solid velocity), and n̂ is a unitary normal vector to the boundary

of B. Next, Eq. (10) can be restated as,

V𝐵(r, 𝑡) · n̂ = [V𝑆(r, 𝑡) − V𝑊 (r, 𝑡) − V∞] · n̂, (11)

Since V∞ is the velocity of an incompressible flow, it satisfies ∇ · V∞ = 0 and by construction, V𝑊 , does too. As

mentioned above, V𝐵 = ∇𝜑1 and, finally, Eq. (10) takes the following form,

∇𝜑1(r, 𝑡) · n̂ =
𝜕𝜑1
𝜕n̂

= [V𝑆(r, 𝑡) − V𝑊 (r, 𝑡) − V∞] · n̂, for r ∈ 𝜕B, (12)

which is known as a second-type or Neumann boundary condition.

In addition to the aforementioned boundary conditions, for unsteady flows, it is also required the Kelvin condition to be

satisfied. In general, the Kelvin condition states that: in the potential flow region the angular momentum cannot change,

and thus the circulation Γ around a closed curve remains constant for all times, i.e. 𝐷Γ/𝐷𝑡 = 0 ∀ 𝑡.

Another important condition to be imposed is the so-called Kutta’s condition. The reader should be aware that

it can be explicitly enforced as reported by Lee [44]. However, for highly three-dimensional flows and/or unsteady

flows characterized by highly reduced frequencies (e.g. rotors and flapping wings, among others), the classical steady

Kutta condition may lead to a non-zero pressure jump at the separation zones [45]. In this regard, many approaches

have been proposed over time to tackle down this problem. Among the most important ones, we can mention imposing

the same speed on the upper and lower surfaces at the separation zones but with opposite tangential direction [46],

imposing a jump velocity between the upper and lower surfaces at the SZ equal to the shed vorticity [47], imposing an

infinite velocity jump at the SZ [48], and limiting the velocity at the separation zones to fix the rear stagnation point (i.e.

V < ∞) [49]. Based on a large number of previous works [13, 14, 18, 22, 50, 51], here we enforce the Kutta condition

by requiring the pressures to be finite and the pressure jump to be zero along the separation edges. This forces the flow

to leave the SZs smoothly but with vorticity in general. In other words, the fluid particles located on the sharp edges

where separation takes place are required to “move” away from B at the local velocity flow; the well-known vorticity

shedding phenomenon (or wake convection).
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2. Vortex sheets

In non-uniform motions, the wake becomes more complex than in steady flows, and therefore, it needs to be properly

accounted for [52]. In addition, it should be stressed that the integral representation of the velocity field in terms of

the vorticity field is obtained by solving the Poisson PDE Eq. (7). The resulting expression for V is the well-known

Biot-Savart (B-S) law. For three-dimensional flows, it takes the following form,

V(r, 𝑡) =
1

4𝜋

∫
𝑉(r0 ,𝑡)

𝛀(r0, 𝑡) × (r − r0)
∥r − r0∥3

2
𝑑𝑉(r0, 𝑡), (13)

where r0 is a position vector of a point belonging to a compact region 𝑉(r0, 𝑡) of the flow field. Although Eq. (13)

provides the velocity field associated with a three-dimensional region of distributed vorticity, it is also kinematically

possible to generate vortex sheets and vortex lines with finite strength Γ. Fig. 1 presents a schematic representation of a

continuous bound- and free-vortex sheet. As an example, let us introduce a surface of discontinuity whose vorticity

is confined to a surface-like region of thickness 𝜖 such that as 𝜖 −→ 0 then 𝜖 ∥𝛀∥ −→ 𝛾, where 𝛾 is finite and is a

function of the position on the surface. It follows that the vorticity in a vortex sheet can be adequately represented

by 𝛀(r, 𝑡) = γ(r, 𝑡)𝛿(𝑛), where 𝑛 is a coordinate along the normal to the sheet n̂, 𝛾 = ∥γ∥, and 𝛿(𝑛) is the Dirac delta

generalized function (or Dirac 𝛿-distribution). Replacing this result into Eq. (13), we obtain the velocity field associated

with a compact distribution of vorticity on a surface 𝑆(r0, 𝑡),

V(r, 𝑡) =
1

4𝜋

∫
𝑆(r0 ,𝑡)

γ(r0, 𝑡) × (r − r0)
∥r − r0∥3

2
𝑑𝑆(r0, 𝑡). (14)

Following a procedure similar to the previous one, it is possible to generate a vortex line where infinite vorticity is

concentrated in a single curve in space, such that the circulation (or strength) Γ around it is finite and constant [41]. By

using a Frenet-Serret intrinsic reference frame and letting 𝑠 be the arc length coordinate along the curve C, we formally

can express the vorticity associated with C as Ω = Γ 𝛿(𝑛) 𝛿(𝑏) T̂(𝑠), where T̂ is the unit tangent vector to C, and 𝑛 (𝑏) is

the coordinate along the normal (binormal) direction. Replacing this result into Eq. (13), we obtain the Biot-Savart law

particularized for an arbitrary curve in space,

V(r, 𝑡) =
Γ

4𝜋

∫
C(𝑠,𝑡)

T̂(𝑠, 𝑡) × (r − r0(𝑠))
∥r − r0(𝑠)∥3

2
𝑑𝑠(𝑡). (15)

Vortex sheets and vortex lines (or filaments) of concentrated vorticity are not physically possible entities. However, they

represent suitable analytical approximations when vorticity is confined to narrow spatial regions.
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Free-vortex lattices
or wakes

Bound-vortex lattice

Starting vortex

A1

A𝑖

Free-vortex sheets

Bound-vortex sheet

r𝐹

𝑆𝑊 (r, 𝑡)𝑆𝐵(r, 𝑡)

𝑆𝑟 ∈ 𝑆𝑊 (r, 𝑡) with
vorticity 𝜸(r, 𝑡)

Fig. 1 Schematic representation of a bound- and free-vortex sheets/lattices.

3. Wake convection

Over time, more fluid particles are convected from the sharp edges of B into the wakes, which in turn can deform

into force-free configurations. The vorticity in the near wake can substantially affect the flow field surrounding B, the

vorticity distribution on 𝜕B, and, therefore, the loads on the body. Because the wake at the present time was generated

on, and shed from, the body at an earlier time, the flow field is said to be history-dependent, i.e., the history of the

motion is stored in the wake. As time passes and the wake moves far downstream, its influence on the flow around the

body decreases; such assertion is equivalent to saying that the wake has a fading memory. It should be noted that the

vorticity distribution and the shape of the wakes are obtained as part of the problem’s solution.

After an infinitesimal period of time, the shape of the wakes will be different, and new fluid particles will be

convected from the SZs into the wakes. Then, the position of each fluid particle, r𝐹 , at an arbitrary time 𝑡 can be

determined based on the local velocity of the fluid using the following integral,

r𝐹(𝑡) =
∫ 𝑡

0
V(r𝐹(𝜏), 𝜏) 𝑑𝜏 ,where ,V(r𝐹 , 𝑡) = V𝐵(r𝐹 , 𝑡) + V𝑊 (r𝐹 , 𝑡) + V∞. (16)

4. Aerodynamic loads

On this topic, two approaches can be followed to compute the aerodynamic loads on lifting surfaces embedded in

vorticity-dominated flows. One of them, widely used in classical aircraft/rotor applications, relies on the computation of

the pressure jump across airfoils using the well-known unsteady Bernoulli equation [50], hereafter called Bernoulli

Method (BM). The second approach is based on the vector form of the Kutta-Joukowski lift theorem [52]. It should be

stressed that both BM and Joukowski methods yield very good estimations of the lift coefficient. However, contrary

to Joukowski, BM-like approaches do not take into account the leading-edge suction effect, which results in an

overestimation of the induced drag.
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Recalling that ∇ × V = 0 outside the boundary layers of B and its wakes and assuming irrotational body forces, Euler’s

equation can be integrated along a streamline once and for all thus resulting in the Bernoulli equation for unsteady flows,

∫
𝐶(𝑠)

𝜕𝑡 (∇ ×𝚿) · T̂(𝑠) 𝑑𝑠 + 𝜕𝑡 𝜑 +
1
2
[∇𝜑 + ∇ ×𝚿] · [∇𝜑 + ∇ ×𝚿] +

1
𝜌𝐹

𝑝(r, 𝑡) = 𝐸(𝑡), (17)

where 𝐸(𝑡) is a spatially uniform function of time. Integrating Eq. (17) along a streamline from a point 𝑃𝑥 on the

surface of B, to a farfield reference point ∞, i.e. as ∥r∥ −→ ∞, 𝜑 −→ 𝜑∞ = constant, 𝑝 = 𝑝∞ = constant, ∇ ×𝚿 −→ 0,

and ∇𝜑 −→ V∞, the free-stream velocity. Therefore, 𝐸(𝑡) −→ 1
2 V∞ · V∞ + 𝑝∞

𝜌𝐹
, and Eq. (17) is rewritten as follows,

𝑝∞ − 𝑝(r, 𝑡)
𝜌𝐹

=
∫𝑃𝑥

∞
𝜕𝑡 (∇ ×𝚿) · T̂(𝑠) 𝑑𝑠 + 𝜕𝑡𝜑|𝑃𝑥

+
1
2
[∇𝜑 + ∇ ×𝚿] · [∇𝜑 + ∇ ×𝚿] |𝑃𝑥

− V∞ · V∞. (18)

Then, the pressure jump across the lifting surface at a point is defined as the difference between the pressure below the

vortex sheet (point 𝐿) and the pressure above the vortex sheet (point𝑈), i.e. 𝐷𝑝 = (𝑝)𝐿 − (𝑝)𝑈 . After some algebraic

manipulations, 𝐷𝑝 is given by,

𝐷𝑝

𝜌𝐹
=

∫𝑈

𝐿

𝜕𝑡 (∇ ×𝚿) · T̂(𝑠) 𝑑𝑠 +
[
𝜕𝑡𝜑 |𝑈 − 𝜕𝑡𝜑 |𝐿

]
+

1
2
[∇𝜑 + ∇ ×𝚿] · [∇𝜑 + ∇ ×𝚿] |𝑈 − 1

2
[∇𝜑 + ∇ ×𝚿] · [∇𝜑 + ∇ ×𝚿] |𝐿 .

(19)

On the other hand, Joukowski’s method requires splitting the force vector into two parts: a quasi-steady F𝑠, and an

unsteady component F𝑢. The steady and unsteady contribution of a differential vortex filament 𝑑𝛽 of circulation Γ(𝑡) is

computed from the Kutta-Joukowski theorem [53] as,

F𝑠 = 𝜌𝐹 Γ(𝑡)
[
V(r, 𝑡) × T̂(𝑠)𝑑𝑠

]
and F𝑢 = 𝜌𝐹 𝑐 𝑑𝑡Γ(𝑡)

[
V̂(r, 𝑡) × T̂(𝑠)𝑑𝑠

]
, (20)

where 𝑑𝑡 (·) stands for total derivative with respect to time, V(r, 𝑡) is the local flow velocity evaluated at the center

of the vortex filament, V̂(r, 𝑡) = V(r, 𝑡)/∥V(r, 𝑡)∥ is a unit vector along the direction of the local flow velocity, 𝑐

is the airfoil chord, and as before, T̂(𝑠) and 𝑠 are the unit tangent vector and arc-length coordinate along the vortex filament.

Although we have introduced two different approaches to compute aerodynamic loads, the sections dedicated to

calculating aerodynamic loads on a discrete setting and their linearization will only deal with the method based on the

unsteady Bernoulli equation.
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B. The unsteady vortex-lattice method

In the nonlinear UVLM, originally developed by researchers at Virginia Tech [50, 54, 55] and at Israel Institute of

Technology [49, 52, 56], the continuous bound-vortex sheets representing the boundary layers are discretized into a

lattice of short straight-vortex segments of circulation Γ(𝑡). These segments divide the surface of B into a finite number

of area elements (or panels), hereafter denoted by 𝐵𝑘 . The model is completed by joining free vortex lines, representing

the wakes, to the bound-vortex lattice along the sharp edges where the separation phenomenon occurs, such as trailing

edges, wing- or blade-tips, and leading edges (LEs) eventually. Whereas the locations where separation occurs are

considered user-input data, the distribution and position of vorticity in all free-force wakes are determined as part of the

solution. In Fig. 1, we present an example of a mesh for the bound-vortex and free-vortex lattices for an extremely (X)

high-altitude long-endurance (HALE) unmanned-air-vehicle (UAV). An aerodynamic grid A𝑖 representing the lifting

and non-lifting surfaces associated with a body 𝑖 is a geometric decomposition of its boundary, 𝜕B𝑖 , into a finite set of

cells (area elements, panels or boundary elements) A𝑖 =
{
𝐵𝑖
𝑘

}
, such that, A = ⋃𝑁𝐵

𝑖=1 A𝑖 and A𝑖 = ⋃𝑁𝑝𝑏𝑖

𝑘=1 𝐵𝑖
𝑘
, where

𝑁𝐵 is the number of bodies, and 𝑁𝑝𝑏𝑖 is the cardinality of A𝑖 , i.e. card(A𝑖) = 𝑁𝑝𝑏𝑖 . Then, the total number of panels

used to discretize the whole surface of B is determined as 𝑁𝑝𝑏 = ∑𝑁𝐵

𝑖=1 𝑁𝑝𝑏𝑖 . In addition, each pair of cells belonging to

the 𝑖-th grid must meet the following conditions:

• If 𝐵𝑖
𝑘
∩ 𝐵𝑖

𝑗
for 𝑘 ̸= 𝑗 is exactly one point, then it is a common vertex (node) of 𝐵𝑖

𝑘
and 𝐵𝑖

𝑗
.

• If 𝐵𝑖
𝑘
∩ 𝐵𝑖

𝑗
for 𝑘 ̸= 𝑗 is not exactly one point, then it is a common facet of 𝐵𝑖

𝑘
and 𝐵𝑖

𝑗
(edge in two dimensions).

Although quadrilateral elements (𝑄𝐸) are commonly used in VLM implementations [52], the use of triangles (𝑇𝐸) and

combinations of 𝑄𝐸 and 𝑇𝐸 is spreading due to the versatility and potentiality provided by FEM meshers to generate

geometric decompositions of very complex domains [15]. These area elements are used to impose the non-penetration

condition on their geometric centers (the so-called control or collocation points, CPs). It should be mentioned that here,

non-lifting surfaces are only considered to set a constraint on the flow field by means of the non-penetration condition.

In this regard, the extra distribution of vorticity on the non-lifting bodies will prevent the flow to penetrate the solid

boundaries and therefore follow a path tangential to them.

As mentioned above, the edges of these boundary elements are represented by straight, finite vortex segments of

circulation Γ(𝑡), whose contribution to the velocity field are computed through a discrete version of Eq. (15),

V𝑑(r, 𝑡) =
Γ(𝑡)
4𝜋

(r1 × r2) (∥r1∥ + ∥r2∥)
∥r1∥ ∥r2∥ (∥r1∥ ∥r2∥ + r1 · r2) + (𝛿𝑐 ∥u∥)2 =

Γ(𝑡)
4𝜋

B-S (r1, r2), (21)

where r1 and r2 are the position vectors of the point where the velocity is being evaluated relative to the ends of the

straight vortex segment, u = r1 − r2, and 𝛿𝑐 is a cut-off parameter, which is introduced to remove the singular kernel of

Eq. (15). Although introducing the term (𝛿𝑐 ∥·∥) into Eq. (21) is interpreted as essentially an ad-hoc technique [57, 58],
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it has been proven to work satisfactorily well in practice. According to Grasso et al., [59], some guides to select the

𝛿𝑐-parameter are from 1% to 10% for wake roll-up computations and 0.01% for bound-vortex calculations. From now

on, superscript 𝑑 will represent a discretized scalar/vector field.

According to the theoretical description presented in section (II.A), it is clear that we have two PDEs associated with our

problem: i) the Laplace equation together with Neumann BCs for the scalar potential 𝜑(r, 𝑡), and ii) Poisson’s equation

for the vector potential 𝚿(r, 𝑡). However, most UVLM implementations consider the Laplace BVP, but they use the

Biot-Savart law together with the Neumann BC for computing velocities and solving for the circulations on the lifting

and non-lifting surfaces. To this end, the non-penetration condition leads to a linear algebraic system regarding the

unknown vortex circulations on the discretized surfaces of B. Such an approach, where we avoid solving Laplace’s

equation and use Poisson’s solution instead, is only possible at the discrete level due to the equivalence between doublets

(or dipoles) and vortex loops of constant circulations [52, 60].

1. Aerodynamic influence coefficients

The specification of the non-penetration condition at each CP of A results in a linear system of algebraic equations

(generally with time-varying coefficients). The unknowns are the circulations around the individual bound vortex

segments; however, the linear system can be rewritten in terms of vortex ring circulations G 𝑗 (𝑡), which substantially

reduces the size of the problem [50]. Such vortex rings are obtained by considering each panel to be enclosed by a

closed loop of vortex segments having the same circulation. Hence, each straight segment is formed from two loops.

Under these assumptions, the fore-introduced linear system takes the following form:

A(𝑡)G(𝑡) − RHS(𝑡) =
𝑁𝑝𝑏∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑡) G 𝑗 (𝑡) +
[
V𝑑
∞ + V𝑑

𝑊 (r𝑖 , 𝑡) − V𝑑
𝑆(r𝑖 , 𝑡)

]
· n̂𝑖(𝑡) = 0, 𝑖 = 1, 2, ..., 𝑁𝑝𝑏, (22)

where 𝑎𝑖 𝑗 (𝑡) are the aerodynamic influence coefficients, n̂𝑖 is the unit vector normal at the 𝑖-th control point,

A(𝑡) ∈ R𝑁𝑝𝑏×𝑁𝑝𝑏 is the aerodynamic influence matrix, G(𝑡) ∈ R𝑁𝑝𝑏×1, and RHS(𝑡) ∈ R𝑁𝑝𝑏×1 is the right-hand side

which collects the contributions of the wake, free-stream and body velocities along the normal direction at each CP. It

should be stressed that the aerodynamic coefficient 𝑎𝑖 𝑗 (𝑡) represents the normal velocity component at the control point

of the 𝑖-th element associated with a vortex ring around the 𝑗-th element having unit circulation.

Because mechanical/aeronautical systems are generally modeled as a collection of flexible and rigid bodies, the

aerodynamic influence matrix can be split into different sub-matrices according to the following: i) the influence

between panels belonging to the same aerodynamic grid A𝑝 , and ii) the influence between panels belonging to different

aerodynamic grids, e.g. A𝑝 and A𝑞 . Each aerodynamic coefficient in Eq. (22) can then be calculated by means of the
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function 𝐼𝑛(𝐵𝑝

𝑖
, 𝐵

𝑞

𝑗
) : A𝑝 × A𝑞 −→ R for 𝑝, 𝑞 = 1, ..., 𝑁𝑏,

𝐼𝑛(𝐵𝑝

𝑖
, 𝐵

𝑞

𝑗
) =

[
1

4𝜋

4∑︁
𝑘=1

B-S (r 𝑗

1,𝑘 , r
𝑗

2,𝑘)

]
· n̂𝑖 = In(𝐵𝑝

𝑖
, 𝐵

𝑞

𝑗
) · n̂𝑖 , (23)

where In(𝐵𝑝

𝑖
, 𝐵

𝑞

𝑗
) : A𝑝 × A𝑞 −→ R3, and r 𝑗

1,𝑘 and r 𝑗

2,𝑘 are the position vectors of the control point of the 𝑖-th panel

𝐵
𝑝

𝑖
∈ A𝑝 where the velocity is being evaluated relative to the ends of the 𝑘-th straight vortex segment u 𝑗

𝑘
= r 𝑗

1,𝑘 − r 𝑗

2,𝑘

belonging to the 𝑗-th panel 𝐵𝑞

𝑗
∈ A𝑞 . It should be noted that generally 𝐼𝑛(𝐵𝑝

𝑖
, 𝐵

𝑞

𝑗
) ̸= 𝐼𝑛(𝐵𝑞

𝑗
, 𝐵

𝑝

𝑖
) for 𝑝, 𝑞 = 1, ..., 𝑁𝐵.

Consequently, the matrix A(𝑡) is non-symmetric. Additionally, empirical evidence suggests that such a matrix may lose

its strictly diagonal dominant feature due to large motions/deformations that could lead to large off-diagonal values. In

other words, panels that were relatively far apart in the initial configuration can become significantly closer together

after large motions/deformations. In this regard, the linear algebraic system of equations (22) can be solved by using any

direct method such as LU decomposition, Cholesky decomposition, or Gauss elimination. Iterative procedures like

Jacobi and Gauss-Seidel (G-S) require, on the other hand, that certain conditions be satisfied on A(𝑡) or their associated

iterative matrices, MJ or MG-S. A sufficient condition for Jacobi and G-S to converge to a unique solution is that A(𝑡) is

strictly diagonally dominant. Unfortunately, as mentioned above, the matrix A(𝑡) can lose this property due to large

deformation of the lifting surfaces, and therefore this criterion can no longer be used. Another option is to check if the

iterative matrices MJ or MG-S are convergent (necessary and sufficient condition), i.e. the spectral radius 𝜌𝑠(M) < 1

or ∥M∥ < 1 for any natural matrix norm. Due to the nature of the matrix A(𝑡), there is no general result so far that

allows the use of iterative methods for solving the linear system in UVLM-based implementations and, therefore, this

condition must be verified each time this matrix is updated. After solving the linear algebraic system for the unknown

ring circulations G 𝑗 (𝑡), we can compute the velocity induced by all the bound-vortex lattices 𝐴 𝑗 on an arbitrary point r𝑖

as follows,

V𝑑
𝐵(r𝑖 , 𝑡) =

𝑁𝑝𝑏∑︁
𝑗=1

G 𝑗 (𝑡)
4𝜋

4∑︁
𝑘=1

B-S
(
r 𝑗

1,𝑘 , r
𝑗

2,𝑘

)
=

𝑁𝑝𝑏∑︁
𝑗=1

G 𝑗 (𝑡) In (r𝑖 , 𝐵 𝑗 ). (24)

2. Free-vortex lattice convection

Let V𝑖 for 𝑖 = 1, ..., 𝑁𝑊 also be a set of cells V𝑖 =
{
𝐿𝑖
𝑘

}
representing the wake shed from the sharp edges of

A 𝑗 ∈ A, such that, V = ⋃𝑁𝑊

𝑖=1 V𝑖 and V𝑖 = ⋃𝑁𝑝𝑤𝑖
(𝑡)

𝑘=1 𝐿𝑖
𝑘
, where 𝑁𝑊 ⩽ 𝑁𝐵 is the number of lifting surfaces, and

𝑁𝑝𝑤𝑖
(𝑡) = card(V𝑖) is the cardinality of V𝑖 . Then, the total number of free-vortex rings at time 𝑡 is determined as

𝑁𝑝𝑤(𝑡) = ∑𝑁𝑊

𝑖=1 𝑁𝑝𝑤𝑖
(𝑡). It should be noted that the cardinality of each “wake set” increases with time at a constant rate,

indicating in turn that the number of vortex rings in the free-vortex lattices increases with each time step (shedding

process). Once the circulations G 𝑗 (𝑡) are calculated, the wakes are convected to their new positions, and new vortex
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segments, shed from the SZs, are propagated into the free-vortex lattices. According to subsection (II.A.3), the spatial

evolution of the corners of a vortex segment belonging to 𝐿𝑖
𝑘

is computed by evaluating the integral Eq. (16) at the

local fluid velocity. For this purpose, the integral Eq. (16) is rewritten as a system of uncoupled ordinary differential

equations (ODEs),
𝑑r(𝑡)
𝑑𝑡

����
node

= V𝑑
node(𝑡), node = 1, ..., 𝑁𝑛𝑤(𝑡), (25)

where the subscript “node” was introduced to refer to the corners of a vortex segment, 𝑁𝑛𝑤(𝑡) is the number of

aerodynamic nodes in V, and V𝑑
node(𝑡) = V𝑑

𝐵
(rnode, 𝑡) + V𝑑

𝑊
(rnode, 𝑡) + V𝑑

∞. The vector V𝑑
node(𝑡) collects the contributions

from all surface vortex rings 𝐵𝑖
𝑘
, all free-vortex rings 𝐿𝑖

𝑗
, and the free-stream velocity. Because all the quantities

involved in Eq. (25) are functions of time, the question of which instantaneous quantities to use in the approximation is

raised. There are several options; for example, one can use the quantities that were calculated at the previous time step,

the present time step, or their averaged values for the two-time steps. In all cases except the first, iterations are needed,

which increase the computational cost. Kandil et al. [61] showed that explicit one-step methods are stable, and there are

little differences in the computed results when compared with higher-order procedures. In this respect, here we use an

explicit first-order method to propagate the wake,

rnode(𝑡 + Δ𝑡) ≈ rnode(𝑡) + V𝑑
node(𝑡)Δ𝑡, (26)

where Δ𝑡 is the time step. From a computational point of view, the convection of the wakes is the most expensive step

in any UVLM-based code implementation. Specifically, the velocity V𝑑
𝑊

at each 𝐿𝑖
𝑘

node is obtained by adding the

contributions of each element in V. As a consequence, the number of operations performed by the Biot-Savart law

during the wake convection is 𝑂(𝑁𝑝𝑤(𝑡)2). In this regard, we can say that the 𝑂(𝑁2) nature of the problem and the

time-dependent cardinality of V are directly responsible for the wake convection becoming a very time-consuming step.

3. Aerodynamic loads (discretization)

Here, we present the discrete version of Eq. (19) and how its different terms are handled to be computed in a simple way.

For a detailed explanation of Joukowski’s approach, the reader is referred to [62].

First, we recall that the pressure jump given by Eq. (19) is expressed in terms of a scalar potential 𝜑𝑑(r, 𝑡) and

the vector potential 𝚿𝑑(r, 𝑡). Without loss of generality, we have assumed that the velocity field is mainly split into two

parts: V𝑑
𝐵

+ V𝑑
∞ associated with ∇𝜑𝑑 , and V𝑑

𝑊
associated with ∇ ×𝚿𝑑 . However, the unsteady term due to the vector

potential
∫
𝜕𝑡 (∇ × 𝚿𝑑) · T̂(𝑠) 𝑑𝑠 is extremely difficult to handle in this form. By invoking the equivalence between

a doublet and a vortex ring of constant circulation, we can consider the contribution of the free-vortex lattice as an
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analogous contribution of a discrete distribution of doublets (or dipoles) [63], then,∫𝑈

𝐿

𝜕𝑡

(
∇ ×𝚿𝑑

)
· T̂(𝑠) 𝑑𝑠 =

∫𝑈

𝐿

𝜕𝑡
[
∇𝜓𝑑(r(𝑠), 𝑡)

] ��
wake · T̂(𝑠) 𝑑𝑠 = 𝜕𝑡

∫𝑈

𝐿

∇𝜓𝑑(r(𝑠), 𝑡)
��
wake · 𝑑r(𝑠)

= 𝜕𝑡𝜓
𝑑(r, 𝑡)

��
𝑈
− 𝜕𝑡𝜓

𝑑(r, 𝑡)
��
𝐿
,

(27)

where 𝜓𝑑 is a discrete scalar potential and ∇𝜓𝑑 is simply the velocity due to the wakes. After some algebraic

manipulations, the discrete version of the unsteady Bernoulli equation can be expressed as,

𝐷𝑝𝑑

𝜌𝐹
=

[
(𝜕𝑡𝜑𝑑 + 𝜕𝑡𝜓𝑑)

��
𝑈
− (𝜕𝑡𝜑𝑑 + 𝜕𝑡𝜓𝑑)

��
𝐿

]
+

1
2

(
V𝑑

𝜑 + V𝑑
𝜓

)
·
(
V𝑑

𝜑 + V𝑑
𝜓

)���
𝑈

− 1
2

(
V𝑑

𝜑 + V𝑑
𝜓

)
·
(
V𝑑

𝜑 + V𝑑
𝜓

)���
𝐿
,

=
[
(𝜕𝑡𝜑𝑑 + 𝜕𝑡𝜓𝑑)

��
𝑈
− (𝜕𝑡𝜑𝑑 + 𝜕𝑡𝜓𝑑)

��
𝐿

]
+

1
2

(
V𝑑
𝑈 · V𝑑

𝑈 − V𝑑
𝐿 · V𝑑

𝐿

)
,

(28)

where 𝐷𝑝𝑑 is the discrete pressure jump, V𝑑
𝑈

=
(
V𝑑

𝜑 + V𝑑
𝜓

)���
𝑈

and V𝑑
𝐿

=
(
V𝑑

𝜑 + V𝑑
𝜓

)���
𝐿
. Evaluation of V𝜑 requires

using the equivalence relationship between doublets (or dipoles) and vortex rings of constant circulation [60]. Such

equivalence allows us to compute the velocity contribution of each discrete vortex element 𝐵𝑘 ∈ A𝑖 ⊂ A by using the

Biot-Savart law. To keep the notation as compact and clear as possible, from now on, we will drop the superscript “𝑖”

and refer to a 𝑘-th vortex element in A and V as 𝐵𝑘 and 𝐿𝑘 , respectively.

Because the non-penetration condition must be satisfied at each control point CP𝑘 , the fluid velocities computed relative

to the lifting surfaces at the bound lattices do not have normal components. Therefore, there is a jump in the tangential

velocity across each 𝐵𝑘 equal to its circulation per unit length. As a result, the last term on the right-hand side of Eq.

(28) can be computed at a control point CP𝑘 as follows,

(
V𝑑
𝑈 · V𝑑

𝑈 − V𝑑
𝐿 · V𝑑

𝐿

)
𝑘

= 2V𝑑
𝑚,𝑘 · ΔV𝑑

𝑘 , (29)

where V𝑑
𝑚,𝑘

= V𝑑
𝐵,𝑘

+ V𝑑
𝑊,𝑘

+ V𝑑
∞,𝑘

is the “mean” velocity which does not recognize the presence of the local vorticity,

and ΔV𝑑
𝑘

represents the jump in the tangential velocity across 𝐵𝑘 . The last term can be evaluated by considering three

cases: a rectangular panel, a parallelogram panel, and a general panel (see reference [50]). For a general aerodynamic

panel 𝐵𝑘 , the jump in the tangential velocity ΔV𝑑
𝑘

is given by

ΔV𝑑
𝑘 = − 1

𝐴𝑘

[n̂𝑘 × 𝚪𝑘] , (30)
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CP𝑘

𝐺𝑘

𝐺𝑘−1 𝐺𝑘+1

𝐺𝑘−...

𝐺𝑘+...

n̂1

n̂2

ω3

ω2
ω1

ω4
1

2 3

4

𝐵𝑘Γ1 = 𝐺𝑘 − 𝐺𝑘−1 Γ3 = 𝐺𝑘 − 𝐺𝑘+1

Γ2 = 𝐺𝑘 − 𝐺𝑘+...

Γ4 = 𝐺𝑘 − 𝐺𝑘−...

Aerodynamic mesh A

Fig. 2 Definition of ω 𝑗 and Γ 𝑗 for 𝑗 = 1, ..., 4 associated with a generic aerodynamic panel 𝐵𝑘 ∈ A.

where 𝐴𝑘 is the panel area, n̂𝑘 is the unit normal vector to panel 𝐵𝑘 , and 𝚪𝑘 = 0.5 ∑4
𝑗=1 Γ 𝑗ω 𝑗 (see fig. 2). Different

definitions for vector 𝚪𝑘 are possible depending on the approach adopted. Here, we mostly follow the implementation

proposed by researchers at Virginia Tech, where vectors ω 𝑗 traverse the panel in a clockwise direction (same as G𝑘)

and the circulation Γ 𝑗 associated with each ω 𝑗 is determined as the difference between the ring circulations of the

panels sharing such a segment. On the other hand, the first term on the right-hand side of Eq. (28) is derived from a

multi-variable Taylor expansion of 𝜑𝑑(r, 𝑡) and 𝜓𝑑(r, 𝑡) around r and 𝑡, i.e.

𝜑𝑑(r + Δr, 𝑡 + Δ𝑡) = 𝜑𝑑(r, 𝑡) + ∇𝜑𝑑(r, 𝑡) · Δr + 𝜕𝑡𝜑𝑑(r, 𝑡)Δ𝑡 + O(∥Δr∥2 , ∥Δr∥ Δ𝑡,Δ𝑡2), (31)

where Δr is an arbitrary but small displacement vector. In what follows, we present a procedure to find an expression for

𝜕𝑡𝜑
𝑑
��𝑈
𝐿

, the same procedure applies for 𝜕𝑡𝜓𝑑
��𝑈
𝐿

. Without loss of generality, let us assume Δr = VΔ𝑡 for a fluid particle

moving from a point r to r + Δr during a time step Δ𝑡. Then it follows from Eq. (31) that,

𝜕𝑡𝜑
𝑑(r, 𝑡) =

𝜑𝑑(r + Δr, 𝑡 + Δ𝑡) − 𝜑𝑑(r, 𝑡)
Δ𝑡

− ∇𝜑𝑑(r, 𝑡) · Δr
Δ𝑡

+
1
Δ𝑡

O(∥ΔVΔ𝑡∥2 , ∥ΔVΔ𝑡∥ Δ𝑡,Δ𝑡2). (32)
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Taking the limit for Δ𝑡 −→ 0 and considering a convenient choice for Δr (a point fixed either just below or just above a

CP𝑘 in A), expression Eq. (32) becomes,

𝜕𝑡𝜑
𝑑(r, 𝑡) = lim

Δ𝑡−→0

𝜑𝑑(r + Δr, 𝑡 + Δ𝑡) − 𝜑𝑑(r, 𝑡)
Δ𝑡

− lim
Δ𝑡−→0

∇𝜑𝑑(r, 𝑡) · Δr
Δ𝑡

+ lim
Δ𝑡−→0

O(∥V∥2 Δ𝑡, ∥V∥ Δ𝑡,Δ𝑡),

=
Ð𝜑𝑑

Ð𝑡

����
𝑃

− V𝑑
𝜑(r, 𝑡) · V𝑃 ,

(33)

where 𝑃 represents the point attached to the moving lattice A, Ð/Ð(·) is the “substantial derivative” of 𝜑𝑑(r, 𝑡) following

a point fixed to A (not a fluid particle), and V𝑃 is the velocity of the point 𝑃 fixed to A. In a similar fashion, 𝜕𝑡𝜓𝑑(r, 𝑡)

is found to be,

𝜕𝑡𝜓
𝑑(r, 𝑡) =

Ð𝜓𝑑

Ð𝑡

����
𝑃

− V𝑑
𝜓(r, 𝑡) · V𝑃 . (34)

Next, let us define the two points fixed to A, one just above (𝑈) and the other just below (𝐿) the control point CP𝑘

(see Fig. 3a). Such two points have the same velocity as the control point itself (i.e. V𝑑
𝑈

(r𝑃) = V𝑑
𝐿

(r𝑃)). However, as

mentioned before, there is a jump in the tangential velocity of the air flowing across the bound vortex lattice; hence,

the fluid velocities at these two points differ. Recalling that (V𝑑
𝜑 + V𝑑

𝜓
)|𝑈= V𝑑

𝑈
and (V𝑑

𝜑 + V𝑑
𝜓

)|𝐿= V𝑑
𝐿
, we can now

compute (𝜕𝑡𝜑𝑑 + 𝜕𝑡𝜓𝑑)
��𝑈
𝐿

as follows,

𝜕𝑡 (𝜑𝑑 + 𝜓𝑑)
��
𝑈
− 𝜕𝑡 (𝜑𝑑 + 𝜓𝑑)

��
𝐿

=
Ð
Ð𝑡

[
(𝜑𝑑 + 𝜓𝑑)

��
𝑈
− (𝜑𝑑 + 𝜓𝑑)

��
𝐿

]
− ΔV𝑑 · V𝑃 . (35)

The first term on the right-hand side in Eq. (35) can be estimated with the help of Stoke’s theorem. However, we need

to be careful about its use here because any path that goes from a point (𝐿), just below the CP𝑘 , to another point (𝑈),

just above CP𝑘 , encloses a domain with a discontinuous interface, i.e. the bound-vortex lattice. Following the same

procedure used by Xia and Mohseni [64], it can be shown that Stoke’s theorem for a domain containing a discontinuous

surface, like the one we have here, keeps its original form. On this basis and recalling that 𝜑𝑑(r, 𝑡) and 𝜓𝑑(r, 𝑡) are

scalar potential functions, it follows that,

(𝜑𝑑 + 𝜓𝑑)|𝑈−(𝜑𝑑 + 𝜓𝑑)|𝐿=
∮

𝐶(𝑠)
∇(𝜑𝑑 + 𝜓𝑑) · 𝑑C(𝑠) = Γ(𝑡), (36)

where 𝐶(𝑠) is a curve that goes from the point on the lower side of the vortex lattice around the leading edge to the same

point on the upper side of the surface (see Fig. 3a). If there is no wake shedding from the leading edge, circulation Γ(𝑡)

in Eq. (36) has the same value as the circulation G(𝑡) for the loop enclosing the control point; hence, at CP𝑘 , we obtain,

[
𝜕𝑡 (𝜑𝑑 + 𝜓𝑑)

��
𝑈
− 𝜕𝑡 (𝜑𝑑 + 𝜓𝑑)

��
𝐿

]
𝑘

=
Ð
Ð𝑡

G𝑘(𝑡) − ΔV𝑑
𝑘 · V𝑘 . (37)
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Trailing edge

Wake

CP𝑘

Curve 𝐶1(𝑠)

Curve 𝐶2(𝑠)
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𝐺𝑘(𝑡)

n̂𝑘

∮
𝐶 𝑗 (𝑠)[· · ·] · 𝑑C 𝑗 (𝑠) = 𝐺𝑘(𝑡)

for every curve 𝐶 𝑗 (𝑠)

𝐺𝑘(𝑡)

(a)

Γ𝑛(𝑡)

𝑈

𝐿

Trailing edge wake

𝐶(𝑠, 𝑡)

CP𝑘

LE wake

𝑈

𝐿

n̂2

n̂1𝑜
𝐶(𝑠, 𝑡 + Δ𝑡)

Δr

r𝑈(𝑡)

r𝑈(𝑡 + Δ𝑡)

Γ(𝑡 + Δ𝑡)

Γ(𝑡)

ΓLE(𝑡)

ΓLE(𝑡 + Δ𝑡)
(b)

Fig. 3 3a) Schematic of different paths used for computing Ð/Ð𝑡 [(𝜑𝑑 + 𝜓𝑑)|𝑈−(𝜑𝑑 + 𝜓𝑑)|𝐿], 3b) leading edge
wake treatment in two-dimensional flows.

In most of the UVLM-based codes, the “substantial” derivative Ð
Ð𝑡

G𝑘(𝑡) is approximated by a first-order finite difference

as follows [13, 18, 50],
Ð
Ð𝑡

G𝑘(𝑡) ≈ G𝑘(𝑡) − G𝑘(𝑡 − Δ𝑡)
Δ𝑡

, (38)

where Δ𝑡 is the time step to obtain the numerical solution.

If there is flow separation from the leading edge of the wing, the curve 𝐶(𝑠) in Eq. (36) also has to enclose

the wake that is being shed from the LEs (see Fig. 3b). At this point, we must distinguish between two- or three-

dimensional flows. For two-dimensional problems, the intensity of the discrete vortices shed from the LEs can be

estimated as ΓLE(𝑡) = 1
2𝐾𝑉

2
uΔ𝑡. 𝐾 is a user-defined reduction parameter used to fit experimental results, and 𝑉𝑢 is the

velocity of a fluid particle located at the separation zone, known from the previous time step. Since the intensity of the

vortices within the wake does not change with time, the only vortex that contributes to the substantial derivative is the

one located on the leading edge at time 𝑡,

Ð
Ð𝑡

Γ𝑘(𝑡) ≈ Γ𝑘(𝑡) − Γ𝑘(𝑡 − Δ𝑡)
Δ𝑡

=
ΓLE(𝑡)
Δ𝑡

+
𝑘∑︁
𝑗=1

Γ 𝑗 (𝑡) − Γ 𝑗 (𝑡 − Δ𝑡)
Δ𝑡

, (39)

where Γ 𝑗 (𝑡) is the circulation of the 𝑗-th vortex belonging to A and enclosed by the curve 𝐶(𝑠), and ΓLE(𝑡) is the

circulation of the last vortex shed from the LE ∈ A (see Fig. 3b).
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In three-dimensional flows, the LE vortex system can be represented by discrete vortex lines similar to those

used for the trailing edge wakes [13]. The circulation 𝐺LE, 𝑗 (𝑡) at time 𝑡 of each new panel shed from the leading edge

comes from its adjacent panel 𝐵𝑘 on the bound vortex lattice, i.e. 𝐺LE, 𝑗 (𝑡) = G𝑘(𝑡). Once the vortices are part of the

wake, their intensity no longer changes with time. Since we are using a representation based on vortex rings of constant

intensity, it can be shown that Γ(𝑡) in Eq. (36) has again the same value G𝑘(𝑡) for any path 𝐶(𝑠) going from a point

below CP𝑘 to another point above CP𝑘 (see Fig. 3a).

Introducing equations Eq. (29) and Eq. (37) into Eq. (28) we obtain the pressure jump for the panel 𝐵𝑘 as,

𝐷𝑝𝑑𝑘 = 𝜌𝐹V𝑑
𝑚,𝑘 · ΔV𝑑

𝑘 + 𝜌𝐹
Ð
Ð𝑡

G𝑘(𝑡) − 𝜌𝐹V𝑘 · ΔV𝑑
𝑘 = 𝜌𝐹

[
V𝑑

𝑚,𝑘 − V𝑘

]
· ΔV𝑑

𝑘 + 𝜌𝐹
Ð
Ð𝑡

G𝑘(𝑡). (40)

Finally, the vector force on the boundary element 𝐵𝑘 is calculated as the product of Eq. (40) times the element area

times the normal unit vector located at CP𝑘 ,

f𝑘 = 𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘 . (41)

C. Linearization of the aerodynamic loads

This subsection presents a procedure to linearize the aerodynamic loads Eq. (40). The computation of Df𝑘 is

fundamental to carry out several complex studies, such as nonlinear aeroelastic analysis considering implicit time

integrators, sensibility analysis, and flight dynamic studies, among others.

In this work, we use a standard approach based on a Taylor expansion of Eq. (40) to obtain the tangent or sen-

sitivity matrix associated with f𝑘 . To this end, Taylor’s approximation for f𝑘 on control point CP𝑘 of 𝐵𝑘 ∈ A is given

by,

f𝑘(q𝑘 + Δq𝑘 , s𝑘 + Δs𝑘) = f𝑘(q𝑘 , s𝑘) + D f𝑘(q𝑘 , s𝑘) · (Δq𝑘 ,Δs𝑘) + D2 f𝑘(q𝑘 , s𝑘) : ((Δq𝑘 ,Δs𝑘) ⊗ (Δq𝑘 ,Δs𝑘))

+𝑂(
3∑︁
𝑗=0

∥Δq𝑘 ∥3− 𝑗 ∥Δs𝑘 ∥ 𝑗 ),
(42)

where q𝑘 =
(
r𝑇
𝑘
,X𝑇

)𝑇 , s𝑘 =
(
V𝑇

𝑘
,U𝑇

)𝑇 , r𝑘 and V𝑘 are the position and velocity vectors of control point CP𝑘 ,

X =
(
x𝑇1 , ..., x

𝑇
𝑁

)𝑇 ∈ R3𝑁𝑛(𝑡) collects the coordinates of all the aerodynamic nodes inA∪V, U =
(
u𝑇

1 , ..., u
𝑇
𝑁

)𝑇 ∈ R3𝑁𝑛(𝑡)

collects the nodal velocities of all the aerodynamic nodes in A ∪V, D𝑖(·) for 𝑖 = 1, 2, ... is a (𝑖 + 1)-order tensor of type

(0, 𝑖), Δq𝑘 ,Δs𝑘 ∈ Tq𝑘
R3+3𝑁𝑛(𝑡) are tangent vectors, : indicates double-contraction tensor operation, ⊗ stands for tensor

product, and𝑁𝑛(𝑡) = 𝑁𝑛𝑏+𝑁𝑛𝑤(𝑡) is the total number of aerodynamic nodes in the bound- and free-vortex lattices at time 𝑡.
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1
2
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4

4
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Panel number 𝑘 Panel number 𝑗
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Case 2

z 𝑗 ,3 + Δz 𝑗 ,3

r𝑘 = B𝑘Z𝑘

Z𝑘 =
(
z𝑇
𝑘,1, ..., z

𝑇
𝑘,4

)𝑇
V𝑘 = B𝑘

¤Z𝑘

Fig. 4 Cases to take into account to compute Df𝑘(q, s) associated with 𝐵𝑘 .

To make the linearization procedure for f𝑘 as clear as possible while setting the expressions up for an eventual

computational implementation, the following is assumed:

1) All vectors (position, velocities, accelerations, forces, etc.) are expressed with respect to a global (inertial) reference

frame E = {Ê1, Ê2, Ê3}.

2) The coordinates of each control point is interpolated from the aerodynamic nodes of the panel to which it belongs

via the transformation r𝑘 = F𝑘(Z𝑘), where F𝑘 : R12 −→ R3 is a surjective linear mapping represented by a constant

matrix B𝑘 ∈ R3×12, and Z𝑘 =
(
z𝑇
𝑘,1, z

𝑇
𝑘,2, z

𝑇
𝑘,3, z

𝑇
𝑘,4

)𝑇
∈ R12×1 collects the aerodynamic node coordinates of panel

𝐵𝑘 (see Fig. 4).

3) The velocity vector of each control point CP𝑖
𝑘

is also interpolated by means of the linear mapping F𝑘 as V𝑘 = B𝑘
¤Z𝑘 ,

where ¤Z𝑘 =
(
¤z𝑇
𝑘,1, ¤z

𝑇
𝑘,2, ¤z

𝑇
𝑘,3, ¤z

𝑇
𝑘,4

)𝑇
collects the velocity vectors of the aerodynamic nodes of panel 𝐵𝑘 .

4) Position or velocity vectors of the aerodynamic nodes associated with a panel 𝑘 are obtained from the global vectors

X and U via the mapping Z𝑘 = L𝑘(X) and ¤Z𝑘 = L𝑘(U), where L𝑘 : R3𝑁𝑛(𝑡) −→ R12 is represented by a constant

boolean matrix L𝑘 ∈ R12×3𝑁𝑛(𝑡).

5) Expansion Eq. (42) is performed at frozen time, so the shape of the wakes does not change during this process.
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Since the aerodynamic force on CP𝑘 depends on the velocity induced by all the panels belonging to either the

bound-vortex lattices or the wakes, it is clear that the tensor D𝑖f𝑘 depend on both the state of the panel 𝑘 as well as

the state of all the panels in A ∪V. Therefore, we must consider both the variation in the coordinates and velocities

associated with CP𝑘 (Case 1, Fig 4) as well as the variation in the coordinates and velocities of the aerodynamic nodes

associated with all the panels in A∪V (Case 2, Fig. 4). However, due to assumption 5, the state of panels 𝐿𝑘 belonging

to V is considered frozen during Taylor’s expansion, and thus their coordinate/velocity variations are identically zero.

Under these assumptions, the dimension of vector Δq𝑘 (Δs𝑘) and boolean matrix L𝑘 is reduced from (3 + 3𝑁𝑛(𝑡)) to

(3 + 3𝑁𝑛𝑏) and from (12 × 3𝑁𝑛(𝑡)) to (12 × 3𝑁𝑛𝑏), respectively. According to the above, and neglecting higher order

terms, expansion Eq. (42) can be recast as follows,

f𝑘(q𝑘 + Δq𝑘 , s + Δs𝑘) ≈ f𝑘(q𝑘 , s𝑘) + D f𝑘(q𝑘 , s𝑘) · Δq𝑘 + D f𝑘(q𝑘 , s𝑘) · Δs𝑘

= f𝑘(q𝑘 , s𝑘) + 𝜕qf𝑘(q𝑘 , s𝑘) · Δq𝑘 + 𝜕sf𝑘(q𝑘 , s𝑘) · Δs𝑘 ,
(43)

where 𝜕qf𝑘 , 𝜕sf𝑘 ∈ R3×(3𝑁𝑝𝑏+3𝑁𝑛𝑏) are second-order covariant tensors. Introducing Eq. (40) into Eq. (43) along with

the definitions for r𝑘 and V𝑘 given in assumptions 2, 3 and 4, tensors 𝜕qf𝑘 and 𝜕sf𝑘 can be split and expressed as follows,

𝜕qf𝑘 · Δq𝑘 =
[
𝜕q

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· Δq𝑘 =

[
𝜕r

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
𝜕x(r𝑘) · ΔX +

[
𝜕x

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· ΔX

𝜕sf𝑘 · Δs𝑘 =
[
𝜕s

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· Δs𝑘 =

[
𝜕v

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
𝜕u(V𝑘) · ΔU +

[
𝜕u

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· ΔU,

(44)

where 𝜕r(·) ∈ R3×3, 𝜕v(·) ∈ R3×3, 𝜕x(·) ∈ R3×3𝑁𝑛𝑏 , 𝜕u(·) ∈ R3×3𝑁𝑛𝑏 , 𝜕x(r𝑘) = B𝑘L𝑘 , and 𝜕u(V𝑘) = B𝑘L𝑘 . Introducing

such a definitions into Eq. (44), we obtain the following expressions for 𝜕qf𝑘 and 𝜕sf𝑘 ,

𝜕qf𝑘 · Δq𝑘 =
[
𝜕r

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
B𝑘L𝑘 · ΔX +

[
𝜕x

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· ΔX = k𝑘

x · ΔX

𝜕sf𝑘 · Δs𝑘 =
[
𝜕v

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
B𝑘L𝑘 · ΔU +

[
𝜕u

(
𝐷𝑝𝑑𝑘 𝐴𝑘 n̂𝑘

)]
· ΔU = k𝑘

u · ΔU,
(45)

where k𝑘
x , k𝑘

u ∈ R3×3𝑁𝑛𝑏 are identified as the tangent matrices associated with the aerodynamic load f𝑘 on panel

𝐵𝑘 . Recalling that 𝜕r(v)(·) = ∑3
𝑖=1 𝜕r𝑖(v𝑖)(·) ⊗ Ê𝑖 and 𝜕x(u)(·) = ∑3𝑁𝑛𝑏

𝑖=1 𝜕x𝑖(u𝑖)(·) ⊗ Ĝ𝑖 with {Ĝ1, ..., Ĝ3𝑁𝑛𝑏
} being an

orthonormal basis for R3𝑁𝑛𝑏 , tangent matrices k𝑘
x and k𝑘

u are furthered split as,

k𝑘
x = kx𝑝 + kx𝑎 + kx𝑛, and k𝑘

u = ku𝑝 + ku𝑎 + ku𝑛, (46)
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where,

kx𝑝 =

[
3∑︁
𝑖=1

[
𝜕r𝑖 (𝐷𝑝𝑑𝑘 )𝐴𝑘 n̂𝑘

]
⊗ Ê𝑖

]
B𝑘L𝑘 +

3𝑁𝑛𝑏∑︁
𝑖=1

[
𝜕x𝑖 (𝐷𝑝𝑑𝑘 )𝐴𝑘 n̂𝑘

]
⊗ Ĝ𝑖 ,

ku𝑝 =

[
3∑︁
𝑖=1

[
𝜕v𝑖 (𝐷𝑝𝑑𝑘 )𝐴𝑘 n̂𝑘

]
⊗ Ê𝑖

]
B𝑘L𝑘 +

3𝑁𝑛𝑏∑︁
𝑖=1

[
𝜕u𝑖 (𝐷𝑝𝑑𝑘 )𝐴𝑘 n̂𝑘

]
⊗ Ĝ𝑖 ,

kx𝑎 =
3𝑁𝑛𝑏∑︁
𝑖=1

[
𝐷𝑝𝑑𝑘 𝜕x𝑖 (𝐴𝑘) n̂𝑘

]
⊗ Ĝ𝑖 , and kx𝑛 =

3𝑁𝑛𝑏∑︁
𝑖=1

[
𝐷𝑝𝑑𝑘 𝐴𝑘 𝜕x𝑖 (n̂𝑘)

]
⊗ Ĝ𝑖

(47)

The most complicated matrices to evaluate in Eq. (47) are those related to the derivative of the pressure jump, while

kx𝑎 and kx𝑛 are straightforward to evaluate because they depend only on the nodal coordinates of panel 𝐵𝑘 . It should

be noted that ku𝑎 and ku𝑛 are null matrices due to area panels and unit normal vectors do not depend on velocity.

Next, we focus on the term 𝜕r𝑖 (𝐷𝑝𝑑𝑘 ); the reader can obtain 𝜕x𝑖 (𝐷𝑝𝑑𝑘 ), 𝜕v𝑖 (𝐷𝑝𝑑𝑘 ), and 𝜕u𝑖 (𝐷𝑝𝑑𝑘 ) by performing a similar

procedure. For this purpose, let us consider Eq. (40), so 𝜕r𝑖 (𝐷𝑝𝑑𝑘 ) can be expanded as follows,

𝜕r𝑖 (𝐷𝑝𝑑𝑘 ) = 𝜌𝐹
[
𝜕r𝑖V𝑑

𝑚,𝑘 − 𝜕r𝑖V𝑘

]
· ΔV𝑑

𝑘 + 𝜌𝐹
[
V𝑑

𝑚,𝑘 − V𝑘

]
· 𝜕r𝑖 (ΔV𝑑

𝑘 ) +
𝜌𝐹

Δ𝑡
𝜕r𝑖 (G𝑘(𝑡))

= 𝜌𝐹
[
𝜕r𝑖

(
V𝑑

𝐵,𝑘

)
+ 𝜕r𝑖

(
V𝑑
𝑊,𝑘

)
− 𝜕r𝑖 (V𝑘)

]
· ΔV𝑑

𝑘

+ 𝜌𝐹
[
V𝑑

𝐵,𝑘 + V𝑑
𝑊,𝑘 + V𝑑

∞,𝑘 − V𝑘

]
· 𝜕r𝑖 (ΔV𝑑

𝑘 ) +
𝜌𝐹

Δ𝑡
𝜕r𝑖 (G𝑘(𝑡)),

(48)

where 𝜕r𝑖 (G𝑘(𝑡 − Δ𝑡)) is zero because G𝑘(𝑡 − Δ𝑡) is a quantity computed in a previous time step and therefore constant.

By using Eq. (24), the terms 𝜕r𝑖
(
V𝑑

𝐵,𝑘

)
and 𝜕r𝑖

(
V𝑑
𝑊,𝑘

)
can be rewritten as,

𝜕r𝑖
(
V𝑑

𝐵,𝑘

)
=

𝑁𝑝𝑏∑︁
𝑗=1

𝜕r𝑖
(
In(r𝑘 , 𝐵 𝑗 )

)
G 𝑗 (𝑡) +

𝑁𝑝𝑏∑︁
𝑗=1

In(r𝑘 , 𝐵 𝑗 ) 𝜕r𝑖
(
G 𝑗 (𝑡)

)
𝜕r𝑖

(
V𝑑
𝑊,𝑘

)
=

𝑁𝑝𝑤∑︁
𝑗=1

𝜕r𝑖
(
In(r𝑘 , 𝐿 𝑗 )

)
G𝑤

𝑗 (𝑡),

(49)

where G𝑤
𝑗 (𝑡) is the constant ring circulation associated with the 𝑗-th panel belonging to V and thus its derivative

with respect to space coordinates or nodal velocities is zero, and 𝜕r𝑖 (In(·)) implies to compute the partial derivative of

the Bio-Savart law with respect to the coordinates of the control point CP𝑘 . Here, the partial derivative of the ring

circulation G 𝑗 (𝑡) is computed implicitly by using the non-penetration condition Eq. (22), i.e.,

𝜕r𝑖

(
𝑁𝑝𝑏∑︁
𝑗=1

𝐼𝑛(r𝑘 , 𝐵 𝑗 ) G 𝑗 (𝑡)

)
= 𝜕r𝑖

(
V𝑑
𝑊,𝑘 · n̂𝑘

)
𝑁𝑝𝑏∑︁
𝑗=1

𝐼𝑛(r𝑘 , 𝐵 𝑗 ) 𝜕r𝑖
(
G 𝑗 (𝑡)

)
= 𝜕r𝑖

(
V𝑑
𝑊,𝑘

)
· n̂𝑘 + V𝑑

𝑊,𝑘 · 𝜕r𝑖 (n̂𝑘) −
𝑁𝑝𝑏∑︁
𝑗=1

𝜕r𝑖
(
𝐼𝑛(r𝑘 , 𝐵 𝑗 )

)
G 𝑗 (𝑡).

(50)
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Eq. (50) can be reformulated in matrix form by letting the index 𝑖 go from 1 to 𝑁𝑝𝑏, thus obtaining the following

expression for the partial derivative of all the ring circulations with respect to r𝑖 in A,

𝜕r𝑖 (G(𝑡)) = A(𝑡)−1 [
RHS𝑖

0(𝑡) − 𝜕r𝑖 (A(𝑡)) G(𝑡)
]
, (51)

where,

RHS𝑖
0(𝑡) =

(
𝜕r𝑖

(
V𝑑
𝑊,1

)
· n̂1, ..., 𝜕r𝑖

(
V𝑑
𝑊,𝑘

)
· n̂𝑘 , ..., 𝜕r𝑖

(
V𝑑
𝑊,𝑁𝑝𝑏

)
· n̂𝑁𝑝𝑏

)𝑇
. (52)

The last term left to deal with is 𝜕r𝑖 (ΔV𝑑
𝑘
). Considering Eq. (30), the partial derivative of the jump in the tangential

velocity across panel 𝐵𝑘 with respect to r𝑖 is given by,

𝜕r𝑖
(
ΔV𝑑

𝑘

)
= − [n̂𝑘 × 𝚪𝑘]

𝐴2
𝑘

𝜕r𝑖 (𝐴𝑘) − [𝜕r𝑖 (n̂𝑘) × 𝚪𝑘]
𝐴𝑘

− [n̂𝑘 × 𝜕r𝑖 (𝚪𝑘)]
𝐴𝑘

= − 1
2𝐴𝑘

[
n̂𝑘 ×

4∑︁
𝑗=1
𝜕r𝑖

(
Γ 𝑗

)
ω 𝑗

]
, (53)

where 𝜕r𝑖 (𝐴𝑘), 𝜕r𝑖 (n̂𝑘) and 𝜕r𝑖 (ω 𝑗 ) are zero because they do not depend on coordinates of CP𝑘 . On the other hand,

as Γ 𝑗 is calculated by subtracting the vortex ring circulations of adjacent panels, its derivative with respect to r𝑖 is

straightforward to obtain once Eq. (51) is solved. As an example, let us consider Γ1 = G𝑘 − G𝑘−1 (see Fig. 2), then its

derivative is directly 𝜕r𝑖 (Γ1) = 𝜕r𝑖 (G𝑘) − 𝜕r𝑖 (G𝑘−1).

The equations listed above (Eq. (49) to Eq. (53)) show the details behind the calculation of the derivative of

the pressure jump across panel 𝐵𝑘 with respect to the control point coordinates CP𝑘 . Similarly, to calculate the derivative

of 𝐷𝑝𝑑
𝑘

with respect to x𝑖 , v𝑖 , and u𝑖 , we need first to compute the following quantities,

𝜕x𝑖
(
V𝑑
𝑊,𝑘 · n̂𝑘

)
= V𝑑

𝑊,𝑘 · 𝜕x𝑖 (n̂𝑘) , 𝜕v𝑖
(
V𝑑
𝑊,𝑘 · n̂𝑘

)
= 0, 𝜕u𝑖

(
V𝑑
𝑊,𝑘 · n̂𝑘

)
= 0,

𝜕x𝑖
(
V𝑑

𝑘 · n̂𝑘

)
= V𝑑

𝑘 · 𝜕x𝑖 (n̂𝑘) , 𝜕v𝑖
(
V𝑑

𝑘 · n̂𝑘

)
= Ê𝑖 · n̂𝑘 , and 𝜕u𝑖

(
V𝑑

𝑘 · n̂𝑘

)
= 0,

(54)

which in turn allows us to obtain 𝜕(·)(G(𝑡)) by means of the following formulas,

𝜕x𝑖 (G(𝑡)) = A(𝑡)−1 [
RHS𝑖

1(𝑡) − RHS𝑖
2(𝑡) − 𝜕x𝑖 (A(𝑡)) G(𝑡)

]
,

𝜕v𝑖 (G(𝑡)) = A(𝑡)−1 [
RHS𝑖

3(𝑡)
]
, and 𝜕u𝑖 (G(𝑡)) = 0,

(55)
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where,

RHS𝑖
1(𝑡) =

(
V𝑑
𝑊,1 · 𝜕x𝑖 (n̂1) , ...,V𝑑

𝑊,𝑘 · 𝜕x𝑖 (n̂𝑘) , ...,V𝑑
𝑊,𝑁𝑝𝑏

· 𝜕x𝑖
(
n̂𝑁𝑝𝑏

))𝑇
RHS𝑖

2(𝑡) =
(
V𝑑

1 · 𝜕x𝑖 (n̂1) , ...,V𝑑
𝑘 · 𝜕x𝑖 (n̂𝑘) , ...,V𝑑

𝑁𝑝𝑏
· 𝜕x𝑖

(
n̂𝑁𝑝𝑏

))𝑇
RHS𝑖

3(𝑡) = −
(
n̂1 · Ê𝑖 , ..., n̂𝑘 · Ê𝑖 , ..., n̂𝑁𝑝𝑏

· Ê𝑖

)𝑇
.

(56)

Finally, we obtain the value of all the necessary derivatives to compute the tangent matrices associated with f𝑘 . They are

listed below,

𝜕x𝑖
(
V𝑑

𝐵,𝑘

)
=

𝑁𝑝𝑏∑︁
𝑗=1

𝜕x𝑖
(
In(r𝑘 , 𝐵 𝑗 )

)
G 𝑗 (𝑡) +

𝑁𝑝𝑏∑︁
𝑗=1

In(r𝑘 , 𝐵 𝑗 ) 𝜕x𝑖
(
G 𝑗 (𝑡)

)
,

𝜕v𝑖
(
V𝑑

𝐵,𝑘

)
=

𝑁𝑝𝑏∑︁
𝑗=1

In(r𝑘 , 𝐵 𝑗 ) 𝜕v𝑖
(
G 𝑗 (𝑡)

)
,

𝜕u𝑖
(
V𝑑

𝐵,𝑘

)
= 0,

𝜕x𝑖
(
ΔV𝑑

𝑘

)
= − 1

𝐴2
𝑘

[n̂𝑘 × 𝚪𝑘] 𝜕x𝑖 (𝐴𝑘) − 1
𝐴𝑘

[𝜕x𝑖 (n̂𝑘) × 𝚪𝑘] ,

− 1
2𝐴𝑘

[
n̂𝑘 ×

4∑︁
𝑗=1

(
𝜕x𝑖Γ 𝑗

)
ω 𝑗 + n̂𝑘 ×

4∑︁
𝑗=1

Γ 𝑗𝜕x𝑖 (ω 𝑗 )

]
,

𝜕v𝑖
(
ΔV𝑑

𝑘

)
= − 1

2𝐴𝑘

[
n̂𝑘 ×

4∑︁
𝑗=1
𝜕v𝑖

(
Γ 𝑗

)
ω 𝑗

]
,

𝜕u𝑖
(
ΔV𝑑

𝑘

)
= 0.

(57)

The linearization procedure presented above to evaluate the local tangent matrices associated with a panel 𝐵𝑘 ∈ A must

be applied for each panel on the lifting surfaces of B. Then, two global tangent matrices are obtained by assembling the

local tangent contributions as

Kx = A
(
k𝑘

x

)
, (58)

Ku = A
(
k𝑘

u

)
, (59)

where A(·) represents the assembly operator. It should be noted that both the calculations described throughout this

section and the assembling procedure depend on the available data structure and programming paradigm. In Table

A.1 of the appendix, we provide a general algorithm for computing the global tangent matrices associated with the

aerodynamic loads acting on B.
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III. Aeroelastic model

One possible application of the presented linearized aerodynamic loads results to be the computation of aerodynamic

tangent matrices within a strong coupled aeroelastic scheme. Therefore, this section presents the implementation of

the linearized aerodynamic loads into our aeroelastic framework, which relies on the combination of a state-of-the-art

nonlinear structural model developed by the authors [30, 65–67] and the UVLM [16]. The nonlinear governing equations

are then iteratively solved with Newton’s method, which requires the computation of the Jacobian matrix for the system’s

equations. This includes not only the derivatives of the structural loads but also those from the aerodynamical loads.

Our proposed approach for calculating linearized aerodynamic loads, i.e., computing Eq. (46), is, in general, suitable for

any nonlinear aeroelastic framework using gradient-based solution procedures. In the following, we briefly summarize

the main ideas and the governing equations of the resulting aeroelastic problem. Further and more extensive de-

tails of our formulation, including theoretical aspects, are still ongoing work and, therefore, will be published in the future.

Our structural model is intended for nonlinear static and dynamic analysis of mechanical systems consisting of

rigid and flexible structures made of single- or composite multilayer and hyperelastic materials. The formulation relies

on a rotation-free multibody system formalism and the finite element method (FEM), which is presented in the total

Lagrangian description, and builds upon a primal-dual formulation, including generalized coordinates and velocities.

Moreover, our approach can easily handle non-conservative systems that arise in the presence of dissipation mechanisms,

non-holonomic (non-integrable) constraints, and non-conservative loads.

The adopted variational formulation for rigid and flexible bodies is given by

∫
B0

[
𝛿𝒗 · [𝒍(𝒗; 𝑡) − 𝒍( ¤𝒙; 𝑡)] + 𝛿𝒙 · [ 𝒇 int(𝒙; 𝑡) − 𝒇 ext(𝑡) + ¤𝒍(𝒗; 𝑡) + 𝑯𝑇 (𝒙; 𝑡) · 𝝀(𝑡)] + 𝛿𝝀 · 𝒉(𝒙; 𝑡)

]
𝑑B0 , (60)

which comprises the momentum compatibility equation, the dynamic equilibrium equation, and the constraint equation.

The first one is required for relating the state variables, i.e. position and velocity. 𝒙(𝜽; 𝑡) ∈ X ⊆ R3 is the spatial

position vector and 𝒗(𝜽; 𝑡) ∈ V ⊆ R3 is the velocity vector of any material point. These specific quantities depend

on the chosen canonical model. 𝛿𝒙 ∈ T𝒙X and 𝛿𝒗 ∈ T𝒗V are their admissible variations. B0 is an open subset of

R3 described by reference coordinates 𝜽 = {𝜃1, 𝜃2, 𝜃3}. 𝒇 int is the vector of internal force density defined through

the identity
∫
B0
𝛿𝒙 · 𝒇 int(𝒙; 𝑡) 𝑑B0 =

∫
B0
𝛿𝑬(𝒙; 𝑡) : 𝑺(𝑬; 𝑡) 𝑑B0, with 𝑬 standing for the Green-Lagrange strain

(tensor) measure and 𝑺 representing the second Piola-Kirchhoff stress (tensor) measure. Both are related through

the internal energy functional W𝑖𝑛𝑡 by S(E; 𝑡) = 𝜕EW𝑖𝑛𝑡 (E; 𝑡) for any conservative (hyperelastic) material model.

Logically, the internal force density for rigid bodies vanishes. The vector of conservative external body force density

is indicated by 𝒇 ext. 𝒍(𝒗; 𝑡) is the velocity-based momentum density and 𝒍( ¤𝒙; 𝑡) is the corresponding position-based

momentum density. ¤𝒍(𝒗; 𝑡) describes the time rate of the velocity-based momentum density and represents inertia
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forces/moments. 𝝀 ∈ R𝑛𝑐 is the vector of Lagrange multipliers required to enforce the holonomic kinematic con-

straints given by 𝒉 ∈ R𝑛𝑐 and 𝛿𝝀 is its admissible variation. Finally, 𝑯 ∈ R𝑛𝑐×3 is the Jacobian of the constraint equation.

For the present work, we consider two canonical models, i.e. the rigid body and the geometrically exact beam,

whose kinematics is entirely described by a director-based parametrization and, thus, avoiding the typical singularities

of rotational degrees of freedom. Moreover, we describe the governing equations in terms of generalized coordinates

𝒒(𝑡) ∈ Q and generalized velocities 𝒔(𝑡) ∈ S, with the base manifold Q × S ∼= R𝑛 × R𝑛. Thus, it is necessary to define a

constraint map 𝒉 : Q → R𝑚 such that 𝒉(𝒒; 𝑡) = 0 to restrict the dynamic to the submanifold Qℎ ⊂ R𝑛−𝑚 ⊂ 𝑄 ∼= R𝑛.

In combination with the total Lagrangian description adopted here, this setting allows to maintain important physical

features, i.e. the objectivity of the continuous/discrete strain measure under rigid space transformations and the path

independence of the continuous/discrete formulation under the action of conservative loading [29, 30, 68–70].

The first canonical model, which is very rich in kinematic concepts, is the rigid body whose spatial position and velocity

maps are given by 𝒙𝑟𝑏(𝜽; 𝑡) = �̄�(𝑡) + 𝜃1𝒅1(𝑡) + 𝜃2𝒅2(𝑡) + 𝜃3𝒅3(𝑡), and 𝒗𝑟𝑏(𝜽; 𝑡) = �̄�(𝑡) + 𝜃1𝒘1(𝑡) + 𝜃2𝒘2(𝑡) + 𝜃3𝒘3(𝑡), in

which 𝒅𝑖 ∈ R3 for 𝑖 ∈ {1, 2, 3}, the directors, are three mutual orthonormal unit vectors. On that basis, any orientation can

be described by the rotation tensor 𝑹 = 𝒅𝑖 ⊗ Ê𝑖 ∈ SO(3), in which Ê𝑖 for 𝑖 ∈ {1, 2, 3} is the standard Euclidean co-basis.

�̄� ∈ R3 is the position vector of a reference point. The velocity is defined by the translational velocity of the reference

point, �̄� ∈ R3, and three director velocity vectors 𝒘𝑖 ∈ R3. The set of parameters 𝜽 = {𝜃1, 𝜃2, 𝜃3} is chosen in such a

way that 𝜽 = 𝜃1𝒅1 + 𝜃2𝒅2 + 𝜃3𝒅3 describes the position of any point of the body with a reference volume B0 relative to �̄�.

The generalized coordinate and velocity maps for the rigid body are 𝒒𝑟𝑏(𝑡) = (�̄�(𝑡) , 𝒅1(𝑡) , 𝒅2(𝑡) , 𝒅3(𝑡)) ∈ Q𝑟𝑏
∼= R12,

and 𝒔𝑟𝑏(𝑡) = (�̄�(𝑡) , 𝒘1(𝑡) , 𝒘2(𝑡) , 𝒘3(𝑡)) ∈ Q𝑟𝑏
∼= R12, and the required constraint map is defined by the following

conditions on the three directors 𝒉𝑟𝑏(𝒒𝑟𝑏; 𝑡) =
({
∥𝒅𝑖(𝑡)∥2

2−1
}3
𝑖=1 , ⟨𝒅1(𝑡), 𝒅2(𝑡)⟩ , ⟨𝒅2(𝑡), 𝒅3(𝑡)⟩ , ⟨𝒅1(𝑡), 𝒅3(𝑡)⟩

)
.

The second canonical model is the geometrically exact beam whose spatial position and velocity maps are given by

𝒙𝑔𝑒𝑏(𝜽; 𝑡) = �̄�(𝜃3; 𝑡) + 𝜃1𝒅1(𝜃3; 𝑡) + 𝜃2𝒅2(𝜃3; 𝑡), and 𝒗𝑔𝑒𝑏(𝜽; 𝑡) = �̄�(𝜃3; 𝑡) + 𝜃1𝒘1(𝜃3; 𝑡) + 𝜃2𝒘2(𝜃3; 𝑡), in which the set of

parameters 𝜽 = {𝜃1, 𝜃2, 𝜃3} is chosen in such a way that 𝜽 = 𝜃1𝒅1 + 𝜃2𝒅2 describes the position of any point relative to

reference point �̄� ∈ R3 on the cross-section 𝐴0 with the length coordinate 𝜃3 ∈ [0, 𝐿0], where 𝐿0 stands for the initial arc-

length of the beam. Despite that the kinematical description leads to a two-director formulation, we use a three-director

formulation, which simplifies the derivation of the governing equations and facilitates defining connections among

beams and rigid bodies. The generalized coordinate and velocity maps for the geometrically exact beam are 𝒒𝑔𝑒𝑏(𝜃3; 𝑡) =(
�̄�(𝜃3; 𝑡) , 𝒅1(𝜃3; 𝑡) , 𝒅2(𝜃3; 𝑡) , 𝒅3(𝜃3; 𝑡)

)
∈ Q𝑔𝑒𝑏

∼= R12, and 𝒔𝑔𝑒𝑏(𝜃3; 𝑡) =
(
�̄�(𝜃3; 𝑡) , 𝒘1(𝜃3; 𝑡) , 𝒘2(𝜃3; 𝑡) , 𝒘3(𝜃3; 𝑡)

)
∈

Q𝑔𝑒𝑏
∼= R12. Similarly to the rigid body, the orthonormality condition for the directors must be satisfied 𝒉𝑔𝑒𝑏(𝒒𝑔𝑒𝑏; 𝑡) =
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({
∥𝒅𝑖(𝜃3; 𝑡)∥2

2−1
}3
𝑖=1 ,

〈
𝒅1(𝜃3; 𝑡), 𝒅2(𝜃3; 𝑡)

〉
,
〈
𝒅2(𝜃3; 𝑡), 𝒅3(𝜃3; 𝑡)

〉
,
〈
𝒅1(𝜃3; 𝑡), 𝒅3(𝜃3; 𝑡)

〉)
.

To handle Eq. (60) numerically, we discretize the governing equations by spatially approximating the state vari-

ables (generalized coordinates and velocities) by means of the finite element method. Particularly, we adopt a

low-order isoparametric approach with low-order Lagrangian functions. The semi-discrete equations are then temporally

discretized using an implicit time integration method based on discrete derivatives [30, 31]. This integration method

ensures the preservation of linear and angular momenta as well as the preservation of total energy in the absence of

external loads. In essence, the time integration scheme relies on the midpoint rule and the “average vector field” method.

Then, the contributions due to the momentum equivalence and the dynamic equilibrium are evaluated at the time instant

𝑡 = 𝑡𝑛+ 1
2

whereas the contribution due to the constraint is evaluated at the time instant 𝑡 = 𝑡𝑛+1. Concomitantly, the

admissible discrete variations are (𝛿𝒔𝑛+ 1
2
, 𝛿𝒒𝑛+ 1

2
, 𝛿𝝀𝑛+1). The final discrete form of Eq. (60) is given by

𝛿Ŝ𝑛+ 1
2

= 𝛿𝒔𝑛+ 1
2
·
[
𝒍(𝒔𝑛, 𝒔𝑛+1) − 𝒍(�̂�𝑛, �̂�𝑛+1)

]
+ 𝛿�̂�𝑛+ 1

2
·
[
¤̂𝒍(𝒔𝑛, 𝒔𝑛+1) + 𝒇 int(�̂�𝑛, �̂�𝑛+1)

−
{
𝒇 ext,c + 𝒇 ext,nc(�̂�𝑛, �̂�𝑛+1, 𝒔𝑛, 𝒔𝑛+1)

}
+ �̂�𝑇 (�̂�𝑛, �̂�𝑛+1) · �̂�𝑛+ 1

2

]
+ 𝛿�̂�𝑛+1 · �̂�(�̂�𝑛+1, �̂�𝑛) = 0 .

(61)

which is solved for the unknowns at the time instant 𝑡𝑛+1. In Eq. (61), the discretized variables/terms are represented by

the notation ˆ(·). Furthermore, the mechanical model incorporates non-conservative external loads, 𝒇 ext,nc, which allows

for the integration of aerodynamic loads, expanding Eq. (68) to encompass the adopted UVLM.

A crucial aspect of combining numerical structural and aerodynamical models lies in the strategy employed for

the information transfer between their meshes. In this work, we transfer the aerodynamic loads coming from the UVLM,

see Eq. (41), into our structural model, stating that for any time 𝑡𝑛 the virtual work done by the aerodynamic loads,

f𝑘 , at the control points on the aerodynamic mesh, r𝑘 , should be equal to the virtual work done on the nodes of the

structural mesh through the discrete generalized aerodynamic forces 𝒇 ext,𝑎𝑒 ∈ R𝑛𝑞 :

𝑁𝑝𝑏∑︁
𝑘=1

𝛿r𝑘 · f𝑘(X,U; 𝑡𝑛) − 𝛿�̂� · 𝒇 ext,𝑎𝑒(�̂�, 𝒔, 𝑡𝑛) = 0 . (62)

Furthermore, the spatial coordinates of any point on the fluid domain can be mapped into the configuration space of the

structural model using a linear surjective vector-valued mapping function 𝝍r, i.e. 𝝍r : 𝒒 → r, as

r(𝑡) = 𝝍r(𝒒(𝑡)) , (63)
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Applying Eq. (63) to both, the discretized aerodynamic and discretized structural domains enables us to represent the

coordinates of each control point r𝑘 with the discretized generalized coordinates of the canonical model using the

subsequent weighted form

𝝍r𝑘 (�̂�(𝑡𝑛)) =
𝑁𝑛𝑠∑︁
𝑖=1

[
𝑤𝑖(𝛾𝑘,𝑖) r𝑘,𝑖(�̂�𝑖(𝑡𝑛))

]
, (64)

in which r𝑘,𝑖 = r𝑘 is the control point 𝑘 position vector in terms of the generalized coordinates �̂�𝑖 of node 𝑖 and 𝑁𝑛𝑠

denotes the number of discrete nodes of the structural mesh. The rigid body and the geometrically exact beam element

share a common configuration space based on a three-director formulation. In this context, r𝑘,𝑖 can be expressed as

follows (see Fig. 5):

r𝑘,𝑖(�̂�𝑖(𝑡𝑛)) = ˆ̄𝒙𝑖(𝑡𝑛) + 𝜉1
𝑖,𝑘 𝒅1,𝑖(𝑡𝑛) + 𝜉2

𝑖,𝑘 𝒅2,𝑖(𝑡𝑛) + 𝜉3
𝑖,𝑘 𝒅3,𝑖(𝑡𝑛) = ˆ̄𝒙𝑖(𝑡𝑛) + 𝝃𝑘,𝑖(𝑡𝑛) , (65)

where 𝜉 𝑗
𝑖,𝑘

=
(
r𝑘(0) − ˆ̄𝒙𝑖(0)

)
· 𝒅 𝑗 ,𝑖(0) for 𝑗 ∈ {1, 2, 3}, are relative coordinate parameters that denote the distance

between control point 𝑘 and the reference point in the director system at time instant 𝑡 = 0. The weighting factor 𝑤𝑖
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Ê1
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Fig. 5 Coordinate mapping taking into account geometrically exact beams.

in Eq. (64) accounts for the influence of the generalized coordinates to the aerodynamic control points based on the
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initial spatial distance between them, i.e. 𝛾𝑘,𝑖 = ∥𝝃𝑘,𝑖(0)∥= ∥r𝑘(0) − ˆ̄𝒙𝑖(0)∥. To determine these weights, we utilize a

radial-based bump function for all points and/or nodes on the fluid domain. The bump function is a compact support 𝐶∞

function defined as 𝑤(𝛾) = exp
(
− 1

1−𝑥2

)
for 𝑥 = 𝛾

𝛾ref
∈ (−1, 1) and 𝑤(𝛾) = 0 otherwise. 𝛾ref represents a user-defined

fixed search radius which serves as a distance threshold, limiting the range of interest in transferring information among

the models. Furthermore, incorporating Eq. (63) and Eq. (64) into Eq. (62), we obtain

𝛿�̂� ·
[𝑁𝑝𝑏∑︁
𝑘=1

{(
𝜕𝝍r𝑘

𝜕 �̂�

)𝑇
· f𝑘(X,U; 𝑡𝑛)

}
− 𝒇 ext,ae(�̂�, 𝒔; 𝑡𝑛)

]
= 0 . (66)

By applying the fundamental lemma of the calculus of variations, we can derive the following expression for the vector

of discrete generalized aerodynamic forces:

𝒇 ext,𝑎𝑒(�̂�, 𝒔; 𝑡𝑛) =
𝑁𝑝𝑏∑︁
𝑘=1

{(
𝜕𝝍r𝑘

𝜕 �̂�

)𝑇
· f𝑘(X,U; 𝑡𝑛)

}
. (67)

Continuing with Eq. (61) and employing the fundamental lemma of variational calculus again, considering arbitrary

non-zero variations (𝛿𝒔, 𝛿�̂�, 𝛿�̂�) and reordering, we obtain a system of vector-valued nonlinear equations denoted by �̂�

as follows:

�̂�(�̂�, 𝒔, �̂�)|𝑛+1=



¤̂𝒍(𝒔) + 𝒇 int(�̂�) −
{
𝒇 ext,c + 𝒇 ext,nc(�̂�) + 𝒇 ext,ae(�̂�, 𝒔)

}
+ �̂�𝑇 (�̂�) · �̂�

𝒍(𝒔) − 𝒍(�̂�)

�̂�(�̂�)

𝑛+1

= 0 , (68)

where the first equation represents the discrete dynamic equilibrium, capturing the balance of forces acting on the

system. The second equation corresponds to the momentum compatibility, and the third one represents the discrete

constraints. While we do not explicitly express the specific dependencies arising from the employed time integration

method, denoted as (�̂�𝑛, �̂�𝑛+1, 𝒔𝑛, 𝒔𝑛+1, �̂�𝑛+ 1
2
) as outlined in Eq. (61), we remind the reader to consider them in Eq. (68)

and the equations herein. The lower script 𝑛 + 1 indicates that the unknowns are solved at time step 𝑡𝑛+1. Eq. (68) is

solved iteratively using Newton’s method, requiring the Tailor expansion neglecting higher-order terms obtaining the

following linearized form:

�̂�(�̂�, 𝒔, �̂�)|𝑖+1
𝑛+1= �̂�(�̂�, 𝒔, �̂�)|𝑖𝑛+1+Δ�̂�(�̂�, 𝒔, �̂�)|𝑖𝑛+1= 0 , (69)

where the upper script 𝑖 denotes the iteration step within the Newton iteration process and Δ�̂� represents the discrete

increment of �̂� obtained by calculating the partial derivatives with respect to the discrete generalized variables and the
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Lagrange multiplier, that is to say,

Δ�̂�(�̂�, 𝒔, �̂�)|𝑖𝑛+1=
𝜕 �̂�

𝜕 �̂�
|𝑖𝑛+1·Δ�̂� +

𝜕 �̂�

𝜕𝒔
|𝑖𝑛+1·Δ𝒔 +

𝜕 �̂�

𝜕�̂�
|𝑖𝑛+1·Δ�̂� = �̂�(�̂�, 𝒔, �̂�)|𝑖𝑛+1·Δ�̂� (70)

with �̂� ∈ R(𝑛𝑞+𝑛𝑠+𝑛𝑐)×(𝑛𝑞+𝑛𝑠+𝑛𝑐) in Eq. (70) is denoted as the global system’s tangent matrix of Eq. (68) and is called

the iteration matrix within the context of Newton’s method. In our aeroelastic framework, the matrix consists of two

constituents: the Jacobian of the structural model, denoted as �̂�𝑠, which is computed based on the partial derivatives

of the discrete structural forces, the discrete equivalence of linear momentum, and the constraint equations; and the

Jacobian of the discrete generalized aerodynamic forces, denoted as �̂�𝑎𝑒 as follows:

�̂�(�̂�, 𝒔, �̂�)|𝑖𝑛+1= �̂�𝑠(�̂�, 𝒔, �̂�)|𝑖𝑛+1−�̂�
𝑎𝑒(�̂�, 𝒔, �̂�)|𝑖𝑛+1 . (71)

The definitions for these constituents are given by

�̂�𝑠(�̂�, 𝒔, �̂�)|𝑖𝑛+1=



�̂��̂��̂�(�̂�, 𝒔, �̂�) �̂��̂�𝒔 �̂�𝑇 (�̂�)

�̂�𝒔�̂� �̂�𝒔𝒔(𝒔, �̂�) 0

�̂�(�̂�) 0 0



𝑖

𝑛+1

, �̂�𝑎𝑒(�̂�, 𝒔)|𝑖𝑛+1=



�̂�𝑎𝑒
�̂��̂� (�̂�, 𝒔) �̂�𝑎𝑒

�̂�𝒔 (�̂�, 𝒔) 0

0 0 0

0 0 0



𝑖

𝑛+1

. (72)

To maintain focus on the linearization of the aerodynamic loads, we will abstain from providing a detailed explanation

of the tangent matrix �̂�𝑠. Interested readers are referred to [67] and [30] for a comprehensive understanding of this

aspect. Subsequently, we proceed to outline the computation of �̂�𝑎𝑒, which is obtained from the incremental form of

the discrete generalized aerodynamic forces in Eq. (68):

Δ 𝒇 ext,𝑎𝑒 =
𝜕 𝒇 ext,𝑎𝑒

𝜕 �̂�
· Δ�̂� +

𝜕 𝒇 ext,𝑎𝑒

𝜕𝒔
· Δ𝒔 = �̂�𝑎𝑒

�̂��̂� · Δ�̂� + �̂�𝑎𝑒
�̂�𝒔 · Δ𝒔 . (73)

In Eq. (73) �̂�𝑎𝑒
�̂��̂� ∈ R𝑛𝑞×𝑛𝑞 and �̂�𝑎𝑒

�̂�𝒔 ∈ R𝑛𝑠×𝑛𝑠 are the tangent matrices of generalized aerodynamic forces that can

be derived by considering the expression of the generalized aerodynamic forces in Eq. (67) in conjunction with the

directional derivative of the aerodynamic loads from the aerodynamic model, given in Eq. (45) and applying the linear

coordinate mapping presented in Eq. (63) on the nodal position vector X, defined by the mapping function 𝝍x, i.e.

𝝍x : �̂� → x , 𝒔 → u. These matrices are then computed as follows:

�̂�𝑎𝑒
�̂��̂� =

𝑁𝑝𝑏∑︁
𝑘=1


𝜕

𝜕𝝃

[(
𝜕𝝍r𝑘 (𝝃)
𝜕𝝃

)𝑇
· f𝑘(X,U; 𝑡𝑛)

] �����
𝝃=�̂�

 +
𝑁𝑝𝑏∑︁
𝑘=1

{(
𝜕𝝍r𝑘

𝜕 �̂�

)𝑇
· k𝑘

x

}
· 𝜕𝝍

x(�̂�)
𝜕 �̂�

, (74)
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and

�̂�𝑎𝑒
�̂�𝒔 =

𝑁𝑝𝑏∑︁
𝑘=1

{(
𝜕𝝍r𝑘

𝜕 �̂�

)𝑇
· k𝑘

u

}
· 𝜕

¤𝝍x(𝒔)
𝜕𝒔

. (75)

The reader should note that the fluid-structure mapping 𝝍r adopted in this work is linear in �̂�, therefore the first term in

Eq. (74) vanishes. Due to the nature of the defined aeroelastic problem, the matrices in Eq. (74) and Eq. (75) are

non-symmetric and, in general, may not be positive definite or semi-definite, particularly when nonlinear effects or

unsteady phenomena are taken into account. �̂�𝑎𝑒
�̂��̂� captures the sensitivity of the aerodynamic forces to changes in the

structural configuration. It represents the partial derivative of the aerodynamic forces with respect to the structural

configuration parameters. The entries of this matrix quantify how small variations in the structural deformations

or positions influence the resulting aerodynamic forces. The tangent matrix �̂�𝑎𝑒
�̂�𝒔 represents the sensitivity of the

aerodynamic forces to changes in the structural velocity. The entries of this matrix indicate how small changes in the

structural velocities affect the resulting aerodynamic forces. The information on both matrices is valuable for various

applications, including aeroelastic analysis, aircraft design, control system development, and structural optimization.

In nonlinear aeroelastic approaches, incorporating aerodynamic tangent matrices poses notable advantages. In

particular, for strong coupled nonlinear time-domain computations, the full linearization of Eq. (68) significantly

improves the numerical convergence behavior while solving with Newton’s method. In the neighborhood of the solution,

the convergence of Newton’s method exhibits quadratic behavior. Besides accelerated convergence, the numerical

robustness is improved as well, which is crucial for addressing challenges associated with large deformations and

velocity gradients. While geometrically exact finite element models demonstrate exceptional robustness in handling

large structural displacements and rotations, they are susceptible to result in ill-conditioned algebraic equations ([71]).

Such equations can significantly hinder the convergence behavior of the numerical solution. The examples presented

next demonstrate that the incorporation of both aerodynamic and structural tangent matrices enhances the robustness of

the convergence behavior and reduces the number of iteration steps required during the solution process. It is noteworthy

that test simulations revealed that employing a quasi-Newton’s method resulted in linear or sub-linear convergence

rates, which, in certain instances, can lead to divergence. Furthermore, calculating the aerodynamic tangent matrices

offers another crucial benefit: it enables a precise investigation of aeroelastic stability by analyzing the algebraic

characteristics of the linearized governing equations, a task that cannot be accurately accomplished without complete

linearization. Specifically, the eigenvalues and the determinant of the system’s Jacobian hold significant information

about the structural and aeroelastic stability. On the one hand, tracking the determinant and eigenvalues during the

solution of Eq. (68) serves as a valuable resource for identifying critical values, such as flutter and divergence speeds.

On the other hand, it is possible to formulate eigenvalue problems around any equilibrium state to predict and narrow

the range of such critical velocities without performing full nonlinear calculations.
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IV. Numerical results

This section presents two examples intended for verifying our approach for the analytical computation of tangent matrices

with the main focus on their applicability to nonlinear aeroelasticity. By considering the pure aerodynamic problem, we

perform in the first subsection a plausibility check for a rigid-fixed wing with a homogeneous thin-flat airfoil. This

involves determining the maximal absolute deviation between the tangent matrices obtained analytically and those

computed numerically. Furthermore, we provide the numerical values associated with the tangent matrices computed

for the sake of reproducibility. In the second subsection, we showcase the validity, effectiveness and benefits of the

proposed linearization framework within a fully coupled nonlinear aeroelastic simulation model. This is accomplished

through nonlinear static and dynamic aeroelastic analyses conducted for a suspension bridge deck. We compare our

results with those obtained with simplified analytical approaches and other more complex numerical models given in the

existing literature. Finally, we show how our analytically computed tangent matrices for the aerodynamic loads can

significantly enhance the robustness and improve the convergence behavior of the nonlinear solution procedure.

A. Example 1: Aerodynamic matrices of a rectangular wing

In this subsection, we investigate the accuracy of our analytically computed tangent matrices presented in Eq. (58) and

Eq. (59) by comparing them with numerically computed matrices. To perform this verification, we consider a rigid-fixed

wing with a homogeneous thin-flat airfoil. The wing under investigation has a span of 2.0 m and a chord of 1.0 m.

The free-stream velocity is constant, and the wind flows at an angle of attack 𝛼 = 10◦ with an intensity V∞ = 10.0 m/s.

We then calculate the aerodynamic tangent matrices at the specific time instant 𝑡 = 0.4 s, taking into account as well

those matrix components capturing effects due to the shedding wake and unsteady aerodynamic contributions. At this

stage, the aerodynamic condition considered has not yet reached steady state. We consider a percentual cut-off radius

𝛿𝑐 = 1%, and the incremental simulation time considered is Δ𝑡 = 0.01 s. Fig. 6 depicts the vortex-lattice, including

node and vortex-ring numbering, and illustrates the free-wake at the time instant 𝑡 = 0.4 s. We calculate the maximal

absolute errors of the tangent matrices associated with the linearized aerodynamic loads, Kx and Ku, as well as with

the linearized non-penetration condition, namely KG,x and KG,u. Tangent matrices KG,x and KG,u can be obtained

using expressions similar to Eq. (51) detailed in subsection II.C to KG,x =
[
𝜕r̂𝑖G(𝑡) ⊗ Ŵ𝑖

]
H + 𝜕x𝑖G(𝑡) ⊗ Ĝ𝑖 and

KG,u =
[
𝜕v̂𝑖G(𝑡) ⊗ Ŵ𝑖

]
H, where KG,x,KG,u ∈ R𝑁𝑝𝑏×3𝑁𝑛𝑏 , {Ŵ1, ..., Ŵ3𝑁𝑝𝑏

} is an orthonormal basis for R3𝑁𝑝𝑏 , and

H ∈ R𝑁𝑝𝑏×3𝑁𝑛𝑏 is a constant matrix representing a linear mapping H : R3𝑁𝑛𝑏 −→ R𝑁𝑝𝑏 such as r̂ = HX and v̂ = HU,

r̂ and v̂ collect the coordinates and velocities of all the control points on the lifting surface, and {Ĝ1, ..., Ĝ3𝑁𝑝𝑏
} was

already defined in subsection II.C. To determine the different errors, we are required to define an error function as

𝜀(Kx) := max
𝑖∈𝐼, 𝑗∈𝐽

{
|(Kx)𝑖 𝑗 − (K̄x)𝑖 𝑗 |

}
, (76)
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Fig. 6 Geometry of the wing with discretization of 𝑚𝑎𝑒 × 𝑛𝑎𝑒 = 2 × 2.

where 𝜀(Kx) is a scalar representing the maximal deviation between entities of the analytically computed matrices and

the numerically computed ones. 𝐼 = {1, ..., 𝑚𝑎𝑒} and 𝐽 = {1, ..., 𝑛𝑎𝑒} with 𝑚𝑎𝑒 standing for the number of panels in

span-wise direction and 𝑛𝑎𝑒 being the number of panels in chord-wise direction. The bar notation in Eq. (76) indicates

the numerical matrices. Finally, the errors are determined as

𝜀Kx = 𝜀(Kx), 𝜀Ku = 𝜀(Ku), 𝜀KG,x = 𝜀(KG,x), 𝜀KG,u = 𝜀(KG,u) . (77)

By introducing the finite-difference operator for the chosen scheme through

D(F𝑖 , x 𝑗 ) =
F𝑖(x 𝑗 + ℎ,U) − F𝑖(x 𝑗 − ℎ,U)

2ℎ
, (78)

all required numerical matrices are computed as

(K̄x)𝑖 𝑗 = D(F𝑖 , x 𝑗 ), (K̄u)𝑖 𝑗 = D(F𝑖 , u 𝑗 ), (K̄G,x)𝑖 𝑗 = D(G𝑖 , x 𝑗 ), (K̄G,u)𝑖 𝑗 = D(G𝑖 , u 𝑗 ) . (79)

To mitigate the impact of roundoff/truncation errors associated with Eq. (78), the step size ℎ is normally selected

according to ℎ𝑜𝑝𝑡 = 3
√
𝜖𝑀 ≈ 10−6, where 𝜖𝑀 is the machine precision. If ℎ < ℎ𝑜𝑝𝑡 then the roundoff error is sacrificed

in favor of a decrease in the truncation error. Conversely, if ℎ > ℎ𝑜𝑝𝑡 , then the truncation error in D(F𝑖 , x 𝑗 ) increases.

We evaluate Eq. (77) for various mesh sizes. The results are summarized in Table 1. It can be concluded that the

deviations between the analytically computed matrices and the numerically determined matrices are minimal, with a

maximal deviation of 1.81 × 10−8. Additionally, Fig. 7 to Fig. 10 provide interested readers with visual representations
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𝑚𝑎𝑒 × 𝑛𝑎𝑒 𝜀Kx 𝜀Ku 𝜀KG,x 𝜀KG,u

2 × 2 1.8063 · 10−8 6.2274 · 10−9 6.5222 · 10−10 2.5087 · 10−10

10 × 4 3.3168 · 10−9 2.7949 · 10−9 2.0530 · 10−9 8.2402 · 10−10

50 × 8 1.8504 · 10−9 8.3710 · 10−10 3.2088 · 10−9 2.6551 · 10−9

50 × 10 1.9846 · 10−9 1.6312 · 10−9 4.2093 · 10−9 3.0596 · 10−9

Table 1 Absolute error between analytical and numerical differentiation.

of the analytically computed tangent matrices for the mesh size 𝑚𝑎𝑒 × 𝑛𝑎𝑒 = 2 × 2, facilitating comparisons of numeric

values for own implementations.

To further validate the accuracy of the analytically computed tangent matrices, it is crucial to assess their per-

formance within a nonlinear framework. By applying our analytical linearization approach, the convergence behavior

near the solution of a nonlinear equation can provide insights into the correctness of the computed tangent matrices.

In an aeroelastic context, if the linearization is done correctly, the convergence of the solution procedure should

exhibit quadratic behaviour. In the subsequent subsection, we employ our approach to solve implicitly the nonlinear

aeroelastic governing equations, demonstrating the achievement of quadratic convergence behavior. This analysis serves

as additional evidence for the accuracy and reliability of the analytically computed tangent matrices.
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Fig. 7 Visual representation of Kx for 𝑚𝑎𝑒 × 𝑛𝑎𝑒 = 2 × 2.

B. Example 2: Aeroelastic analysis of a suspension bridge’s deck

In this subsection, we investigate the capability and validity of our proposed linearization framework within nonlinear

aeroelasticity. Particularly, we conduct static and dynamic aeroelastic analyses for the case of a suspension’s bridge
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Fig. 10 Visual representation of 𝑲G,u for 𝑚𝑎𝑒 × 𝑛𝑎𝑒 = 2 × 2.

deck given in [72]. To this end, critical velocities, specifically divergence and flutter, are computed by using two

different methodologies: (i) by solving eigenvalue problems formulated from the linearized aeroelastic model, and (ii)

by performing fully nonlinear static and dynamic simulations (Eq. (68) for static aeroelasticity neglecting unsteady

contributions). The reader should be aware of that the first approach clearly requires the aerodynamic tangent matrices

previously computed. In addition, we perform a single nonlinear static aeroelastic deformation analysis in steady-state

conditions under a constant free-stream velocity and provide insights into computational performance. It is worth

noting that for all static calculations presented here, the influence of the wake is taken into account in its steady-state

configuration. To capture the final wake geometry accurately, we convect the wake within each simulation step until a
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steady state is reached. Therefore, the path leading to the static solution is solely of a numerical nature and does not

represent a physical process.

1. Model of the bridge deck

Fung originally investigated the bridge deck’s aeroelastic behavior using a structural model consisting of a linear elastic

rotational and transversal spring combined with Theodorsen’s aerodynamic method (see [72]). Based on the simplified

model, Fung computed the aeroelastic stability problem for the flutter speed. The structural parameters used in the study

are as follows: chord length 𝑐 = 60.0 ft, squared gyration ratio 𝑟2
𝛼 = 0.6222, mass density per unit length 𝑚 = 269.0

slug/ft, natural bending frequency 𝜔ℎ = 0.88 rad/s, and natural torsion frequency 𝜔𝛼 = 1.55 rad/s. To adapt Fung’s

model to our aeroelastic model (UVLM + three-dimensional geometrically exact beams), we determine the elastic

properties to achieve a cantilever’s identical torsional and bending eigenfrequencies. We employed a constant rectangular

cross-section with isotropic linear elastic material properties, specifically Young’s modulus 𝐸 = 1.936 × 107 lbf/ft2, a

shear modulus 𝐺 = 7.840 × 104 lbf/ft2, and a material density 𝜌 = 8.027 × 10−2 slug/ft3. This yields a cross-sectional

dimension with a chord length 𝑐 = 60.0 ft and a thickness of 𝑡 = 55.85 ft. It is worth noting that the resulting thickness

𝑡 does not correspond to a thin plate. However, this choice allows us to reproduce the desired structural behavior,

focusing primarily on involving flap-wise and torsional motions while minimizing edge-wise motion. As Fung’s

mechanical formulations do not account for shear deformations, and our model does, we need to mitigate their influence

by incorporating sufficiently large shear stiffness (𝐺𝐴1 = 𝐺𝐴2 = 1.0 × 1012 lbf ft2). Additionally, a cantilever length

𝐿 = 1000.0 ft is chosen. The air density is given by 𝜌𝐹 = 2.378 × 10−3 slug/m3. All geometry and material input data

for both the structural and aerodynamic models are provided in Table 2. The first six natural eigenfrequencies, belonging

Table 2 Geometry and material input data parameter for aeroelastic model.

Parameter Value
length 𝐿 1000.0 ft
chord 𝑐 60.0 ft
thickness 𝑡 55.85 ft
fluid density 𝜌𝐹 2.378 × 10−3 slug/m3

Young’s modulus 𝐸 1.936 · 107 lbf/ft2

shear modulus 𝐺 7.840 · 104 lbf/ft2

material density 𝜌 8.027 · 10−2 slug/ft3

to in-plane bending (IPB), out-of-plane bending (OPB), and torsional mode shapes calculated from our structural model

are presented in Table 3. Among these eigenfrequencies, the first and third eigenfrequencies are of particular importance.

They correspond to the first bending and first torsion eigenmodes, respectively, and are expected to match the values

proposed by Fung in his study [72]. The accuracy of the results and computational cost are influenced by the mesh
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Table 3 Natural eigenfrequencies in rad/s of the beam model.

No. 𝜔𝑛 Mode
1 0.880 1st IPB
2 0.945 1st OPB
3 1.552 1st torsional
4 4.659 2nd torsional
5 5.498 2nd IPB
6 5.902 2nd OPB

discretization. Even provided that mid-fidelity methods, such as the UVLM, are less time-consuming than high-fidelity

methods (e.g. CFD-like techniques), the computation time increases significantly with higher mesh densities. In this

respect, we first conduct a convergence analysis by considering different mesh densities. Specifically, the parameters

that can be optimized are the number of vortex rings in the span-wise direction 𝑚𝑎𝑒, chord-wise direction 𝑛𝑎𝑒, and the

number of finite beam elements 𝑚𝑠 along the span-wise direction. To simplify the analysis, we assume 𝑚𝑠 = 𝑚𝑎𝑒. The

mesh convergence analysis consists of performing full nonlinear aeroelastic simulations until steady state regime is

reached. The free-stream velocity is set to 190 ft/s with an angle of attack 𝛼 = 5◦. We evaluate the coordinates of the

aerodynamic center at the aerodynamic mesh x𝐴𝐶 = [x𝐴𝐶
1 x𝐴𝐶

2 x𝐴𝐶
3 ] and the torsion angle 𝜙1 of the plate tip on the

structural mesh. The converged mesh is depicted in Fig. 11, where the green line indicates the beam elements and the

blue line represents the flow separation edge. It consists of 𝑚𝑎𝑒 × 𝑛𝑎𝑒 = 40 × 10 = 400 vortex rings and 𝑚𝑠 = 40 beam

elements. The resulting coordinates of the aeroelastic center are x𝐴𝐶 = [513.9 14.4 0.0] ft.

Ê2
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C
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Fig. 11 Final mesh, 𝑚𝑎𝑒 × 𝑛𝑎𝑒 × 𝑚𝑠 = 40 × 10 × 40.
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2. Static aeroelasticity - divergence analysis

One important problem in steady-state aeroelasticity is the computation of the torsional divergence speed V𝑐. Generally,

aeroelastic divergence occurs when the elastic stiffness of a lifting surface under lift moments is barely sufficient to

keep the structure in an undisturbed position. For a specific free-field velocity, the divergence speed, an infinitesimally

small perturbation of the geometry, or the angle of attack can trigger a sudden transition from a stable equilibrium

configuration to an unstable one, resulting in a substantial torsion angle ([72]).

To obtain an initial prediction for the divergence speed of a flat plate, we can solve the second-order linear ho-

mogeneous differential equation that governs the behavior of a torsional bar. The equation takes the following form

([72], [73]):

𝐺𝐼𝑇
𝜕2𝜙1(𝑥1)
𝜕2𝑥1

− 𝑑𝐶𝐿

𝑑𝛼
𝑞𝑐x𝐴𝐶

2 𝜙1(𝑥1) = 0 . (80)

Here, 𝑥1 represents the coordinate along the span-wise direction, 𝑞 denotes the dynamic pressure, 𝐺𝐼𝑇 represents

the torsional stiffness, 𝑐 is the chord length and x𝐴𝐶
2 corresponds to the coordinate of the aerodynamic center in

the chord-wise direction. The lift slope coefficient 𝑑𝐶𝐿

𝑑𝛼
can be analytically determined for elliptic wings with finite

length using the finite wing theory. It is defined by 𝑑𝐶𝐿

𝑑𝛼
= 2𝜋

(
𝐴𝑅

𝐴𝑅+2

)
, where 𝐴𝑅 represents the wing’s aspect

ratio. The torsional divergence speed can be obtained as the smallest non-trivial solution of Eq. (80), given by

V𝑐 =
√︃

2𝑞𝑐
𝜌

, with 𝑞𝑐 =
(
𝜋

2𝐿
)2 𝐺𝐼𝑇

𝑑𝐶𝐿
𝑑𝛼

𝑐x𝐴𝐶
2

. By considering the specific material and geometrical data of the bridge

deck and using x𝐴𝐶
2 = 14.4 ft (obtained above), the analytical solution for the torsional divergence speed is V𝑐 = 252.0 ft/s.

In the following, we present two numerical methods to determine the critical velocity using our nonlinear aeroelastic

model, both relying on the linearized aerodynamic loads. The first approach involves linearizing the static form of the

governing equations (Eq. (68) by neglecting velocity-dependent terms) around an equilibrium point, i.e., 𝒈 = 0. The

linearization process results in a homogeneous system of equations, which can be solved as a linear eigenvalue problem.

Since Bernoulli’s equation Eq. (28) states that the aerodynamic loads F depend on the square of the velocity (V2
∞), the

eigenvalue problem can be formulated as follows:


�̂��̂��̂�(�̂�, �̂�) − 𝜔�̂�𝑎𝑒

�̂��̂� (�̂�; V∞) �̂�𝑇 (�̂�)

�̂�(�̂�) 0

 ·

Δ�̂�

Δ�̂�

 = 0 , (81)

with 𝜔 ∈ C can be characterized in terms of V∞ by 𝜔 = (V𝑐/V∞)2. As our structural model operates with director-based

kinematics (a primal-dual approach), it is convenient to transform Eq. (81) into the minimal solution space according

to the null-space projection approach presented in [67] for the static case. We obtain the following reduced linear
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eigenvalue problem: [
�̃�(�̂�, �̂�) − �̃��̃�𝑎𝑒(�̂�; V∞)

]
· ΔΦ = 0 , (82)

with �̃� is the reduced structural tangent matrix, �̃�𝑎𝑒 is the reduced tangent matrix due to the discrete aerodynamic

forces, and �̃� ∈ C is the eigenvalue corresponding to the reduced linear eigenvalue problem.

For the problem at hand, we solve Eq. (82) around the initial undeformed configuration (load step 𝑇𝑛 = 0) by

assuming a constant free-field velocity of V∞ = 1 ft/s and an angle of attack 𝛼 = 0◦. It should be noted that such an

eigenvalue problem can be solved for any pre-deformed or pre-stressed configuration, thus showing the versatility of our

approach in terms of structural conditions. When solving the eigenvalue problem, which is rooted in a homogeneous

Cauchy-Euler equation, only the positive real eigenvalues have a physical interpretation since they indicate the presence

of unstable modes. The first five positive eigenvalues and their corresponding critical velocities are listed in Table

4. The smallest one is decisive as it represents the first singular point in the stability problem and corresponds to a

divergence speed of V𝑐 = 252.2 ft/s.

Table 4 Natural eigenfrequencies in rad2/s2 and critical velocities in ft/s.

No. ℜ(�̃�) V𝑐 in ft/s
1 6.362 · 104 2.522 · 102

2 5.816 · 105 7.626 · 102

3 1.660 · 106 1.288 · 103

4 3.370 · 106 1.836 · 103

5 5.808 · 106 2.410 · 103

The second approach to numerically determine the divergence speed is to track the determinant of the Jacobian matrix

and identify singular points by evaluating the condition det(�̂�(�̂�, �̂�); V∞)|𝑖
𝑛+1= 0. To this end, we consider a small

perturbation in the angle of attack, 𝛼 = 1 ·10−8, a free-stream velocity ranging from 50 ft/s to 260 ft/s, and a characteristic

length Δ𝐿 = 12.25. All simulations are performed until steady state regime is reached. Therefore, unsteady effects

in the aerodynamic tangent matrices associated with the wake convection and temporal changes in circulation can

be neglected without affecting the precision of the procedure. Test calculations conducted without considering the

linearized aerodynamic forces revealed significant challenges in converging to a reliable solution for the divergence

speed. All important parameters for these static aeroelastic simulations are summarized in Table 5.

We examine the determinant of the iteration matrix for each velocity at each load step and each Newton itera-

tion. The velocity at which the transition between stable and unstable equilibrium occurs represents a singularity point

and is associated with divergence instability. To track the determinant of the Jacobian in a reasonable order of magnitude,
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Table 5 Simulation parameter used in nonlinear static aeroelastic simulations determining divergence speed.

Parameter Value
characteristic length Δ𝐿 12.25 ft
structural incremental time stepΔ𝑡𝑠𝑛 Δ𝑡𝑎𝑒𝑛 s
cut-off radius 𝛿 0.01 -
aeroelastic influence radius 𝑟𝐿 30.1 ft
angle of attack 𝛼 1.0·10−8 ◦

free-field velocity V∞ [50,260] ft/s
Newton convergence tolerance tol𝑁 1 · 10−6 -

we monitor its logarithmic form given by

𝜂(det(�̂�)) = sign(m) ℜ(log10 det(�̂�)) = sign(m) ℜ(log10 𝑚10𝑒) = sign(m)
(
log10 |𝑚 | + 𝑒

)
, (83)

where 𝑚 ∈ R is the mantissa and 𝑒 ∈ Z stands for the exponent with base 10 of the determinant of the iteration matrix.

The diagram in Fig. 12 illustrates the evaluation of Eq. (83) for each free-field velocity V∞. It shows that the first

singular point occurs at a velocity of V∞ = V𝑐 = 249.4 ft/s. and reveals that the static equilibrium configurations

in simulations with velocities below the divergence speed exhibit stable equilibrium, i.e., det(�̂�) > 0. Differently,

calculations with velocities above the critical speed result in unstable equilibrium configurations, i.e., det(�̂�) ≤ 0,

leading to the divergence of the simulations. The transition from stable to unstable equilibrium is captured in Fig. 13,

which evaluates the minimum magnitude of Eq. (83). In Table 6, we present a comparison of the calculated divergence
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Fig. 12 Evaluation of Eq. (83) for each V∞.
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Fig. 13 Transition from stable to unstable equilibrium.

speeds obtained from our numerical model and the analytical solution of the homogeneous differential equation. The

results show excellent agreement, with a maximal deviation of 1%. Solving the nonlinear static aeroelastic equations

Table 6 Summary of calculated divergence speeds.

Method V𝑐 in ft/s
analytically Eq. (80) 252.0
linear generalized eigenvalue problem Eq. (82) 252.2
fully nonlinear static aeroelastic analysis 249.4

requires to apply a series of small geometrical perturbations. As the system approaches a bifurcation point, geometric

nonlinearities affects the structural and aerodynamic contributions to the structural stiffness, thereby affecting the

divergence speed. In this sense, this approach yields a more accurate estimation of the divergence speed.

3. Static aeroelasticity - deformation analysis

In this subsection, we present a nonlinear static aeroelastic deformation analysis for the bridge deck under an inflow with

an angle of attack 𝛼 = 5◦ and free-stream velocity V∞ = 190 ft/s. The purpose here is to investigate the convergence

behavior of our proposed linearization framework in the context of nonlinear static aeroelasticity. To improve a

convergence behavior at the beginning of the nonlinear calculation, we employ a linear factorization of the vector

of generalized aerodynamic forces. Specifically, we linearly increase the magnitude of the aerodynamic forces until

reaching load step 𝑇𝑑 = 100. Afterwards, the forces are consistently applied without alteration throughout the remaining

simulation. This gradual adjustment helps improving the convergence of the solution, particularly during the initial

phases of the analysis when an impulsive start of free-field velocity is considered. The simulation runs up to 𝑇𝑛 = 200

steps to ensure a steady-state solution. All simulation parameters are listed in Table 7.

The results of the steady-state displacements and rotations are summarized in Table 8. Given that our director-based
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Table 7 Simulation parameter used in nonlinear static aeroelastic deformation analysis.

Parameter Value
total number of load steps 𝑇𝑛 200.0 -
characteristic length Δ𝐿 12.25 ft
cut-off radius 𝛿 0.01 -
aeroelastic influence radius 𝑟𝐿 30.1 ft
angle of attack 𝛼 5.0 ◦

intensity of free-field velocity V∞ 190 ft/s
Newton convergence tolerance tol𝑁 1 · 10−6 -

approach does not yield the rotation parameters directly, we ascertain the rotations through the cumulative summation

of incremental rotations at each time step (see, e.g., [69]). It can be observed that the cantilever beam undergoes a

deflection of 2% compared with its length, with a maximal vertical displacement of 20.81 ft and a torsion of 8.48◦. The

steady-state values for the reaction forces and moments at the fixed end of the cantilever beam are summarized in Table 9.

Table 8 Displacements and rotations in steady-state.

Parameter value Parameter value
𝑢1 −0.25 ft 𝜙1 −8.48 ◦

𝑢2 2.52 ft 𝜙2 −1.60 ◦

𝑢3 20.81 ft 𝜙3 0.09 ◦

Table 9 Reaction forces and moments in steady-state.

Parameter value Parameter value
𝐹1 −6.26 · 104 lbf 𝑀1 −3.94 · 107 ft-lbf
𝐹2 2.70 · 105 lbf 𝑀2 −1.36 · 109 ft-lbf
𝐹3 2.50 · 106 lbf 𝑀3 2.76 · 108 ft-lbf

To assess the computational performance of our approach, we analyze the convergence behavior while solving

the nonlinear governing equations and compare the solution obtained from solving the fully linearized equilibrium

equations (full Newton’s method) with the solution obtained with the quasi-Newton’s method, which neglects the

linearization of the vector of generalized aerodynamic forces. Fig. 14 illustrates the number of required iteration

steps until reaching the convergence tolerance. It can be observed that overall, the full Newton’s method requires

fewer iteration steps to converge compared to the quasi-Newton’s method. In simulation steps where high deformation

gradients occur (step 100), the quasi-Newton’s method requires a maximum of 19 iterations. In comparison, the full

Newton’s method only requires four iterations. This results in a total cumulative of 611 iterations for the full Newton’s

method and 1945 for the quasi-Newton’s method (see Fig. 15). Fig. 16 displays the relative residuum of 𝒈. The diagram

clearly shows that in the almost steady state (steps 150 − 200), the number of iterations for the full Newton’s method is
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reduced to two, while the quasi-Newton’s method still requires six iterations.
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4. Dynamic aeroelasticity - flutter analysis

Flutter is another aeroelastic stability phenomenon, which is characterized by self-sustained oscillations involving

interaction among the inertia, elastic and damping forces present at the vibrating structure, and aerodynamic forces

acting on the associated lifting surface. To verify our framework under sub-critical, critical, and super-critical conditions,

we reproduce the problem initially analyzed by [72]. As mentioned, Fung computes the aeroelastic stability problem by

means of a simplified analytical model. A more complex model of that bridge can be found in [18]. Those authors

also present an aeroelastic model combining the FEM with the UVLM. The finite element model consists of nonlinear

Bernoulli finite beam elements reduced by employing an assumed-modes approach. The discrete governing equations of

the aeroelastic model are solved numerically using Hamming’s fourth-order modified time integration scheme. For the

sake of comparison, we reproduce this well-documented example. However, it is important to mention that our approach

can be used to investigate the nonlinear aeroelastic behavior of more complex systems (see, e.g., [74], [75], [76]). In the

subsequent discussion, we present two ways of calculating the flutter velocity V𝐹 by using the current approach.

First, we determine V𝐹 by solving a quadratic generalized eigenvalue problem derived from the linearized aeroelastic

governing equations Eq. (69). As mentioned above, analyzing the algebraic nature of the linearized equations in a

director-based approach requires operating in a minimal solution space, which is obtained by applying the null-space

projection approach presented in [66] for the dynamic case. Without any loss of generality, we obtain the following

reduced quadratic generalized eigenvalue problem for any equilibrium state (with 𝒔 = ¤̂𝒒):

[
�̃��̂��̂�(�̂�, �̂�) − �̃�𝑎𝑒

�̂��̂� (�̂�, ¤̂𝒒; V∞) − �̃��̃�𝑎𝑒
�̂�𝒔 (�̂�; ¤̂𝒒; V∞) + �̃�2�̃��̂�𝒔

]
· ΔΦ = 0 , (84)

with �̃��̂��̂� is the reduced structural tangent matrix of the discrete generalized internal forces, �̃�𝑎𝑒
�̂��̂� and �̃�𝑎𝑒

�̂�𝒔 are the

reduced tangent matrices due to the discrete generalized aerodynamic forces, �̃��̂�𝒔 is the reduced tangent matrices of

the discrete generalized inertia forces (see [77]), and �̃� ∈ C is the eigenvalue corresponding to the reduced quadratic

generalized eigenvalue problem. Hereℜ(�̃�) characterizes the aerodynamic damping, andℑ(�̃�) is the system’s oscillatory

eigenfrequency. Naturally, we ascertain V𝐹 as the free-stream velocity at which ℜ(�̃�), defining the transition between

stable and unstable aeroelastic regimes. The procedure for identifying V𝐹 requires to solve Eq. (84) across a range of

free-stream velocities, here V∞ = {120, 140, 160, 170} ft/s. Fig. 17 illustrates the variation of the eigenvalues for the

first five eigenvectors as a function of the free-stream velocity. The upper chart reveals that the first transition from a

stable to an unstable region occurs for the first torsional mode at a free-stream velocity of V𝐹 = 164.7 ft/s (interpolated).

We determine the corresponding flutter frequency by solving The corresponding torsional eigenfrequency is determined

by is given by 𝜔𝐹 = 1.26 rad/s (see Fig. 17, lower diagram).
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Fig. 17 ℜ(�̃�) and ℑ(�̃�) vs. free-field velocities.

Another way and more accurate one to compute 𝑉𝐹 is to perform full transient calculations solving the nonlin-

ear aeroelastic equations Eq. (68 for several free-stream velocities. Then, V𝐹 can be identified as the velocity at which

the first bending and first torsional eigenvalues coincide. The magnitude of the investigated free-field velocities is

chosen in the validity of the UVLM, and the wake will be only shed from the trailing edge. To excite the flutter motion,

the bridge deck is initially pre-deformed in a torsion angle 𝜙1 = 10◦ at the free end of the cantilever beam. Each

simulation runs with a total simulation time of 𝑇 = 600.0 s. The incremental time Δ𝑡𝑎𝑒, which drives the aerodynamic

load computation, is chosen such that at each time instant, the wake nodes are approximately convected with the order of

magnitude close to the characteristic length Δ𝐿 =
√︃

𝑐𝐿
𝑛𝑎𝑒𝑚𝑎𝑒 = 12.25 ft. Singularity’s effects due to the vortex-induced

velocities are mitigated considering a cut-off 𝛿 = 0.01. Moreover, no structural damping is assumed to obtain the largest

lower bound of the flutter speed. The simulation data are listed in Table 10 and summarizes the simulation settings for

the aeroelastic computations.

The frequencies are obtained by transforming the flap-wise and torsional response into their frequency spectra using

Fourier’s transformation. Fig. 18 shows that the flap-wise and torsional frequencies merge at V𝐹 = 162 ft/s, and their

corresponding frequency is 𝜔𝐹 = 1.27 rad/s.

Table 11 provides a comparison of our results with those obtained by Gebhardt and Roccia in [18] and Fung in

[72]. The results are in excellent agreement, where the slight difference in the frequency can be attributed to the different

mechanical models, as commented previously. The model presented by Fung is the simplest, representing the bridge as
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Table 10 Simulation parameter used in nonlinear dynamic aeroelastic analyses.

Parameter Value
total simulation time 𝑇 600.0 s
characteristic length Δ𝐿 12.25 ft
cut-off radius 𝛿 0.01 -
aeroelastic-influence radius 𝑟𝐿 30.1 ft
initial torsion 𝜙1 10.0 ◦

intensity of free-field velocity V∞ [120, 200] ft/s
Newton convergence tolerance tol𝑁 1 · 10−6 -
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Fig. 18 First torsional and first bending eigenfrequencies vs. free-stream velocity.

a reduced-order two-dimensional system with linear springs. It captures only coupled pitching and transversal motion

and does not account for other modes or any further unsteady interactions. The model by Gebhardt and Roccia employs

non-shearable finite elements and a quasi-modal order reduction to represent the slow bending and torsional motions.

While it allows for large nonlinear motions and unsteady nonlinear aerodynamic behavior, it is not able to deal with

moderate or large nonlinear deformations. In contrast, our structural model is not limited to specific modes or motions.

It is based on a three-dimensional geometrically exact beam theory that considers large rotations and displacements as

well as nonlinear deformations. This allows for a more comprehensive representation of the aeroelastic behavior.

Table 11 Summary of calculated flutter velocity and flutter frequency.

Method/source V𝑐 in ft/s 𝜔𝐹 in rad/s
Fung [72] 162.0 1.25
Gebhardt and Roccia [18] 161.0 1.29
quadratic generalized eigenvalue problem Eq. (84) 164.7 1.26
fully nonlinear dynamic aeroelastic simulations Eq. (68) 162.0 1.27

The structural displacement signals in sub-critical (at V∞ = 120 ft/s), critical (at V∞ = 162 ft/s), and super-critical (at

V∞ = 170 ft/s) conditions are presented in Fig. 19. For the sake of clarity, we present the data for the first 300 seconds.
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The corresponding phase diagrams are shown in Fig. 20. From these results, we can draw several conclusions:
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ft/s, and (c) V∞ = 200 ft/s.

At the sub-critical velocity of V∞ = 120 ft/s, the bridge deck exhibits small amplitude oscillations. The dis-

placement history shows a damped vibrating motion, where the oscillations exponentially diminish over time. The

phase diagram depicts a stable response tending towards zero. For all velocities below the critical velocity, the total

structural energy sinks, which means that the flow takes energy from the structure. At the critical velocity of V∞ = 162

ft/s, the bridge deck enters into a limit cycle oscillation (LCO). The bending and torsional frequencies have merged into

47



−5 0 5

Ve
lo

ci
ty
𝑣

3
[f

t/s
]

5

0

−5

10

0

−10

5

−5

−10 0 10
Displacement 𝑢3 [ft]

50

−50

0

−50 0 50

LCO

𝑉∞ = 120 ft/s 𝑉∞ = 162 ft/s 𝑉∞ = 200 ft/s

LCO

Fig. 20 Phase diagrams (�̄�3 vs. �̄�3) at free end of the cantilever.

a single frequency, and the displacement history exhibits sustained oscillations with a constant energy level. At all

velocities exceeding the critical velocity, the fluid acts as an energy source, transferring energy to the structure. The

magnitude of this energy transfer depends on the inflow velocity, leading to a substantial increase in the motion’s amplitude.

Fig. 21 presents a comparison of the number of iterations required for the simulation with and without linearized

aerodynamic forces, considering the case of V∞ = 120 ft/s. As expected, it can be observed that the simulation with

linearized aerodynamic forces significantly reduces the number of iterations compared to the simulation with incomplete

linearization. Specifically, the total cumulative number of iterations decreases from 8644 iterations to 6826 iterations,

resulting in a reduction of ≈ 21%.
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Fig. 21 Number of cumulative convergence iterations for V∞ = 120 ft/s.

Through the nonlinear simulations, we have observed our proposed approach exhibits a robust solution behavior

when solving the governing equations without encountering any convergence issues in the conducted simulations. It

should be noted that calculating the aerodynamic tangents matrices according to our algorithm Table A.1 incurs an
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increased computational effort. To briefly address this issue, we suggest employing complete code parallelization to

perform multiple operations simultaneously (OMP and MPI), sparse implementations, and model-specific improvements,

e.g., effectively clustering the aerodynamic model by applying multi-level fast-multipole algorithms ([63, 78, 79]).

Furthermore, adaptive solution and time control techniques can be employed as well to decrease the computational

effort. However, the efficient implementation is beyond the scope of this work, and therefore, this is not addressed here

but planned for future work.

V. Conclusion

This article presented the analytical linearization of aerodynamic loads (computed with the unsteady vortex-lattice

method), which is formulated as tangent matrices with respect to the kinematic states of the aerodynamic grid. The

corresponding aerodynamic loads and their linearization were mapped to a fully nonlinear structural model by means

of a procedure for data transferring, while the kinematic description of the aerodynamic model was parametrized in

terms of the kinematic description of the structural model. This enabled us to set up a bidirectional strong interaction

scheme for the resulting aeroelastic model. The structural model adopted considers geometrically exact beams that rely

on a director-based total Lagrangian description allowing for exact preservation of objectivity and path independence

at the continuous/discrete levels, even after the spatial discretization with the finite element method. The resulting

semi-discrete equations of motion were discretized in time by means of an implicit time integration scheme based on

discrete derivatives, which preserves identically momenta and energy. We showed the correctness of the linearized

loads by comparing them against those obtained numerically. In addition, we employed the fully-coupled aerodynamic

and structural models to investigate the static and dynamic nonlinear aeroelastic behavior of a suspension bridge. In

this way, we investigated the excellent numerical features of the aeroelastic model as well as the divergence and flutter

behavior that was also verified against results available in the literature.

Overall, this manuscript contributes to the further development of a mid-fidelity aeroelastic framework capable of

capturing geometric nonlinearities present in both the aerodynamic and structural models. Nevertheless, the results

presented here are just a solid starting point for more interdisciplinary applications requiring gradient-based methods.

Therefore, our approach may have a large range of applicability within aeroservoelasticity and aeroelastic optimal

design, just to name a few areas of research.
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Table A.1 Standard algorithm for computing Kx and Ku.

for 𝑘 = 1 to 𝑁𝑝𝑏 (consider only the lifting surfaces ∈ A𝑖 if any)
for 𝑖 = 1 to 𝑁𝑛𝑏

Compute 𝜕x𝑖 (𝐴𝑘),
Compute 𝜕x𝑖 (n̂𝑘),
Compute 𝜕x𝑖

(
ω 𝑗

)
for 𝑗 = 1, ..., 4 associated with 𝐵𝑘 ,

Compute 𝜕x𝑖
(
𝐼𝑛

(
r𝑘 , 𝐵 𝑗

) )
for 𝑗 = 1, ..., 𝑁𝑝𝑏,

end
for 𝑖 = 1 to 3 (Consider only control point coordinates of panel 𝑘)

Compute 𝜕r𝑖
(
𝐼𝑛

(
r𝑘 , 𝐵 𝑗

) )
for 𝑗 = 1, ..., 𝑁𝑝𝑏,

Compute 𝜕r𝑖
(
𝐼𝑛

(
r𝑘 , 𝐿 𝑗

) )
for 𝑗 = 1, ..., 𝑁𝑝𝑤(𝑡),

end
end

Compute RHS𝑖
0(𝑡) (Eq. (52))

Compute RHS𝑖
1(𝑡), RHS𝑖

2(𝑡), and RHS𝑖
3(𝑡) (see Eq. (56))

Solve the linear algebraic systems Eq. (51) and Eq. (55)

for 𝑘 = 1 to 𝑁𝑝𝑏

for 𝑖 = 1 to 𝑁𝑛𝑏

Compute 𝜕x𝑖
(
V𝑑

𝐵,𝑘

)
(see Eq. (57))

Compute 𝜕x𝑖
(
V𝑑
𝑊,𝑘

)
(see Eq. (54))

Compute 𝜕x𝑖
(
V𝑑

𝑘

)
(see Eq. (54))

Compute 𝜕x𝑖
(
ΔV𝑑

𝑘

)
(see Eq. (57))

end
for 𝑖 = 1 to 3

Compute 𝜕r𝑖
(
V𝑑

𝐵,𝑘

)
(see Eq. (49))

Compute 𝜕v𝑖
(
V𝑑

𝐵,𝑘

)
(see Eq. (57))

Compute 𝜕r𝑖
(
V𝑑
𝑊,𝑘

)
(see Eq. (49))

Compute 𝜕r𝑖
(
ΔV𝑑

𝑘

)
(see Eq. (53))

Compute 𝜕v𝑖
(
ΔV𝑑

𝑘

)
(see Eq. (57))

end
Compute 𝜕r𝑖

(
𝐷𝑝𝑑

𝑘

)
, 𝜕x𝑖

(
𝐷𝑝𝑑

𝑘

)
, and 𝜕v𝑖

(
𝐷𝑝𝑑

𝑘

)
Compute local tangent matrices k𝑘

x and k𝑘
u (see Eq. (46))

end

Assembling global tangent matrices Kx and Ku
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