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Abstract: In many cases, optical metasurfaces are studied in the single-resonant regime.
However, a multiresonant behavior can enable multiband devices with reduced footprint, and is
desired for applications such as display pixels, multispectral imaging and sensing. Multiresonances
are typically achieved by engineering the array lattice (e.g., to obtain several surface lattice
resonances), or by adopting a unit cell hosting one (or more than one) nanostructure with some
optimized geometry to support multiple resonances. Here, we present a study on how to achieve
multiresonant metasurfaces in the visible spectral range by exploiting high-order multipoles
in dielectric (e.g., diamond or titanium dioxide) nanostructures. We show that in a simple
metasurface (for a fixed particle and lattice geometry) one can achieve triple resonance occurring
nearly at RGB (red, green, and blue) wavelengths. Based on analytical and numerical analysis,
we demonstrate that the physical mechanism enabling the multiresonance behavior is the lattice
induced coupling (energy exchange) between high-order Mie-type multipoles moments of the
metasurface’s particles. We discuss the influence on the resonances of the metasurface’s finite
size, surrounding material, polarization, and lattice shape, and suggest control strategies to enable
the optical tunability of these resonances.
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1. Introduction

Dielectric metasurfaces [1–3], due to their low optical losses, chemical stability, nontoxicity, and
high refractive index enabling Mie-type resonances, represent a convenient choice for various
applications in nanophotonics, such as flat optics [4], structural colors [5–10], nonlinear photonics
[11–13], light structuring [14], holography [15] and augmented reality [16,17]. Typical high
refractive index materials used in dielectric metasurfaces include silicon [18–20] and germanium
[21,22]. These materials are lossy in the blue part of the spectrum, which hinders their use
when all colors are needed, such as in achromatic metalenses and color generation for display
applications. In this case, materials such as silicon nitride [8,9], gallium nitride [6], lithium
niobate [23], titanium dioxide [5,10] and diamond [24,25] are preferred.

Optical metasurfaces are often made to operate at the single-resonant regime, as in the case
of dielectric metasurface-based pixels individually designed for red, green and blue (RGB)
colors [9,26]. On the other hand, multiresonant metasurfaces (also known as multiwavelength or
multiband metasurfaces) can be used to have multiband compact devices, and are desired for
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applications in, e.g., biosensing [27], solar cells [28], nonlinear optics [29], color generation
[25,30], achromatic metalenses [31], optical beam steering [32], and quantum state engineering
[33]. Multiresont behavior specifically refers to achieving separate resonances, as opposed to
the case of broadband response that can be achieved by means of many adjacent resonances.
Multiresonant metasurfaces have been proposed by combining in a unit cell two or more different
particles [30,34], or by using a single nanostructures supporting several multipole resonances
[35]. In the context of surface lattice resonances (SLRs), multiple resonances with high quality
factor have been demonstrated in dielectric [36] and plasmonic [37] metasurfaces. For example,
by introducing many periodicities in the metasurface, using a Fourier Transform approach, one
can achieve several SLRs at the desired wavelengths [38]. The nanofabrication process for some
multiresonant configurations may become complex and costly. Having a relatively simple optical
metasurface that exhibits multiple resonances at desired spectral positions with the possibility of
tuning or switching them on-off would be advantageous.

In general, lossless materials such as diamond and titanium dioxide enable the manifestation
of high-order Mie-type resonances in the visible with amplitude comparable to low-order modes,
thus opening new opportunities for the engineering of resonances. Such high-order multipoles,
although well understood in single nanostructures, are often suppressed by design in metasurfaces
in order to achieve monochromatic response [26], or avoided, e.g., to reduce the analytical
complexity associated with the modelling of collective resonances based on the dipole lattice
sum theory. Furthermore, nanostructures supporting only low-order Mie-type resonances have a
lower aspect ratio, which is easier to obtain in fabrication.

In this paper, we propose and theoretically demonstrate an approach to realizing multiresonant
metasurfaces in the visible range, which is based on lattice-induced multipole coupling effects.
The proposed metasurface design consists of regularly arranged (i.e., periodic lattice) array
of dielectric nanocylinders with fixed diameter and height. Multiresonant response of the
metasurface is governed by an energy exchange (coupling) between particular group of Mie-type
multipoles. The paper is organized as follows. In Sec. 2, we present a theoretical model
of multipole coupling in metasurfaces considering multipoles up to the 16-th order. In Sec.
3, we investigate the multipolar response of a dielectric nanostructure supporting high-order
multipoles, and use it as a building block for a metasurface. Via full-wave numerical simulations,
we observe the emergence and evolution of multiple resonances as a function of the unit
cell size, and we explain which multipoles are contributing to each resonance based on the
theoretical model introduced in Sec. 2. Up to three resonances at red, green and blue colors
can be created. Control strategies to enable tunability of these resonances are discussed in Sec.
4, where we investigate how several parameters individually impact the multiple resonances,
including geometric parameters (e.g., finite size of the metasurface and shape of the unit cell),
illumination conditions (e.g., polarization), and surrounding conditions (e.g., the refractive index
of a superstrate).

2. Theoretical background

In order to understand how high-order multipoles can be exploited for the creation of multiresonant
metasurfaces, we first look at the multipole decomposition of reflection and transmission
coefficients for an infinite periodic metasurface, and then present the coupling mechanisms
between such multipoles.

2.1. Multipole decomposition of reflection and transmission coefficients

In order to facilitate the multipole decomposition for a metasurface, we consider an infinite
periodic array of nanoparticles surrounded by a homogeneous medium with refractive index ns.
Furthermore, we assume that all nanoparticles are identical and have inversion symmetry (e.g.,
sphere, cylinder, cube). The electric field reflection r (reflectance R = |r |2) and transmission t
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(transmittance T = |t|2) coefficients of such system can be analytically calculated based on the
multipole decomposition approach [1,39]. If the system is illuminated by a normal incidence
x-axis polarized plane wave propagating along the z-axis, then due to translational symmetry, all
nanoparticles in the metasurface have the same multipole moments and the coefficients r and t
can be approximated as [39]
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In the above equations, k0 = 2π/λ, λ is the wavelength in vacuum, c is the speed of light in
vacuum, ks = k0ns and vs = c/ns are the wavenumber and velocity in the surrounding medium,
ε0 and εs = n2

s are the vacuum and surrounding environment permittivity, respectively, SL is the
unit cell area (SL = P2 for the square unit cell, where P is the lattice period), E0 is the electric
field of the normally incident x-polarized plane wave at the point of moltipole locations in the
elementary cell, p and m are the electric (ED) and magnetic dipole (MD) moment vectors, while
Q̂, M̂, Ô(e), Ô(m), Ŝ(e), and Ŝ(m) are the symmetrized and traceless tensors of electric quadrupole
(EQ), magnetic quadrupole (MQ), electric octupole (EO), magnetic octupole (MO), electric 16-th
pole (E16), and magnetic 16-th pole (M16) moments of the nanoparticles in the metasurface,
respectively. Integral expressions defining multipole moments and their numerical calculation
are presented in Appendix A and Appendix B, respectively.

In contrast to previous works [1,39], the expressions for r and t are extended up to 16-th order
poles. Higher order multipoles are relevant for this study as they significantly contribute in the
visible spectral range at shorter wavelengths. On the other hand, Eqs. (1) are relatively complex
since all multipole contributions are present. To better understand the physics described by these
equations, we introduce effective electric and magnetic dipole moments, and reformulate Eqs. (1)
as
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where peff
x and meff

y are the effective electric and magnetic dipole moments including contributions
from high-order multipole moment components that radiate perpendicular to the metasurface
plane:
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We note that Eqs. (2) are identical to the expressions in the dipole approximation (see Eqs. (20),
(21) of Ref. [1]). This means that, within our system, the high-order multipoles can be considered
as perturbative additions to a certain dipole contribution. Interestingly, as we can see in Eqs. (3),
the effective electric dipole moment includes contributions only from ED, MQ, EO and M16,
while the effective magnetic one only from MD, EQ, MO and E16. This and other properties of
multipoles of the considered system are discussed in the next section.
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2.2. Multipole coupling mechanism

Our system is invariant under inversion symmetry. However, multipole moments of the system
behave differently under inversion operation. For the sake of simplicity, let us consider electric
and magnetic dipole moment vectors. In Fig. 1(a), an electric dipole moment vector p has
positive direction in the original black coordinate system. Under the inversion operation, the
black coordinate system transforms to the red one. In the new inverted coordinate system, the
vector p has negative coordinates, i.e., p i

−→ −p ( i
−→ denotes inversion operation). Such vectors

are called "true" (polar) vectors. In this context the multipole moment components also change
sign in the inverted coordinate system (e.g., ED, MQ, EO and M16), and are known as odd
parity (or simply odd) multipoles [40]. Meanwhile, a magnetic dipole moment vector m can be
defined through a vector product of two "true" vectors (radius vector and p). Since both "true"
vectors change their sign under inversion operation, in the new inverted coordinate system, the
vector m has positive coordinates, i.e., m i

−→ m [Fig. 1(b)]. Such vectors are called pseudovectors
(axial vectors). Multipole moments, which retain the sign of their components under inversion
operation, (such as MD, EQ, MO and E16) are known as even parity (or simply even) multipoles.

Fig. 1. Dipoles and inversion operation. Sketch that shows behavior of (a) electric and
(b) magnetic dipole moment vectors under inversion operation (from black to red coordinate).

In Fig. 2, 2D radiation diagrams of odd and even parity multipoles are illustrated. To understand
the difference between them, let us concentrate on their electric field (black arrows). As we can
see in Fig. 2(a), for the odd multipoles, the electric field has the same phase in opposite radiation
directions. In the case of even multipoles, the phase of the electric field is opposite in those
directions. This means that if fields generated by multipoles with different parities interfere
constructively in one direction, then they interfere destructively in the opposite direction [41].

Fig. 2. Odd and even (under inversion) multipoles. 2D radiation patterns of (a) odd and
(b) even parity multipoles. Arrow, circle (to reader) and cross (from reader) indicate direction
of the electric (black) and magnetic (red) fields. (c) Odd-odd, (d) even-even, (e) odd-even
and (f) even-odd multipole coupling (energy exchange) diagrams in an array.

We now discuss how odd and even multipoles influence each other in periodic 2D arrays with
inverse symmetry. First, we consider odd-odd multipole interaction, shown in Fig. 2(c). In the
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panel, part of a lattice with period Px and Py is shown. We assume that, at the lattice nodes, any
type of odd multipole can be located (blue asterisk). At the position of the central node, the
local electric field generated by surrounding multipoles is Eloc ≠ 0, since the electric field of
odd multipoles has the same phase in opposite directions [see Fig. 2(a)]. This means that there
is an energy exchange (coupling) between odd multipoles in the lattice. The coupling between
odd multipoles happens through their electric field, which is a polar (true) vector. The magnetic
fields of odd multipoles come to the central point in opposite phase and Hloc = 0. Nevertheless,
the total magnetic field at that position can be non-zero because of even multipoles.

In a similar way, we can explain even-even multipole interaction, that is illustrated in Fig. 2(d).
In this case, coupling between even multipoles happens through their magnetic field, which is an
axial vector. In this case, at the position of the central node, we have Eloc = 0 and Hloc ≠ 0.

Now, let us consider cross, odd-even multipole interaction. It is known that multipoles with
different parity do not couple if the system has inversion symmetry [42]. To illustrate it, the
corresponding interaction diagram is shown in Fig. 2(e). The local electric field generated by
even multipoles (surrounding green asterisks) at the position of the odd multipole (blue asterisk)
is Eloc = 0, but the local magnetic field Hloc ≠ 0. For instance, let us take an electric dipole with
moment p, and assume that there is a coupling between electric (blue asterisk) and magnetic
(green asterisk) dipoles. Hence, one can write p = αpEloc + γHloc, where αp is the dipole
polarizability, γ is some proportionality coefficient (bianisotropic polarizability) depending only
on the particle properties. Under the inversion operation, p i

−→ −p, and the fields Eloc
i
−→ −Eloc,

Hloc
i
−→ Hloc because the electric field is a true vector whereas the magnetic field is a pseudovector.

Since for particles with inverse symmetry, αp and γ are the invariant values under the inversion
operation, from the relation p i

−→ −p it follows that the magnetic field Hloc cannot determine
the electric dipole and γ ≡ 0. Similar analysis with the same result can be done for even-odd
multipole interaction shown in Fig. 2(f).

Thus, coupling (energy exchange) between multipoles is possible if they have the same parity.
Due to this reason, the effective electric dipole moment peff

x [see Eqs. (3)] contains only odd
multipole contributions, while the effective magnetic dipole moment meff

y includes only even
ones.

3. Multiresonant metasurfaces: results and discussion

In this section, we design and explain multiresonance behavior of metasurfaces in the visible
spectral range that exploits coupling effects between high-order multipoles. Hence, it is important
that building blocks of the metasurface, i.e., single, isolated particles have to support high-order
multipole response in the same spectral range. As a demonstration example, in this work we
consider a cylindrical nanostructure with fixed diameter D = 200 nm and height H = 300
nm. Furthermore, we assume that surrounding and particle materials are dispersionless and
homogeneous, and have refractive indices of ns = 1.45 (similar to that of fused silica [43] in
the visible) and np = 2.45 (similar to that of diamond [44], titanium dioxide [45] in the visible),
respectively. These parameters allow having the high-order multipoles in the interested spectral
range while being the system realistic.

3.1. Single particle resonances

The numerically calculated scattering efficiency of the single nanocylinder for different polar-
ization and direction of plane wave excitation are shown in Fig. 3. Formulas for the scattering
cross-section are provided in the Appendix A. From Fig. 3(a), we see that for the considered
excitation condition (see inset sketch), the total scattering efficiency is relatively broad and the
most of the incoming waves are scattered in the forward direction (see 3D far-field radiation
pattern). Multipole content analysis of the total scattering efficiency via multipole decomposition
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shows that up to the 16-th order electric and magnetic poles can be resonantly excited in the
considered wavelength range. Furthermore, individual multipole peaks have also relatively broad
spectra and overlap, which makes possible efficient coupling between low (dipole, quadrupole)
and high order (octupole, 16-th pole) multipoles. Similar behavior can be observed for the "side
electric" Fig. 3(b) and "side magnetic" Fig. 3(c) excitation as well. Although, there are several
important differences. First, the spectral positions of ED and MD resonances are flipped in
comparison to Fig. 3(a), i.e., now the ED (MD) resonance is at longer (shorter) wavelength.
Furthermore, as we can see in Fig. 3(b), there is a notable difference between black dashed (total
scattering) and solid (sum of up to 16-th poles) lines below λ = 400 nm, which means that 32-th
pole and higher poles are also excited.

Fig. 3. Single particle response. Multipole decomposition of the total scattering efficiency
(black dashed line) of a single dielectric cylinder with refractive index np = 2.45, diameter
D = 200 nm and height H = 300 nm in glass (ns = 1.45) surrounding for different
polarizations and directions of a plane wave excitation in the visible spectral range. Multipole
sum is presented as a black solid line. The right-hand side of the panels presents the far-field
radiation pattern at the spectral positions indicated by triangular, square and circular orange
points. The scattering efficiency is Q = σ/σ0, i.e., scattering cross-section σ normalized to
the particle’s geometrical cross-section S which is (a) σ0 = πD2/4, (b, c) σ0 = HD.

On the right-hand side of Fig. 3, it is shown the 3D far-field radiation pattern at the wavelength
indicated by triangular, square and circular orange points. As expected, we see more nonuniform
far-field scattering at shorter wavelengths due to the dominating high order multipole contributions.
While at long wavelengths, we see a typical dipole type radiation behavior. Note that the orange
circular point in Fig. 3(c) corresponds to the well-known Kerker effect [41], i.e., no backscattering.

The same calculations were performed for a cuboid particle (height H = 300 nm and side
length of the square base L = 200 nm), and multipoles up to the 16-th order were observed (not
shown). As long as the single nanostructure exhibits such high order multipoles, we will observe
multiple resonances in array configuration as presented in this paper.
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3.2. Optical resonances of metasurfaces

We now use the cylinder nanostructure supporting high-order multipoles as the building block for
a metasurface. We consider an array with a square lattice of period P, and investigate its optical
response via numerical simulations. A sketch of the simulated metasurface and illumination
condition are shown in Fig. 4(a). The metasurface is excited by a z-propagating and x-polarized
plane wave. The refractive indices of materials and geometrical parameters of the cylinder are the
same as in Fig. 3. Figure 4(b) shows a 2D color plot of the reflectance R of the metasurface as a
function of the lattice period P. The white solid line indicates the spectral position corresponding
to the main order Rayleigh anomaly (RA, λRA = nsP) where a diffraction order starts to be
an evanescent wave propagating in the plane of the array. Hence, the RA position divides
the Pλ-plane into two, diffractionless (λ>λRA) and diffractive (λ<λRA) regions. Here, we are
particularly interested on the resonances occurring in the diffractionless region. Depending
on the period P, the metasurface can have a different number of resonances in the visible and
diffractionless regime. We identify four cases, numbered from 0 to 3, based on the number of
resonances that occur in the reflectance spectrum. Below, we look at these particular cases more
in detail by analyzing their multipole content.

Fig. 4. Metasurface resonances for different lattice periods. (a) Sketch of the considered
infinite array of cylinders (with diameter D, height H and index np) placed in a homogeneous
medium with index ns and illuminated with the normal incidence (in z direction) linearly
polarized plane wave. (b) The reflectance R of the metasurface [panel (a)] as a function
of period P. The metasurface parameters are D = 200 nm, H = 300 nm, ns = 1.45 and
np = 2.45. The white dashed line displays the main Rayleigh anomaly (RA) condition
(λRA = nsP), i.e., the area below this line corresponds to the diffractionless regime.

We start with the case denoted by dashed line 0 in Fig. 4(b) corresponding to P = 475 nm.
In Fig. 5(a), the solid line correspond to the numerically calculated total reflectance, while the
dashed line present the reflectance obtained via multipole approximation, i.e., Eqs. (2). One can
note that (in other cases below as well) the full numerical and multipole approximation agree
very well in the dispersionless regime (λ>λRA, right-hand side of the vertical dashed line), while
the latter notably differs in the diffractive regime (λ<λRA, left-hand side of the vertical dashed
line). The reason is that the current form of Eqs. (2) take into account only normally reflected and
transmitted waves, i.e., zero-order diffraction, while full numerical results in our case include all
diffraction order contributions. Oblique incidence case within dipole approximation is considered
in Ref. [46].

As observed in Fig. 5(a), we do not see any distinct resonance in the reflectance. This behavior
can be explained by looking at the individual lattice multipole contributions to the reflection
coefficient. Figure 5(b) visualizes the amplitudes of dominating multipoles contributions over
wavelength. The solid (dashed) lines correspond to the amplitude A of odd (even) multipoles.
We see that around λ = 720 nm all multipoles are in resonance condition and at the resonance
position R = 0. This is the well-known lattice Kerker effect, due to the suppression of (mainly)
ED and MD radiations in backward direction [47]. They have nearly identical amplitude and
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Fig. 5. Resonances in cases 0 and 2. (a) Reflectance R (solid line - full numerical, dashed
line - multipole approximation) and (b) amplitudes A of individual multipole contributions
to the reflection coefficient at the numbered case 0 in Fig. 4 at P = 475 nm. Panels (c) and
(d) visualize the same calculation results for the numbered case 2 in Fig. 4(b) at P = 400 nm.

phase in longer wavelengths as well. Since multipoles with same parity couple, as we discussed
in Sec. 2.2, strong ED (MD) lattice resonance "pull up" MQ and EO (EQ) resonances. They also
suppress each other in backward direction at the resonance (crossing of the green dashed and
black solid lines at R = 0 position). Using the introduced effective electric and magnetic dipole
moments in Eqs. (2), the condition for the Kerker effect can be written as peff

x = meff
y /vs. Under

the conditions of the resonant Kerker effect, electrical and magnetic energy is accumulated in the
particles of the metasurface, as can be seen from the insets in Fig. 5(a).

Decreasing the period of the metasurface leads to detuning the spectral position of ED and
MD resonances with changes of their Q-factors. Such behavior is a result of multipole coupling
in the array. At the beginning, ED and MD contribute to a single resonance in the reflectance,
e.g., the case denoted by dashed line 1 in Fig. 4(b) corresponding to P = 450 nm. Further
decreasing the period [e.g., see dashed line 2 in Fig. 4(b)] leads to a split of the single resonance
into two resonances as one can also see in Fig. 5(c). This is because, now, the spectral separation
between ED and MD resonances is large enough and each of them form a separate resonance in
the reflection. Importantly, not only ED and MD, but also other higher order multipoles are also
separated according to their parity. This is because they, i.e., the multipoles with the same parity,
are coupled and behaves as an effective dipole.

Another interesting point is that at certain wavelengths, the amplitude of a multipole contribution
becomes zero. For example, in Fig. 5(d), the amplitudes of the ED and MD are zero at around
λ = 600 nm and λ = 620 nm, respectively. At those spectral positions the multipoles are
suppressed. It is known that within the dipole approximation, the suppression happens at the RA
position (indicated by vertical black dashed line), and is observed as R = 0. However, in our
case, the suppression positions of ED and MD are shifted to the long wavelength side, and hence,
their amplitudes are nonzero at the RA. This is due to the coupling of the dipoles with higher
order multipoles in an array, as was shown analytically in Ref. [48]. In particular, ED (MD)
can disappear due to the vanishing of the local electric (magnetic) field caused by destructive
interference between the incident external field and the field generated by odd (even) multipoles
of a higher order. Due to the reciprocity principle, such suppression can also occur in relation to
multipoles of higher order but at other spectral points.

In Fig. 5(d), we observe that the third resonance starts emerging around λ = 580 nm. At that
position, amplitudes of resonant even parity multipoles (indicated by a black dashed arrow) are a
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bit bigger than the odd ones (indicated by a black solid arrow) and due to partial suppression,
there is partial reflection. Further, as we can see in Fig. 6(a), this resonance is "fully realized" for
P = 350 nm at λ = 510 nm by making the metasurface to have three resonances. The reason is
that, now, even (dashed arrow) and odd (solid arrow) parity multipole resonances are spectrally
separated and provide partially constructive and destructive contributions into the maximum
reflection. Note that due to the interference suppression of the dipole contributions, the reflection
resonances have the asymmetric line-shape (Fano-type profile) [49].

Fig. 6. Resonances in case 3. (a) Reflectance R (solid line - full numerical, dashed line -
multipole approximation) and (b) amplitudes A of individual multipole contributions to the
reflection coefficient at the numbered case 3 shown in Fig. 4 (at P = 350 nm). (c) Electric
and (d) magnetic near-field distributions at the wavelengths indicated by triangle, asterisk,
square and circle orange markers in (a).

In Fig. 6(c,d), the near-field distributions on the xy-plane at the resonance positions (indicated
by orange markers) are shown. For the middle resonance (square marker), the electric field is
mostly confined in the space between particles and its intensity is enhanced up to 100 times. For
such resonance, the average enhancement of the electric field intensity over a volume V external
to the nanoparticle is 1/V

∫
|E/E0 |

2dV ≈ 25 (V in the z-direction is symmetric with respect to
the nanoparticle, and has a height of 600 nm to include the near-field in all directions). This can
have potential applications in areas such as sensing and nonlinear optics.

Finally, we would like to demonstrate the impact of the high-order multipoles on the spectrum.
Equations (2) for the reflection r and transmission t coefficients include contributions of up to
the 16-th order poles. Without those contributions, the calculations will be not accurate enough.
This is demonstrated in Fig. 7, which shows the reflectance R and transmittance T (dashed lines)
obtained within the dipoles, quadrupoles and octupoles approximations, respectively, for P = 350
nm. We observe that dipoles and quadrupoles are not enough to qualitatively catch all resonances,
especially for transmittance. It is necessary to consider at least up to octupoles to qualitatively
reproduce all spectral features. However, even octupoles are not enough to preserve the energy
conservation law.

We highlight that the system considered here can also exhibit four and five resonances, e.g.,
for periods P = 300 nm and P = 250 nm, respectively. However, for these periods the distance
between the nanoparticles becomes very small, which makes the fabrication of such metasurfaces
problematic. Furthermore, for an accurate description of the resonances occurring at shorter
wavelengths the next order multipoles may be required.
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Fig. 7. Impact of high order multipoles. Comparison of the full numerical (solid lines)
versus multipole approximation based (dashed lines) reflectance and transmittance of a
metasurface with period P = 350 nm, (a) up to dipole, (b) quadrupole and (c) octupole
contributions.

4. Tunability of multiresonances: impact of size, lattice and external conditions

In order to explore the tunability of our multiresonant metasurface, in this section, we investigate
the influence of inhomogeneous environment, absorption, array size, and rectangular lattice with
different periods in different directions on the metasurface resonances.

Since real metasurfaces have finite size, we first investigate the influence of the metasurface
size on the multiresonant response. In Fig. 8, the reflectance of the finite size metasurface with
period P = 350 nm for different array sizes is shown. The numerical approach for the estimation
of the reflectance for a finite size metasurface is presented in Appendix C. In order to realize
all three resonances with average 50% of reflectance, the array has to have approximately 50
disks in each direction (in total 2500 disks). This in general holds for relatively broad resonances
(e.g., quality factor QF ≲ 100). However, for a narrow resonances with QF ≳ 1000, one can
estimate that the number of particles has to be ∼ 100 times larger (approximately 500 disks in
each direction). The reason is that radiation loss due to the finite size effects can be considered as
an absorption. Accordingly, in such lossy systems, realization of high quality factor resonances,
which has long lifetime, is generally problematic.

In many cases array of nanoparticles are fabricated on a glass substrate. In that case, a
superstrate can be used to tune or control their optical response [20]. In Fig. 9, the reflectance
of an infinite metasurface on a substrate with index nsub = 1.45 and with period P = 350 nm
for different superstrate refractive indices nsup is shown. The resonances are quite sensitive to
the superstrate-to-substrate index contrast. For example, a single broad resonance associated
with the resonant excitation of even multipole moments is observed in air (nsup = 1). Immersion
of the structure in water (nsup = 1.33) leads to the appearance of the second relatively narrow
resonance associated with the odd multipoles. As we already know, for the homogeneous case
nsup = nsub = 1.45, the metasurface exhibits three resonances. For nsup>nsub, there are only
two resonances in the diffractionless region (the third short-wavelength resonance occurs in
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Fig. 8. Impact of the array size. Reflectance of the metasurface with P = 350 nm for
different array size Nx×Ny, where Nx and Ny are the number of particles in x and y directions,
respectively.

the diffractive region). These resonances become closer to the RA of the superstrate at longer
wavelength and eventually disappear. Here, it is important to note that when nsup ≠ nsub, the
inversion symmetry is broken and due to the reflection at the interface, coupling between odd
and even multipoles becomes possible [42].

Fig. 9. Impact of the superstrate. Reflectance of the metasurface on a substrate
(nsub = 1.45) with P = 350 nm for different superstrate materials with refractive index
nsup. The horizontal dashed line corresponds to the metasurface in a homogeneous medium
(nsup = nsub). The vertical and inclined dashed lines indicate the spectral position of the
main Rayleigh anomaly of glass substrate and superstrate, respectively.

In Sec. 3.2, we considered the lattice with square elementary cells: P = Px = Py. However, as
we have seen in Fig. 4(b), by varying the period one can change resonances strongly. Metasurface
with a rectangular lattice (Px ≠ Py) allows to switch between two different states by changing the
excitation polarization. For example, as we see in Fig. 5(b), the square lattice metasurfaces with
period P = 350 nm and P = 450 nm exhibit three and single resonances, respectively. We can
switch back and forth between these states in the case of rectangular lattice with Px = 350 nm
and Py = 450 nm. This is demonstrated numerically in Fig. 10(a). It is possible to "turn off"
the first two short wavelength resonances (around λ = 600 nm and λ = 650 nm) by changing
the polarization from x (φ = 0) to y (φ = 90 deg.), while the third long wavelength resonance
(λ = 700 nm) experiences a small red shift. Similar polarization control of the colors (resonances)
can be done other Px and Py combinations within or outside of Fig. 5(b). The lattice period can be
optimized to tune the resonances around RGB colors, which is important for metasurface-based
pixel application. For example, Fig. 10(b) depicts the above simulation for Py = 275 nm. The
green resonance (letter G) position basically does not depend on the polarization, but the red
(letter R) and blue (letter B) do. Hence, for the x polarization, we mix green and red colors, while
for the y polarization, blue and green. In the middle, i.e., at φ = 45 deg., we have essentially
all three RGB colors. There are also two relatively narrow resonances between blue and green,
and green and red resonances. In practice, they have less impact on the final spectra because of
manufacturing imperfections and spectral resolution.
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Fig. 10. Impact of the lattice shape. Reflectance of the metasurface with rectangular
lattice for different polarization angle φ for (a) Px = 350 nm and Py = 450 nm and
(b) Px = 350 nm and Py = 275 nm. In (b), the top color bar visualizes the wavelength range
of the x-axis. The left color bar shows the color appearance of the reflectance (using CIE
1931 color space and D65 light source) as a function of the angle φ.

5. Conclusion

We have proposed and numerically demonstrated an approach to realize multiresonance all-
dielectric metasurfaces in the visible spectral range based on high-order multipole moments. Our
theoretical and numerical analysis shows that the physical mechanism behind the emergence
of multiple resonances is the coupling between lattice multipoles with the same parity. In this
mechanism, high order multipoles play a crucial role. High-order multipoles were enabled by
using dielectric nanostructures made of materials with negligible losses in the visible, such as
diamond or titanium dioxide. By engineering the period of a metasurface with a square lattice,
i.e., by modulating the coupling between the nanostructures, it is possible to obtain an increasing
number of resonances, up to three resonances simultaneously nearly at red, green and blue (RGB)
wavelengths. Furthermore, by changing the refractive index of a superstrate (which can be
effectively obtained, e.g., by changing the level of water or other index matching liquids), one
can dynamically control the position of these resonances. A strategy based on a rectangular
unit cell and tuning of the resonances based on the polarization angle of the incident wave was
also presented, which may lead to the possibility of mixing colors, i.e., for different polarization
angles, the reflectance can include resonances from different color regions. The theoretical
details on multipole decomposition provided in this paper leads to a deeper understanding of the
metasurface’s response, and may open new opportunities for the engineering of multiresonant
metasurfaces, including the development of techniques for the indipendent tuning of each single
resonance. All-dielectric multiresonant metasurfaces may find application in coloring technology,
displays, multiband sensors, augmented reality, nonlinear nanophotonics (e.g., for sum frequency
generation and four-wave mixing), and quantum state engineering.

Appendix A: multipole moments

This section contains formulas for multipole moments that have been used in Eqs. (2). We
would like to list them explicitly for the sake of completeness and for convenience of a reader.
Essentially, the exact detraced and symmetrized multipole moments up to E16 is provided in Ref.
[50]. However, the expression for the latter one is more cumbersome than others. Therefore, we
simply use the symmetrized primitive moment for M16 which is relatively easy to implement.

Electric dipole (ED) Vector of the electric dipole moment

p = i
ω

∫
V

j0(ksr)jdV +
ik2

s
2ω

∫
V

j2(ksr)
(ksr)2

[3(j · r)r − r2j]dV . (4)
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The scattering cross-section of the electric dipole radiation is

σED =
k4

0

6πε2
0 |E0 |2

|p|2. (5)

The x component of p is

px =
i
ω

∫
V

j0(ksr)jxdV +
ik2

s
2ω

∫
V

j2(ksr)
(ksr)2

[3(j · r)x − r2jx]dV . (6)

Magnetic dipole (MD) Vector of the magnetic dipole moment

m = 3
2

∫
V

j1(ksr)
ksr

(r × j)dV . (7)

The scattering cross-section of the magnetic dipole radiation is

σMD =
k4

0εsµ0

6πε0 |E0 |2
|m|2. (8)

The y component of m is

my =
3
2

∫
V

j1(ksr)
ksr

(zjx − xjz)dV . (9)

Electric quadrupole (EQ) Tensor of the electric quadrupole moment

Q̂ =
3i
ω

∫
V

j1(ksr)
ksr

[3(rj + jr) − 2(r · j)ÛdV

+
6ik2

s
ω

∫
V

j3(ksr)
(ksr)3

[5(r · j)rr − r2(jr + rj) − r2(r · j)ÛdV .
(10)

The scattering cross-section of the electric quadrupole radiation is

σEQ =
k6

0εs

720πε2
0 |E0 |2

∑︂
αβ

|Qαβ |
2. (11)

The xz component of Q̂ is

Qxz =
3i
ω

∫
V

j1(ksr)
ksr

[3(xjz + jxz)]dV

+
6ik2

s
ω

∫
V

j3(ksr)
(ksr)3

[5(r · j)xz − r2(xjz + jxz)]dV .
(12)

Magnetic quadrupole (MQ) Tensor of the magnetic quadrupole moment

M̂ = 5
∫

V

j2(ksr)
(ksr)2

[(r × j)r + r(r × j)]dV . (13)

The scattering cross-section of the magnetic quadrupole radiation is

σMQ =
k6

0ε
2
s µ0

80πε0 |E0 |2

∑︂
αβ

|Mαβ |
2. (14)
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The yz component of M̂ is

Myz = 5
∫

V

j2(ksr)
(ksr)2

[(zjx − xjz)z + y(xjy − yjx)]dV . (15)

Electric octupole (EO) Tensor of the electric octupole moment

Ô(e) =
15i
ω

∫
V

j2(ksr)
(ksr)2

(jrr + rjr + rrj − Â(e))dV , (16)

where the components of the tensor Â(e) are

A(e)
αβγ = δαβV (e)

γ + δαγV (e)
β + δβγV (e)

α , V(e) =
1
5
[2(r · j)r + r2j]. (17)

The scattering cross-section of the electric octupole radiation is

σEO =
k8

0ε
2
s

1890πε2
0 |E0 |2

∑︂
αβγ

|O(e)
αβγ |

2. (18)

The xzz component of Ô(e) is

O(e)
xzz =

15i
ω

∫
V

j2(ksr)
(ksr)2

[(jxz2 + 2xzjz) −
1
5
(2(r · j)x + r2jx)]dV . (19)

Magnetic octupole (MO) Tensor of the magnetic octupole moment

Ô(m) =
105
4

∫
V

j3(ksr)
(ksr)3

[(r × j)rr + r(r × j)r + rr(r × j) − Â(m))]dV , (20)

where the components of the tensor Â(m) are

A(m)

αβγ = δαβV (m)
γ + δαγV (m)

β + δβγV (m)
α , V(m) =

1
5

r2(r × j). (21)

The scattering cross-section of the magnetic octupole radiation is

σMO =
k8

0ε
3
s µ0

1890πε0 |E0 |2

∑︂
αβγ

|O(m)

αβγ |
2. (22)

The yzz component of Ô(m) is

O(m)
yzz =

105
4

∫
V

j3(ksr)
(ksr)3

[(zjx − xjz)z2 + 2(xjy − yjx)yz −
1
5

r2(zjx − xjz)]dV . (23)

Electric 16-pole (E16) Tensor of the electric 16-pole moment

Ŝ(e) =
105i
ω

∫
V

j3(ksr)
(ksr)3

(jrrr + rjrr + rrjr + rrrj − B̂(e))dV , (24)

where the components of the tensor B̂(e) are

B(e)
αβγτ =

1
7
(δαβC(e)

γτ + δαγC(e)
βτ + δατC(e)

βγ + δβτC(e)
αγ + δβγC(e)

ατ + δγτC(e)
αβ)

+
4
15

r2(r · j)(δαβδγτ + δαγδβτ + δατδβγ),

Ĉ(e) =2(j · r)rr + r2(jr + rj) − 4
3

r2(r · j)Û.

(25)
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The scattering cross-section of the electric 16-pole radiation is

σE16 =
k10

0 ε
3
s

72576πε2
0 |E0 |2

∑︂
αβγτ

|S(e)αβγτ |
2. (26)

The xzzz component of Ŝ(e) is

S(e)xzzz =
105i
ω

∫
V

j3(ksr)
(ksr)3

[(3jzxz2 + jxz3) −
3
7
(2(r · j)xz + r2(jzx + jxz))]dV . (27)

Magnetic 16-pole (M16) Tensor of the magnetic 16-pole moment

Ŝ(m) = 189
∫

V

j4(ksr)
(ksr)4

[(r × j)rrr + r(r × j)rr + rr(r × j)r + rrr(r × j) − B̂(m)]dV , (28)

where the components of the tensor B̂(m) are

B(m)

αβγτ =
1
7
(δαβC(m)

γτ + δαγC(m)

βτ + δατC(m)

βγ + δβτC(m)
αγ + δβγC(m)

ατ + δγτC(m)

αβ ),

Ĉ(m) = r2[(r × j)r + r(r × j)].
(29)

The scattering cross-section of the magnetic 16-pole radiation is

σM16 =
k10

0 ε
4
s µ0

72576πε0 |E0 |2

∑︂
αβγτ

|S(m)

αβγτ |
2. (30)

The yzzz component of Ŝ(m) is

S(m)
yzzz = 189

∫
V

j4(ksr)
(ksr)4

[3y(xjy − yjx)(z2 −
1
7

r2) + z(zjx − xjz)(z2 −
3
7

r2)]dV . (31)

The sum of these individual scattering cross-sections approximate the numerical total cross-
section σTot:

σTot ≈ σSum = σED + σMD + σEQ + σMQ + σEO + σMO + σE16 + σM16. (32)

In the above equations: µ0 is the vacuum permeability, ω is the circular frequency, r is the vector
of the coordinates of a point dipole located in the particle volume V , r = |r|, j = j(r) is the
current density vector inside the particle volume V , r · j = xjx + yjy + zjz, jn(x) is the n-th order (in
general n ∈ C) spherical Bessel function (dot not mix it with components of the current density
jx, jy and jz which uses letter indices), δαβ is the Kronecker delta, Û is the unit tensor. The Greek
letter indices α, β stand for x, y and z. Terms like rj ≡ r ⊗ j means outer product (also known as
tensor, dyadic product) between vectors r and j.

Appendix B: how to calculate the multipole moments numerically?

We calculated the multipole moments in ANSYS Lumerical’s FDTD or DGTD 3D electromagnetic
solver. To calculate the multipole moments, we need to know the electric field E inside a particle.
When E is known, the current density can be calculated as

j = −iωε0(εp − εs)E = −iω(D − ε0εsE), (33)

where D is the electric displacement field. We use "Displacement field" analysis object of ANSYS
Lumerical (it is available within the FDTD solver, see "Advanced analysis" category in "Object
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Library") which calculates E, D and the 3D grid of the analysis region. The latter allows us to
extract the fields only inside the particle.

One can note that Eqs. (2) and the scattering cross-sections contain the electric field E0 of the
incident wave at the center position of the particle. To calculate E0 first, we run the simulation
without the particle by disabling it (or by assigning to it the refractive index of the surrounding
material) and save the E0 at the center position of the particle. This can be done by using a "point
field monitor". After that, we can use the saved E0 in the second simulation with the particle.
Furthermore, the "CW normalization (first source)" has to be selected in the settings of ANSYS
Lumerical (Setting→Normalization state) in both simulations. Note that for Eqs. (2) the fields
must be calculated with periodic boundary conditions along x and y directions, and perfectly
matched layer (PML) boundary condition along z direction, while for the scattering cross-section
calculations, PML must be used in all x, y and z directions.

Appendix C: calculation of reflectance of a finite size metasurface

Reflectance of a finite size metasurface are simulated by using the “Transmission box” analysis
group object of ANSYS Lumerical. We define the reflectance as a backscattered power normalized
to the total-field scattered-field (TFSF) source power. Sketch of the setup is shown in Fig. 11. The
backscattered power is calculated by placing the “Transmission box” outside of the TFSF source
box and power going through the solid blue line is counted. To minimize the influence of the
TFSF source size on simulation results, we keep half period P/2 gap between metasurface, TFSF
box, and “Transmission box” as shown in Fig. 11. The size of the TFSF box in the propagation
direction is 2 µm.

Fig. 11. Finite size metasurface and TFSF source. Positions of the total-field scattered-
field (TFSF) source box and “Transmission box” analysis object to calculate the reflectance
of a finite size metasurface.
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