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We investigate patent litigation, settlements and R&D incentives on a market where two firms develop 
technologies in order to obtain patents and produce goods. Firms may sell IP rights to a Patent Assertion Entity 
(PAE) that acts as intermediary for patent monetization. We find that compared to simultaneous market entry, 
the effect of this so-called patent privateering is mitigated if firms enter sequentially. Furthermore, we show that 
privateering may decrease industry profits by distortion of R&D incentives even when there is no rent extraction 
by the PAE.
1. Introduction

Over the last few decades, patents have become increasingly impor-

tant, especially in high-tech industries. This development has given rise 
to a new business model in which firms strategically build patent port-

folios. Often, patents are not used for production but instead to license 
their technology to other firms under the threat of litigation. By refrain-

ing from selling products, these companies are not exposed to infringing 
other companies’ patents and, therefore, are shielded from counter-

lawsuits when enforcing their patents. The report by the Federal Trade 
Commission (2016) differentiates between firms that develop their own 
technologies and patents—non-producing entities (NPEs)—and firms 
that do not invest in R&D but acquire patents to monetize them—patent 
assertion entities (PAEs).

In this paper, we focus on patent privateering, which describes a 
patent transaction between a producing firm and a PAE—the patent 
privateer (or IP privateer)—that will then accuse competitors of the 
original firm of patent infringement. Following Ewing (2012), patent 
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privateering can be formally characterized as the beneficial application 
of third-party intellectual property rights for a sponsoring entity against 
a competitor to achieve a corporate goal of the sponsor.

The topic of IP privateering has been investigated from a legal point 
of view (see, for instance, Popofsky and Laufert (2014), Ewing (2012), 
Sipe (2016), Thumm (2018), Harris (2014), and Sokol (2017)). There 
is also an ongoing debate in research and the media on whether pri-

vateering is desirable from the perspective of social welfare.1 On the 
one hand, privateering may decrease overall R&D incentives by skim-

ming the rents of competing innovative firms and partly destroying the 
defensive values of patent portfolios. In addition, it may lead to exces-

sive litigation and legal costs, which is another source of inefficiency. 
On the other hand, privateers could play the role of a financial interme-

diary that helps monetize patents and increases incentives to invest in 
R&D. If firms underinvest in R&D relative to the socially efficient level, 
privateering can induce firms to choose investments closer to the effi-

cient outcome due to a rent-seeking incentive. Higher R&D investments 
accelerate the development of innovative technologies, which is ben-
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eficial for society. Lemus and Temnyalov (2017) provide a theoretical 
framework to investigate the effects of privateering on R&D investments 
in a setting where firms simultaneously enter the market. They empha-

size the possibly positive effects that patent privateering may have on 
R&D efforts and social welfare.

We contribute to this debate by providing an argument suggesting 
that privateering may be even less desirable than previously assumed. 
Specifically, we investigate the effects of privateering in the context of 
sequential market entry. There are many reasons why one firm may be 
forced to delay its market entry. For instance, there could be opera-

tional constraints (e.g., manufacturing delays or capacity constraints), 
organizational constraints (e.g., financial constraints), or technological 
constraints (e.g., product differentiation corresponding to the need for 
access to future technologies).2 We show that sequential rather than si-
multaneous entry has several implications for the structure of licensing 
agreements and the role of privateering.

In our setting, two firms make simultaneous R&D investments on 
multiple components. After all the components necessary for produc-

tion have been developed, firms can enter the market. Crucially, firms 
do not enter at the same time. We assume that one firm enters first, and 
the other firm is constrained to enter only after a certain amount of de-

lay. Firms can generate profits from selling in the product market and 
from enforcing their patents through licensing agreements or litigation. 
Additionally, firms can sell their patents to a privateer while retaining a 
license for themselves. The privateer would then monetize the acquired 
patents against one of the competitors of the original patent owner. To 
investigate the effects of privateering on R&D and welfare, we com-

pare licensing and product market outcomes in environments with and 
without privateering.

We provide insights into how privateering affects licensing agree-

ments and, therefore, R&D incentives when firms enter the product 
market sequentially. Our results suggest that the positive effects of 
privateering, i.e., enhancing R&D efforts, are mitigated by sequential 
entry. The intuition for this result is as follows: The last firm to enter the 
product market cannot be a target of an infringement counter-lawsuit 
litigation during the period when the other firm has already entered the 
market. This immunity to litigation, even if it is only temporary, pro-

vides the same strategic advantage to the privateer in a setting with 
simultaneous entry. Consequently, a single firm may achieve the same 
outcomes whether it sells patents to a privateer or not. Thus, sequential 
market entry reduces the impact of a privateer since the laggard firm 
itself acts as a privateer. Furthermore, we provide evidence that priva-

teering can reduce industry profits because it leads to over-investment 
in R&D.

The results of our paper may apply to oligopolistic markets in the 
high-tech industry in which firms need access to new technologies to 
enter. More specifically, we focus on markets in which competitors en-

ter sequentially.

We contribute to the economic literature on innovation and patents. 
More specifically, we focus on the impact of privateering on incentives 
and welfare. Our model closely follows the work of Lemus and Tem-

nyalov (2017). The crucial difference is that we relax the assumption 
of simultaneous entry, demonstrating that it qualitatively changes the 
results. Our main contribution is to study sequential entry in a licens-

ing model with asymmetric bargaining partners (where the asymmetry 
arises from delayed market entry) and a PAE as an intermediary. Other 
articles focusing on privateering include Geradin (2019), who investi-

gates how IP privateering leads to downstream market exclusion. Kesan 
et al. (2019) investigate privateering from an empirical perspective.

More broadly, there is a larger literature on PAEs. For example, in 
their empirical work, Cotropia et al. (2014) present arguments for and 

2 In the quantitative analysis of patent infringement claims by Kesan et al. 
(2019), it was found that IP privateers tend to acquire patents in the information 
2

technology sector, aligning with the scope of our work.
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Fig. 1. Timing of the game.

against PAEs. Another seminal paper in this literature is Choi and Ger-

lach (2017), who investigate PAE’s litigation strategies for exogenously 
given patent portfolios. More recently, He (2020) investigates PAE’s set-

tlement strategies in a setting with asymmetric information, and Bergin 
(2022) investigates how PAE activity affects R&D incentives, focusing 
on the exclusive value of patents. Other papers in this area include 
Hovenkamp (2013) and Choi and Gerlach (2018). To the best of our 
knowledge, the present paper is the first study investigating the effects 
of privateers on markets with sequential entry.

The remainder of this paper is organized as follows. In Section 2, 
we describe our model in detail. In Section 3, we provide bargaining 
solutions for different patent allocations and derive equilibrium transfer 
outcomes. Using these results, we discuss the effect that privateering 
may have on R&D incentives in Section 4. Section 5 concludes.

2. Model setup

We investigate a multi-stage game with complete information. Firms 
𝐴 and 𝐵 exert R&D efforts to develop technologies necessary for the 
production of goods, where the production of one’s goods may poten-

tially require technologies developed by the rival firm. Both firms need 
access to the same set of technologies  = {1, … , 𝑁} to be able to pro-

duce. Before the goods can be sold on the product market, all associated 
technologies have to be developed. We assume that one firm enters the 
product market before the rival does. Without loss of generality, sup-

pose that firm 𝐴 enters before 𝐵.

The timing of the events is illustrated in Fig. 1. First, firms invest 
in R&D, start research and immediately obtain patents for their respec-

tive inventions. Afterwards, firm 𝐴 enters product market. At that time, 
firms may engage in privateering and make licensing agreements. Then, 
firm 𝐵 enters product market and firms may engage in licensing again.

At the start of the game, firms 𝐴 and 𝐵 simultaneously make lump-

sum R&D investments 𝑥 ≥ 0 and 𝑦 ≥ 0.3 The costs associated with R&D 
are 𝐶(⋅) with the respective effort 𝑥 or 𝑦 as argument. We make the 
following standard assumptions: 𝐶(⋅) is increasing, convex and dif-

ferentiable and 𝐶(0) = 0, 𝐶 ′(0) = 0. We assume that lump-sum R&D 
expenditures at the start of the game determine the probability of dis-

covering each technology. If a firm chooses zero R&D effort, it will 
never develop any technology. After investments are sunk, 𝑁 parallel 
R&D races start. We assume that all technologies are equally valuable 
for production and difficult to develop. Thus, each firm allocates the 
same amount of effort to every technology.4 Times at which firms 𝐴
and 𝐵 discover technology 𝑖 ∈  are exponentially distributed, i.e., 
𝜏𝐴,𝑖 ∼ exp (𝑥) and 𝜏𝐵,𝑖 ∼ exp (𝑦). The probability that 𝐴 wins race 𝑖 is 
ℙ(𝜏𝐴,𝑖 ≤ 𝜏𝐵,𝑖) = ∫ ∞

0 ∫ 𝑡0 𝑥e−𝑥𝑠𝑦e−𝑦𝑡d𝑠d𝑡 = 𝑥∕(𝑥 + 𝑦). So, basically firms 

3 This is in line with Lemus and Temnyalov (2017) and Loury (1979).
4 These assumptions are critical because relaxing them results in two prob-

lems. First, if technologies differ in ex ante values or difficulties, both firms 
decide about individual effort levels for each component. Thus, firms do not 
only face a level but also allocation and project choice problems, which changes 
the structure of the model and is beyond the scope of this paper. Second, patent 
portfolios could not be characterized by the number of patents they consist of. 
Instead, the value of a portfolio would be a function of patent combinations, 

which makes our licensing negotiation approach not applicable.
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compete in 𝑁 identical Tullock contests with the respective technology 
as single prize.5 Accordingly, the probability that 𝐴 wins exactly 𝑘 out 
of 𝑁 races is then

𝑃 (𝑘;𝑥, 𝑦) =
(
𝑁

𝑘

)
⋅
(

𝑥

𝑥+ 𝑦

)𝑘
⋅
(

𝑦

𝑥+ 𝑦

)𝑁−𝑘
. (1)

Each technology 𝑖 ∈  is developed at time 𝜏𝑖(𝑥, 𝑦) =min[𝜏𝐴,𝑖(𝑥), 𝜏𝐵,𝑖(𝑦)]. 
The firm that discovers a technology first obtains a patent on it at no 
cost. We assume that patenting is publicly observable so that firms can 
freely imitate any technology discovered by any other firm without de-

lay.6 At the end of this stage, all 𝑁 technologies are developed. The 
outcome of the stage is a realization of patent portfolios over . As 
a consequence of the assumption that all technologies are equally im-

portant for production, a portfolio can be characterized by the number 
of patents it includes. Denote the time at which all technologies are 
discovered as 𝑡𝐴 =max𝑖∈[𝜏𝑖(𝑥, 𝑦)].

At time 𝑡𝐴, firm 𝐴 enters product market. Note that entry is possible 
even without owning all related patents or licenses because of observ-

ability of technologies and cost-less imitation.7 We assume that entry is 
free and product market profits are high enough to make it a strict dom-

inant strategy, such that 𝐴 always enters. For the time span at which 𝐴
is a monopolist on the product market, it realizes the flow profit 𝜋𝑚 > 0
per unit of time. Profits are discounted with rate 𝑟 > 0.

When firm 𝐴 enters, firms 𝐴 and 𝐵 may engage in privateering, 
where a single PAE acts as a bargaining partner for both firms. Each 
firm may sell a subset of its patents to the PAE, where subsets and 
prices are determined by simultaneous bilateral and symmetric Nash 
bargaining. The inventor of a technology retains a free usage license. 
All patent holders and producers may engage in licensing. 𝐴 already 
uses technologies for production and 𝐵 will use them later. Licensing 
agreements are defined by simultaneous bilateral and symmetric Nash 
bargaining with patent litigation trials as outside option. We employ a 
simplistic approach to determine expected litigation outcomes. If a firm 
uses a technology without owning the related patent or permission of 
the patent holder, it can be subject to a patent infringement lawsuit. 
In the context of the process, the validity of each involved intellec-

tual property right is checked. If a patent has been validated by court, 
courts will not re-evaluate its validity. As a consequence, a patent that 
has been involved in an infringement claim cannot be used in a second 
one. We assume that a license cannot be retracted, such that the same 
is true in case of bargaining and licensing. Denote 𝐷 > 0 the expected 
lump-sum damage payment per patent a firm has to pay if it infringes 
on it. A lawsuit incurs costs 𝐿 > 0 for each involved party, regardless 
of the number of involved patents. Counter-litigation incurs no addi-

5 We employ a simplified approach for the sake of manageability. The pri-

mary objective of this study is to examine the effects of patent privateering 
within a sequential framework. Privateering affects the outcomes of licensing 
negotiations, contingent upon the patent portfolios held by firms. Because li-
censing starts after all technologies are discovered, the specific configuration 
of the innovation process itself is immaterial to our findings, as long as higher 
R&D investments correspond to earlier access (in expectation) and an increased 
likelihood of patent ownership.

6 For tractability, we abstract from strategic technological secrecy or delay of 
patenting and assume immediate publication of patents. In reality, patents and 
the related technologies are published after a legally defined period of time. 
As long as companies need access to all new technologies to be developed and 
have not developed all of them themselves, they must wait for publication. The 
earliest possible time of market entry would then be either 𝑡𝐴 or 𝑡𝐴 + 𝜖, where 𝜖
represents the exogenous time between patenting and publication. Since 𝜖 > 0
does not change the structure of the payoffs with respect to R&D investments, 
our results are robust. We assume that patenting costs are low such that it is 
always profitable to develop a technology. This avoids the problem of project 
choice, which would be beyond the scope of this paper.

7 Note that production of the good is possible for 𝐴 without owning all related 
patents. An extreme case, in which firm 𝐵 owns all patents and 𝐴 enters product 
3

market is within the scope of our model.
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tional costs if it is initiated immediately. As a consequence, a producing 
firm that is sued for patent infringement will always counter-litigate, 
i.e., sue the plaintiff for patent infringement at the time at which it is 
impeached. Since market entries occur sequentially in our setting, there 
are two reasonable times at which patents may be used - entry of 𝐴 and 
entry of 𝐵 (after 𝐵 enters, it may be subject of infringement claims, 
too). Firms always use their whole patent portfolio. Thus, expected liti-
gation outcomes depend on the allocation of patents across the involved 
parties and the time span between market entries. Licensing agreements 
include the specification of transfer payments, which are determined by 
symmetric and bilateral Nash bargaining.

We assume that firm 𝐵 enters the product market after firm 𝐴, 
where the time span between entries is exogenous and denoted as 
Δ𝑡 > 0. From time 𝑡𝐵 = 𝑡𝐴 + Δ𝑡 on, 𝐴 and 𝐵 generate product market 
duopoly flow profits 𝜋𝑑 > 0 per unit of time, respectively. Again, we as-

sume profits are high enough to make entry a strict dominant strategy.8

Firms and patent owners may engage in licensing at 𝑡𝐵 again. We for-

mulate the game with two separate licensing stages for the sake of com-

pleteness. The outcome of licensing and privateering stages, namely, 
the determination of overall transfer payments, will be summarized in 
one term capturing potential 𝑡𝐴 and 𝑡𝐵 payments.

Ex ante expected payoffs of firms 𝐴 and 𝐵 are

Π𝐴(𝑥, 𝑦) = 𝛿𝑡𝐴 (𝑥, 𝑦) ⋅

{
(1 − 𝛿) ⋅

𝜋𝑚

𝑟
+ 𝛿 ⋅

𝜋𝑑

𝑟
+

𝑁∑
𝑘=0

[
𝑃 (𝑘;𝑥, 𝑦) ⋅ 𝑇̂ (𝑘, 𝛿)

]}
−𝐶(𝑥) (2)

and

Π𝐵(𝑥, 𝑦) = 𝛿𝑡𝐴 (𝑥, 𝑦) ⋅

{
𝛿 ⋅
𝜋𝑑

𝑟
−

𝑁∑
𝑘=0

[
𝑃 (𝑘;𝑥, 𝑦) ⋅ 𝑇̂ (𝑘, 𝛿)

]}
−𝐶(𝑦), (3)

respectively, where we denote the expected discount factor between 
time of R&D investments and 𝐴’s entry as 𝛿𝑡𝐴 (𝑥, 𝑦) and the discount 
factor between market entries as 𝛿 ∈ (0, 1). The expected time at which 
𝐴 enters is endogenously determined by R&D investments, such that the 
corresponding discount factor is a function of 𝑥 and 𝑦:

𝛿𝑡𝐴
(𝑥, 𝑦) = 𝑁! (𝑥+ 𝑦)𝑁∏𝑁

𝑗=1[𝑟+ 𝑗(𝑥+ 𝑦)]
. (4)

The derivation of 𝛿𝑡𝐴 (𝑥, 𝑦) is presented in Appendix A. 𝛿𝑡𝐴 (𝑥, 𝑦) is 
strictly increasing in the R&D efforts as the expected time to develop 
each technology decreases as the total R&D effort increases. It is strictly 
decreasing in the number of technologies 𝑁 , as a higher number of 
technologies is expected to take longer to develop and therefore leads to 
stronger discounting, or equivalently, a lower discount factor. From the 
perspective of 𝑡𝐴, the time span in which 𝐴 is a monopolist is indepen-

dent of R&D investments, which allows us to separate discount factors 
and treat the expected discount factor between entries 𝛿 = e−𝑟⋅Δ𝑡 as ex-

ogenous parameter. Without a delay, Δ𝑡 = 0 and 𝛿 = 1, so the firms en-

ter simultaneously, which corresponds to Lemus and Temnyalov (2017)

with equal bargaining power. For any given 𝑟, a lower 𝛿 corresponds 
to a higher Δ𝑡. From 𝑡𝐴 on, the net present value (NPV) of 𝐴’s product 
market profits is (1 −𝛿) ⋅𝜋𝑚∕𝑟 +𝛿 ⋅𝜋𝑑∕𝑟. The NPV of 𝐵’s product market 
profits is 𝛿 ⋅𝜋𝑑∕𝑟. Total transfers vary in the discount factor between en-

tries and the allocation of patents, represented by the argument 𝑘. They 
are defined positive from 𝐵 to 𝐴 and denoted as 𝑇̂ (𝑘, 𝛿), such that the 
sums describe expected transfers over all possible allocations of patents 
in . In what follows, we solve the game via backward induction and 
focus on pure strategies. First, we determine the outcome of licensing 
negotiations without and with the possibility of privateering. Then, we 
go one step back and investigate R&D investment decisions.

8 In fact, we assume (1 −𝛿)𝜋𝑚+𝛿𝜋𝑑 > 𝑟𝑁𝐷 and 𝛿𝜋𝑑 > 𝑟𝑁𝐷 in order to ensure 

entries, where 𝛿 is a symmetric discount factor between entries.
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3. Licensing in the shadow of patent litigation

3.1. Licensing without PAE and simultaneous entry

First, we analyze the game without PAE, taking the sizes of patent 
portfolios as given. That is, firms 𝐴 and 𝐵 bilaterally bargain over li-
censing agreements which result in transfer payments. Starting at the 
end of the game, we investigate a situation in which both firms are on 
the product market. So, both companies may be targets of patent law-

suits. Lemus and Temnyalov (2017) analyze this symmetric setting. In 
their model, firms enter product market simultaneously. In what fol-

lows, we briefly provide their analysis and refer to the situation as 
simultaneous entry setting, which is basically characterized by vulner-

ability to litigation by both producers.

Consider a scenario in which firms 𝐴 and 𝐵 hold 𝑛 and 𝑚 patents, re-

spectively, that have not been used in licensing negotiations previously, 
where 𝑛, 𝑚 ∈ ℕ and 𝑛 + 𝑚 =𝑁 .9 Firm 𝐴’s expected payoff from litiga-

tion is 𝑛𝐷−𝑚𝐷−𝐿. Similarly, firm 𝐵’s expected payoff from litigation 
is 𝑚𝐷−𝑛𝐷−𝐿. If either firm 𝐴 or 𝐵 has a credible litigation-threat (i.e., 
a positive expected payoff from litigation), firms enter into negotiations 
in order to avoid the joint costs of a trial, where the outcomes of the 
litigation process are the disagreement payoffs. Under equal bargaining 
power, the Nash bargaining solution leads to the transfer 𝑇 (𝑛, 𝑚) paid 
by 𝐵 to 𝐴. We have

𝑇 (𝑛,𝑚) =

⎧⎪⎪⎨⎪⎪⎩
(𝑛−𝑚)𝐷 ,𝑛 ≤𝑚− 𝐿

𝐷

0 ,𝑚− 𝐿

𝐷
< 𝑛 < 𝑚+ 𝐿

𝐷

(𝑛−𝑚)𝐷 ,𝑛 ≥𝑚+ 𝐿

𝐷
.

(5)

Notice that this transfer can be negative. In this case, firm 𝐵 receives 
a positive payment. We assume that 𝑁 > 3𝐿∕𝐷, which ensures that the 
number of new technologies is sufficiently high, such that 𝑇 (𝑛, 𝑁 − 𝑛)
has three cases. Furthermore, the assumption captures the fact that in-

novative products, which are the scope of this paper, usually involve a 
very high number of new technologies.10 In the first case of (5), firm 
𝐵 holds a credible litigation threat against 𝐴, i.e., (𝑚 − 𝑛)𝐷 − 𝐿 ≥ 0. 
In the second case, neither firm holds a credible threat because the 
gains from litigation do not exceed the costs. Following Lemus and Tem-

nyalov (2017), we refer to this case as patent truce. In the last case, firm 
𝐴 holds a threat against 𝐵. Firms agree on a transfer payment equal 
to the outcome of trial plus the equally divided surplus from bargain-

ing, instead of bringing an action at law. This surplus is 𝐿 for each 
firm. If any firm holds a credible litigation threat, the resulting trans-

fer is (𝑛 − 𝑚)𝐷 − 𝐿 + 2𝐿∕2 = (𝑛 − 𝑚)𝐷. Otherwise, it is zero. If a firm 
holds a credible litigation threat, its patents are used offensively. The 
other firm uses its patents to counter-litigate in order to protect itself 
in a defensive manner. So, obtaining an additional patent has two ef-

fects. It means not only owning one more but also the opponent owning 
one less patent. Thus, it is accompanied with an increase in transfers of 
𝐷 +𝐷 = 2𝐷. From the perspective of the defensive firm, the value of 
an additional patent is also 2𝐷 - one patent less is used to threaten it 
and one patent more for defensive use. If an additional patent does not 
generate a credible threat for neither firm in the area of patent truce, 
its marginal value equals zero.

9 For simplicity, assume that there has been no licensing before such that both 
firms hold their whole portfolios and may use them for negotiations.
10 An extreme example for the high number of technologies a product can 
involve is presented by Drummond (2011). In 2011, a smartphone has already 
involved around 250,000 patents. Given the well-known fact that technological 
complexity increases over time, we can only imagine how high this number is 
4

in 2024.
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3.2. Licensing without a PAE and sequential market entry

We now introduce sequential market entry and investigate how 
firms agree on licensing transfers. Sequential entries cause a significant 
change in the structure of transfers. We define equilibrium transfers 
which we assume to be paid in 𝑡𝐴 and are determined under anticipa-

tion of 𝑡𝐵 bargaining outcomes.11

At 𝑡𝐴, only firm 𝐴 can be subject to infringement claims, which 
changes the bargaining positions of both firms. Recall that courts check 
the validity of patents and licensing agreements cannot be retracted. 
Thus, firm 𝐵 is not able to use its patents twice, so that it has no patents 
left for defensive use in 𝑡𝐵 if it uses them in 𝑡𝐴. At 𝑡𝐵 , both firms are 
active in the market, such that both firms are potential litigation targets. 
Here, two scenarios are possible. First, consider a situation in which 𝐵
has not used its patents at 𝑡𝐴 and, as a consequence, is fully armed with 
a portfolio consisting of 𝑚 patents. As stated in (5), the corresponding 
transfer is 𝑇 (𝑛, 𝑚). Now consider a situation in which 𝐵 has already 
used its patents to enter bargaining at the time at which 𝐴 has entered 
the market. Then, it has no patents left to defend itself later on. The 
resulting transfer that is negotiated in 𝑡𝐵 equals 𝑇 (𝑛, 0). 𝑇 (𝑛, 0) is either 
𝑛𝐷 if 𝑛 ≥𝐿∕𝐷 which ensures that 𝐴 holds a credible threat without the 
possibility of counter-litigation by 𝐵, or otherwise 𝑇 (𝑛, 0) = 0.

Going backwards to the time of 𝐴’s entry, only firm 𝐵 faces the 
possibility of either bringing its patents into negotiations at 𝑡𝐴, or hold-

ing them back for utilization in 𝑡𝐵 . Holding back leads to the transfer 
𝑇 (𝑛, 𝑚) in 𝑡𝐵 , which is discounted by 𝛿. If 𝐵 initiates bargaining in 
𝑡𝐴, it may be able to exploit its advantage of not being a possible tar-

get of counter-litigation. Using the notation from before, this results 
in 𝑇 (0, 𝑚), where 𝐴 cannot use any of its patents defensively. Never-

theless, 𝐴 may hold a portfolio strong enough to credibly threaten 𝐵
with litigation once both firms are active on the product market. As de-

scribed above, the corresponding transfer payment at this time equals 
𝑇 (𝑛, 0). So, if firm 𝐵 decides to use its patents in 𝑡𝐴, the overall trans-

fer payment is given by 𝑇 (0, 𝑚) + 𝛿𝑇 (𝑛, 0). Thus, 𝐵 has an incentive to 
use its patents in 𝑡𝐴 if

𝑇 (0,𝑚) + 𝛿𝑇 (𝑛,0) ≤ 𝛿𝑇 (𝑛,𝑚). (6)

The following proposition summarizes the analysis from above:

Proposition 1. Consider a duopoly market with sequential entry without 
PAE. Then, symmetric Nash-bargaining at time 𝑡𝐴 leads to the transfer

𝑇 (𝑛,𝑚, 𝛿) =

{
𝑇 (0,𝑚) + 𝛿𝑇 (𝑛,0) , 𝜙(𝑛,𝑚, 𝛿) ≥ 0

𝛿𝑇 (𝑛,𝑚) , 𝜙(𝑛,𝑚, 𝛿) < 0
(7)

paid by firm B to firm A, where 𝜙(𝑛, 𝑚, 𝛿) = 𝛿[𝑇 (𝑛, 𝑚) − 𝑇 (𝑛, 0)] − 𝑇 (0, 𝑚)
indicates whether 𝐵 prefers using its patent portfolio in 𝑡𝐴 or not.

Substitution of (5) into 𝑇 (𝑛, 𝑚, 𝛿) yields

𝑇 (𝑛,𝑚, 𝛿) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿(𝑛−𝑚)𝐷 ,𝑚 <
𝐿

𝐷

−𝑚𝐷 ,𝑚 ≥ 𝐿

𝐷
∧ 𝑛 < 𝐿

𝐷

0 ,𝑚 ≥ 𝐿

𝐷
∧𝑚− 𝐿

𝐷
< 𝑛 < 𝑚+ 𝐿

𝐷
∧𝑚< 𝛿𝑛

(𝛿𝑛−𝑚)𝐷 , otherwise.

(8)

Fig. 2 depicts the transfers defined in (5) and (7), i.e., transfers for 
simultaneous and sequential market entries. Obviously, sequential mar-

ket entries change the structure of transfers. 𝑇̄ (𝑛, 𝑁 − 𝑛, 𝛿) is illustrated 

11 Because of sequential rationality, it is not relevant for the expected payoffs 
whether firms 𝐴 and 𝐵 negotiate at 𝑡𝐴 and 𝑡𝐵 , or only in 𝑡𝐴 while anticipating 
𝑡𝐵 -outcomes. Both scenarios lead to transfers equivalent to the combination of 

both outcomes in consideration of the discount factor 𝛿.
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This figure illustrates transfers for simultaneous and sequential market 
entries without the presence of a PAE from a 𝑡𝐴-perspective. The dashed 
line shows transfers in case of simultaneous entries, 𝑇 (𝑛, 𝑁 − 𝑛). Transfers 
under sequential entry, 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿), are depicted by the solid line for 
𝛿 ∈  .

Fig. 2. Transfers without patent privateering: simultaneous vs. sequential entry.

by the solid line. In the first case of (8), firm 𝐵’s portfolio is so weak 
that it never holds a credible litigation threat. However, its patents have 
a positive value since they can be used defensively in 𝑡𝐵 , which leads to 
the 𝑡𝐴-transfer 𝛿(𝑛 −𝑚)𝐷. In the second case, firm 𝐴 holds such a low 
number of patents that it is not able to generate any litigation threat -
even if 𝐵 holds no patents to defend itself. 𝐵 uses its patents in 𝑡𝐴 and 
generates the transfer −𝑚𝐷 without facing the possibility of litigation in 
𝑡𝐵 . The only value of 𝐴’s patents is that they cannot be used against 𝐴 it-

self. The third case covers situations in which the patent portfolios have 
a similar size, and, at the same time, 𝑡𝐵 -transfers are not discounted 
massively. Here, it is profitable for 𝐵 to hold its patents back in 𝑡𝐴
which leads to patent truce later on. We call this inter-temporal patent 
truce with a resulting transfer of zero. For every other possible alloca-

tion of patents, 𝐵 prefers early use of IP rights. The resulting transfer is 
(𝛿𝑛 −𝑚)𝐷.

While patent truce can always be achieved in the simultaneous set-

ting for patent portfolios of similar size, this does not necessarily hold 
if firms enter sequentially. We can show the following proposition:

Proposition 2. Consider a duopoly market with sequential entry and with-

out PAE. Then, there exist patent allocations that result in inter-temporal 
patent truce for 𝛿 ∈  = ((𝑁𝐷 −𝐿)∕(𝑁𝐷 +𝐿),1). The number of patent 
allocations that lead to patent truce decreases when firm 𝐵’s entry delay is 
larger, i.e., 𝛿 decreases. Inter-temporal patent truce is impossible for patent 
allocations in which the laggard firm 𝐵 holds more patents than the firm 
that enters first, 𝐴, i.e., 𝑛 ≤𝑚.

Proof. See Appendix B.

Note that the interval of 𝛿 in which inter-temporal patent truce is 
possible,  , gets wider with higher litigation cost, 𝐿, and narrower 
5

with higher damage payment per patent, 𝐷.
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To see this, differentiate the lower bound of  with respect to 
𝐿, which gives d 

[
(𝑁𝐷 −𝐿)∕(𝑁𝐷 +𝐿)

]
∕d𝐿 = −2𝑁𝐷∕(𝑁𝐷 +𝐿)2 < 0. 

With higher 𝐿, the lower bound decreases so that inter-temporal patent 
truce is possible for a broader range of 𝛿. Differentiating the lower 
bound with respect to 𝐷, we obtain d 

[
(𝑁𝐷 −𝐿)∕(𝑁𝐷 +𝐿)

]
∕d𝐷 =

2𝑁𝐿∕(𝑁𝐷 +𝐿)2 > 0. By contrast, the interval becomes narrower with 
higher 𝐷.

Talking about transfers, intuitively, the temporal structure favors 
the firm that enters last. Under sequential entry, firm 𝐵 is able to gen-

erate a temporary advantage of not being target to counter-litigation. 
The wider the time gap between entries, the higher 𝐵’s advantage. It 
helps 𝐵 to generate threats and influences maximal amount of transfers 
it can achieve. For illustration, consider two extreme situations: one in 
which 𝐴 holds all patents and one in which 𝐵 holds all patents. Ob-

viously, holding all relevant patents, the maximal payment 𝐴 receives 
is 𝑇 (𝑁, 0, 𝛿) = 𝛿𝑁𝐷, which is lower than −𝑇 (0, 𝑁, 𝛿) =𝑁𝐷, the max-

imal payment 𝐵 may generate. The difference between these extreme 
outcomes decreases in 𝛿. The following lemma summarizes the analysis:

Lemma 1. Consider a duopoly market in which firm 𝐴 enters product mar-

ket before 𝐵. Then,

(i.) the temporal structure results in an advantage with regard to patent 
monetization for firm 𝐵, independent of the allocation of patents, i.e., 
𝑇 (𝑛, 𝑁 − 𝑛) − 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) ≥ 0, ∀ 𝑛 ∈ [0, 𝑁], 𝛿 ∈ (0, 1);

(ii.) this advantage increases when firm 𝐵’s entry delay is larger, namely, 
lower 𝛿.

Proof. See Appendix C.

In summary, transfer payments are determined through bargaining 
in the context of patent litigation, meaning they are the result of a co-

operative game in which litigation defines the disagreement outcome. 
Transfers equal the expected litigation payoffs plus the equally divided 
settlement surplus. The possibility of sequential market entry changes 
the structure of transfer payments compared to the case of simultaneous 
entry. Specifically, the temporal structure reduces the number of patent 
allocations that result in inter-temporal patent truce and favors the firm 
that enters last. In what follows, we will repeat our analysis in an envi-

ronment where patent privateering is an option in order to investigate 
the effects of a PAE.

3.3. Licensing with a PAE and simultaneous entry

Now, firms 𝐴 and 𝐵 face the possibility of selling their patents to a 
PAE, which does not produce any good. This part of the game does not 
differ from the one Lemus and Temnyalov (2017) present. Throughout, 
we use their bargaining model which goes back to Horn and Wolinsky 
(1988). In what follows, we briefly present an equilibrium outcome of 
privateering negotiations and describe the resulting transfers for the 
case of simultaneous entries. Afterwards, we use it in order to determine 
equilibrium transfers for our sequential market entries setting.

Firms 𝐴 and 𝐵 simultaneously and bilaterally bargain with the PAE 
over the redistribution of their patents. Suppose the PAE buys 𝑛′ and 
𝑚′ patents from firms 𝐴 and 𝐵 for total prices 𝑝𝐴 and 𝑝𝐵 , respectively. 
Denote the payoffs from licensing, dependent on the patent allocation 
after making deals with the PAE, by 𝑆𝑖(𝑛′, 𝑚′), 𝑖 ∈ {𝐴, 𝐵, 𝑃𝐴𝐸}. Every 
equilibrium outcome of this bargaining game maximizes the joint sur-

plus of the bilateral bargaining partners, taking the deal of the other 
pair of partners as given. Thus, they solve

(𝑛′, 𝑝𝐴) ∈ argmax
(𝑧,𝑝)

([
𝑆𝑃𝐴𝐸 (𝑧,𝑚′) − 𝑝−𝑆𝑃𝐴𝐸 (0,𝑚′)

] 1
2

[ ′ ′ ] 1
2

)

⋅ 𝑆𝐴(𝑧,𝑚 ) + 𝑝−𝑆𝐴(0,𝑚 ) ,
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(𝑚′, 𝑝𝐵) ∈ argmax
(𝑧,𝑝)

([
𝑆𝑃𝐴𝐸 (𝑛′, 𝑧) − 𝑝−𝑆𝑃𝐴𝐸 (𝑛′,0)

] 1
2

⋅
[
𝑆𝐵(𝑛′, 𝑧) + 𝑝− 𝑆𝐵(𝑛′,0)

] 1
2

)
.

Lemus and Temnyalov (2017) prove that it is an equilibrium if each 
producing firm sells its whole portfolio to the PAE for prices equal to the 
transfer payments the PAE receives from the other firm, respectively. 
The intuition behind this is as follows: Since a PAE does not produce or 
sell any product, it can never be subject to patent infringement claims. 
If a PAE that has acquired patents from one firm sues the respective 
rival firm for patent infringement, the defendant is not able to initiate 
counter-litigation. Thus, patents do not have a defensive value if a PAE 
is involved. Suppose firm 𝐴 has sold all its patents to the PAE, such that 
it obtains usage licenses for its ‘own’ 𝑛 = 𝑛′ technologies and infringes 
on the 𝑚 patents developed by its competitor. The PAE then may sue 
firm 𝐵 for patent infringement if it holds a credible threat. Since firm 𝐵
is no longer able to use its patents for counter-litigation, the PAE holds 
a credible threat against it if 𝑛 ≥𝐿∕𝐷. In this case, the resulting transfer 
from 𝐵 to the PAE is 𝑛𝐷 or zero otherwise. Thus, the transfer can be 
described by 𝑇 (𝑛, 0). Nevertheless, 𝐵’s portfolio is of offensive value 
and can be used against 𝐴 that is now defenseless. Here, 𝐵’s threat is 
credible if 𝑚 ≥ 𝐿∕𝐷 which results in a transfer in the amount of 𝑚𝐷
between 𝐴 and 𝐵, or zero otherwise. In our notation that is 𝑇 (0, 𝑚).

Firm 𝐵 is indifferent between keeping or selling an arbitrary subset 
of its patent portfolio to the PAE if the PAE offers a total price equiva-

lent to the licensing revenue that 𝐵 could generate by bargaining with 
firm 𝐴 directly. Suppose the PAE offers this price and 𝐵 sells all its 
patents to the PAE. The same reasoning can be applied to firm 𝐴 if firm 
𝐵 sells all its patents to the PAE. In consequence, there is no profitable 
deviation for neither 𝐴, 𝐵, nor the PAE if both producers sell all patents 
to the PAE for prices equal to the licensing revenues they can generate 
without counter-litigation by themselves. Therefore, this constitutes an 
equilibrium. Note that in this equilibrium, the PAE does not extract 
rents and the total payments firms 𝐴 and 𝐵 receive (or pay) are combi-

nations of two ‘regular’ transfer payments without counter-litigation.

All payments are aggregated in a transfer function under privateer-

ing, 𝑇𝑃𝐴𝐸 (𝑛, 𝑚). Taking the representation in (5) into account, the total 
transfer with two active producers from 𝐵 to 𝐴 under privateering is

𝑇𝑃𝐴𝐸 (𝑛,𝑚) = 𝑇 (𝑛,0) + 𝑇 (0,𝑚), (9)

where transfers are not paid directly from producing firm to producing 
firm.12 Here, the PAE acts as intermediary that receives revenues from 
licensing agreements and pays prices for patent portfolio acquisition. 
Fig. 3 illustrates the transfers in this equilibrium for all possible patent 
allocations.

The availability of a privateer changes the marginal value of patents 
for patent allocations in which either one firm holds the majority, or 
in which both firms hold a similar amount of patents. If one firm holds 
a very large number of patents, such that its opponent is never able to 
create a credible threat, the weaker portfolio loses its defensive value. If 
the number of patents a firm holds is not sufficient to create a credible 
threat of litigation, they cannot be used offensively. Since privateering 
destroys any defensive value of patents, the portfolio is worthless in 
context of patent monetization. Therefore, the value of an additional 
patent equals 𝐷 - one patent more the weaker firm holds is one patent 
less that can be used against it; one patent more the stronger firm 
holds is one patent more that can be used in an offensive manner. If 
patent portfolios are of similar size, the fear of counter-litigation leads 

12 Besides this equilibrium, Lemus and Temnyalov (2017) derive other kinds 
of equilibria in which the PAE may extract rents from the product market. In 
the present paper, we abstract away from the rent-extraction effect privateering 
may have and investigate the equilibrium that provides the strongest incentives 
6

for investing in R&D.
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This figure illustrates transfers for simultaneous market entries with and 
without the presence of a PAE. The dashed line shows transfers in case 
of simultaneous entries without privateering, 𝑇 (𝑛, 𝑁 − 𝑛). Transfers with 
privateering, 𝑇𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛), are depicted by the solid line.

Fig. 3. Transfers for simultaneous market entries: with vs. without privateering.

to patent truce if privateering is not available. The PAE eliminates the 
threat of counter-litigation, such that patent truce will not arise if a 
privateer is present. The value of an additional patent a firm develops 
always equals 2𝐷, even if the portfolios are of the same size.

3.4. Licensing with a PAE and sequential entry

Finally, we consider our setting with sequential entry and apply the 
aforementioned results. All payments taken together result in a com-

bination of transfers as presented in (9). Applying this result to (7) in 
Proposition 1, we can express transfers for sequential market entries un-

der patent privateering as a combination of sequential transfers without 
a PAE, that is, 𝑇 (𝑛, 0, 𝛿) + 𝑇 (0, 𝑚, 𝛿), where

𝑇 (𝑛,0, 𝛿) =
⎧⎪⎨⎪⎩
0 , 𝑛 <

𝐿

𝐷

𝛿𝑛𝐷 ,𝑛 ≥ 𝐿

𝐷

and

𝑇 (0,𝑚, 𝛿) =
⎧⎪⎨⎪⎩
0 ,𝑚 <

𝐿

𝐷

𝑚𝐷 ,𝑚 ≥ 𝐿

𝐷

characterize transfers for situations in which patents are never used for 
counter-litigation. The following proposition summarizes:

Proposition 3. Consider a duopoly market with sequential entry and patent 
privateering. Then, symmetric Nash-bargaining leads to the transfer

𝑇 𝑃𝐴𝐸 (𝑛,𝑚, 𝛿) =

⎧⎪⎪⎨⎪⎪
−𝑚𝐷 ,𝑛 <

𝐿

𝐷
∧𝑚 ≥ 𝐿

𝐷

(𝛿𝑛−𝑚)𝐷 ,𝑛 ≥ 𝐿

𝐷
∧𝑚 ≥ 𝐿

𝐷

𝛿𝑛𝐷 ,𝑛 ≥ 𝐿 ∧𝑚< 𝐿

. (10)
⎩ 𝐷 𝐷
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This figure illustrates transfers for simultaneous and sequential market 
entries with the presence of a PAE. The dashed line shows transfers in case 
of simultaneous entries, 𝑇𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛). Transfers in case of sequential 
entry, 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿), are depicted by the solid line.

Fig. 4. Transfers with patent privateering: simultaneous vs. sequential entry.

Consider the first case of (10) in which 𝐴 has developed a very low 
number of patents so that it is not sufficient to credibly threaten 𝐵
with litigation, 𝑛 < 𝐿∕𝐷. By 𝑛 + 𝑚 =𝑁 > 3𝐿∕𝐷, there does not exist 
a case in which both firms generate portfolios that are too weak to 
generate credible threats at the same time. So, the first case captures a 
situation in which 𝐴 has developed a very weak portfolio and 𝐵 a rather 
strong one. Here, only 𝐵’s portfolio is of value and is used as early as 
possible, i.e., at time 𝑡𝐴. The resulting transfer is −𝑚𝐷. In the second 
case, patents are allocated in a way that provides credible litigation 
threats, 𝑛, 𝑚 ≥𝐿∕𝐷. All patents are used as early as possible. Because of 
sequential entry, 𝐴 would be vulnerable to litigation already in 𝑡𝐴 and 
𝐵 would not be vulnerable until 𝑡𝐵 , such that the resulting transfer is 
𝛿𝑛𝐷−𝑚𝐷 = (𝛿𝑛 −𝑚)𝐷. Third, only 𝐴 has developed enough patents to 
generate a credible litigation threat, 𝑛 ≥𝐿∕𝐷. Nevertheless, 𝐴’s patents 
are only usable for litigation in 𝑡𝐵 . This leads to a transfer 𝛿𝑛𝐷 from the 
perspective of time 𝑡𝐴.

Lemma 2. Consider a duopoly market in which firm 𝐴 enters product mar-

ket before 𝐵 and the firms face the possibility of patent privateering. Then,

(i.) sequential market entries result in an advantage for firm 𝐵 with regard 
to patent monetization, i.e.,

𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿) ≥ 0, ∀𝑛 ∈ [0,𝑁], 𝛿 ∈ (0,1),

with equality if 𝐴 develops a very small patent portfolio, 𝑛 < 𝐿∕𝐷;

(ii.) the effect increases the weaker 𝐵’s patent portfolio is, i.e., 𝑇𝑃𝐴𝐸 (𝑛, 𝑁−
𝑛) − 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) (weakly) increases in 𝑛;

(iii.) the effect increases with lower 𝛿, i.e., larger entry delay of firm 𝐵.

Proof. See Appendix D.

Fig. 4 illustrates the differences in transfers with PAE for simulta-

neous and sequential market entries. Clearly, firm 𝐵 benefits from the 
7

sequential structure. The transfers from 𝐵 to 𝐴 are either strictly lower 
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This figure illustrates transfers for sequential market entries with and without 
the presence of a PAE. The dashed line shows transfers without privateer-

ing, 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿). Transfers with privateering in case of sequential entry, 
𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿), are depicted by the solid line.

Fig. 5. Transfers for sequential market entries: with vs. without privateering.

in the sequential entry setting or the same as those in the simultaneous 
entry setting. If 𝐴 holds a weak patent portfolio that cannot generate a 
credible litigation threat, the temporal structure does not affect trans-

fers under privateering. If firm 𝐴 possesses a sufficiently large number 
of patents to pose a litigation threat against a defenseless opponent, 
firm 𝐵 benefits more from the sequential structure, especially when its 
own patent portfolio is weaker. In case of simultaneous entries, the 𝑛
patents of 𝐴 and the 𝑚 patents of 𝐵 are monetized at the same time. 
In case of sequential entry, only 𝐵 can use its patents offensively in 𝑡𝐴. 
The portfolio of 𝐴 can only be monetized later at 𝑡𝐵 , resulting in a dis-

counted value. The more patents 𝐴 holds, the higher is the share of total 
patent value that is discounted. As 𝑛 increases, the effect of the temporal 
structure becomes more pronounced. Overall, 𝐵 benefits from stronger 
discounting with respect to transfers, i.e., lower 𝛿 which corresponds to 
a larger entry delay.

3.5. Effects of privateering on licensing under sequential entry

Comparing sequential entry transfers with and without the presence 
of a PAE yields a main result of our paper, as follows:

Proposition 4. Suppose firms enter the market sequentially. Then, patent 
privateering has no effect on equilibrium transfers if 𝑛 < 𝑚. Otherwise:

(i.) If 𝑛 ∈ (1∕((1 + 𝛿)𝑁), 12 (𝑁 +𝐿∕𝐷)) and 𝛿 ∈  , then 𝑇 𝑃𝐴𝐸 (𝑛, 𝑚, 𝛿) ≠
0. That is, privateering eliminates the possibility of inter-temporal patent 
truce for these patent allocations.

(ii.) If 𝑚 <𝐿∕𝐷, then 𝑇 (𝑛, 𝑚, 𝛿) ≤ 𝑇 𝑃𝐴𝐸 (𝑛, 𝑚, 𝛿).
Proof. See Appendix E.

Transfers with and without PAE and sequential market entries are 
depicted in Fig. 5. In order to understand the effects of privateering un-

der sequential entry, consider Proposition 2, Lemma 1 and Lemma 2. 
The advantage of a PAE over a producing firm in terms of patent mon-
etization lies in its invulnerability to counter-litigation. The sequential 
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structure temporarily bestows this advantage upon the firm that en-

ters the product market last. For the period of time between 𝑡𝐴 and 𝑡𝐵 , 
firm 𝐵 cannot be target to litigation. Litigation of 𝐴 (or the PAE) is 
not possible until 𝑡𝐵 when 𝐵 produces its own product and therefore 
may infringe on some patents. As a consequence, the resulting transfers 
closely resemble those achieved with privateering, significantly miti-

gating the overall impact of patent privateering in comparison to the 
simultaneous setting presented by Lemus and Temnyalov (2017). For 
illustration, compare Figs. 3 and 5.

If 𝐴 holds a very weak portfolio, 𝐵 uses its portfolio offensively in 
𝑡𝐴 and 𝐴 cannot use its own patents for counter-litigation. Later in 𝑡𝐵 , 
𝐴 does not hold enough patents to credibly threaten 𝐵. In these cases, 
the usage of a PAE does not offer any additional advantage - neither 
for 𝐴, nor for 𝐵, such that the presence of a privateer has no effect on 
transfers. If both firms hold portfolios large enough to justify threats, 
𝑛, 𝑚 ≥ 𝐿∕𝐷, 𝐵 will almost always use its patents offensively in 𝑡𝐴 and 
𝐴 threatens 𝐵 with litigation in 𝑡𝐵 . If this is the case, the resulting 
transfer is a combination of 𝑡𝐴- and discounted 𝑡𝐵 -payments, each of 
them determined without defensive use of opponent’s patents. Again, 
the PAE does not offer any additional advantage, such that sequential 
entry transfers with and without PAE are equivalent. Exceptions are 
patent allocations such that 𝑛 ∈ (1∕((1 + 𝛿)𝑁), 12 (𝑁 +𝐿∕𝐷)). For these 
allocations, it would be profitable for firm 𝐵 to reserve its patents in 
𝑡𝐴 for defensive use in 𝑡𝐵 , aiming to achieve an inter-temporal patent 
truce as described in detail in Proposition 2. Here, the privateer offers 
𝐴 the possibility to eliminate the defensive value of 𝐵’s portfolio, such 
that the resulting transfer 𝐴 receives is positive (rather than zero un-

der patent truce). Clearly, 𝐴 benefits from the presence of a PAE in this 
case. Last, consider a situation in which 𝐵’s portfolio is weak, 𝑚 <𝐿∕𝐷. 
Without privateering, firm 𝐵, which is not in a position to hold a credi-

ble threat, retains its patents in 𝑡𝐴 to use them defensively in 𝑡𝐵 . In this 
scenario, the sequential game structure offers no advantage to 𝐵 — ex-

cept that it has to pay later. Under privateering, this defensive use is no 
longer possible and 𝐵’s portfolio is neither of offensive, nor of defen-

sive value. As a consequence, the presence of a PAE favors firm 𝐴 again. 
Overall, patent privateering has either no effect on transfers if firms en-

ter sequentially, or it changes total transfers in a way that is beneficial 
for the firm that enters first.

Comparing the equilibrium transfers between the simultaneous and 
the sequential setting leads to the following proposition:

Proposition 5. For all 𝑛 ∈ , the absolute effect of patent privateering on 
equilibrium transfers is (weakly) lower if firms enter sequentially than if they 
enter simultaneously, i.e., for 𝛿 ∈ (0, 1),

|||𝑇 (𝑛,𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿)||| ≤ ||𝑇 (𝑛,𝑁 − 𝑛) − 𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛)|| .
(11)

Proof. See Appendix F.

The LHS of (11) displays the absolute effect of privateering in a 
setting with transfer bargaining in anticipation of sequential market 
entries. The RHS is the absolute effect of privateering in a symmet-

ric setting in which both firms enter product market at the same time. 
Thus, Proposition 5 states that the effect of privateering on equilibrium 
transfers is mitigated in a setting with sequential market entries. Fur-

thermore:

Proposition 6. For all 𝑛 ∈  and 𝛿 ∈ (0, 1), the absolute effect of patent 
privateering on equilibrium transfers under sequential entry, |𝑇 (𝑛, 𝑁 −
𝑛, 𝛿) −𝑇 𝑃𝐴𝐸 (𝑛, 𝑁−𝑛, 𝛿)|, increases (weakly) in 𝛿, i.e., decreases with larger 
entry delay.
8

Proof. See Appendix G.
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The proposition states that the effect of privateering on equilib-

rium transfers decreases weakly with stronger discounting. A smaller 
value of 𝛿 indicates a stronger time preference given a fixed time inter-

val between market entries or a larger time interval with a fixed time 
preference. In the sequential setting, firm 𝐵 temporarily exhibits the 
characteristics of a PAE with respect to licensing, with an increasing 
advantage as the discount factor becomes smaller. For more informa-

tion, see Lemma 1, Lemma 2, and Proposition 4. As a result, the smaller 
𝛿 is, the less impact privateering has on licensing arrangements, and the 
overall effect is weakly reduced for all patent allocations.

4. Investments in R&D

Firms maximize the expected NPV of their respective profits (2) and 
(3) by choosing R&D efforts in anticipation of transfer payments. As 
presented in the previous chapter, equilibrium transfers with and with-

out PAE differ. For 𝛿 ∈ (0, 1), we have transfers 𝑇̂ (𝑘, 𝛿) = 𝑇 (𝑘, 𝑁 − 𝑘, 𝛿)
without privateering and 𝑇̂ (𝑘, 𝛿) = 𝑇 𝑃𝐴𝐸 (𝑘, 𝑁 − 𝑘, 𝛿) with PAE, speci-

fied in Proposition 1 and Proposition 3, respectively. The situation with 
simultaneous entry is analogue to the one presented by Lemus and Tem-

nyalov (2017). Corresponding transfers are (5) and (9), such that, for 
𝛿 = 1, 𝑇̂ (𝑘, 𝛿) = 𝑇 (𝑘, 𝑁 − 𝑘) and 𝑇̂ (𝑘, 𝛿) = 𝑇𝑃𝐴𝐸 (𝑘, 𝑁 − 𝑘) without and 
with PAE, respectively. Similarly, denote profits without privateering 
as Π𝐴(𝑥, 𝑦) and Π𝐵(𝑥, 𝑦), and profits with privateering as Π𝐴,𝑃𝐴𝐸 (𝑥, 𝑦)
and Π𝐵,𝑃𝐴𝐸 (𝑥, 𝑦). We are searching for a pure-strategy subgame-perfect 
Nash equilibrium that incorporates bargaining solutions. In order to 
find the equilibrium R&D efforts, we aim to find a Nash equilibrium on 
the first stage while considering the equilibrium outcomes on following 
stages. We define 𝑥𝑅(𝑦), 𝑦𝑅(𝑥), 𝑥𝑅

𝑃𝐴𝐸
(𝑦) and 𝑦𝑅

𝑃𝐴𝐸
(𝑥) as the reaction 

functions for firms 𝐴 and 𝐵, respectively. As before, the subscript ‘PAE’ 
indicates the possibility of patent privateering:

𝑥𝑅(𝑦) = argmax
𝑥≥0

Π𝐴(𝑥, 𝑦), 𝑥𝑅
𝑃𝐴𝐸

(𝑦) = argmax
𝑥≥0

Π𝐴,𝑃𝐴𝐸 (𝑥, 𝑦),

𝑦𝑅(𝑥) = argmax
𝑦≥0

Π𝐵(𝑥, 𝑦), 𝑦𝑅
𝑃𝐴𝐸

(𝑥) = argmax
𝑦≥0

Π𝐵,𝑃𝐴𝐸 (𝑥, 𝑦).

We provide illustrations in Appendix H, with examples of expected 
profits shown in Fig. H.6 and reaction functions in Fig. H.7. Every inter-

section of reaction functions characterizes a Nash equilibrium. Denote 
𝑥∗, 𝑦∗ and 𝑥∗

𝑃𝐴𝐸
, 𝑦∗

𝑃𝐴𝐸
as the equilibrium efforts of firms 𝐴 and 𝐵

without and with the possibility of patent privateering, respectively. 
Applying the theorem of Debreu (1952), Glicksberg (1952) and Fan 
(1952) leads to the following lemma:

Lemma 3. There exists a pure-strategy Nash equilibrium in the R&D game.

Proof. See Appendix I.

A full analytical representation of general results is beyond the scope 
of this paper. In contrast to Lemus and Temnyalov (2017), assuming 
symmetric equilibria is not reasonable in our context, and as a result, 
we are unable to exploit such structures here. Nevertheless, we present 
numerical results in which Nash equilibria are approximated using best-

response dynamics to provide an intuition of the effects at play in our 
setting.13

Welfare. To establish a benchmark, we consider social welfare. The 
allocation of patents and resulting transfer payments are not relevant 

13 Firm 𝑖 ∈ {𝐴, 𝐵} maximizes expected payoffs Π𝑖(𝑥𝑖, 𝑥−𝑖) by choosing its R&D 
effort 𝑥𝑖 . Firm 𝑖’s reaction function is 𝑥𝑅

𝑖
(𝑥−𝑖) = argmax𝑥𝑖 Π𝑖(𝑥𝑖, 𝑥−𝑖). We de-

note the equilibrium efforts of 𝑖 as 𝑥∗
𝑖
. In every Nash equilibrium, it holds that 

𝑥∗
𝑖
= 𝑥𝑅

𝑖
(𝑥𝑅−𝑖(𝑥

∗
𝑖
)), ∀ 𝑖 ∈ {𝐴, 𝐵}. We exploit this property in order to approximate 

Nash equilibrium R&D efforts by using an iterative approach during numerical 

computation. Details are provided upon request.
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since we focus on the cooperative equilibrium in which the PAE does 
not extract rents. Once firms enter the product market, they generate 
a flow of profits and provide their respective product, generating con-

sumers’ surplus. The presence of a patent privateer does not affect this 
in a direct manner. In our model, there are two firms that produce one 
product each, and both firms enter sequentially. Recall that firm 𝐴 tem-

porarily is a monopolist and generates profits 𝜋𝑚 per unit of time. Once 
firm 𝐵 enters, firms 𝐴 and 𝐵 gain duopoly profits 𝜋𝑑 per unit of time. 
While firm 𝐴 is a monopolist, consumers receive a surplus of 𝑤𝑚 per 
unit of time. In duopoly, consumer surplus per unit of time is 𝑤𝑑 , where 
𝑤𝑑 > 𝑤𝑚 ≥ 0. Expected welfare can be expressed as a function of R&D 
efforts, i.e.,

𝑊 (𝑥, 𝑦) = 𝛿𝑡𝐴 (𝑥, 𝑦) ⋅
(
(1 − 𝛿) ⋅

𝜋𝑚 +𝑤𝑚
𝑟

+ 𝛿 ⋅
2𝜋𝑑 +𝑤𝑑

𝑟

)
−𝐶(𝑥) −𝐶(𝑦).

A social planner maximizes welfare. Denote the social optimal R&D 
efforts of firms 𝐴 and 𝐵 as 𝑥𝑆 and 𝑦𝑆 , respectively. They are the solu-

tion to the planner’s maximization problem, namely,

(𝑥𝑆, 𝑦𝑆 ) = argmax
𝑥≥0, 𝑦≥0

𝑊 (𝑥, 𝑦).

As mentioned before, privateering affects transfers but does not have 
a direct effect on economic welfare. Nevertheless, the presence of a 
PAE shapes firms’ R&D incentives and may distort them away from the 
optimal level. We will investigate this effect.

Numerical results. In the following, we vary parameter constellations 
in order to illuminate the effects of privateering under sequential entry 
in various settings, i.e., different extents of discounting between entries. 
A discount factor 𝛿 ∈ (0, 1) represents sequential entry. 𝛿 = 1 indicates a 
situation with simultaneous entries as in Lemus and Temnyalov (2017). 
Selected numerical results are listed in Appendix J. We present the fol-

lowing findings:

Result 1. Patent privateering increases firms’ overall investments in 
R&D, i.e., 𝑥∗

𝑃𝐴𝐸
+ 𝑦∗

𝑃𝐴𝐸
≥ 𝑥∗ + 𝑦∗ for all 𝛿 ∈ (0, 1].

For all parameter constellations in which patent privateering affects 
equilibrium R&D incentives, it holds that the presence of a PAE in-

creases the sum of equilibrium R&D efforts.

Denote the effect of privateering on equilibrium R&D investments as 
Δ𝑥∗

𝛿
= 𝑥∗

𝑃𝐴𝐸
− 𝑥∗ and Δ𝑦∗

𝛿
= 𝑦∗

𝑃𝐴𝐸
− 𝑦∗ for firm 𝐴 and firm 𝐵, respec-

tively, where the index 𝛿 represents the corresponding discount factor 
between entries.

Result 2. The positive effect of privateering on overall equilibrium R&D 
investments decreases with decreasing 𝛿, i.e., a larger entry delay of 
firm 𝐵. It holds that Δ𝑥∗

𝛿1
≤Δ𝑥∗

𝛿2
and Δ𝑦∗

𝛿1
≤Δ𝑦∗

𝛿2
for any 𝛿1 ≤ 𝛿2.

As stated in Proposition 4, patent privateering has a limited impact 
on equilibrium transfers if firm 𝐴 enters the market before firm 𝐵. This 
temporal structure provides firm 𝐵 with a temporary advantage similar 
to what a PAE would typically offer. As a result, the use of a PAE is 
not as beneficial for producing firms in the case of sequential entry 
compared to simultaneous entry. Therefore, the presence of a privateer 
does not provide as much additional R&D incentives in this setting, 
particularly for firm 𝐵, and the overall effect of patent privateering 
is reduced. A larger extent of discounting, either caused by a stronger 
time preference or a longer time span between entries, is represented 
by a smaller 𝛿. As stated in Proposition 5, the effect of privateering 
on licensing outcomes is reduced in the sequential setting. It becomes 
weaker with stronger discounting, as shown in Proposition 6. Lemus 
and Temnyalov (2017) do not consider this effect because they study 
9

patent privateering in a symmetric framework.
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Result 3. Patent privateering increases equilibrium over-investment in 
R&D. Over-investment decreases under sequential entry.

In our setting, firms tend to over-invest in R&D relative to the op-

timal solution of the social planner, even in the absence of patent 
privateering. However, patent privateering does influence the equilib-

rium R&D efforts of producing firms by enhancing the monetization 
of their patent portfolios, resulting in an overall increase in firms’ 
equilibrium efforts and a corresponding rise in over-investment. Note 
that the social optimal investment is unchanged by the presence of 
a PAE. Denote the equilibrium profits of firm 𝐴 and firm 𝐵 with-

out privateering as Π∗
𝐴
= Π𝐴(𝑥∗, 𝑦∗) and Π∗

𝐵
= Π𝐵(𝑥∗, 𝑦∗), respectively. 

Π∗
𝐴,𝑃𝐴𝐸

= Π𝐴(𝑥∗𝑃𝐴𝐸, 𝑦
∗
𝑃𝐴𝐸

) and Π∗
𝐵,𝑃𝐴𝐸

= Π𝐵(𝑥∗𝑃𝐴𝐸, 𝑦
∗
𝑃𝐴𝐸

) are profits 
with PAE.

Result 4. The presence of a patent privateer can decrease equilibrium 
industry profits, that is Π∗

𝐴,𝑃𝐴𝐸
+Π∗

𝐵,𝑃𝐴𝐸
≤Π∗

𝐴
+Π∗

𝐵
for all 𝛿 ∈ (0, 1].

Furthermore, patent privateering has a negative effect on industry 
profits, even in the bargaining equilibrium without rent extraction. We 
observe the decrease of industry profits throughout all considered pa-

rameter constellations. This negative effect on profits can be attributed 
to the incentives for increased R&D efforts that patent privateering cre-

ates, leading to excessive R&D costs and contributing to the observed 
over-investment. This suggests that the over-investment identified in 
Result 3 is not only caused by the delayed provision of final goods, but 
also by excessively high R&D costs.

Result 5. If firms enter sequentially, privateering is less favorable for 
firm 𝐵 than for firm 𝐴. For all 𝛿 ∈ (0, 1), it holds that Π∗

𝐴,𝑃𝐴𝐸
− Π∗

𝐴
≥

Π∗
𝐵,𝑃𝐴𝐸

−Π∗
𝐵

.

We find that Π∗
𝐴,𝑃𝐴𝐸

− Π∗
𝐴
≥ 0 and Π∗

𝐵,𝑃𝐴𝐸
− Π∗

𝐵
≤ 0, indicating 

that only firm 𝐴 benefits from patent privateering if the firms enter the 
market sequentially. This highlights the asymmetric effects of patent 
privateering on the profits of firms in differentiated markets.

5. Conclusion

In this paper, we present a theoretical model to analyze the effects 
of patent privateering in a market in which firms enter sequentially. 
Our main contribution is the development of a licensing game and its 
equilibrium outcome with sequential market entries and a PAE as an 
intermediary, as well as the modeling of the corresponding R&D game. 
We build upon the model of Lemus and Temnyalov (2017) by incorpo-

rating the feature of sequential entry. While they examine the welfare 
effects of patent privateering in a fully symmetric setting and argue in 
favor of patent privateering, we investigate its effects in an asymmet-

ric duopoly. We examine the implications of this temporal structure on 
licensing agreements. If firms enter the market sequentially, the struc-

ture of licensing agreements changes. This results in a decrease of the 
overall effect of PAEs on patent monetization and R&D investments.

In our model, patent disputes are always resolved through out-of-

court settlements to avoid the inefficiencies and costs of litigation. This 
means that transfers equivalent to the expected litigation outcome are 
paid to resolve the disputes. PAEs cannot be sued for patent infringe-

ment, so the threat of patent litigation cannot be used against them in 
negotiations. This gives PAEs a stronger bargaining position in patent 
licensing negotiations compared to producing firms, as they can elimi-

nate the defensive value of patent portfolios and help monetize other-

wise useless patents.

Under sequential entry, a significant portion of the advantage that 
a patent privateer could offer to producers is already held by the firm 
that enters the product market last. After the entry of the first firm, the 

firm that is not yet active in the product market can use its patents 
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to sue the producer for infringement without the risk of immediate 
counter-litigation. During the period in which the first entrant acts as 
a monopolist, the opponent firm benefits from not being a potential 
target of patent litigation, even though it holds relevant patents itself. 
It is worth noting that this firm may be sued later on, but during the 
monopoly phase, the patent privateer does not offer any advantage for 
it.

It is important to acknowledge the limitations of our work. While 
we prove the existence of equilibrium, we do not provide a full ana-

lytical characterization of the Nash equilibrium of the R&D game due 
to the complexity of the payoffs and reaction functions. However, we 
present numerical examples and use them to deduce the implications of 
privateering on R&D incentives and equilibrium profits in the sequen-

tial setting. These findings match the theoretical results we obtain for 
the licensing game.

There are several directions for future research that could address 
open questions in this area. It could be interesting to analyze how prod-

uct differentiation is affected by privateering, which would require the 
addition of a game stage in which firms make choices about the qual-

ity or complexity of their respective products. Additionally, we assume 
that firms exert R&D efforts to develop a fully overlapping set of tech-

nologies, which are equally difficult to discover and equally valuable 
for production. Relaxing these assumptions could lead to insights about 
the effects of privateering regarding R&D project choice and innovation 
paths. We leave these questions open for future research.
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Appendix A. Expected discount factor R&D

For the time when all 𝑁 technologies are developed, the expected 
discount factor is denoted as 𝛿𝑡𝐴 (𝑥, 𝑦). We have

𝛿𝑡𝐴
(𝑥, 𝑦) =

∞

∫
0

e−𝑟𝑡 ⋅ 𝑓𝑡𝐴 (𝑡) d𝑡,

where 𝑓𝑡𝐴 (𝑡) is the probability density function (PDF) of 𝑡𝐴 = max{𝜏1,
… , 𝜏𝑁}. Recall that 𝜏𝑖 = min{𝜏𝐴,𝑖, 𝜏𝐵,𝑖}, 𝑖 ∈ {1, … , 𝑁} is the time at 
which technology 𝑖 is discovered by the first firm. Each 𝜏𝑖 is distributed 
exponentially according to the cumulative distribution function (CDF) 
𝐹𝜏𝑖

(𝑡) = 1 − e−(𝑥+𝑦)𝑡. From this, the CDF of 𝑡𝐴 can be expressed as

𝐹𝑡𝐴
(𝑡) = 𝑃 (𝜏1 ≤ 𝑡 ∧⋯ ∧ 𝜏𝑁 ≤ 𝑡) =

𝑁∏
𝑖=1
𝑃 (𝜏𝑖 ≤ 𝑡) =

𝑁∏
𝑖=1
𝐹𝜏𝑖

(𝑡)

( )
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= 1 − e−(𝑥+𝑦)𝑡 𝑁
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and the corresponding PDF is 𝑓𝑡𝐴 (𝑡) =
d𝐹𝑡𝐴 (𝑡)

d𝑡 =𝑁
(
1 − e−(𝑥+𝑦)𝑡

)𝑁−1 (𝑥 +
𝑦)e−(𝑥+𝑦)𝑡. Accordingly, the expected discount factor is given by

𝛿𝑡𝐴
(𝑥, 𝑦) =

∞

∫
0

𝑁
(
1 − e−(𝑥+𝑦)𝑡

)𝑁−1 (𝑥+ 𝑦)e−(𝑥+𝑦+𝑟)𝑡 d𝑡

= 𝑁! (𝑥+ 𝑦)𝑁∏𝑁

𝑗=1[𝑟+ 𝑗(𝑥+ 𝑦)]
.

This is equivalent to (4).

Appendix B. Proof of Proposition 2

Consider the case of inter-temporal patent truce. The condition that 
has to be satisfied such that 𝑇 = 0 is a combination of evenly distributed 
patents across firms 𝐴 and 𝐵 and time preference of 𝐵. Substitution of 
𝑚 =𝑁 − 𝑛 into (8) yields

𝑇 (𝑛,𝑁 − 𝑛, 𝛿)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(𝑁 − 𝑛)𝐷 ,𝑛 ∈ [0, 𝐿
𝐷
)

((1 + 𝛿)𝑛−𝑁)𝐷 ,𝑛 ∈ [ 𝐿
𝐷
,
1
2 (𝑁 − 𝐿

𝐷
)]

((1 + 𝛿)𝑛−𝑁)𝐷 ,𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 12 (𝑁 + 𝐿

𝐷
)) ∧ 𝑛 ≤ 1

1+𝛿𝑁

0 , 𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 12 (𝑁 + 𝐿

𝐷
)) ∧ 𝑛 > 1

1+𝛿𝑁

((1 + 𝛿)𝑛−𝑁)𝐷 ,𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
),𝑁 − 𝐿

𝐷
]

𝛿(2𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁].

The number of patents firm 𝐴 holds, 𝑛, is located within the in-

terval [0, 𝑁]. For 𝑁 > 3 𝐿
𝐷

, it holds that 0 < 𝐿

𝐷
<

1
2 (𝑁 − 𝐿

𝐷
) < 1

2𝑁 <

1
2 (𝑁 + 𝐿

𝐷
) < 𝑁 − 𝐿

𝐷
< 𝑁 . Then, for inter-temporal patent truce to be 

possible, there has to exist a non-empty interval  = ( 1
1+𝛿𝑁, 

1
2 (𝑁 + 𝐿

𝐷
)) 

for 1
1+𝛿𝑁 >

1
2 (𝑁 − 𝐿

𝐷
).

For sequential market entries, 𝛿 ∈ (0, 1). From this, one can conclude 
that 1

1+𝛿𝑁 ∈ [ 12𝑁, 𝑁], with lim𝛿→0
1

1+𝛿𝑁 = 𝑁 , lim𝛿→1
1

1+𝛿𝑁 = 𝑁

2 . 
Then, 1

1+𝛿𝑁 >
1
2 (𝑁 − 𝐿

𝐷
), ∀𝛿 ∈ (0, 1).

• In order for  to be non-empty, it has to hold that 1
1+𝛿𝑁 <

1
2 (𝑁 +

𝐿

𝐷
). It follows that inter-temporal patent truce is only possible for 

𝛿 ∈  , with  =
(
𝑁𝐷−𝐿
𝑁𝐷+𝐿 ,1

)
.

•
d
d𝛿 [

1
1+𝛿𝑁] = −(1 + 𝛿)−2𝑁 < 0. With higher 𝛿, the left border of the 

interval moves left. This means, the interval gets broader, i.e., there 
exist more patent allocations that lead to inter-temporal patent 
truce.

• It follows that for sequential market entries, inter-temporal patent 
truce is never possible if 𝑛 < 1

2𝑁 or equivalently 𝑛 <𝑚. □

Appendix C. Proof of Lemma 1

Here, transfers are defined positive as payments from 𝐵 to 𝐴. In 
order to prove the lemma, it suffices to show that −𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) −
(−𝑇 (𝑛, 𝑁 − 𝑛)) ≥ 0 for all discount factors and patent allocations, or 
equivalently

𝑇 (𝑛,𝑁 − 𝑛) − 𝑇 (𝑛,𝑁 − 𝑛, 𝛿) ≥ 0 , ∀𝑛 ∈ [0,𝑁], 𝛿 ∈ (0,1).

Displaying this difference in an explicit manner, we get 𝑇 (𝑛, 𝑁 −

𝑛) − 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿)
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𝑛𝐷 ,𝑛 ∈ [0, 𝐿
𝐷
)

(1 − 𝛿)𝑛𝐷 ,𝑛 ∈ [ 𝐿
𝐷
,
1
2 (𝑁 − 𝐿

𝐷
)]

(𝑁 − (1 + 𝛿)𝑛)𝐷 ,𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 1

1+𝛿𝑁]

0 , 𝑛 ∈ ( 1
1+𝛿𝑁,

1
2 (𝑁 + 𝐿

𝐷
))

(1 − 𝛿)𝑛𝐷 ,𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
),𝑁 − 𝐿

𝐷
]

(1 − 𝛿)(2𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁].

(i.) Starting with the first case, it is easy to see that 𝑛𝐷 ≥ 0, ∀ 𝑛 ∈
[0, 𝐿

𝐷
). In the second case, it holds that (1 − 𝛿)𝑛𝐷 > 0, ∀ 𝑛 ∈

[ 𝐿
𝐷
, 12 (𝑁 − 𝐿

𝐷
), 𝛿 ∈ (0, 1). Consider the third case. d

d𝑛 [(𝑁 − (1 +
𝛿)𝑛)𝐷] < 0. For the highest 𝑛 included in this case, 𝑛 = 1

1+𝛿𝑁 , 
(𝑁 − (1 + 𝛿)𝑛)𝐷 = 0, such that (𝑁 − (1 + 𝛿)𝑛)𝐷 ≥ 0, ∀ 𝑛 ∈ [ 12 (𝑁 −
𝐿

𝐷
), 1

1+𝛿𝑁], 𝛿 ∈ (0, 1). For case four, 𝑛 ∈ ( 1
1+𝛿𝑁, 

1
2 (𝑁 + 𝐿

𝐷
)), 0 = 0. 

Case five is similar to case two, i.e., (1 − 𝛿)𝑛𝐷 > 0, ∀ 𝑛 ∈ [ 12 (𝑁 +
𝐿

𝐷
), 𝑁 − 𝐿

𝐷
] 𝛿 ∈ (0, 1). Last, consider case six. 1 − 𝛿 > 0 , ∀ 𝛿 ∈ (0, 1), 

such it suffices to show that 2𝑛 −𝑁 ≥ 0. This is true for 𝑛 ≥ 𝑁

2 . 
Taking into account that 𝑁 > 3 𝐿

𝐷
by assumption, it holds that 

the lowest 𝑛 included in this case, 𝑁 − 𝐿

𝐷
>

𝑁

2 and therefore 
(1 − 𝛿)(2𝑛 −𝑁)𝐷 > 0, ∀ 𝑛 ∈ (𝑁 − 𝐿

𝐷
, 𝑁], 𝛿 ∈ (0, 1). Thus, the con-

dition is satisfied for all cases.

(ii.) In order to investigate the effect of discounting on 𝐵’s advan-

tage, differentiate all parts of the transfer function with respect 
to 𝛿: d

d𝛿 [𝑛𝐷] = 0, ∀ 𝑛 ∈ [0, 𝐿
𝐷
), d

d𝛿 [(1 − 𝛿)𝑛𝐷] = −𝑛𝐷 < 0, ∀ 𝑛 ∈
[ 𝐿
𝐷
, 12 (𝑁 − 𝐿

𝐷
)], d

d𝛿 [(𝑁 − (1 + 𝛿)𝑛)𝐷] = −𝑛𝐷 < 0, ∀ 𝑛 ∈ [ 12 (𝑁 −
𝐿

𝐷
), 1

1+𝛿𝑁], d
d𝛿 [0] = 0, ∀ 𝑛 ∈ ( 1

1+𝛿𝑁, 
1
2 (𝑁 + 𝐿

𝐷
)), d

d𝛿 [(1 − 𝛿)𝑛𝐷] =
−𝑛𝐷 < 0, ∀ 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
), 𝑁 − 𝐿

𝐷
] and d

d𝛿 [(1 − 𝛿)(2𝑛 − 𝑁)𝐷] =
−(2𝑛 −𝑁)𝐷 < 0, ∀ 𝑛 ∈ (𝑁− 𝐿

𝐷
, 𝑁]. The effect of 𝛿 on the difference 

between transfers is weakly negative, i.e., a higher 𝛿 corresponds 
to a smaller difference. □

Appendix D. Proof of Lemma 2

In order to prove the lemma, it suffices to show that

𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿) ≥ 0 , ∀𝑛 ∈ [0,𝑁], 𝛿 ∈ (0,1).

Displaying this difference explicitly, we get

𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿) =

{
0 , 𝑛 ∈ [0, 𝐿

𝐷
)

(1 − 𝛿)𝑛𝐷 ,𝑛 ∈ [ 𝐿
𝐷
,𝑁].

(i.) Obviously, 0 = 0, ∀ 𝑛 ∈ [0, 𝐿
𝐷
) and (1 − 𝛿)𝑛𝐷 > 0, ∀ 𝑛 ∈ [ 𝐿

𝐷
, 𝑁], 𝛿 ∈

(0, 1), such that 𝑇𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛) − 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) ≥ 0, ∀ 𝑛 ∈
[0, 𝑁], 𝛿 ∈ (0, 1).

(ii.)
d
d𝑛 [0] = 0 , ∀ 𝑛 ∈ [0, 𝐿

𝐷
) and d

d𝑛 [(1 − 𝛿)𝑛𝐷] = (1 − 𝛿)𝐷 > 0 , ∀ 𝑛 ∈
[ 𝐿
𝐷
, 𝑁], 𝛿 ∈ (0, 1).

(iii.)
d
d𝛿 [0] = 0 , ∀ 𝑛 ∈ [0, 𝐿

𝐷
) and d

d𝛿 [(1 − 𝛿)𝑛𝐷] = −𝑛𝐷 < 0 , ∀ 𝑛 ∈
[ 𝐿
𝐷
, 𝑁]. □

Appendix E. Proof of Proposition 4

Consider sequential market entries transfers without and with priva-

teering, as described in Propositions 1 and 3, and substitute 𝑚 =𝑁 − 𝑛
to get 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) and 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿). Then, the effect of priva-

teering is the difference of these transfers. We have
11

𝑇 (𝑛,𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿)
Information Economics and Policy 66 (2024) 101080

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , 𝑛 ∈ [0, 1
1+𝛿𝑁]

(𝑁 − (1 + 𝛿)𝑛)𝐷 ,𝑛 ∈ ( 1
1+𝛿𝑁,

1
2 (𝑁 + 𝐿

𝐷
))

0 , 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
),𝑁 − 𝐿

𝐷
]

𝛿(𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁].

Taking a look at the first case, the difference between transfers 
equals zero for portfolios in which 𝐵 holds the majority of patents, i.e., 
𝑛 ∈ [0, 1

1+𝛿𝑁], where lim𝛿→1
1

1+𝛿𝑁 = 1
2𝑁 . Patent privateering affects 

transfers in the area of inter-temporal patent truce, 𝑛 ∈ ( 1
1+𝛿𝑁, 

1
2 (𝑁 +

𝐿

𝐷
)). For 𝑛 > 1

1+𝛿𝑁 it holds that (𝑁 −(1 + 𝛿)𝑛)𝐷 < 0, such that 𝑇 (𝑛, 𝑁 −
𝑛, 𝛿) < 𝑇𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) and firm 𝐴 benefits from privateering (i.). For 
𝑛 ∈ [ 12 (𝑁+ 𝐿

𝐷
), 𝑁− 𝐿

𝐷
] the presence of a PAE has no effect on transfers if 

firms enter sequentially. The difference is zero. In the last case, 𝐵 holds 
a very low number of patents 𝑚 < 𝐿

𝐷
, or equivalently 𝑛 ∈ (𝑁 − 𝐿

𝐷
, 𝑁]. 

Here, the difference between transfers without and with privateering 
equals 𝛿(𝑛 −𝑁)𝐷 ≤ 0, such that 𝑇 (𝑛, 𝑁−𝑛, 𝛿) < 𝑇𝑃𝐴𝐸 (𝑛, 𝑁−𝑛, 𝛿). Since 
transfers are defined as payments from 𝐵 to 𝐴, 𝐴 benefits from priva-

teering (ii.). □

Appendix F. Proof of Proposition 5

In order to prove the proposition, we show that, for all 𝑛 ∈ [0, 𝑁]
and 𝛿 ∈ (0, 1), the inequality (11),|||𝑇 (𝑛,𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿)||| ≤ ||𝑇 (𝑛,𝑁 − 𝑛) − 𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛)|| ,
holds. Taking into consideration (5) and (9) and substituting 𝑚 =𝑁 − 𝑛
yields the following expression used for the RHS:

𝑇 (𝑛,𝑁 − 𝑛) − 𝑇𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑛𝐷 ,𝑛 ∈ [0, 𝐿
𝐷
)

0 , 𝑛 ∈ [ 𝐿
𝐷
,
1
2 (𝑁 − 𝐿

𝐷
)]

(𝑁 − 2𝑛)𝐷 ,𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 12 (𝑁 + 𝐿

𝐷
))

0 , 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
),𝑁 − 𝐿

𝐷
]

(𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁]

In Appendix E, we present 𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) which is 
used for the LHS of the inequality. Recall Proposition 2. Inter-temporal 
patent truce is possible for 𝛿 ∈  . In order to show that the inequality 
holds for all 𝛿 ∈ (0, 1), split cases:

• 𝛿 ∈  :

𝑇 (𝑛,𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , 𝑛 ∈ [0, 1
1+𝛿𝑁]

(𝑁 − (1 + 𝛿)𝑛)𝐷 ,𝑛 ∈ ( 1
1+𝛿𝑁,

1
2 (𝑁 + 𝐿

𝐷
))

0 , 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
),𝑁 − 𝐿

𝐷
]

𝛿(𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁]

– 𝑛 ∈ [0, 𝐿
𝐷
): (11) holds with strict inequality for 𝑛 ≠ 0;

– 𝑛 ∈ [ 𝐿
𝐷
, 12 (𝑁 − 𝐿

𝐷
)]: (11) holds with weak inequality;

– 𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 1

1+𝛿𝑁): (11) holds with strict inequality;

– 𝑛 ∈ ( 1
1+𝛿𝑁, 

1
2 (𝑁 + 𝐿

𝐷
)): since lim𝛿→1

1
1+𝛿𝑁 = 1

2𝑁 , we have to 
consider only 𝑛 > 1

2𝑁 . Thus, (𝑁 − (1 + 𝛿)𝑛)𝐷 < 0 and (𝑁 −
2𝑛)𝐷 < 0. (11) holds if (𝑁 − (1 + 𝛿)𝑛)𝐷 ≥ (𝑁 − 2𝑛)𝐷 which is 
true with strict inequality;
– 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
), 𝑁 − 𝐿

𝐷
]: (11) holds with weak inequality;



Information Economics and Policy 66 (2024) 101080F.B. Klapper and C. Siemering

Figure (a) illustrates Π𝐴(𝑥, 𝑦∗) and Π𝐴,𝑃𝐴𝐸 (𝑥, 𝑦∗𝑃𝐴𝐸 ), figure (b) illustrates Π𝐵(𝑥∗, 𝑦) and Π𝐵,𝑃𝐴𝐸 (𝑥∗𝑃𝐴𝐸, 𝑦) for sequential entry. Payoffs with PAE are depicted by the 
dashed lines. Cost functions and parameter values: 𝑁 = 5, 𝛿 = 0.4, 𝐷 = 2, 𝐿 = 3, 𝑟 = 1, 𝜋𝑑 = 10, 𝜋𝑚 = 20, 𝐶(𝑥) = 1∕7𝑥2, 𝐶(𝑦) = 1∕7𝑦1.

Fig. H.6. Expected payoffs of firms 𝐴 and 𝐵.

Figure (a) illustrates reaction functions for simultaneous entries (𝛿 = 1). Figure (b) depicts reaction functions for sequential entry (𝛿 = 0.4). The black and gray 
graphs are reaction functions of firm 𝐴, 𝑥𝑅(𝑦) and 𝑥𝑅

𝑃𝐴𝐸
(𝑦), and 𝐵, 𝑦𝑅(𝑥) and 𝑦𝑅

𝑃𝐴𝐸
(𝑥), respectively, with a dashed style indicating privateering. Cost function and 

parameter values: 𝑁 = 5, 𝐷 = 2, 𝐿 = 3, 𝑟 = 1, 𝜋𝑑 = 𝜋𝑚 = 20, 𝐶(𝑥) = 1∕7𝑥2, 𝐶(𝑦) = 1∕7𝑦2.

Fig. H.7. Reaction functions.
– 𝑛 ∈ (𝑁 − 𝐿

𝐷
, 𝑁]: (11) holds with strict inequality for 𝑛 ≠𝑁 ;

• 𝛿 ∈ (0, 1) ⧵ :

𝑇 (𝑛,𝑁 − 𝑛, 𝛿) −𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿) =

{
0 , 𝑛 ∈ [0,𝑁 − 𝐿

𝐷
]

𝛿(𝑛−𝑁)𝐷 ,𝑛 ∈ (𝑁 − 𝐿

𝐷
,𝑁]

– 𝑛 ∈ [0, 𝐿
𝐷
): (11) holds with strict inequality for 𝑛 ≠ 0;

– 𝑛 ∈ [ 𝐿
𝐷
, 12 (𝑁 − 𝐿

𝐷
)]: (11) holds with weak inequality;

– 𝑛 ∈ ( 12 (𝑁 − 𝐿

𝐷
), 12 (𝑁 + 𝐿

𝐷
)): (11) holds with strict inequality for 
12

𝑛 ≠ 1
2𝑁 ;
– 𝑛 ∈ [ 12 (𝑁 + 𝐿

𝐷
), 𝑁 − 𝐿

𝐷
]: (11) holds with weak inequality;

– 𝑛 ∈ (𝑁 − 𝐿

𝐷
, 𝑁]: (11) holds with strict inequality for 𝑛 ≠𝑁 .

The inequality (11) holds for all discount factors 𝛿 and patent alloca-

tions (𝑛, 𝑁 − 𝑛). □

Appendix G. Proof of Proposition 6

In order to prove the proposition, consider the LHS of (11). Let 
𝛿1, 𝛿2 ∈ (0, 1) be two values of 𝛿. For all 𝑛 ∈ [0, 𝑁] and 𝛿1 < 𝛿2, it has to 

hold that
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Table J.1

Numerical Results.

𝛿 𝑥∗ 𝑦∗ 𝑥∗
𝑃𝐴𝐸

𝑦∗
𝑃𝐴𝐸

𝑥𝑆 𝑦𝑆 Δ𝑥∗ Δ𝑦∗ Δ(𝑥∗ + 𝑦∗) ΔΠ∗
𝐴

ΔΠ∗
𝐵

ΔΠ∗
𝐴+𝐵 Δ𝑥̃𝑆 Δ𝑦̃𝑆

Benchmark Case with 𝑁 = 5, 𝑟 = 1, 𝐿 = 3, 𝐷 = 2, 𝜋𝐴 = 𝜋𝐵 = 10 and 𝜋𝑚 = 20.

1 3.8900 3.8900 4.4135 4.4135 3.0310 3.0310 0.5235 0.5235 1.0470 -0.3730 -0.3730 -0.7460 0.5235 0.5235

0.7 4.0706 3.9236 4.2049 4.0373 3.0149 3.0149 0.1344 0.1137 0.2481 0.1517 -0.3182 -0.1665 0.1344 0.1137

0.4 3.9443 3.5525 4.0149 3.6228 2.9985 2.9985 0.0707 0.0703 0.1409 0.0753 -0.1500 -0.0747 0.0707 0.0703

0.1 3.8429 3.1365 3.8601 3.1574 2.9820 2.9820 0.0172 0.0208 0.0381 0.0245 -0.0383 -0.0139 0.0172 0.0208

1: 𝐿 = 2.6.

1 3.8900 3.8900 4.4135 4.4135 3.0310 3.0310 0.5235 0.5235 1.0470 -0.3730 -0.3730 -0.7460 0.5235 0.5235

0.7 4.0706 3.9236 4.2049 4.0373 3.0149 3.0149 0.1344 0.1137 0.2481 0.1517 -0.3182 -0.1665 0.1344 0.1137

0.4 3.9443 3.5525 4.0149 3.6228 2.9985 2.9985 0.0707 0.0703 0.1409 0.0753 -0.1500 -0.0747 0.0707 0.0703

0.1 3.8429 3.1365 3.8601 3.1574 2.9820 2.9820 0.0172 0.0208 0.0381 0.0245 -0.0383 -0.0139 0.0172 0.0208

2: 𝐿 = 2.2.

1 3.8900 3.8900 4.4135 4.4135 3.0310 3.0310 0.5235 0.5235 1.0470 -0.3730 -0.3730 -0.7460 0.5235 0.5235

0.7 4.0706 3.9236 4.2049 4.0373 3.0149 3.0149 0.1344 0.1137 0.2481 0.1517 -0.3182 -0.1665 0.1344 0.1137

0.4 3.9443 3.5525 4.0149 3.6228 2.9985 2.9985 0.0707 0.0703 0.1409 0.0753 -0.1500 -0.0747 0.0707 0.0703

0.1 3.8429 3.1365 3.8601 3.1574 2.9820 2.9820 0.0172 0.0208 0.0381 0.0245 -0.0383 -0.0139 0.0172 0.0208

3: 𝐿 = 1.

1 4.1043 4.1043 4.1043 4.1043 3.0310 3.0310 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7 3.9372 3.7554 3.9372 3.7554 3.0149 3.0149 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4 3.7899 3.3667 3.7899 3.3667 2.9985 2.9985 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 3.6779 2.9224 3.6779 2.9224 2.9820 2.9820 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4: 𝑁 = 7.

1 4.5489 4.5489 4.8782 4.8782 3.1353 3.1353 0.3293 0.3293 0.6586 -0.3046 -0.3046 -0.6092 0.3293 0.3293

0.7 4.5197 4.4335 4.5837 4.4924 3.1184 3.1184 0.0640 0.0589 0.1229 0.0125 -0.1150 -0.1025 0.0640 0.0589

0.4 4.2522 4.0378 4.2916 4.0762 3.1013 3.1013 0.0394 0.0384 0.0778 0.0121 -0.0644 -0.0523 0.0394 0.0384

0.1 4.0024 3.6116 4.0130 3.6230 3.0841 3.0841 0.0106 0.0115 0.0221 0.0051 -0.0159 -0.0108 0.0106 0.0115

5: 𝑁 = 7, 𝐿 = 3.5.

1 4.5489 4.5489 4.8782 4.8782 3.1353 3.1353 0.3293 0.3293 0.6586 -0.3046 -0.3046 -0.6092 0.3293 0.3293

0.7 4.5197 4.4335 4.5837 4.4924 3.1184 3.1184 0.0640 0.0589 0.1229 0.0125 -0.1150 -0.1025 0.0640 0.0589

0.4 4.2522 4.0378 4.2916 4.0762 3.1013 3.1013 0.0394 0.0384 0.0778 0.0121 -0.0644 -0.0523 0.0394 0.0384

0.1 4.0024 3.6116 4.0130 3.6230 3.0841 3.0841 0.0106 0.0115 0.0221 0.0051 -0.0159 -0.0108 0.0106 0.0115

6: 𝑁 = 7, 𝐿 = 4.2.

1 4.5489 4.5489 5.4351 5.4351 3.1353 3.1353 0.8863 0.8863 1.7725 -0.9233 -0.9233 -1.8467 0.8863 0.8863

0.7 4.8028 4.7504 5.0817 4.9919 3.1184 3.1184 0.2789 0.2415 0.5204 0.1835 -0.7085 -0.5250 0.2789 0.2415

0.4 4.5580 4.3598 4.7254 4.5119 3.1013 3.1013 0.1674 0.1520 0.3194 0.1253 -0.3965 -0.2713 0.1674 0.1520

0.1 4.3342 3.9434 4.3775 3.9860 3.0841 3.0841 0.0433 0.0427 0.0860 0.0394 -0.0971 -0.0576 0.0433 0.0427

7: 𝑁 = 7, 𝐿 = 4.6.

1 4.5489 4.5489 5.4351 5.4351 3.1353 3.1353 0.8863 0.8863 1.7725 -0.9233 -0.9233 -1.8467 0.8863 0.8863

0.7 4.8028 4.7504 5.0817 4.9919 3.1184 3.1184 0.2789 0.2415 0.5204 0.1835 -0.7085 -0.5250 0.2789 0.2415

0.4 4.5580 4.3598 4.7254 4.5119 3.1013 3.1013 0.1674 0.1520 0.3194 0.1253 -0.3965 -0.2713 0.1674 0.1520

0.1 4.3342 3.9434 4.3775 3.9860 3.0841 3.0841 0.0433 0.0427 0.0860 0.0394 -0.0971 -0.0576 0.0433 0.0427

(continued on next page)
|||𝑇 (𝑛,𝑁 − 𝑛, 𝛿1) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿1)
|||

≤ |||𝑇 (𝑛,𝑁 − 𝑛, 𝛿2) − 𝑇 𝑃𝐴𝐸 (𝑛,𝑁 − 𝑛, 𝛿2)
||| . (G.1)

Recall Appendix F and consider two cases:

• 𝛿 ∈  :

𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) can take two functional forms 
other than zero.

– For 𝑛 ∈ ( 1
1+𝛿𝑁, 

1
2 (𝑁 + 𝐿

𝐷
)), (𝑁 − (1 + 𝛿)𝑛)𝐷 < 0. Since d

d𝛿 [(𝑁 −
(1 + 𝛿)𝑛)𝐷] < 0, d

d𝛿 [|(𝑁 − (1 + 𝛿)𝑛)𝐷|] > 0 and (G.1) holds.

– For 𝑛 ∈ (𝑁 − 𝐿

𝐷
, 𝑁], 𝛿(𝑛 −𝑁)𝐷 ≥ 0 and d

d𝛿 [𝛿(𝑛 −𝑁)𝐷] ≥ 0 with 
equality for 𝑛 =𝑁 . Thus, (G.1) holds.

• 𝛿 ∈ (0, 1) ⧵ :

𝑇 (𝑛, 𝑁 − 𝑛, 𝛿) − 𝑇 𝑃𝐴𝐸 (𝑛, 𝑁 − 𝑛, 𝛿) is either zero, or 𝛿(𝑛 −𝑁)𝐷. As 
stated above, (G.1) holds.

Thus, (G.1) holds for all 𝑛 ∈ [0, 𝑁] and 𝛿 ∈ (0, 1). □

Appendix H. Examples for profits and reaction functions

Examples of payoff functions are presented in Fig. H.6. See Fig. H.7
13

for examples of reaction functions.
Appendix I. Proof of Lemma 3

The assumptions made regarding 𝐶(⋅) imply that there exist (𝑥, 𝑦) >
0 so that R&D efforts 𝑥′ > 𝑥, 𝑦′ > 𝑦 are strictly dominated by provid-

ing zero effort and, therefore, can be eliminated. In the resulting game, 
the strategy space is a nonempty, convex and compact subset of the Eu-

clidean space ℝ2
+. Observe that the payoff functions Π𝐴, Π𝐵 , Π𝐴,𝑃𝐴𝐸

and Π𝐵,𝑃𝐴𝐸 are continuous in (𝑥, 𝑦) and, furthermore, are (quasi-)con-

cave in the respective own strategy variable if R&D investments are 
high enough. According to the theorem of Debreu (1952), Glicksberg 
(1952) and Fan (1952), then there exists a Nash equilibrium in pure 
strategies. □

Appendix J. (Selected) numerical results

In what follows, we provide Table J.1 with selected numerical re-

sults. Δ𝑥∗ = 𝑥∗
𝑃𝐴𝐸

− 𝑥∗ and Δ𝑦∗ = 𝑦∗
𝑃𝐴𝐸

− 𝑦∗ denote the effect of priva-

teering on equilibrium R&D investments of individual firms. Δ(𝑥∗ + 𝑦∗)
is the sum and captures the overall effect. Equilibrium investments may 
deviate from social optimal investments. Deviations of firms 𝐴 and 𝐵
without privateering are 𝑥̃𝑆 = 𝑥∗ − 𝑥𝑆 and 𝑦̃𝑆 = 𝑦∗ − 𝑦𝑆 , respectively, 
where a positive value indicates over-investment. 𝑥̃𝑆

𝑃𝐴𝐸
and 𝑦̃𝑆

𝑃𝐴𝐸
are 

deviations under privateering. The effect of patent privateering on de-
viations in equilibrium are Δ𝑥̃𝑆 = 𝑥̃𝑆
𝑃𝐴𝐸

− 𝑥̃𝑆 and Δ𝑦̃𝑆 = 𝑦̃𝑆
𝑃𝐴𝐸

− 𝑦̃𝑆 . 
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Table J.1 (continued)

𝛿 𝑥∗ 𝑦∗ 𝑥∗
𝑃𝐴𝐸

𝑦∗
𝑃𝐴𝐸

𝑥𝑆 𝑦𝑆 Δ𝑥∗ Δ𝑦∗ Δ(𝑥∗ + 𝑦∗) ΔΠ∗
𝐴

ΔΠ∗
𝐵

ΔΠ∗
𝐴+𝐵 Δ𝑥̃𝑆 Δ𝑦̃𝑆

8: 𝐷 = 2.2.

1 4.0407 4.0407 4.6022 4.6022 3.0310 3.0310 0.5615 0.5615 1.1230 -0.4446 -0.4446 -0.8891 0.5615 0.5615

0.7 4.2152 4.0970 4.3593 4.2184 3.0149 3.0149 0.1441 0.1214 0.2655 0.1593 -0.3581 -0.1988 0.1441 0.1214

0.4 4.0522 3.7240 4.1288 3.7977 2.9985 2.9985 0.0766 0.0737 0.1503 0.0764 -0.1672 -0.0908 0.0766 0.0737

0.1 3.9066 3.3069 3.9257 3.3284 2.9820 2.9820 0.0191 0.0215 0.0407 0.0244 -0.0421 -0.0177 0.0191 0.0215

9: 𝐷 = 2.9.

1 4.5432 4.5432 5.2239 5.2239 3.0310 3.0310 0.6808 0.6808 1.3615 -0.7049 -0.7049 -1.4099 0.6808 0.6808

0.7 4.7071 4.6622 4.8813 4.8084 3.0149 3.0149 0.1743 0.1462 0.3205 0.1854 -0.5020 -0.3167 0.1743 0.1462

0.4 4.4370 4.2735 4.5319 4.3587 2.9985 2.9985 0.0949 0.0852 0.1801 0.0807 -0.2302 -0.1495 0.0949 0.0852

0.1 4.1586 3.8415 4.1835 3.8654 2.9820 2.9820 0.0249 0.0239 0.0488 0.0243 -0.0559 -0.0316 0.0249 0.0239

10: 𝑟 = 0.7.

1 4.0614 4.0614 4.5864 4.5864 3.1830 3.1830 0.5250 0.5250 1.0501 -0.3932 -0.3932 -0.7864 0.5250 0.5250

0.7 4.2690 4.0681 4.3980 4.1890 3.1669 3.1669 0.1289 0.1209 0.2498 0.1670 -0.3432 -0.1763 0.1289 0.1209

0.4 4.1683 3.6702 4.2354 3.7461 3.1506 3.1506 0.0671 0.0759 0.1430 0.0854 -0.1651 -0.0797 0.0671 0.0759

0.1 4.1035 3.2183 4.1192 3.2414 3.1341 3.1341 0.0157 0.0230 0.0387 0.0287 -0.0433 -0.0146 0.0157 0.0230

11: 𝑟 = 0.3.

1 4.2852 4.2852 4.8126 4.8126 3.3821 3.3821 0.5274 0.5274 1.0548 -0.4201 -0.4201 -0.8402 0.5274 0.5274

0.7 4.5281 4.2570 4.6501 4.3872 3.3659 3.3659 0.1220 0.1301 0.2521 0.1881 -0.3771 -0.1891 0.1220 0.1301

0.4 4.4605 3.8238 4.5229 3.9069 3.3497 3.3497 0.0624 0.0831 0.1455 0.0996 -0.1856 -0.0861 0.0624 0.0831

0.1 4.4432 3.3236 4.4568 3.3496 3.3332 3.3332 0.0136 0.0259 0.0395 0.0347 -0.0500 -0.0154 0.0136 0.0259

12: 𝑟 = 0.1.

1 4.3953 4.3953 4.9240 4.9240 3.4803 3.4803 0.5287 0.5287 1.0574 -0.4336 -0.4336 -0.8672 0.5287 0.5287

0.7 4.6556 4.3501 4.7741 4.4848 3.4642 3.4642 0.1186 0.1347 0.2533 0.1989 -0.3943 -0.1954 0.1186 0.1347

0.4 4.6042 3.8992 4.6642 3.9860 3.4479 3.4479 0.0600 0.0867 0.1467 0.1070 -0.1960 -0.0891 0.0600 0.0867

0.1 4.6103 3.3749 4.6228 3.4022 3.4315 3.4315 0.0125 0.0273 0.0399 0.0378 -0.0534 -0.0156 0.0125 0.0273

13: 𝜋𝑚 = 30.

1 3.8900 3.8900 4.4135 4.4135 3.0310 3.0310 0.5235 0.5235 1.0470 -0.3730 -0.3730 -0.7460 0.5235 0.5235

0.7 4.2173 3.9082 4.3452 4.0257 3.1703 3.1703 0.1279 0.1175 0.2454 0.1681 -0.3229 -0.1548 0.1279 0.1175

0.4 4.2624 3.5203 4.3252 3.5963 3.2998 3.2998 0.0628 0.0760 0.1388 0.0965 -0.1572 -0.0607 0.0628 0.0760

0.1 4.3593 3.0891 4.3725 3.1121 3.4210 3.4210 0.0133 0.0230 0.0362 0.0346 -0.0419 -0.0073 0.0133 0.0230

14: 𝜋𝑚 = 50.

1 3.8900 3.8900 4.4135 4.4135 3.0310 3.0310 0.5235 0.5235 1.0470 -0.3730 -0.3730 -0.7460 0.5235 0.5235

0.7 4.4951 3.8779 4.6108 4.0019 3.4469 3.4469 0.1157 0.1240 0.2397 0.2003 -0.3323 -0.1320 0.1157 0.1240

0.4 4.8279 3.4574 4.8766 3.5418 3.7898 3.7898 0.0486 0.0843 0.1330 0.1373 -0.1709 -0.0336 0.0486 0.0843

0.1 5.2153 2.9904 5.2226 3.0153 4.0852 4.0852 0.0073 0.0249 0.0322 0.0521 -0.0480 0.0041 0.0073 0.0249
ΔΠ∗
𝐴
= Π∗

𝐴,𝑃𝐴𝐸
− Π∗

𝐴
and ΔΠ∗

𝐵
= Π∗

𝐵,𝑃𝐴𝐸
− Π∗

𝐵
denote the effect of 

privateering on the expected equilibrium profits of firms 𝐴 and 𝐵, 
respectively. The total effect of privateering on industry profits is 
ΔΠ∗

𝐴+𝐵 =ΔΠ∗
𝐴
+ΔΠ∗

𝐵
.

We assume cost functions 𝐶(𝑥) = 1
7𝑥

2 for 𝐴 and 𝐶(𝑦) = 1
7𝑦

2 for 𝐵. 
Starting with our benchmark case with 𝑁 = 5, 𝐿 = 3, 𝐷 = 2, 𝑟 = 1, 𝜋𝑑 =
10, 𝜋𝑚 = 20, 𝑤𝑚 = 1 and 𝑤𝑑 = 2, we variate single parameters in order 
to investigate their effects, ceteris paribus. Parameter constellations are 
named using a number and the change in comparison to the benchmark 
case. For example, the first constellation in which litigation costs 𝐿 are 
varied from 𝐿 = 3 to 𝐿 = 2.6 is specified as ‘1: 𝐿 = 2.6’.
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