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Abstract: Reliable runoff modeling is essential for water resource allocation and management. How-
ever, a key uncertainty source is that the true precipitation field is difficult to measure, making
reliable runoff modeling still challenging. To account for this uncertainty, this study developed a
two-step approach combining ensemble average and cumulative distribution correction (i.e., EC) to
incorporate information from the GR4J (modèle du Génie Rural à 4 paramètres Journalier) hydro-
logical model and multiple remotely sensed precipitation datasets. In the EC approach, firstly, the
ensemble average is applied to construct transitional fluxes using the reproduced runoff information,
which is yielded by applying various remotely sensed precipitation datasets to drive the GR4J model.
Subsequently, the cumulative distribution correction is applied to enhance the transitional fluxes to
model runoff. In our experiments, the effectiveness of the EC approach was investigated by runoff
modeling to incorporate information from the GR4J model and six precipitation datasets in the
Pingtang Watershed (PW; Southwest China), and the single precipitation dataset-based approaches
and the ensemble average were used as benchmarks. The results show that the EC method performed
better than the benchmarks and had a satisfactory performance with Nash–Sutcliffe values of 0.68
during calibration and validation. Meanwhile, the EC method exhibited a more stable performance
than the ensemble averaging method under different incorporation scenarios. However, the single
precipitation dataset-based approaches tended to underestimate runoff (regression coefficients < 1),
and there were similar errors between the calibration and validation stages. To further illustrate the
effectiveness of the EC model, five watersheds (including the PW) of different hydrometeorological
features were used to test the EC model and its benchmarks. The results show that both the EC model
and the ensemble averaging had good transferability, but the EC model had better performance
across all the test watersheds. Conversely, the single precipitation dataset-based approaches exhibited
significant regional variations and, therefore, had low transferability. The current study concludes
that the EC approach can be a robust alternative to model runoff and highlights the value of the
incorporation of multiple precipitation datasets in runoff modeling.

Keywords: runoff modeling; remotely sensed precipitation datasets; GR4J; ensemble average; cumulative
distribution correction
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1. Introduction

Reliable runoff modeling is essential for hydro-energy exploitation [1], water resource
utilization [2,3], and sustainable water resource strategy-making [4]. The first attempts
for runoff modeling were based on correlation analysis between precipitation and runoff
measurements that date back to the 19th century [5,6]. Since then, runoff modeling has been
progressively developed through the empirical (or experimental) formulas of subsurface
physical processes and the incorporation of key physical terms to develop hydrological
models [7]. Particularly, as a typical representative of hydrological models, the GR4J
(modèle du Génie Rural à 4 paramètres Journalier) was developed with a continuous
improvement process over 15 years based on approximately 429 catchments [8]. It is a
lumped precipitation-runoff model which has a simple structure and a small number
of parameters. Meanwhile, the GR4J has been widely identified to produce satisfactory
realism for hydrological behavior in different topographic conditions, including plateaus [9],
mountains [10], and karst areas [11].

However, besides hydrological realism, a reliable precipitation dataset is also impor-
tant for runoff modeling [12]. The widely used approach for precipitation estimation is
based on point-scale gauge devices [13]. Unfortunately, the gauge measurements suffer
from limited spatial coverage, potential incompleteness, and missing values. More im-
portantly, gauge measurements usually take short periods [14] or are not even recorded
in remote mountainous areas. These factors cause the true precipitation field to remain
difficult to retrieve. As an alternative, remotely sensed precipitation datasets (RSPDs) can
be used as precipitation approximations owing to their spatiotemporal continuity and
large-scale coverage [15]. These datasets are typically produced using advanced retrieval al-
gorithms and/or assimilating remotely sensed information from multiple satellites [16,17].
Some of the state-of-the-art RSPDs include climate hazards infrared precipitation with
stations (CHIRPS) [18], integrated multi-satellite retrievals for GPM (IMERG) [19], climate
prediction center morphing method (CMORPH) [20], global satellite mapping of precipita-
tion (GSMaP) [21], and precipitation estimation from remotely sensed information using
artificial neural networks (PERSIANN) [22], and multi-source weather (MSWX) [23]. These
precipitation datasets provide consistent and continuous precipitation estimates that have
been explored and applied in runoff modeling [24,25].

Nevertheless, errors exist within the RSPDs [26], rendering runoff modeling based
on a single precipitation dataset highly uncertain [27,28]. Therefore, several studies have
attempted to incorporate multiple precipitation datasets into runoff modeling to improve
accuracy [29–31], and the widely used methods include machine learning [31], Bayesian
model averaging [32], deep learning [31], Kalman filter model [33], and multi-objective
optimization [34]. However, there has been little research on the incorporation explorations
of up to six or more kinds of RSPDs in runoff modeling simultaneously, and the potential
of RSPDs still needs to be investigated. More importantly, although the aforementioned
methods have obtained better performance in some regions, they are strongly based on solid
mathematical assumptions and suffer from various application limitations. For instance,
Bayesian statistics assume that the prior distribution is known [35], but this is often not the
case in practical applications. Machine learning is weak at capturing temporal correlations
and is susceptible to data noise [36]. Kalman filtering requires the input data to obey a
Gaussian distribution; however, runoff data is typically distributed as a Pearson type III [37].
The reliability of deep learning relies on a large number of observations as training data,
which are difficult to collect in remote mountainous regions. These application limitations
often make the aforementioned methods difficult to transfer to other watersheds with
various hydrometeorological features.

An application-friendly approach for incorporating information from multiple sources
is the ensemble average. This approach reduces application uncertainty by assigning equal
weight to its incorporation members and summing those members. The approach has been
successfully practiced in tropical cyclone tracking [38], drought process reconstruction [39],
and hydrological modeling under model structure (and parameters) uncertain [40,41].
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However, to the best of our knowledge, there are limited studies that attempted to apply
the ensemble average to incorporate information from a hydrological model and multiple
RSPDs. For example, Strauch et al. [42] found that the ensemble average with multiple
precipitation inputs can provide reliable deterministic streamflow estimates. In addition,
a clear feature of the ensemble average approach is that it may be highly effective when
its information source biases are anisotropic (e.g., overestimation and underestimation).
However, it tends to be like or even worse than its incorporation membership when the
source biases are isotropic. Therefore, it remains a challenge to effectively incorporate
information from a hydrological model and multiple RSPDs to enhance the accuracy of
runoff modeling.

To address the aforementioned concerns, this study proposes a two-step approach
combining ensemble average and cumulative distribution correction (i.e., EC) to incor-
porate information from the GR4J hydrological model and multiple RSPDs. In the EC
approach, firstly, the ensemble average is applied to construct transitional fluxes using
the reproduced runoff information, which is yielded by applying various remotely sensed
precipitation datasets to drive the GR4J model. Subsequently, the cumulative distribu-
tion correction is applied to enhance the transitional fluxes to model runoff. The main
objectives of this study are the following: (1) to analyze the error patterns of reproduced
runoff information from the GR4J model and six remotely sensed precipitation datasets
(CHIRPS, IMERG, CMORPH, GSMaP, PERSIANN, and MSWX; see detail in Section 2.2);
(2) to compare the performance of the EC approach with those of the single precipitation
dataset-based approaches and the ensemble average under different scenarios; (3) to iden-
tify the effectiveness and transferability of the EC approach in watersheds of different
hydrometeorological features. This study is expected to explore the potential of RSPDs and
improve the accuracy of runoff modeling.

2. Study Watersheds and Runoff Data
2.1. Study Watersheds and Runoff Data

The Pingtang Watershed (Figure 1b) was selected as a case region to explore the value
of RSPDs and to investigate the effectiveness of the EC approach in runoff modeling. This
catchment has an area of 1326 km2 and is located at the Chengbi River (Guangxi, China),
which has a long history of fieldwork [43,44]. There is a large reservoir located downstream
of the outlet of the Pingtang Watershed, and the reservoir has the functions of power
generation, flood control, irrigation, and water supply [45]. Therefore, reliable runoff
modeling is essential for local hydro-energy exploitation and water resource allocation.
However, the Pingtang Watershed is equipped with only eight rain gauges, which makes
it difficult to provide reliable precipitation information for runoff modeling. The features
of the Pingtang Watershed make it a suitable region for testing the effectiveness of the
EC approach. The runoff measurements of the Pingtang Watershed were provided by the
Chengbi River Reservoir Bureau, and their reliability was verified in previous works [46].

To further test the effectiveness of the EC approach, we conducted tests on five
watersheds (including the Pingtang Watershed) with different hydrometeorological fea-
tures (Table 1). These watersheds were selected as they have sufficient runoff data (daily
missing = 0 during 2003–2018) for model calibration and validation. The area of these
watersheds is approximately distributed between 300 and 60,000 km2. Meanwhile, the
climate types of these watersheds cover dry, tropical, temperate, and continental climates.
The runoff and geographic boundary data of these study watersheds (except for the Ping-
tang Watershed) were downloaded from the global runoff data center, and their quality
has been controlled by the World Meteorological Organization. The approximate loca-
tions and hydrometeorological features of these watersheds are shown in Figure 1a and
Table 1, respectively.
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Note: The website of the global runoff data center (GRDC) is www.bafg.de/GRDC/ (last accessed on 
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duction. Meanwhile, for the same family of products, the gauge enhancement version was 
adopted because of its reduced systematic bias. Finally, six precipitation datasets were 
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stations. This dataset is available at daily scales and 0.05° spatial resolutions. IMERG com-
bines information from the GPM satellite constellation, using the Goddard Profiling Al-
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on multiple satellites, using a cloud classification scheme and a precipitation retrieval 

Figure 1. Approximate profile of the study watersheds: (a) location of the study watersheds in the
world map under climate zones and (b) detailed information of the Pingtang watershed. The world
map and climate zones were provided by the UK Met Office (www.metoffice.gov.uk; last accessed on
31 August 2023).

Table 1. Summary of hydrometeorological features for the study watersheds.

Watershed Hydrology Station
(GRDC-No) Area (Km2) Climate Zone Altitude Range

(m) Country Data Source

Pingtang (Pi) Pingtang (/) 1392 Dry climates 216–1686 China Chengbi River
Reservoir Bureau

Soca (So) Solkan I (6559100) 1573 Temperate and
Continental climates 72–2487 Slovenia GRDC

Klein-berg (Kl) Nieuwkloof (1160265) 395 Dry climates 157–1728 South Africa GRDC

North Platte (NP) Wyoming–Nebraska
state line (4122152) 57,545 Temperate and

Continental climates 1179–3948 United States GRDC

Russel (Ru) Bucklands (5101116) 315 Tropical climates 3–1586 Australia GRDC

Note: The website of the global runoff data center (GRDC) is www.bafg.de/GRDC/ (last accessed on 1 July 2023).

2.2. Multiple Remotely Sensed Precipitation Datasets (RSPDs)

The precipitation datasets were selected based on the following criteria: (1) open access,
(2) spatial resolution ≤ 0.25◦, (3) temporal resolution ≤ 1 day, (4) continuous update, and
(5) global coverage (spatial extent ≥ 50◦ N/S). These criteria are applied to ensure that each
product is suitable for use in a variety of terrains, including plains and mountainous areas,
as well as to support practical applications, including runoff forecasting and reproduction.
Meanwhile, for the same family of products, the gauge enhancement version was adopted
because of its reduced systematic bias. Finally, six precipitation datasets were adopted.
Specific information about these RSPDs is summarized in Table 2.

Table 2. Overview of the precipitation datasets adopted in this study. The abbreviation NRT in the
temporal range/resolution column stands for near real-time.

Precipitation
Dataset Version Spatial

Range/Resolution
Temporal

Range/Resolution Key Algorithm Data Source

CHIRPS V2.0 50◦ N/S, 0.05 1981-NRT; Daily Kalman filter model
https://data.chc.ucsb.edu/products/CHIRPS-2.0/

global_daily/netcdf/p05/
(accessed on 15 March 2023)

IMERG Final run V6.0 60◦ N/S, 0.1 2000-NRT; 30 min Goddard profiling
algorithm

https://gpm1.gesdisc.eosdis.nasa.gov/data/
GPM_L3/GPM_3IMERGDF.06/

(accessed on 15 March 2023)

CMORPH V1.0, gauge
blended 60◦ N/S, 0.25 1998-NRT; Daily Morphing technique ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1

.0/BLD/ (accessed on 15 March 2023)

GSMaP V6.0, gauge-
adjusted 60◦ N/S, 0.1◦ 2000-NRT; Hourly Kalman filter model https://sharaku.eorc.jaxa.jp/GSMaP/index.htm

(accessed on 15 March 2023)

PERSIANN CDR 60◦ N/S, 0.25 1983-NRT; 3-hourly Artificial Neural
Networks

https://www.ncei.noaa.gov/data/precipitation-
persiann/access/

(accessed on 15 March 2023)

MSWX PAST Global, 0.1 1979-NRT; 3-hourly Statistical bias
correction

http://www.gloh2o.org/mswx/
(accessed on 15 March 2023)

www.metoffice.gov.uk
www.bafg.de/GRDC/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.06/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.06/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
http://www.gloh2o.org/mswx/
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CHIRPS is a quasi-global precipitation dataset, and it combines satellite imagery,
gauge measurements, and high-resolution precipitation climatology to produce gridded
precipitation estimates. CHIRPS V 2.0 is an enhanced version by using increased (~13,900)
stations. This dataset is available at daily scales and 0.05◦ spatial resolutions. IMERG
combines information from the GPM satellite constellation, using the Goddard Profiling
Algorithm to compute precipitation estimates [19]. Meanwhile, IMERG is available in three
versions: Early, Late, and Final Runs, which differ in the latency and input data sources.
The IMERG Final Run (V6.0) was collected in this study from the NASA website (Table 2).
CMORPH is a satellite precipitation product that uses the morphing technique to estimate
global precipitation. In particular, the CMORPH gauge blended version was collected in
this study for its reduced systematic bias. GSMaP is a product of the Global Precipitation
Measurement mission, which aims to improve the understanding and prediction of the
global water cycle and weather. The V6.0 gauge-adjusted GSMaP was adopted in this
study. PERSIANN combines information from passive microwave and infrared sensors
on multiple satellites, using a cloud classification scheme and a precipitation retrieval
model. PERSIANN has different versions and resolutions, such as PERSIANN-CCS and
PERSIANN-CDR. Among PERSIANN products, the PERSIANN-CDR is an improved
version using radar and hourly rain gauge data. MSWX is a high-resolution (3-hourly
0.1◦) meteorological product that provides global coverage of 10 near-surface variables,
including precipitation, air temperature, and surface pressure. Compared to ERA5, the
MSWX has a better performance and reduced systematic bias [23]. The MSWX-PAST
version spans from 1981 to the present, and its reliability has been validated in global and
regional applications [23,47]. It is important to note that satellite information has been
applied directly (or indirectly) to all of these products. For example, satellite information
was used in ERA5 to improve initial conditions. Therefore, for the sake of convenience, all
these products are collectively referred to as remotely sensed precipitation datasets.

In summary, these datasets offer continuous precipitation information with high
temporal and spatial resolution and global coverage. However, the production strategists
used in these datasets vary significantly, especially regarding the precipitation retrieval
algorithm (Table 2). These differences may considerably affect the performance of various
datasets. Therefore, it is essential to investigate the potential of these precipitation datasets
in runoff modeling.

2.3. Potential Evaporation Product

Potential evapotranspiration is also an important input needed for runoff modeling.
In this study, we used the potential evapotranspiration data provided by GLEAM (https:
//www.gleam.eu/; last accessed on 15 May 2023) [48], which covers a long period with a
spatial resolution of 0.25◦. This product applies the Priestley–Taylor formula to invert the
potential evapotranspiration over land. Meanwhile, it is available in two versions (V3.7a
and V3.7b), which differ in the temporal coverage and input data sources. GLEAM v3.7a is
a global dataset spanning 43 years from 1 January 1980 to 31 December 2022, and GLEAM
v3.7b is a dataset spanning 20 years from 1 January 2003 to 31 December 2022. GLEAM
v3.7a was adopted in this study for its longer period of coverage.

2.4. Data Pre-Processing and Experimental Period

This study was conducted at a daily spatial resolution and watershed scale for the
period of 2003–2018. Therefore, all RSPDs were pre-processed to daily resolution by aggre-
gating sub-daily data. Meanwhile, we applied the average of the precipitation dataset cells
within the study watersheds to create watershed-scale precipitation estimates because of
the internal resolution consistency of each dataset. Consequently, six basin-scale precipita-
tion time series data that correspond to the adopted precipitation datasets were generated.
The runoff and precipitation data from 2003 to 2012 were used for model calibration, while
data from 2013 to 2018 was used for model validation.

https://www.gleam.eu/
https://www.gleam.eu/
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3. Methodology

The principal methodology used in this study can be divided into three parts: (1) GR4J
was used as a representative hydrological model to reproduce runoff, and the GLEAM
product and multiple precipitation datasets were used as the inputs of GR4J; (2) the pro-
posed EC approach was used to incorporate the reproduced runoff for enhancing accuracy,
and the single precipitation dataset-based approaches and the ensemble average were used
as benchmarks; (3) collective approaches, including three metrics, were applied to evaluate
the performance of various models.

3.1. The GR4J Model and Its Parameter Determination

GR4J is a daily lumped precipitation-runoff model that originates from Cemagref [49].
It has been validated in more than 400 regions with different hydrological conditions in
France, Australia, and other countries. The GR4J model adopts two nonlinear reservoirs for
precipitation-runoff modeling, of which the first reservoir represents the production process,
and the second reservoir is employed to conceptualize the confluent process. The GR4J
contains only four parameters (Table 3). Meanwhile, the model does not rely on geographic
observations of the target watershed and is therefore suitable for runoff modeling in remote
mountainous and data-poor areas. In this study, the GR4J was calibrated by using the
Shuffled Complex Evolution Algorithm with the Nash–Sutcliffe efficiency as a fitness
function. Meanwhile, the GR4J calibration for various precipitation datasets was carried
out in parallel. The repetitions of the calibration were set as 10,000 times, and the parameter
intervals are summarized in Table 3.

Table 3. Value interval of GR4J parameters for calibration.

Parameter Hydrological Meaning Calibration
Interval

X1 (mm) maximum capacity of the production store [100, 1200]
X2 (mm) groundwater exchange coefficient [−5, 3]
X3 (mm) one day ahead maximum capacity of the routing store [20, 300]
X4 (days) the time base of unit hydrograph [1.1, 2.9]

3.2. The EC Approach and Its Procedure

To incorporate the reproduced runoff information from the GR4J model and multiple
remotely sensed precipitation datasets, this study developed the EC approach. It comprises
two components, namely, the ensemble average and the cumulative distribution correc-
tion. The core mathematical ideas and physical background are as follows: (i) various
precipitation datasets have different biases in a specific precipitation event and, hence, the
biases propagation can be mitigated by incorporating the reproduced runoff from different
datasets; (ii) there are no significant hydroclimatic disturbances of the target watersheds
and, therefore, the model parameters are stationary over the experimental period and the
cumulative distribution of runoff is characterized by consistency across temporal periods;
(iii) precipitation input is a major source of uncertainty and, thus, there are similar errors
between the calibration and validation stages. These ideas have also been partially adopted
by previous studies [9,50]. The rationale and limitations of these ideas are elaborated in
detail using a case study in Section 4.1 and a discussion in Section 5, respectively. The EC
procedure is shown in Figure 2, and the detailed process of the EC is as follows:
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Figure 2. Procedure overview of the EC approach for incorporating information from the GR4J
model and multiple precipitation datasets, where C and CDF are abbreviations for Cumulative
Probability Density Function; the subscripts obs and TF represent the observed runoff and transitional
fluxes, respectively.

The runoff information reproduced by the n precipitation datasets driving the GR4J
model is defined as {R1, R2, . . . , Rn}. These reproduced runoffs are averaged to construct
transitional fluxes (TF), which are formulated as follows:

TF(t) =
1
n∑n

i=1 Ri(t)

The transitional fluxes and measured runoff during the calibration stage are used to
construct empirical CDFTF and CDFobs, respectively. CDF are abbreviations for Cumulative
Distribution Function.

These empirical cumulative distributions are used to enhance the transitional fluxes
during the validation stage, and the process can be formulated as follows:

Rmodel(t) = C−1
obs(CTF(TF(t)))

Finally, the complete form of the EC approach is developed as follows:

Rmodel(t) = C−1
obs

(
CTF

(
1
n∑n

i=1 Ri(t)
))

where Rmodel(t) is the modeled runoff in the period t; C and C−1 represents the empirical
cumulative distribution function and its inverse function, respectively; the subscripts model
and obs are the modeled and measured runoff, respectively. Overall, the EC method is still
simple and easy to use without increasing observed hydrogeographic data.

3.3. Performance Metrics

The Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), and root mean square
error (RMSE) were used as performance metrics. These metrics were adopted based on
research practices [50,51]. Among these metrics, the NSE normalizes model performance
into an interpretable scale, and NSE = 0 is regularly used as a benchmark to distinguish
“good” and “bad” models [52]. MAE is useful when the distribution of the model errors
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is uniform, while RMSE is largely applicable when the distribution is normal [53]. The
definitions of these indicators are as follows:

NSE = 1 − ∑N
i=1(Robs(t)− Rmodel(t))

2

∑N
i=1

(
Robs(t)− Robs

)2

MAE =
1
n

T

∑
t=1

|Robs(t)− Rmodel(t)|

RMSE =

√√√√ 1
n

T

∑
t=1

(Robs(t)− Rmodel(t))
2

where Robs and Rmodel denote the observed and modeled runoff, respectively; N indicates
the evaluation sample size. NSE compares the mean square error against observation
variance. A higher NSE represents better performance, and the perfect value is 1. The value
of NSE is positive (negative) when modeled runoff outperforms (underperforms) reference,
taking the form of the mean value of observations. RMSE and MAE are non-negative
metrics with an unbiased value of 0.

3.4. Experimental Procedures

This study was conducted following the experimental procedures as shown in Figure 3.
Firstly, the reproduced runoff information from GR4J and different precipitation datasets
was visualization surveys and preliminary presentations to show its characteristics and
errors during calibration and validation stages. Secondly, EC was compared with the
single precipitation dataset-based approaches and the ensemble average method using
various performance metrics to show the EC’s superiorities under various scenarios. Fi-
nally, the superiorities and transferability of EC were verified in watersheds of different
hydrometeorological features.
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4. Results
4.1. The Reproduced Runoff from GR4J and Different Precipitation Datasets

Six precipitation datasets were used separately to drive the GR4J model to reproduce
the daily runoff of the Pingtang Watershed. Figure 4 shows these reproduced runoffs for the
calibration stage (2003–2012) and validation stage (2013–2018). Generally, all the single pre-
cipitation dataset-based approaches tended to have a high uncertainty on high-value runoff
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events. However, the biases of reproduced runoff based on different precipitation products
are anisotropic for localized events in some periods. For instance, around July 2017, the
CMORPH- and MSWX-based approaches tended to underestimate and overestimate runoff,
respectively. Similarly, around July 2013, there was an overestimation of the PERSIANN-
based approach but an underestimation of the CMORPH-based strategy. This anisotropic
bias phenomenon suggests that incorporating the reproduced runoff information from
various precipitation datasets may be able to improve accuracy. In addition, there are
similar biases between the calibration and validation stages. For example, all approaches
underestimate runoff around July 2018 in the validation stage and around July 2007 in the
calibration period. Overall, although there were errors in these reproduced runoffs, the
single precipitation dataset-based approaches reproduced the seasonal fluctuations very
well, indicating great value in supporting practical applications.
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A correlation plot was used to further analyze these single precipitation dataset-based
approaches (Figure 5). As can be seen from Figure 5, there was a clear tendency for the
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single precipitation dataset-based approaches to underestimate runoff. Specifically, at the
validation stage, the regression coefficients between reproduced and measured runoffs in
the scenarios based on CMORPH, CHIRPS, and GSMaP are 0.21, 0.59, and 0.56, respectively,
which were lower than the ideal coefficient 1. These underestimates were also observed in
other single precipitation dataset-based approaches (i.e., IMERG, PERSIANN, and MSWX),
suggesting that the precipitation input is a major source of uncertainty. In addition, the
errors were highly similar for the calibration and validation periods, reaffirming that
precipitation inputs are a key source of uncertainty in runoff modeling. Overall, the errors
of reproduced runoffs are characterized by consistency across temporal periods. Therefore,
it is worthwhile to further explore the value of these reproduced runoffs to enhance accuracy
by information incorporation.
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4.2. Superiorities Investigation of the EC Approach

The EC method was used to incorporate reproduced runoff information (Figure 4)
from the GR4J hydrological model and six remotely sensed precipitation datasets. Mean-
while, the ensemble average and the single precipitation dataset-based approaches were
used as benchmarks. Figure 6 shows an initial indication of the overall accuracy of these
approaches. A closer distance between the point representing the approaches and the
point representing the runoff observations indicates a higher performance. As can be
seen in Figure 6, among the single dataset-based approaches, the IMERG-based approach
had the best performance. The EC demonstrated better performance than the ensemble
average and all the single precipitation dataset-based approaches for both the calibration
and validation stages, suggesting a robust superiority of the EC approach. Overall, the
ensemble averaging approach possessed a higher correlation than the single dataset-based
approaches, indicating the value of integrating information from multiple sources. How-
ever, the spread between the measured values and the standard deviation based on the
ensemble average is pronounced and even worse than the single dataset-based approaches.
Therefore, it is necessary to further compare the performance of different models using
performance metrics.



Water 2024, 16, 530 11 of 17Water 2024, 16, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. Taylor chart of eight approaches during calibration and validation periods for the Pingtang 
Watershed. 

Table 4 summarizes the statistical performance metrics of different models for cali-
bration and validation stages. Generally, all approaches exhibited outstanding perfor-
mance (NSE ≥ 0.34). Among the single dataset-based approaches, the IMERG-based ap-
proach exhibited the best performance during both the calibration and validation stages. 
Meanwhile, the CMORPH-based approach showed the worst performance, with the 
smallest NSE values as well as the largest MAE and RMSE values. The ensemble averaging 
approach tended to have better overall performance than most of the single precipitation 
dataset-based approaches, including CMORPH, CHIRPS, GSMaP, and PERSIANN. How-
ever, the ensemble averaging had a worse performance than the IMERG-based approach. 
This phenomenon suggests the unstable superiority of ensemble averaging with respect 
to the single precipitation dataset-based approaches. As a comparison, the EC approach 
demonstrated robust superiority compared to all other approaches. Specifically, at the val-
idation stage, the EC approach had superior performance metric values, acquiring good 
NSE, MAE, and RMSE values of 0.68, 1.32, and 2.45, respectively, which improves the 
NSE, MAE, and RMSE by 6.25%, 7%, and 4.67%, respectively, compared with the ensem-
ble average. Therefore, the EC approach is an effective option to enhance runoff modeling. 

Table 4. Statistical metrics for various approaches during calibration and validation stages for Ping-
tang Watersheds. 

Stage Performance 
Metrics CMORPH CHIRPS GSMaP IMERG PERSIANN MSWX Ensemble 

Average EC 

Calibration NSE 0.38  0.62  0.55  0.69  0.60  0.59  0.68  0.68  
 MAE (mm) 2.05  1.15  1.16  1.08  1.19  1.24  1.18  0.97  
 RMSE (mm) 2.90  2.28  2.46  2.03  2.33  2.36  2.09  2.08  

Validation NSE 0.34  0.60  0.59  0.67  0.54  0.55  0.64  0.68  
 MAE (mm) 2.14  1.50  1.39  1.36  1.60  1.45  1.42  1.32  
 RMSE (mm) 3.48  2.73  2.75  2.47  2.90  2.90  2.57  2.45  

Note: The reason for the same NSE values of the EC method across various phases is the decimal-
place limitation. 

The effectiveness of incorporation approaches (i.e., EC and ensemble average) is di-
rectly related to their incorporation membership. Therefore, the performance differences 

Figure 6. Taylor chart of eight approaches during calibration and validation periods for the Ping-
tang Watershed.

Table 4 summarizes the statistical performance metrics of different models for calibra-
tion and validation stages. Generally, all approaches exhibited outstanding performance
(NSE ≥ 0.34). Among the single dataset-based approaches, the IMERG-based approach
exhibited the best performance during both the calibration and validation stages. Mean-
while, the CMORPH-based approach showed the worst performance, with the smallest
NSE values as well as the largest MAE and RMSE values. The ensemble averaging ap-
proach tended to have better overall performance than most of the single precipitation
dataset-based approaches, including CMORPH, CHIRPS, GSMaP, and PERSIANN. How-
ever, the ensemble averaging had a worse performance than the IMERG-based approach.
This phenomenon suggests the unstable superiority of ensemble averaging with respect
to the single precipitation dataset-based approaches. As a comparison, the EC approach
demonstrated robust superiority compared to all other approaches. Specifically, at the
validation stage, the EC approach had superior performance metric values, acquiring good
NSE, MAE, and RMSE values of 0.68, 1.32, and 2.45, respectively, which improves the
NSE, MAE, and RMSE by 6.25%, 7%, and 4.67%, respectively, compared with the ensemble
average. Therefore, the EC approach is an effective option to enhance runoff modeling.

Table 4. Statistical metrics for various approaches during calibration and validation stages for
Pingtang Watersheds.

Stage Performance
Metrics CMORPH CHIRPS GSMaP IMERG PERSIANN MSWX Ensemble

Average EC

Calibration NSE 0.38 0.62 0.55 0.69 0.60 0.59 0.68 0.68
MAE (mm) 2.05 1.15 1.16 1.08 1.19 1.24 1.18 0.97
RMSE (mm) 2.90 2.28 2.46 2.03 2.33 2.36 2.09 2.08

Validation NSE 0.34 0.60 0.59 0.67 0.54 0.55 0.64 0.68
MAE (mm) 2.14 1.50 1.39 1.36 1.60 1.45 1.42 1.32
RMSE (mm) 3.48 2.73 2.75 2.47 2.90 2.90 2.57 2.45

Note: The reason for the same NSE values of the EC method across various phases is the decimal-place limitation.

The effectiveness of incorporation approaches (i.e., EC and ensemble average) is di-
rectly related to their incorporation membership. Therefore, the performance differences
between the EC method and the ensemble average were further investigated under vari-
ous incorporation scenarios. We randomly resampled the six incorporation memberships



Water 2024, 16, 530 12 of 17

(Figure 4) to form four incorporation scenarios, with two to five memberships in each
scenario (Figure 7). Scenarios P2, P2, P3, P4, and P5 represent incorporation memberships
of 2, 3, 4, and 5, respectively. As shown in Figure 7, the number of incorporated mem-
berships has a significant effect on runoff modeling accuracy, with scenarios with more
members tending to have higher accuracy. For instance, when the membership number
is 5 (Scenario P5), the NSE values of the ensemble average are both 0.69 and 0.66 for the
calibration and validation stages, respectively. However, when the membership number is
2 (Scenario P2), the NSE values of the ensemble average are 0.57 and 0.54 for the calibration
and validation stages, respectively. Overall, the EC exhibited less performance variation
across incorporation scenarios than the ensemble average, indicating it has a more stable
performance. Meanwhile, at the validation stage, the EC approach had a robust superiority.
For example, the NSE values of the EC are 0.63, 0.66, 0.64, and 0.67 for the P2–5 scenar-
ios, respectively, which increases the NSE values by 16.67%, 1.53%, 4.92%, and 1.52% in
P2–5 scenarios, respectively, compared with the ensemble average. The above results
reaffirm that the EC method had a superior performance to ensemble averaging.
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4.3. Transferability Verification in Watersheds of Different Hydrometeorological Features

To further test the effectiveness of the EC approach, we conducted tests in five wa-
tersheds of different hydrometeorological features (including the Pingtang catchment).
The climate types of these watersheds cover four climates. Meanwhile, the area of these
watersheds is approximately distributed between 300 and 60,000 km2 (Table 2). Figure 8
shows a radar chart about the accuracy metrics of the eight approaches in the five test
watersheds. All approaches exhibited variation in performance from different watersheds,
indicating that hydrometeorological characteristics have an important impact on the accu-
racy of runoff modeling. Overall, the single precipitation dataset-based approaches tended
to have higher fluctuations in performance than the incorporation approaches (i.e., ensem-
ble average and EC). For example, the NSE of the GSMaP-based approach ranged from
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−1.35 to 0.80 and from −0.04 to 0.59 at the calibration and validation stages, respectively.
However, the NSE of the ensemble average ranged from 0.31 to 0.75 and from 0.34 to 0.64
at the calibration and validation stages, respectively. Although the MSWX-based approach
demonstrated a slight advantage over the incorporation approaches in the So and Kl water-
sheds, it performed poorly in the NPR watershed and worse than the EC approach in all
other watersheds. Therefore, the incorporation approaches exhibited better transferability
than single precipitation dataset-based approaches. In addition, at the validation stage, the
average NSE of the single precipitation dataset-based approaches is 0.36, which is lower
than that of the ensemble average (0.51) and EC (0.63). Furthermore, the NSE values of the
EC approach are 0.68, 0.52, 0.64, 0.59, and 0.74 for the Pi, NP, Ru, So, and Kl watersheds,
respectively, which increases the NSE values by 5.40%, 53.38%, 36.17%, 4.65%, and 73.84%
in the Pi-to-Kl watersheds, respectively, compared with the ensemble average. Therefore,
the proposed EC approach achieved reasonable superiority and transferability.
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5. Discussion

A unique aspect of this study is the investigation of six RSPDs in runoff model-
ing. Therefore, we further discussed the error characteristics and value of RSPDs. The
study found that the single precipitation dataset-based approaches tended to underes-
timate runoff, which is consistent with references [54,55]. This phenomenon may be
attributed to error propagation. Specifically, RSPDs suffer from an underestimation of
heavy precipitation [56], and this error propagates through the precipitation-runoff pro-
cess. An indirect evidence to support the above attribution is the significant similarity
between the errors in the reproduced runoff during the calibration and calibration stages
(Figures 4 and 5). Interestingly, this study found that the single precipitation dataset-based
approaches exhibited outstanding performance in reproducing seasonal fluctuations, indi-
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cating their great value in supporting long-term applications. In addition, we found that the
single precipitation dataset-based approaches have limited transferability (Figure 8). The
possible reason is that there are huge regional performance differences in RSPDs [26,57].
For example, IMERG has satisfactory performance in plains but is highly uncertain in moun-
tainous regions [57]. PERSIANN tends to be better and worse than GSMaP in China and
CONUS, respectively [57,58]. The incorporation approaches (i.e., ensemble averaging and
EC) exhibited better overall performance and transferability than the single precipitation
dataset-based approaches (Table 4 and Figure 8). Therefore, the results of this study high-
light the value of the incorporation of multiple precipitation datasets in runoff modeling.

The key novelty of this study lies in the development of a two-step approach (i.e., EC)
to incorporate information from the GR4J hydrological model and multiple remotely sensed
precipitation datasets. Compared to ensemble averaging, the EC method exhibited superior
transferability and performance (Figure 8). The possible reason is that a distribution
correction process is introduced in the EC method (Equation (2)). Specifically, all the single
precipitation dataset-based approaches suffer from a similar underestimation, which would
make the performance of ensemble averaging methods unstable (Figure 5 and Table 4).
The distribution correction is effective in reducing systematic errors, which in turn may
make the EC method perform better than the ensemble average. In addition to runoff
modeling, the EC method can also be extended to near real-time runoff forecasts with
short lag times consistent with precipitation datasets. Meanwhile, the EC method only
relies on reproduced runoff information without increasing observed hydrogeographic
data. Therefore, this methodology is valuable and replicable for other regions that are
characterized by different hydrometeorological features.

Although this study provides some new insights into the hydrological application of
RSPDs and the proposed EC approach has achieved reasonable performance and trans-
ferability, some limitations still need to be discussed. The assumptions within EC cover
the consistency of hydrometeorological behavior across calibration and validation stages.
This assumption has also been adopted in a large number of precipitation-runoff mod-
eling studies [12,50]. However, with global industrialization and geographic resource
exploitation, non-stationarity in hydrometeorological behavior has been progressively
observed [59]. Severe environmental disturbances can disrupt the statistical distribution
of hydrometeorological elements and the consistency of the precipitation-runoff process,
which in turn may make the EC no longer applicable. Therefore, it is not realistic to
extrapolate the findings of this study to other regions with severe hydrometeorological
disturbances. In addition, only global precipitation datasets were considered in the study
owing to the need to support transferability testing. However, regional precipitation
datasets, e.g., the China Meteorological Forcing Dataset [60], tended to be more accurate
in their coverage areas than global precipitation products. Therefore, if the conditions
permit, more precipitation datasets can be included to further enhance runoff modeling for
a special application.

6. Conclusions

The potential of six remotely sensed precipitation datasets was investigated in runoff
modeling, and a new two-step approach (i.e., EC) was proposed to incorporate the re-
produced runoff information from these datasets to enhance accuracy. Meanwhile, the
single precipitation dataset-based approaches and the ensemble average were used as
benchmarks. We found that

(1) The single precipitation dataset-based approaches reproduced the seasonal fluctua-
tions well but tended to have a high uncertainty on high-value runoff events. Mean-
while, these approaches tended to underestimate runoff, and there were similar errors
between the calibration and validation stages.

(2) The EC method had a satisfactory performance with Nash–Sutcliffe values of 0.68
during calibration and validation. Meanwhile, the EC method performed better
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than all the benchmarks and exhibited a more stable performance than the ensemble
averaging method under different incorporation scenarios.

(3) Both the EC model and ensemble averaging have good transferability but the EC
model has better performance across all test watersheds. However, the single pre-
cipitation dataset-based approaches exhibited significant regional variations and,
therefore, had low transferability.

The current study highlights the value of the incorporation of multiple precipitation
datasets in runoff modeling and provides an effective alternative to enhance accuracy.
Further research can be directed to the inclusion of regional precipitation datasets for a
special application.
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