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Abstract: Fairness-aware mining of data streams is a challenging concern in the contemporary
domain of machine learning. Many stream learning algorithms are used to replace humans in critical
decision-making processes, e.g., hiring staff, assessing credit risk, etc. This calls for handling massive
amounts of incoming information with minimal response delay while ensuring fair and high-quality
decisions. Although deep learning has achieved success in various domains, its computational
complexity may hinder real-time processing, making traditional algorithms more suitable. In this
context, we propose a novel adaptation of Naïve Bayes to mitigate discrimination embedded in the
streams while maintaining high predictive performance through multi-objective optimization (MOO).
Class imbalance is an inherent problem in discrimination-aware learning paradigms. To deal with
class imbalance, we propose a dynamic instance weighting module that gives more importance to
new instances and less importance to obsolete instances based on their membership in a minority
or majority class. We have conducted experiments on a range of streaming and static datasets and
concluded that our proposed methodology outperforms existing state-of-the-art (SoTA) fairness-
aware methods in terms of both discrimination score and balanced accuracy.

Keywords: online learning; discrimination-aware learning; class imbalance; multi-objective optimization

1. Introduction

Enormous collections of continuously arriving data require efficient mining algorithms
to render fair and high-quality predictions with minimum response delay. Many automated
online decision-making systems have been proposed to supplement humans in several
critical application areas subject to moral equivalence, such as credit risk assessment,
online advertising, recruitment, and criminal recidivism assessment [1]. These models have
shown equivalent and in some cases better performance than humans. This argues for
replacing human decisions with such models. However, such replacement has raised many
challenging concerns regarding the fairness, transparency, and accountability of automated
decision-making models [2].

Recent years have witnessed a number of state-of-the-art (SoTA) [3–6] methods aimed
at mitigating discrimination typically under the assumption that data characteristics remain
static. However, many real-world applications, e.g., fraud detection, e-commerce websites,
and stock market platforms, rely on real-time data streams. The real-time data evolve in
a streaming fashion, and the statistical dependencies within the data also change over
time (concept drift) [7]. Discriminatory outcomes have critical effects on current as well as
future scenarios. For example, ref. [8] suggests that even second-generation immigrants in
Europe face ethnic disadvantages in employment compared to equally qualified Europeans.
Thus, we need to detect and offset discrimination cumulatively while considering the
non-stationary nature of the data. Only a few SoTA methods tackle discrimination in
streaming environments; however, they overlook the critical issue of class imbalance.
Class imbalance is intrinsic to the fairness-aware learning paradigm and, if neglected, can
mislead the assessment of a classifier’s discrimination mitigation capability. The SoTA
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continual learning models focus only on optimizing the model’s overall accuracy, which
can lead to biased decision-making models. Consider a use case example where a financial
institution uses machine learning algorithms to determine creditworthiness for issuing
loans. In such a scenario, if the underlying data stream is imbalanced, i.e., one class
dominates the other class, then a classifier which always predicts a positive outcome would
yield a discrimination score (statistical parity, defined as the difference between mean
positive outcomes for protected (e.g., female) and non-protected (e.g., male) groups) of
0. This indicates that a mere focus on accuracy could lead to a misguided impression of
the discrimination mitigation capability of a classifier. Therefore, we have used balanced
accuracy instead of accuracy to measure the predictive performance of the proposed model.

Deep learning algorithms have achieved significant success in various domains, includ-
ing image and speech recognition, natural language processing, and many others. However,
in fairness-aware stream learning, deep learning may not always be the best choice due to
its high computational complexity [9]. In contrast, traditional machine learning algorithms
such as Naïve Bayes are often more efficient and require fewer computational resources
than deep learning algorithms. This makes them more suitable for processing large vol-
umes of data in real-time, which is essential for stream learning applications. Naïve Bayes
requires fewer training data compared to deep learning models, which makes it appropriate
for small datasets where the number of instances is limited [10]. Additionally, Naïve Bayes
can handle high-dimensional data well, where the number of input features is larger than
the number of instances, while deep neural networks may suffer from the “curse of dimen-
sionality”. The results obtained by Naïve Bayes are more easily interpretable than those
obtained by deep neural networks which can be seen as “black boxes” that are difficult to
interpret. Furthermore, Naïve Bayes is less prone to overfitting than deep learning, which
can be an advantage in streaming environments where data distributions may change over
time and models need to adapt quickly.

In this work, we propose a novel adaptation of Naïve Bayes that deals with class imbal-
ance and attenuates discrimination simultaneously utilizing multi-objective optimization
(MOO) in a non-stationary environment. The key contributions of this research work are
the following:

• We challenge the deep learning dogma by presenting a novel adaptation of Naïve
Bayes (Fair-CMNB: Fairness- and Class Imbalance-aware Mixed Naive Bayes) to
address fairness concerns in streaming environments where computational efficiency,
model interpretability, and active learning are important.

• We mitigate discrimination as well as reverse discrimination (discrimination towards
the privileged group) over the stream while simultaneously improving the predictive
performance through multi-objective optimization.

• Fair-CMNB is also capable of dynamically handling concept drifts and class imbalances.
• Fair-CMNB is agnostic to the employed fairness notion (including the causal fairness

notion FACE [11]).

2. Related Work
2.1. Fairness-Aware Static Learning

The literature provides many approaches for detecting and then mitigating discrimina-
tion. For a detailed overview, please refer to [12]. We can divide discrimination mitigation
strategies into three basic categories: pre-processing, in-processing, and post-processing
techniques. This division depends on whether they modify the input training data, adapt
the algorithm itself, or manipulate outputs of the model to mitigate discrimination.

2.1.1. Pre-Processing Techniques

The origins of the data have a decisive influence on the outcomes of decision-making
models. If the origin of the data is prejudiced, then the decision-making model trained
with the biased data will also behave prejudicially. Massaging [4] is one of the most basic
pre-processing techniques presented in the literature. It involves modification of class labels
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through minimal intrusive repercussions on the accuracy of the model. Reweighting [13]
is another less intrusive pre-processing method presented in the literature to reduce dis-
crimination. This method reduces discrimination by removing the dependence of model
predictions on a sensitive attribute (an attribute or feature of an individual that is consid-
ered protected or private and which should be protected from discrimination or bias in
various settings) by assigning weights to samples in training data. The weights are set
based on the difference between the observed and expected probability of a sample (with a
particular sensitive attribute) being correctly classified to a class. If the observed probability
of a sample is lower than the expected probability, the sample is reweighted with a higher
weight. Preferential sampling [14] is a special form of reweighting. It re-samples borderline
objects with higher probability to minimize the adverse effect on predictive accuracy. The
authors used a ranker to identify borderline objects in the training data. Data augmenta-
tion [2] is another potential method to deal with fairness concerns. However, even if the
training data are purely unbiased, discrimination can still exist in the predictions because
pre-processing techniques cannot handle the bias introduced by the algorithm itself [15].
The authors of [16] proposed an adversarial learning-based instance reweighting method
to achieve fairness. Similarly, an adaptive re-sampling-based discrimination mitigation
method has been presented by ref. [17].

2.1.2. In-Processing Techniques

These techniques modify the classifier itself to obtain bias-free predictions. The authors
of [5] presented a method to incorporate the condition of nondiscrimination into the
objective function of their base model, i.e., a decision tree. The authors of [3] proposed
a mixed-integer-programming-based framework to achieve fair decision trees for both
classification and regression. Furthermore, ref. [6] provided a flexible convex–concave
constraint-based framework for a fair margin-based logistic regression classifier. Another
in-processing approach to achieve a fair neural network-based classifier is proposed by
ref. [18]. In this framework, the convex surrogates of constraints are included in the loss
function of the neural network classifier through Lagrangian multipliers to achieve fairness.
The literature also provides adaptive reweighting schemes to achieve fairness. For example,
Adafair [19] is an Adaboost-based fairness-aware classifier designed to update instance
weights in each boosting round, while considering the cumulative notion of fairness based
on all members of the current ensemble. A constraint optimization-based method to
enhance fairness has been proposed by ref. [20].

2.1.3. Post-Processing Techniques

These techniques alter the decisions of the classifier itself to diminish bias. For example,
the authors of [5] have proposed a method which relabels certain leaves of a decision tree
model to reduce discrimination while maintaining high predictive performance. The
authors of [21] provided a method to alter the probabilities of a Naïve Bayes classifier to
tackle discrimination. In ref. [22], the authors removed discrimination by processing the fair
patterns with k-anonymity. Ref. [23] proposed a method to alter the decision boundaries of
an Adaboost classifier to achieve fairness. Ref. [24] presented a relabeling method based on
the Gaussian process that achieves fairness while maintaining high predictive accuracy. The
authors of [25] proposed a method to use causal reasoning for mitigating discrimination.

2.2. Stream Classification

The main challenge in stream learning is to account for concept drifts, i.e., the model
should adapt efficiently to the changing data patterns in the stream. The literature provides
many batch learning methods for stream learning. For example, ref. [26] proposed a
semi-supervised clustering method. Similarly, ref. [27] presented a probabilistic adaptive
windowing method for stream classification. The authors claim that their method improves
the traditional windowing method because it includes older samples along with the new
ones to maintain information regarding the previous concept drifts. These traditional batch
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learning methods lack the ability to continuously update the model with the arrival of each
new sample.

Online learning avoids the cost of data accumulation. Moreover, online learning
algorithms have the ability to converge more quickly compared to batch learning algorithms.
Ref. [28] present an online boosting algorithm, i.e., OSBoost, for classification in non-
stationary environments. This algorithm is an adaptation of the offline SmoothBoost.
Another stream learning method is presented by ref. [29]. This method is developed to deal
with concept recurrence with clustering. Whenever a concept recurs, the most appropriate
model is retrieved from the repository and used for further classification. Ref. [30] is another
lossless learning classifier based on online multivariate Gaussian distribution (OVIG). An
online version of a semi-supervised Support Vector Machine (SVM) is proposed by ref. [31]
which classifies newly arriving data based on few labeled instances of the data. The authors
of [32] proposed an ensemble learning approach named ElStream to detect concept drift in
online streaming data. Similarly, ref. [33] proposed an ensemble classification method for
heterogeneous stream data.

2.3. Fairness-Aware Stream Learning

This type of learning technique reduces discrimination in a streaming environment.
A chunk-based pre-processing technique (massaging) is proposed by ref. [34] to mitigate
discrimination. In this technique, the discrimination in each data chunk is removed and
then it is fed to the online classifier. FAHT (Fairness-Aware Hoeffding Tree) [35] is another
fairness-aware stream learning method, based on a decision tree, which is proposed to
handle fairness in data streams. In this method, the notion of fairness is included in the
attribute selection criteria for splitting the decision tree. The underlying decision tree grows
by utilizing both information gain and fairness gain. FABBOO [1] provides a method to
change the decision boundary of the decision trees to achieve fairness. Massaging (MS),
FAHT, and FABBOO keep the role of protected group fixed over the stream. They lack
the ability to handle reverse discrimination, i.e., discrimination towards the privileged
group. Another data augmentation-based method has been proposed by ref. [36] for
fairness-aware federated learning in a streaming environment. To address discrimination
within streaming data, a method involving two swarms was proposed to incrementally
build a classifier and reduce discrimination in the data [37].

2.4. Class Imbalance-Aware Stream Learning

Class imbalance is an inherent problem of model learning. If the learning algorithm
does not tackle class imbalance appropriately, it mostly learns by simply ignoring the
minority class instances [38]. Ref. [39] presented a cost-sensitive online learning algorithm
based on bagging/boosting techniques for imbalanced data streams. Class imbalance can
also be handled by instance weighting as proposed by FABBOO [1]. Data augmentation is
another potential method for handling class imbalance. For example, ref. [40] proposed a
batch learning method, i.e., CSMOTE, to re-sample the minority class in a defined window
of instances based on SMOTE. Similarly, ref. [41] proposed a SMOTE-based method for
class imbalance-aware learning in a federated environment.

3. Preliminaries

The proposed model is designed for binary classification. Binary classification prob-
lems are addressed in this research because they represent fundamental challenges that
are widely applicable across many domains. Furthermore, we assume that the streaming
data have only one sensitive attribute with binary values, i.e., they can have two potential
values (protected and non-protected). For example, in a loan approval scenario, a financial
institution uses a machine learning model to automate decision making, with gender as the
sensitive attribute (classifying female applicants as the protected group (S−) and male as the
non-protected group (S+)), to address historical gender biases. We have assumed that the
sensitive attribute is binary as most of our competing baselines have provided solutions
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which include binary-sensitive attributes. Therefore, to provide a fair comparison, we have
assumed the sensitive attribute to be binary.

The rest of this section delineates the key concepts central to the proposed framework.

3.1. Prequential Evaluation

We are dealing with streaming data in this work, so we need to update the model
continuously. At every time point t, the instance xt (without label) is presented to the model
for prediction, and later the label yt of instance xt is revealed to the model for training. This
type of evaluation is called prequential evaluation [42] or test-then-train evaluation.

Prequential evaluation can be pessimistic at the start of the stream, as the false pos-
itives and false negatives encountered at the beginning of the stream affect the overall
performance of the learner throughout the stream. This pessimism is challenging for the
learner to train effectively.

Prequential evaluation with sliding windows is a technique that extends the basic
prequential evaluation by considering only a subset of the most recent data instances
for testing [43]. This approach helps to address the issue of concept drift, where the
underlying data distribution changes over time, by focusing on the most recent data. The
main advantage of prequential evaluation with sliding windows is that it provides a more
robust evaluation of the model’s performance in non-stationary environments. Considering
all the advantages of windowed prequential evaluation over basic prequential evaluation,
we have adopted the windowed approach in this work.

3.2. Multi-Objective Optimization (MOO)

In the context of multi-objective optimization (MOO), the goal is to optimize a K-
dimensional vector valued function f (x) = f 1(x), . . . , f K(x) where X is a bounded set of
inputs. The MOO paradigm does not seek a single optimal solution; instead, the goal is
to discover a set of Pareto optimal solutions, such that an improvement in one objective
will inevitably lead to a deterioration in another. The underlying goal is to maximize all
the objectives. A solution f (x) dominates another solution f (x′) denoted as f (x) ≻ f (x′)
if f k(x) ≥ f k(x′) for k = 1, . . . , K and there exists at least one k where f k(x) > f k(x′).
The Pareto optimal set of solutions and corresponding inputs can be mathematically rep-
resented as P = { f (x)| ∄ x′ ∈ X : f (x′) > f (x)} and X = {x ∈ X | f (x) ∈ P}. Because
the Pareto frontier consists of an infinite number of points, the objective is to find a finite
approximation of this frontier.

In our proposed continual learning model, the main objectives of the MOO are (i) dis-
crimination mitigation and (ii) enhanced predictive performance.

3.3. Fairness Notions

Statistical Group Fairness notion: There are many definitions of fairness in the liter-
ature [44], but no clear criteria have been presented for choosing a particular fairness
definition. In this research, we use the notion of statistical parity [44] to assess the discrimi-
nating behavior of the proposed model. This notion ensures that each individual has an
equal chance of being assigned to the positive class (y+), regardless of its membership in
the protected S+ or non-protected group S− as shown in Equation (1). Statistical parity
does not take into account the true label of the subject and thus may lead to reverse dis-
crimination, i.e., discrimination towards the privileged group. In our proposed model, we
also address this reverse discrimination problem; the details can be found in Section 4.4.

St. Parity = P(y = y+ | x ϵ S+)− P(y = y+ | x ϵ S−) (1)

The discriminatory models have very long-lasting consequences, affecting not only
current outcomes but also future outcomes. Short-term discrimination detection methods
fail to ameliorate discrimination over time because discrimination scores that are minor
at a single time point may aggregate into considerable prejudice in the long run. Thus,
in contrast to the short-term discriminatory measures applied by SoTA stream learning
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methods, it is necessary to consider discriminatory outcomes cumulatively. We use the
notion of cumulative statistical parity proposed by [1] to detect and measure discrimination
over the stream. Equation (2) illustrates the notion of cumulative statistical parity.

St.Parity =
∑t

i=1 I[yi = y+ | xi ϵ S−]

∑t
i=1 I[xi ϵ S−] + γ

− ∑t
i=1 I[yi = y+ | xiϵS+]

∑t
i=1 I[xi ϵ S+] + γ

(2)

The cumulative statistical parity is updated after the arrival of each new instance in
the stream. ‘γ’ is the adjustment factor which is used to adjust the discrimination score at
the beginning of the stream to avoid division by zero. St.Parity = 1, −1 indicates complete
unfairness, whereas St.Parity = 0 signifies a perfectly fair classifier.

Causal group fairness notion: Despite the simplicity and popularity of statistical fairness
methods, they might overcorrect, struggle with paradox resolution, and be vulnerable to
shifts in data distributions [45]. On the other hand, causal fairness considers underlying
causal structures, decoupling predictions from sensitive attributes and providing a deeper
insight into data biases. We have utilized the causal group fairness notion average treat-
ment effect (ATE/FACE) [11] to gauge the discrimination embedded in the predictions
of the proposed framework as presented in Equation (3). We modified FACE to consider
predicted outcomes.

FACE = E(|Ys+
pot − Ys+

pred| − |Ys−
pot − Ys−

pred|) (3)

Here, Ys+
pot and Ys+

pred represent the potential and predicted outcomes when S = s+.
FACE quantifies the difference in the true positive outcomes (observed and potential)
between the protected (treated) and non-protected groups (non-treated). FACE = 1, −1
indicates complete unfairness, whereas FACE = 0 signifies a perfectly fair classifier. We
modify the definition in Equation (3) to take into account the cumulative discrimination as:

FACE =
t

∑
i=1

|Ys+
pot_i − Ys+

pred_i | − |Ys−
pot_i − Ys−

pred_i | (4)

3.4. Potential Outcomes

To incorporate causal fairness, we calculate potential outcomes using a matching
technique. The objective is to compute the potential outcomes by finding the matched
neighbors from the opposite group. For instance, in loan approval, the counterfactual
outcome for a female xk as if she were a male is based on similar males’ observed outcomes.
To determine similarity between individuals xj and xk, we use Propensity Score Matching
(PSM) [45]. PSM is aimed at estimating the effect of a treatment by accounting for the
covariates that predict receiving the treatment. The propensity score, e(xk), is the probability
of receiving the treatment given observed covariates (the sensitive attributes (e.g., “gender”)
are unlikely to be influenced by any covariates). For the loan approval example, Sk = 1
denotes the individual k who received the treatment, i.e., the individual is female and
Sk = 0 otherwise. Propensity score of xk derived from observed covariates Ck is:

e(xk) = P(Sk = 1|Ck). (5)

The similarity between individuals xj and xk is determined through their propensity score
difference. The logit version of this difference helps in reducing bias [46]:

Di f f (j, k) = |logit
(
e(xj)

)
− logit(e(xk))|. (6)

We match treated (protected) and control (non-protected) individuals using nearest neigh-
bor matching with replacement, based on the aforementioned similarity metric.

4. Proposed Model

An illustration of the proposed model is shown in Figure 1. In this study, we are
using prequential evaluation with sliding windows; therefore, as soon as a new instance xt
arrives, it is tested using the proposed model (A). After testing, the instance xt with its true
class label yt is fed to the discrimination detector (B) and online class imbalance monitor
OCIM (C). The OCIM monitors the ratios of positive and negative classes throughout
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the stream and feeds the respective class ratios to the instance weighting module (D).
The instance weighting module adjusts the instance weight (wi) in accordance with the
respective class ratio to ensure class imbalance-aware learning of the proposed model.
The class ratios obtained from the OCIM are also used to keep track of the concept drifts
using a concept drift detector (E) and to handle concept recurrence. The instance xt,
its true label yt, and the respective weight wi are used to train online nominal Naïve
Bayes (F) and online Gaussian Naïve Bayes (G). The discrimination detector monitors the
discrimination over the stream using the employed fairness notion (cumulative statistical
parity or cumulative FACE) and triggers the MOO-based discrimination mitigation module
(H) if the cumulative discrimination value exceeds a user-defined threshold ε. The value
of ε depends on the fairness budget allowed by the user, i.e., how much discrimination in
predictions is acceptable to the user. We set this value to 0.00001, which means that we
limit our learner to keep the discrimination score in the range [−0.001%, 0.001%].

Further details about these modules are provided in the following subsections.

Figure 1. Illustration of proposed method (Fair-CMNB). (A) Prediction of new instance (xt), (B) Dis-
crimination detection, (C) Online class imbalance monitoring, (D) Instance weighting, (E) Concept
drift detection, (F) Training of online nominal Naïve Bayes, (G) Training of online Gaussian Naïve
Bayes, (H) Discrimination mitigation through multi-objective optimization (MOO).

4.1. Mixed Naïve Bayes

In this work, we tailor the Naïve Bayes algorithm to process streaming data for which
we do not have access to historical data. By default, Naïve Bayes is designed only for
nominal data. However, in real life, datasets are usually a combination of nominal and
continuous attributes. To accommodate continuous and nominal attributes, we propose
Mixed Naïve Bayes (MNB), a combination of online nominal Naïve Bayes and online
Gaussian Naïve Bayes. For each new instance, continuous attribute values are sent to
online Gaussian Naïve Bayes and nominal attribute values are passed to online nominal
Naïve Bayes. Online nominal Naïve Bayes and online Gaussian Naïve Bayes update
independently. The following sections illustrate the algorithmic details of these two models.

4.1.1. Online Nominal Naïve Bayes

The proposed model is designed for binary classification only. Online nominal Naïve
Bayes maintains a summary for each class that contains the count of unique values of
each nominal attribute. Whenever a new instance arrives, the summary is updated for the
class to which the instance belongs. Since we are using prequential evaluation, the online
nominal Naïve Bayes model computes the posterior probabilities of each class with the
arrival of each new instance using Equation (7) before updating the summaries.

P(C | a1, a2, a3, . . . , an) ∼ P(C)
n

∏
i=1

P(ai | C) (7)

4.1.2. Online Gaussian Naïve Bayes

Online Gaussian Naïve Bayes maintains the running mean and variance of each
continuous attribute. For this purpose, we use Welford’s online algorithm [47]. The
running mean of each attribute is computed using Equation (8). Here, ān is the current
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mean of the attribute, n is the number of instances, ān−1 is the previous mean, and an
is the current value of the attribute. To calculate the variance, we need to calculate an
intermediate term M2,n as shown in Equation (9). Once we have M2,n, we can determine
the running variance by Equation (10). With the arrival of every new instance in the stream,
the online Gaussian Naïve Bayes updates each continuous attribute’s running mean and
variance. The summaries of continuous attributes contain the running mean and variance
of the respective attribute.

ān =
(n − 1)ān−1 + an

n
(8)

M2,n = M2,n−1 + (an − ān−1)(an − ān) (9)

σ2
n =

M2,n

n
(10)

As we are using prequential evaluation, the online Gaussian Naïve Bayes model
computes the posterior probability of each class using Equation (10) before updating the
running mean and variance. The only difference is in computing the likelihood of each
attribute ai, which is calculated using the following equation:

P(ai | C) =
1

σn
√

2π
exp

(
− (an − ān)

2σ2
n

)
. (11)

In the next sections, we describe the details of the modules we propose to handle class
imbalance and discrimination in data streams.

4.2. Module for Monitoring and Handling Class Imbalance

We use a class imbalance monitoring component that tracks the proportion of each
class in the stream. The roles of majority and minority classes may swap as the stream
evolves, i.e., a class that is in the minority at the current time may turn out to be the
majority at a later time. We track the state of disequilibrium using the Online Class
Imbalance Monitor (OCIM) [48] as shown in Equation (12). In this equation, CP+

t is the
percentage of positive class at time t and CP−

t is the percentage of negative class at time t.
After the arrival of each new record, OCIM updates the percentage CPt of the respective
class using Equation (13).

OCIMt = CP+
t − CP−

t (12)

CPy
t = α · CPy

t−1 + (1 − α) · I[y, yt] (13)

The state of imbalance needs to be changed based on the most recent examples from
the stream, and the impact of previous examples needs to be reduced. Therefore, we include
a temporal decay factor (0 < α < 1) to quickly capture the change in disequilibrium. This
decay factor limits the impact of historical data; therefore, CPy

t is adjusted based on the
most recent records. α = 0 means that the historical data do not influence the CPy

t at all,
and if we keep α = 1, then we include the complete effect of historical data on CPt. I[y, yt]
is the identity function that returns the value ’1’ if the predicted label (yt) and the true label
(y) are the same; otherwise, it returns the value ’0’.

Once we have the class percentages (i.e., CP+
t , CP−

t ), we can use them to find an appro-
priate weight for each new instance of the data stream. Algorithm 1 presents the complete
methodology for computing the instance weights. CW+ and CW− are the class weights
of the positive and the negative class, respectively. We compute CW+ and CW− using the
class weights library of Sklearn (https://scikit-learn.org, accessed on 22 September 2023).
This weighting procedure assigns higher weights to minority class instances than majority
class instances. The resulting weight distribution makes the minority class (positive class)
more prominent during the training of the learner.

https://scikit-learn.org
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Algorithm 1 Computing instance weights
Require: true class labels y, positive class weight CW+, negative class weight CW−, OCIMt

1: Initialize: current instance’s weight wi = 1;
2: if y == negative label and OCIMt > 0 then
3: wi = CW−/(1 − OCIMt)

4: if y == positive label and OCIMt < 0 then
5: wi = CW+/(1 + OCIMt)

4.3. Module for Handling Concept Recurrence

As shown in Figure 1, we use a concept drift detector proposed by the Page-Hinkley [49]
explicit drift detection method. Our concept drift detection method monitors the OCIM
parameter. This method of drift detection works by comparing the current OCIM to
OCIM_meant. OCIM_meant is the mean value of the OCIM computed for a window of
instances up to the current time as illustrated in Equation (14). We chose a window of
1000 instances to compute OCIM_meant. In general, concept drift is detected when the
observed OCIMt is above the mean OCIM_meant by a specified threshold η at a given
point in time. Through grid search, we chose the value of η as 0.02. This value of η gave
us the best discrimination score and predictive performance. With η = 0, concept drift is
detected when the mean class imbalance exceeds 0%. Furthermore, η = 0.02 allows the
mean class imbalance to be in the range [−2%, 2%].

OCIM_meant =
∑N

i=1 OCIMi

N
(14)

Concept recurrence is a special case of concept drift where the concepts which have
already been seen in the past reappear in the evolving stream. As soon as concept drift
is detected, the MNB stores the summaries of next instances as a separate model. In the
future, when a similar concept reoccurs (similar concept drift recurs), then MNB retrieves
the corresponding model and uses it for further prequential evaluation.

4.4. Online Discrimination Detection and Mitigation

We need to handle discrimination embedded in data streams. As the streams progress,
the discriminated groups and the preferred groups do not remain the same. The group that
was once discriminated against may turn out to be a preferred group later. Therefore, we
need to develop a method that efficiently deals with this concept deviation. Also, we need
to maintain the methodology that we developed to deal with the class imbalance problem.

Algorithm 2 illustrates our online discrimination mitigation procedure. To eliminate
the discrimination, we change the probability distributions of the protected group P(S− |
class) and the non-protected group P(S+ | class) after the arrival of each new example
in the data stream. If the discrimination value is greater than a certain threshold ε, we
add a factor (λ) of the number of samples belonging to the negative class with protected
value N(C−, S−) to the number of samples belonging to the positive class with protected
value N(C+, S−) (Algorithm 2: line 2). To avoid unnecessary data augmentation, we also
subtract the same factor (λ) from the number of samples belonging to the negative class
with protected value N(C−, S−) (Algorithm 2: lines 3).

Similarly, we add a factor (λ) of the number of samples belonging to the positive class
with non-protected value N(C+, S+) to the number of samples belonging to the negative
class with non-protected value N(C−, S+) (Algorithm 2: lines 4). We also subtract the same
factor (λ) from the number of samples belonging to the negative class with the protected
value N(C+, S+) (Algorithm 2: lines 5). λ is actively tuned through MOO; the details can
be found in the next section.

Since we want to deal with concept deviations in the evolving data streams, we also
consider negative discrimination, i.e., when the learner starts discriminating against the
samples with non-protected value. To remove the negative discrimination, we use the
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same method as described above, except that now we swap the roles of protected and
non-protected groups (Algorithm 2: lines 6 to 10).

Algorithm 2 Online discrimination mitigation procedure.
Require: Summaries of the number of samples belonging to the positive class with protected value

N(C+, S−); the number of samples belonging to the positive class with non-protected value
N(C+, S+); the number of samples belonging to the negative class with protected value N(C−, S−);
the number of samples belonging to the negative class with non-protected value N(C−, S+);
discrimination score disc.

Ensure: The overall number of samples does not change.
1: if disc > ε then
2: N(C+, S−) = N(C+, S−) + λ N(C−, S−)
3: N(C−, S−) = N(C−, S−)− λ N(C−, S−)
4: N(C−, S+) = N(C−, S+) + λ N(C+, S+)
5: N(C+, S+) = N(C+, S+)− λ N(C+, S+)

6: if disc < −ε then
7: N(C+, S+) = N(C+, S+) + λ N(C−, S+)
8: N(C−, S+) = N(C−, S+)− λ N(C−, S+)
9: N(C−, S−) = N(C−, S−) + λ N(C+, S−)

10: N(C+, S−) = N(C+, S−)− λ N(C+, S−)

Adaptive Hyperparameter Tuning through MOO

In our research, we employ the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [50] as a multi-objective optimization (MOO) method, to actively tune the hyperpa-
rameter λ during windowed prequential evaluation of streaming data to simultaneously
optimize our multiple objectives, i.e., balanced accuracy and fairness. This MOO-based
method assists in selecting a λ that reduces discrimination as well as not only retaining
but also enhancing the benefits obtained by the class imbalance handling module, i.e.,
the high predictive performance. For every window of n instances, the MOO procedure,
outlined in Algorithm 3, is invoked to optimize λ based on a trade-off between balanced
accuracy and discrimination score. In each invocation, a population of M values of λ is
initialized (Algorithm 3: line 1). The parent and child populations of λ are merged to
form λ

g
h (Algorithm 3: line 3). Each lambda in this merged population is then used to test

(windowed prequential evaluation) Fair-CMNB and the corresponding solutions (pairs of
balanced accuracy and discrimination scores) are found (Algorithm 3: line 4). The Pareto
front represents the set of optimal trade-offs between the two objectives, i.e., balanced
accuracy and discrimination score; each point on the Pareto front ([B.Acc., disc_score]) sig-
nifies a unique balance between the balanced accuracy and discrimination score. Some
points may have a high discrimination score but lower balanced accuracy, and others may
have high balanced accuracy but a lower discrimination score. Fast non-dominated sorting
is then applied to sort the Pareto fronts P (Algorithm 3: line 5). The next generation’s
parent population (λg+1

p ) is incrementally populated by including individuals from the
sorted fronts, up to a size limit of M. Crowding distance is calculated within each front (P j)
to preserve diversity among the solutions (Algorithm 3: lines 7 to 11). The newly found
Pareto fronts are sorted based on their dominance to determine their inclusion priority in
the subsequent generation (Algorithm 3: line 12). Only the first (M − |λg+1

p |) elements of
the final (P j) are added to the parent population (Algorithm 3: line 13) to keep the size
of the population intact, i.e., M. The child population for the next generation (λg+1

c ) is
formed using selection, crossover, and mutation operations on the newly formed parent
population (Algorithm 3: line 14). After completing a generation, the generation counter
g is incremented. This optimization process stops if we reach the maximum number of
generations Z or the trade-off value (Equation (15)) is not improving over a fixed number
of previous generations; the algorithm sorts the final child population by the trade-off
criterion to select the optimal λ value (λbest) (Algorithm 3: lines 15 to 16). This trade-off
measure is inspired by F-score, where µ is a hyperparameter that makes the discrimination
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score (disc_score) µ times more important than the balanced accuracy (B.Acc.). If we keep
the value of µ equal to 1, then the trade-off becomes the harmonic mean between B.Acc. and
1 − abs(disc_score). The selected λbest is then used for the windowed prequential evaluation
of the subsequent t instances, after which the MOO procedure is invoked again.

trade-off = (1 + µ2) ∗
(

B.Acc. ∗ (1 − abs(disc_score))
µ ∗ B.Acc. + (1 − abs(disc_score))

)
(15)

Algorithm 3 Multi-objective optimization procedure to actively tune λ.
Require: Summaries of all the samples of a window
Ensure: Optimized λ to ensure Pareto optimal trade-off between balanced accuracy and discrimina-

tion score.
1: λ

g
c = init(size = M), g = 1, λ

g
c = ϕ

2: while g ≤ Z or trade-off improving do
3: λ

g
h = λ

g
p ∪ λ

g
c ▷ Combine parent and child populations of λ

4: Yh = [B.Acc., disc_score]ni=1 = Fair − CMNB.preq_eval(λg
h)

5: P = f ast_non_dominated_sort(Yh) ▷ sorted non dominated fronts of λh

6: λ
g+1
p = ϕ, j = 1

7: repeat
8: crowding_distance_computation(P j)

9: λ
g+1
p = λ

g+1
p ∪ P j

10: j = j + 1
11: until |λg+1

p |+ |P j| ≤ M
12: sort_by_dominance(P j) ▷ sort P j in descending order according to dominance
13: λ

g+1
p = λ

g+1
p ∪ P j[1 : (M − |λg+1

p |)]
14: λ

g+1
c = make_new_population(λg+1

p ) ▷ make new/ child population using selection,
crossover, and mutation

15: g = g + 1
16: λbest = sort_and_select_best_by_trade-off (λc)

5. Complexity Analysis
5.1. Online Naïve Bayes Classifier

• Model Update: For d features and c classes, the update complexity is O(dc).
• Prediction: The prediction complexity per data point is O(dc).

5.2. NSGA-II for Hyperparameter Tuning

• Population Initialization: Time complexity for initial population setup with p individuals
is O(p).

• Fitness Evaluation: For p individuals, with E as the evaluation time, the complexity is
O(pE).

• Non-dominated Sorting and Selection: The sorting process complexity is O(p2).
• Genetic Operators: The complexity of crossover and mutation operations is O(p).

5.3. Page-Hinkley for Concept Drift Detection

• Drift Detection: The complexity for each incoming data point is O(1).

5.4. Overall Computational Complexity

Assuming N total data points and hyperparameter tuning every T time steps:

• Online Naïve Bayes: Update and Prediction complexity is O(Ndc).
• NSGA-II Operations: Dominated by the fitness evaluation, it is O(pE + p2 + p), pri-

marily O(pE).
• Page-Hinkley Drift Detection: Overall complexity is O(N).

The overall complexity is dominated by the most expensive operation among these,
typically the hyperparameter tuning cost O(pE), if significant.
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6. Evaluation Setup
6.1. Benchmark Baselines

We compare the proposed methodology against five baseline models including the
class imbalance-aware CSMOTE [40], non-stationary OSBoost [28], fairness-agnostic mas-
saging (MS) [34], fairness-aware FAHT [35], and class imbalance- and discrimination-aware
FABBOO [1]. All the baselines are trained using the same hyperparameters as given in
the respective research articles. We also evaluate different variants of MNB to stress the
effectiveness of different modules of the proposed model.

1. CSMOTE [40]: This baseline is not fairness-aware, but it is designed to handle class
imbalance in a non-stationary environment by re-sampling the minority class in a
defined window of instances.

2. OSBoost [28]: This is a classification model for data streams. It is not capable of
handling either class imbalance or discrimination.

3. Massaging (MS) [34]: This is a fairness-aware learning method. It is a chunk-based
technique which handles discrimination in the current chunk by swapping labels.
But it does not account for cumulative effects of discrimination; it is designed to
handle discrimination only on a short-term basis, i.e., for the current chunk. We use
the default chunk size for training this baseline, i.e., 1000, as proposed by [34]. This
method cannot handle class imbalance.

4. Fairness-Aware Hoeffding Tree (FAHT) [35]: This method is an adaptation of Ho-
effding tree that is designed to deal with discrimination. It incorporates the fairness
gain along with the information gain into the partitioning criteria of the decision tree.
This model is not able to deal with class imbalance and concept drifts.

5. FABBOO [1]: This is an online boosting approach that handles class imbalance by
monitoring class ratios in an online fashion. It employs boundary adjustment methods
to handle discrimination.

6. MNB (Mixed Naïve Bayes): This is a combination of online nominal Naïve Bayes and
online Gaussian Naïve Bayes. It considers no notion of fairness and class imbalance
while performing classification tasks.

7. Fair-CMNB (Discrimination- and Class Imbalance-Aware Mixed Naïve Bayes): This
is a variant of MNB which mitigates discrimination (utilizing MOO) as well as handles
class imbalance and concept drifts in the evolving stream.

6.2. Benchmark Datasets

The details of the datasets used to test the efficiency of the proposed model are shown
in Table 1. The datasets have different characteristics related to the number of attributes
(#Att.), number of instances (#Inst.), sensitive attribute (Sens. Att.), and class ratio (positive
to negative). We are using static datasets along with the streaming datasets. Despite the
growing interest in AI models that focus on fairness, there is still a lack of large streaming
datasets in this domain. Therefore, we use static datasets along with streaming datasets
to prove the effectiveness of our proposed model. Since we are unaware of the temporal
characteristics of the static datasets, we report the evaluation metrics on the average of
10 random shuffles of each static dataset that passes through the model.

Table 1. Description of datasets.

Dataset #Inst. #Att. Sens. Att. Class Imb. Positive Class Type

Adult Census [51] 45,175 14 Gender 1:3.0 >50 K Static

Compas [52] 5278 9 Race 1:1.1 recidivism Static

KDD [51] 299,285 41 Gender 1:15.1 >50 K Static

Default [51] 30,000 24 Gender 1:3.52 default payment Static

Law School [53] 18,692 12 Gender 1:3.5 pass bar Static

NYPD [54] 311,367 16 Gender 1:3.7 felony Stream

Loan [55] 21,443 38 Gender 1:1.26 paid Stream

Bank Marketing [51] 41,188 21 Marital Status 1:7.87 subscription Stream
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6.3. Evaluation Metrics

We use recall, balanced accuracy, gmean, cumulative statistical parity (St. Parity), and
cumulative FACE to measure the predictive and fairness performance of the proposed
framework and competing baselines. The mathematical representation of recall, balanced
accuracy, and gmean are illustrated in Equations (16), (18), and (19). The details of statistical
parity and FACE have already been explained in Section 3.3.

Recall =
TP

TP + FN
(16)

Speci f icity =
TN

TN + FP
(17)

BalancedAccuracy =
Recall + Speci f icity

2
(18)

Gmean =
√

Recall ∗ Speci f icity (19)

7. Results and Discussion

The proposed models are trained and tested following the prequential evaluation
with sliding windows (with a window size of 1000 instances) strategy, i.e., test first, then
train. We tune the hyperparameters α and ϵ by grid search. To obtain the best results for
all datasets, we choose values of 0.9 and 0.00001 for α and ϵ, respectively. As mentioned
earlier, the non-streaming datasets lack temporal features; therefore, we use ten random
shuffles of each static dataset and present the average of their results. All the baselines are
also evaluated using the prequential evaluation with sliding windows method.

7.1. Comparison with Baselines

Table 2 presents the measures of fairness and predictive performance obtained by the
proposed model (Fair-CMNB) and the competing baselines for a set of streaming datasets.
Similarly, the evaluation measures obtained on the average of 10 random shuffles of each
static dataset by Fair-CMNB and the baselines are shown in Table 3. From Tables 2 and 3, we
can observe that we always achieve the best discrimination score (St. Parity) as compared
to all the baselines. Compared to SoTA methods, Fair-CMNB achieves the best balanced
accuracy for the Adult Census, KDD, Default, Law School, NYPD, and Loan datasets.
Although CSMOTE is a class imbalance-aware baseline, Fair-CMNB outperforms it in
terms of balanced accuracy for all datasets except the Bank Marketing dataset. For the Bank
Marketing dataset, CSMOTE (baselines model without fairness interventions) reports the
best balanced accuracy but Fair-CMNB follows it with a close margin of 1.15%. However,
the difference between the discrimination score achieved by CSMOTE and the proposed
model for the Marketing dataset is substantial, i.e., 7.373%.

There is a noticeable disparity between the recall and balanced accuracy values ob-
tained by fairness-aware baselines: MS, FAHT, and FABBOO. This suggests that these
baselines attempt to alleviate discrimination by significantly sacrificing either the true
positive rate or the true negative rate. In contrast, for most datasets, Fair-CMNB delivers
recall and balanced accuracy values that are closely aligned.

Our research question is closely related to that of FABBOO. The predictive performance
and discrimination scores achieved by Fair-CMNB are much better than those of FABBOO
for both streaming and static datasets. We can observe that Fair-CMNB achieved 3.32%,
2.14%, 6.56%, 3.23%, 12.06%, 17.1%, 5.9%, and 10.7% higher balanced accuracy values for
the Adult Census, KDD, Compas, Default, Law School, NYPD, Bank Marketing, and Loan
datasets as compared to those achieved by FABBOO while maintaining low discrimination
scores. A similar trend can be observed for gmean.
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Table 2. Comparison of fairness and predictive performance achieved by Fair-CMNB and the
competing baselines for streaming datasets with windowed prequential evaluation; best and second-
best results are in bold and underline, respectively.

Dataset Model Recall (%) B.Acc. (%) Gmean (%) St. Parity (%)

NYPD

CSMOTE 98.01 58.19 42.43 4.82
OSBoost 98.87 52.20 23.38 −0.60
MS 19.17 58.94 43.50 6.39
FAHT 0.45 49.01 6.62 0.06
FABBOO 48.73 64.15 71.44 0.03
Fair-CMNB 86.78 81.25 81.06 0.019

Bank
Marketing

CSMOTE 85.91 83.21 83.16 7.34
OSBoost 37.65 68.55 61.19 2.93
MS 35.29 66.43 58.67 6.68
FAHT 38.15 67.95 61.06 2.07
FABBOO 57.03 76.16 73.71 1.02
Fair-CMNB 82.91 82.06 82.05 −0.033

Loan

CSMOTE 75.57 71.64 71.53 2.88
OSBoost 78.61 69.61 69.02 4.72
MS 69.00 68.53 68.52 50.83
FAHT 69.41 68.01 67.99 0.12
FABBOO 75.60 69.67 69.41 0.75
Fair-CMNB 86.25 80.37 79.87 0.065

Table 3. Comparison of fairness and predictive performance achieved by Fair-CMNB and the
competing baselines for static datasets with windowed prequential evaluation; best and second-best
results are in bold and underline, respectively.

Dataset Model Recall (%) B.Acc. (%) Gmean (%) St. Parity (%)

Adult Census

CSMOTE 81.92 79.73 79.69 29.88
OSBoost 56.06 73.85 71.67 19.19
MS 51.98 74.32 70.88 23.54
FAHT 51.36 75.23 71.34 16.18
FABBOO 66.26 75.90 75.28 0.25
Fair-CMNB 84.56 81.24 81.17 0.0227

KDD

CSMOTE 65.17 76.77 75.88 9.36
OSBoost 33.61 66.35 57.71 5.15
MS 27.88 63.44 52.53 15.80
FAHT 29.65 63.92 53.95 2.44
FABBOO 78.39 81.97 81.89 0.17
Fair-CMNB 88.01 84.11 82.13 0.026

Compas

CSMOTE 66.12 67.05 67.04 20.19
OSBoost 61.09 67.11 66.83 25.99
MS 60.26 65.38 65.17 45.02
FAHT 62.25 65.21 66.69 21.43
FABBOO 65.06 65.15 65.14 1.03
Fair-CMNB 70.40 71.71 71.69 0.776

Default

CSMOTE 81.69 60.80 57.09 3.21
OSBoost 32.88 64.09 55.97 1.97
MS 32.27 63.97 55.56 10.28
FAHT 31.92 64.93 55.91 1.62
FABBOO 43.19 66.14 62.03 0.79
Fair-CMNB 62.23 69.63 69.23 0.012

Law School

CSMOTE 76.01 75.27 74.53 1.43
OSBoost 18.96 59.12 43.38 1.29
MS 19.07 58.87 43.38 3.23
FAHT 14.49 55.61 37.43 0.76
FABBOO 40.48 69.21 62.97 0.27
Fair-CMNB 74.25 81.27 80.97 0.012
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FABBOO has the capability to reduce discrimination score to a suitable value while
maintaining balanced accuracy but it is not able to handle negative discrimination. Also,
FABBOO reports a significant difference in recall and balanced accuracy which indicates
that it is achieving a low discrimination score at the cost of ignoring either the minority or
the majority class. For example, for the Default dataset we observe a difference of 22.95%
between recall and balanced accuracy reported by FABBOO. However, Fair-CMNB reports
only a difference of 7.4% between recall and balanced accuracy. This proves that FABBOO
struggles to handle class imbalance while mitigating discrimination. Similar behavior can
be observed for other imbalanced as well as balanced datasets, i.e., Adult Census, Law
School, Bank Marketing, NYPD, and Loan.

Figure 2 presents a comparison of the balanced accuracy and statistical parity values
attained by Fair-CMNB and FABBOO for the Bank Marketing, Law School, and Default
datasets. From this figure, it is evident that while both Fair-CMNB and FABBOO achieve
similar statistical parity scores, Fair-CMNB consistently outperforms FABBOO in terms of
balanced accuracy throughout the stream for all datasets.

Figure 2. Comparison between balanced accuracy B.Acc. and St.Parity values achieved by Fair-
CMNB and FABBOO for Bank Marketing, Law School, and Default datasets. Notably, Fair-CMNB
consistently outperforms FABBOO in terms of B.Acc. throughout the stream for all datasets while
maintaining very low St.Parity.

7.2. Scalability

Fair-CMNB adapts well to large data volumes. Law School is the smallest dataset
with approximately 18,000 instances, while KDD and NYPD are much larger, with each
containing around 300,000 instances. As is evident from Tables 2 and 3, Fair-CMNB’s
performance remains consistent across both small (Law School) and large (KDD, NYPD)
datasets. This demonstrates Fair-CMNB’s efficient scalability with increasing data volume.

7.3. Agnosticism to Fairness Notions

We are using windowed prequential evaluation; therefore, we have access to the
most recent window of instances. We generate the potential outcomes for this window
of instances using the method mentioned in Section 3.4 and determine the FACE value.
The predictive and fairness performance measures obtained by Fair-CMNB under causal
fairness notion are presented in Table 4. The results indicate that Fair-CMNB consistently
achieves high balanced accuracy alongside remarkably low FACE values across all datasets.
This underscores Fair-CMNB’s agnosticism to the specific fairness notion in use.



Big Data Cogn. Comput. 2024, 8, 16 16 of 20

Table 4. Fairness and predictive performance of Fair-CMNB under causal fairness notion. Fair-
CMNB achieves high predictive performance along with very low FACE values, demonstrating its
adaptability to different fairness notions.

Dataset Recall (%) B.Acc. (%) Gmean (%) FACE (%)

Adult Census 85.55 80.56 80.41 0.488

KDD 86.96 82.61 82.50 −0.104

Compas 77.94 70.53 70.13 0.346

Default 63.39 69.23 68.98 −0.131

Law School 71.84 77.77 77.54 −0.028

NYPD 76.85 78.34 78.33 0.066

Bank Marketing 79.95 80.63 80.61 0.929

Loan 93.95 87.59 87.35 0.812

7.4. Impact Assessment of Naïve Bayes Modules

In this section, we compare the predictive and fairness performance of MNB (without
fairness interventions) and Fair-CMNB (with fairness interventions) as shown in Table 5.
From the results, we can observe that Fair-CMNB effectively reduces discrimination (St. Par-
ity) while simultaneously improving the predictive performance. Specifically, for datasets
such as Adult Census, KDD, Compas, Default, Law School, NYPD, Bank Marketing, and
Loan, Fair-CMNB reduces discrimination (St. Parity) from 29.17% to 0.0227%, 14.35% to
0.026%, 27.28% to 0.776%, 2.65% to 0.012%, 49.64% to 0.012%, 19.85% to 0.019%, 2.71% to
−0.033%, and 14.73% to 0.065%, respectively. Concurrently, while diminishing St. Par-
ity, Fair-CMNB enhances the predictive performance across all datasets, underscoring
the effectiveness of our MOO-based approach. Notably, our technique ensures parity be-
tween protected and non-protected groups, evident even in balanced datasets like Compas
and Loan.

Table 5. Comparison of fairness and predictive performance among MNB variants. Results show that
Fair-CMNB effectively reduces discrimination while simultaneously enhancing predictive accuracy.

Dataset Model Recall (%) B.Acc. (%) Gmean (%) St. Parity (%)

Adult Census
MNB 78.15 79.79 79.77 29.17
Fair-CMNB 84.56 81.24 81.17 0.0227

KDD MNB 78.03 82.17 82.06 14.35
Fair-CMNB 88.01 84.11 82.13 0.026

Compas MNB 67.85 68.96 68.95 27.28
Fair-CMNB 70.40 71.71 71.69 0.776

Default MNB 52.04 68.46 66.46 2.65
Fair-CMNB 62.23 69.63 69.23 0.012

Law School
MNB 86.51 76.13 75.41 49.64
Fair-CMNB 74.25 81.27 80.97 0.012

NYPD MNB 71.76 76.43 76.28 19.85
Fair-CMNB 86.78 81.25 81.06 0.019

Bank Marketing MNB 71.31 79.51 79.08 2.71
Fair-CMNB 82.91 82.06 82.05 −0.033

Loan
MNB 82.00 77.35 77.2 14.73
Fair-CMNB 89.25 80.37 79.87 0.065

7.5. Hyperparameter Sensitivity

The most important hyperparameter in reducing discrimination is λ from Algorithm 2.
We examined the effect of changing λ on the ability of our proposed model to reduce
discrimination, as shown in Figure 3. We used the Adult Census dataset as a reference for
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this analysis. As can be seen in Figure 3a, when the value of λ is 0.01, the discrimination
value immediately drops to zero, indicating that this value is too large. With this value
of λ, we achieve a balanced accuracy of 75.13%. If we decrease λ to a value of 0.001, the
discrimination score decreases to a smaller and stable value after about 20,000 instances,
as shown in Figure 3b. The balanced accuracy is also not much affected with a value of
78.61%. If we further decrease the value of λ to 0.0001, the discrimination score does not
reach a stable value until the end of the stream, although it decreases as shown in Figure 3c.
This value of λ leads to a balanced accuracy of 79.93%. As shown in Figure 3d, if we
leave λ at 0.00001, the discrimination score does not decrease throughout the data stream,
and the achieved balanced accuracy is 80.37%. Therefore, we chose the value 0.001 for λ,
which provides a good trade-off between the balanced accuracy and the attenuation of the
discrimination score.

(a) (b)

(c) (d)
Figure 3. Impact of varying λ on discrimination score (statistical parity) for Adult dataset.

7.6. Deep Learning vs. Naïve Bayes

Deep neural networks (DNNs) can be computationally intensive due to their inherent
structure and the iterative nature of their training process. On the other hand, Naïve Bayes,
being based on straightforward probabilistic computations, is generally faster and more
scalable. We evaluated the runtime of a four-layer online DNN, as proposed by [56], on
the Law School dataset with windowed prequential evaluation. Our findings indicate that
MNB (without fairness and class imbalance interventions) finished training in 130.624 s,
while Fair-CMNB (with fairness interventions) took 360.183 s. Meanwhile, the DNN
(without fairness and class imbalance interventions) required approximately 627.933 s to
complete its training throughout the entire data stream. All tests were conducted on an
Intel Core i7 CPU equipped with 64 GB RAM.

8. Conclusions

The central prerequisite of a just and sustainable world is to ensure gender equal-
ity and realize the human rights, nobility, and competence of diverse groups of society.
Deep learning, although successful in many domains, may not always be optimal for
fairness-aware stream learning where computational efficiency and model interpretability
are major concerns. Therefore, we propose a multi-objective optimization (MOO)-based
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discrimination- and class imbalance-aware online learning framework to achieve parity
between favored and prejudiced groups of subjects.

We present a novel adaptation of Naïve Bayes for mining data streams with embed-
ded discrimination and class imbalance. We have demonstrated the effectiveness of our
methodology by conducting experiments on a range of static and streaming datasets. Our
approach mitigates both discrimination and reverse discrimination by modifying the data
distribution based on a cumulative fairness notion through an MOO method. Our approach
outperforms existing SoTA methods in terms of both balanced accuracy and discrimination
score. We have shown that our approach effectively learns both majority and minority
classes and achieves a low discrimination score while maintaining high predictive perfor-
mance. We have also shown the adaptability of Fair-CMNB to different fairness notions
(including the causal fairness notion FACE). To the best of our knowledge, this is the first
attempt where a causal fairness notion is used to assess the discriminating behavior of a
framework in online settings.

In the future, we aim to thoroughly investigate the forgetting phenomena of the class
imbalance handling module to make it adaptable to the nature of concept drift in the data.
We also plan to analyze the theoretical aspects of our approach.
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