
ABSTRACT 

A disturbed combustion process in an aircraft engine has an 
impact on the internal flow and leads to specific irregularities in the 
species distribution in the exhaust jet. Measuring this distribution 
provides information about the combustion state and offers the 
possibility to reduce the engine down-time during inspection. The 
approach has the potential to improve the resource management as 
well as the availability and safety of the system. Aim of the research 
project is to evaluate the state of an aircraft engine by analyzing the 
emission field in the exhaust jet and using a support vector machine 
(SVM) algorithm for automatic defect detection and allocation. 

NOMENCLATURE 

Symbols 

b = bias 
D = number of features 
M = feature 
P = power 
w = normal vector of hyperplane 
xi = sample 
λ = air-fuel equivalence ratio 

Abbreviations 

Ref = reference class 
Sh = shifted burner 
Ti = tilted burner 

CFD = Computational Fluid Dynamics 
CRC = Collaborative Research Center 
FTIR = Fourier-Transform Infrared Spectrometer 
MRO = Maintenance, Repair and Overhaul 
RANS = Reynolds-Averaged Navier-Stokes 
RBF = Radial Basis Function Kernel 
SAS = Scale-Adaptive Simulation 
SVM = Support Vector Machine 

INTRODUCTION AND SPECIFIC OBJECTIVES 

The current work demonstrates the combination of this approach 
on a simplified model ring combustion chamber with eight burners, 
where possible engine failures can be implemented. The 
combination of experimental determination of the spatial exhaust 
gas pattern, numerical simulations and machine learning algorithms 
are used to recognize the pattern in the exhaust jet automatically. 

The present work consists of two steps: In the first step, a generic 
study on the model combustion chamber is done. The setup features 
the flexible variation of the operating point or the alignment of one 
of eight premixed swirl burners, to create an irregularity, which 
corresponds to a defect in a jet engine. The influence on the 
distribution and concentration of the species field for different 
exemplary defects is investigated experimentally and numerically. 
In the second step, the measurement data are used to implement and 
test a support vector machine for pattern recognition at this given 
setup. This works well for either a general failure detection with a 
simple one-class SVM approach and also for selective multi-class 
SVM methods to recognize the different failure types. Additionally 
it is investigated, if the training data of the exhaust gas measurement 
could be replaced by the data sets from the numerical simulations 
with CFD. This may reduce cost and time to implement such a 
system and allows to train defects, which cannot be measured 
before. The results demonstrate the potential of the approach and 
support the feasibility of an automatic defect detection in a 
combustion chamber of a real aircraft engine. Paul et al. [1] show a 
possibility for applying a Support Vector Machine for novelty 
detection in jet engines using vibration data. The method in this 
paper uses the distribution of exhaust gas components to detect 
defects in the combustion chamber as well to classify and locally 
assign them. 

Maintenance of aircraft engine systems is so far based on regular 
MRO schedules, which are oriented on the shortest possible time 
between potential failures. In this research project, a methodology 
is sought to enable a diagnosis during operation, to determine 
informed decisions on the timing and extent of regeneration 
measures at an early stage. This may allow to extend or shorten 
operation cycles on demand before expensive repair is needed. 
Furthermore, detailed pre-knowledge on potential failure sources 
inside the engine would allow to plan and prepare the necessary 
regeneration process in advance before the disassembly of the 
engine, which would lead to higher efficiency.  

In previous numerical studies [2] and [3] it has been proved that 
defects in combustion chambers influence flow and combustion and 
can be detected by an exhaust gas analysis. Fig. 1 shows the impact 
of a fuel nozzle defect on the temperate field and the propagation 
through the turbine section.  

The basic hypothesis of this study is, that errors in the 
combustion chamber cause significant and unique pattern in the 
exhaust jet. With the help of the Support Vector Machine method, 
the hot gas pattern in the exhaust plane is analyzed in such a way 
that the connection to the defect in the burning chamber is found 
automatically, which causes this pattern. For the investigation of 
this connection between burning chamber defect and exhaust gas 
pattern, we follow a combined experimental and numerical 
approach (Fig. 1).  

Experimental and Numerical Based Defect Detection in a 

Model Combustion Chamber through Machine Learning

Henrik von der Haar, Panagiotis Ignatidis, Friedrich Dinkelacker 

Institute of Technical Combustion, Leibniz Universität Hannover, 
An der Universität 1, 30823 Garbsen, Germany 

International Journal of Gas Turbine, Propulsion and Power Systems 
December 2021, Volume 12, Number 4

Manuscript Received on December 17, 2020 
Review Completed on November 16, 2021

1

Copyright ©2021 the Authors 



The influences of frequently occurring and economically 
relevant defects are simulated and stored in an error database (blue 
path). This process is the defect allocation. If the influence of the 
defect on the exhaust gas is significant and can be detected by an 
appropriate measurement system (green path), the measurement 
results can be assigned to a defect from the database by using 
classification methods. For a successful defect detection, the used 
simulation models must be of sufficient quality and the defect 
influences must be distinguishable.  

The defect recognition does not use any databases from previous 
calculations. With this method, the results from the measurements 
are only compared with the recorded reference case without any 
defects. Machine learning can also be used here to find significant 
deviations in large amounts of data. This procedure can only 
determine, if there is a defect, but the type of damage is still 
unknown. Exceptions can be defects that have already occurred 
several times and have been recorded by measurement. In this case, 
these data records can be added to a separate database. 

In this study, the classification is based solely on the exhaust gas 
composition, being measured with the FTIR method. The 
distribution of CO2 correlates strongly with the temperature, so the 
results can be interpreted also in terms of the measurement of 
temperature plus species information.  

EXPERIMENTAL SETUP 

 Since measurements on real aircraft engines are very complex, 
the experimental and numerical studies have been performed on an 
atmospheric model combustion chamber, which represents a 
simplified model of an aircraft engine combustion chamber (Fig. 2). 

This combustion chamber allows a detailed investigation of the 
allocability of combustor defects analyzing patterns in the exhaust 
jet, as it has easy access for experimental measurement data and can  
be operated with several different failure cases.  

The combustor was designed to investigate the influence of 
possible defects on the species and temperature distribution in the 
exhaust plane of the combustor. In the orientation as the combustion 
chamber can be seen in Fig. 2, the fluid flows from the bottom to 
the top. The exhaust plane is located right above the glass tube. 

The combustor provides the opportunity to simulate various 
defects, which may occur in an annular combustion chamber of an 
aircraft engine. The combustion chamber consists of an array of 
eight premixed-operated swirl-burners, which are arranged in a 
circle with a diameter of 210 mm. Every burner is composed out of 
a tube with an inner diameter of 28 mm in which a swirl generator 
and a turbulence grid are mounted. The combustion chamber is 
outwardly and inwardly enclosed by cylindrical quartz glass, which 
allows optical access. The outer diameter is 310 mm and the inner 
diameter is 105 mm. The inner glass ring is cooled by an air flow 
from the inside. [4] 

The gas flow rates of the burners and the cooling flow are 
controlled by flow meters. To generate a defect in the combustion 
chamber, one burner can be regulated independently of the other 
seven. This allows to vary the power and the fuel-air-ratio. Defects 
can also be generated by changing the positioning of the burner 
tubes: One burner can be moved clockwise by 20° on the pitch 
circle. Another burner can be tilted by 10° in relation to the flow 
direction (see Fig. 3). For more information, see also [4] and [5]. 

Fig. 1: Methodical concept of defect detection by machine learning 

Fig. 3: Schematic top view of the model combustion chamber: 
Point of measurement (x); manipulated and tiltable burner (red); 
shiftable burner (blue) Fig. 2: Model combustion chamber 
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The exhaust gas composition and distribution is determined at 
the outlet plane using the Fourier-transform infrared spectrometer 
versa06 (IAG GmbH). FTIR spectrometers are the most widely 
used spectrometers in the field of infrared spectroscopy. Compared 
to dispersive devices, they offer the advantages of a better signal-
to-noise ratio, a short measurement time due to the simultaneous 
acquisition of the entire spectrum, and a high level of wavenumber 
accuracy.  

The exhaust gas is extracted with a traversable ceramic suction 
probe with heated pipe. The inner diameter of the pipe is 7.5 mm. 
The outer diameter is 12.5 mm. The measurement points are 
positioned on a semicircle and are shown in Fig. 3. The measuring 
rate is 1 Hz, while the measurement accuracy is specified with ±2 % 
by the manufacturer. The exhaust gas composition is recorded at 
each of the nine measurement positions for at least 90 seconds, 
whereby the first 25 seconds due to the intake and settling process 
are not taken into account in the evaluation. Concentrations of 
around 30 different species can be determined with the used 
spectrometer. The current work focuses on the gas components CO2, 
CO and NO. Previous investigations [6] have shown that these 
species are appropriate and offer the greatest potential to detect and 
distinguish defects in combustion chambers, while further 
components do not add additional value here. 

It should be noted that the model combustion chamber is 
simplified with respect to a real aircraft engine, as no turbine behind 
the burning chamber is included. On a first glance, this may be seen 
a strong simplification, but CFD simulations of the mixing of 
combustor defects generated flow profile within the turbine indicate 
that failure pattern remain to be visible here. The CFD simulation 
in Fig. 1 shows an example of the propagation of a cold streak in an 
aircraft engine, which is caused by a defect burner.  

The current study focuses on some typical generic errors in 
aircraft engines, the deviation of the air and fuel supply of one 
burner, the loss of thermal power by a blocked fuel line, or a shifted 
or tilted fuel nozzle (see Table 1). Combinations of different defects 
were investigated as well. In the reference case Ref-P15λ1.0 every 
burner has a power of 15 kW and is operating under stoichiometric 
conditions. In the first investigation (red marked) the power of one 
of the eight burner is reduced or totally shut-down, which represents 
a blockage of the fuel line. In the defect case P0 also the air flow is 
shut-down, while the air supply is working in the case P0-Air. In a 
second investigation (blue marked) the air-fuel equivalence ratio λ 
of one burner is varied slightly. Some of these measurements were 
also repeated (✓) with a shifted or tilted burner. In these cases, a 
‘Sh’ or a ‘Ti’ is added to the name. In total, one reference case and 
22 different defect cases were investigated. 

NUMERICAL SETUP 

In addition to the experimental investigations, the processes in 
the model combustion chamber are evaluated numerically with 
three-dimensional reacting flow simulations with the CFD method 
(being based on the ANSYS Fluent 17.2 [7] software). The CFD 
simulations are especially used for the process to classify defects 
on the basis of numerical data. The simulation of the flow and 
combustion processes is divided in two steps. In a first step, the 

steady flow within the eight combustion tubes (Fig. 4, right) is 
determined. The tetrahedron mesh (orange) has a comparatively 
fine resolution and 3.8 million cells due to the complex geometry 
of the swirl generator. A stationary RANS approach with the SST-
k-ω turbulence model is used to simulate the flow within the eight 
combustion tubes. The calculations are carried out without 
combustion.  

The flow and turbulence parameters are extracted at the end of 
the burner tubes and are used as boundary conditions for the 
transient SAS simulation of the combined ring burning chamber. 
The separation of the simulation regions enables a significant 
reduction in computing time, since the flow in the burner tubes is 
calculated only once. The ring burning chamber is discretized with 
a hexahedron mesh (blue) with 4.79 million cells and a 
correspondingly high quality (Fig. 4, left). For the combustion 
processes the species transport approach with the 2-step mechanism 
CH4-CM2 was used. The NOx model, which is available as 
standard in ANSYS Fluent 17.2 is used to determine nitrogen 
oxides, see [7]. All simulations are performed with a pressure-based 
solver. A complete mixture of air and methane before entering the 
combustion tubes is assumed. The time step size of the SAS 
simulation is 50 µs. The temperature of the mixture is 20 °C. 

Fig. 4: Used hexahedral (blue) and tetrahedron (orange) meshes of 
both simulations combined 

EXEMPLARY EMISSION PATTERN 

The following diagrams in Fig. 5 show the averaged profile 
courses at the exit of the model combustion chamber for various 
defects. The measurement results (left) are based on the FTIR 
investigations at nine measurement positions in one half of the 
combustion chamber. The simulated courses (right) were extracted 
from the simulated species distributions at the same positions. The 
dashed red line shows the position of the manipulated burner. The 
error bars and the error bands indicate the 95 % confidence interval. 
The description of further defects can be found in [8]. 

Table 1: Investigated operating points and defects 

Name PSingle λSingle PArray λArray Shifted (Sh) Tilted (Ti) 
Ref-P15λ1.0 (Sh/Ti) 15 kW 1.0 7 × 15 kW 1.0 ✓ ✓ 
P12λ1.0 12 kW 1.0 7 × 15 kW 1.0 - - 
P10λ1.0 (Sh/Ti) 10 kW 1.0 7 × 15 kW 1.0 ✓ ✓ 
P5λ1.0 (Sh/Ti) 10 kW 1.0 7 × 15 kW 1.0 ✓ ✓ 
P0 (Sh) 0 kW - 7 × 15 kW 1.0 ✓ - 
P0-Air (Sh/Ti) 0 kW ∞ 7 × 15 kW 1.0 ✓ ✓ 
P15λ0.8 (Sh/Ti) 15 kW 0.8 7 × 15 kW 1.0 ✓ ✓ 
P15λ0.9 15 kW 0.9 7 × 15 kW 1.0 - - 
P15λ1.1 15 kW 1.1 7 × 15 kW 1.0 - - 
P15λ1.2 (Sh/Ti) 15 kW 1.2 7 × 15 kW 1.0 ✓ ✓ 
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The CO2 concentration for a methane-air combustion under 
stoichiometric conditions is about 9.51 %. For the reference case 
Ref-P15λ1.0 this value is confirmed very well by both the FTIR 
measurement and the CFD simulation. The CO2 distributions are 
constant over the entire range. The profiles of the defect cases also 
approach this value in the areas, which are not affected by the defect. 
The profiles of both diagrams show great similarity to one another, 
even if the exact concentrations are not always achieved by the 
simulation. The defect case P0 with a deactivated burner reduces 
the CO2 concentration on the left side of the manipulated burner 
(see dashed line at 202.5°). The simulation correctly determines the 
greatest influence at 180°. The width of the influence is also similar. 
The presumable reason for the different positions of the 
concentration minimum are the reduced swirl and flow velocities 
and the influence of the neighboring burners. The minimum CO2 
concentration is overestimated with 5 % compared to 2.3 % in the 
measurement. The defect case P0-Air with a deactivated fuel-
supply shows a broad influence on the CO2 distribution in the 
exhaust gas. In this case, both the profile and the absolute values of 
the measurements are met with great agreement by the simulation.  

The simulations show fluctuations of the CO distributions. The 
simulated and measured influence of defects on the CO distribution 
profile are similar. The minimum and width of the area of influence 
are usually correctly determined. The absolute CO concentrations 

shows some differences. In the case of P0-Air a minimum 
concentration of 1 ppm CO is determined in the measurement and 
is at the lower limit of the measuring range. The simulation 
calculates a minimum of 10-8 ppm. In both cases there is no 
significant CO concentration in the exhaust gas, but the value range 
specified by the simulation cannot be reached by any exhaust gas 
measurement technology. This fact is problematic for later defect 
classification. The level of the NO concentration is correctly 
specified for the reference case at around 40 ppm and corresponds 
to the measurements. The areas of influence and concentration 
minima are largely correct. The blocked fuel line (P0-Air) and the 
inflow of ambient air result in a local excess of oxygen, which 
oxidizes to NO and leads to a higher NO concentration at about 
112.5° and 270°. The simulation overestimates this process 
resulting in higher NO concentrations compared with the 
measurements in this position. 

The used simulation models represents the flow and combustion 
processes in the model combustion chamber to a large extent 
correctly and are confirmed by the measurement results. The 
positions of defect influence largely agree with those of the 
measurements. Overall, the results of the simulation are valid and, 
in addition to the measurement data, serve as a further data basis for 
testing the algorithms for pattern recognition. 

Fig. 5: Circumferential profile of measured (left) and calculated species concentrations (right) at the combustor exit plane 
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SUPPORT VECTOR MACHINE 

The aim of the following study is to check the feasibility to 
detect a defect and to classify the type of defect from the measured 
emission pattern. For that the Support Vector Machine (SVM) 
approach is used. The Support Vector Machine approach has 
become popular for solving classification tasks. This classification 
method was introduced in 1992 by Boser et al. [9] and became state-
of-the-art due to their fast and simple online application to large 
scale data sets [10].  

The process consists of two steps: the training and the 
classification of new data. Each data point is described by a set of 
characteristic features (D of them), such that the data point is 
presented within a D-dimensional data space. In the first step, a data 
set of two known classes will be separated by a calculated 
hyperplane (see Fig. 6 for the simple case of two dimensions). The 
hyperplane is positioned in the middle between the two canonical 
hyperplanes (dashed lines). The so-called support vectors will 
determine the position of these lines, whereby the algorithm is 
searching for a maximum margin to separate the classes as 
effectively as possible. In the second step the algorithm is using the 
hyperplane in order to estimate the class of new and previously 
unseen data sets. The position of a new data point in relation to the 
hyperplane determine the class affiliation. [8] 

Fig. 6: Example of two linearly separable classes 

For the determination of the hyperplane, we assume N training 
points are given, which are linearly separable. Each point �� has D
parameters (P1, P2,…,PD) and belongs to one of two classes 
�� = 	−1 or +1. The hyperplane can be obtained by

		 ∙ � + � = 0 (1) 

where vector 	  is normal to the hyperplane and �/‖	‖  is the
perpendicular distance from the hyperplane to the origin. After 
scaling 	 and � the training data can be described by 

�� ∙ 	 + � ≥ +1  for �� = +1 (2) 
�� ∙ 	 + � ≤ −1  for �� = −1 (3) 

Equation (2) and (3) are combined to 

���	 ∙ �� + �� − 1 ≥ 0 (4) 

The margin between the classes can be described as 1/‖	‖. For the
determination of the optimal hyperplane the margin between the 
classes has to be maximized, which is equivalent to minimizing 
Equation (5) subject to the constraint in (4). 

min	 12 ‖	‖
� (5) 

This constrained optimization problem can be written as one 
equation using the method of Lagrange multipliers [10]: 

L = 	12 ‖	‖
� −��������� ∙ 	 + �� − 1�

�

���
(6) 

Substituting the partial derivatives of the Lagrange function 

 !"
 	 = 0	 → 	 = 	�����

�

���
�� (7) 

 !"
 � = 0	 → 0 = 	�����

�

���
(8) 

into Equation (6) results in the dual formulation of the optimization 
problem 

L$ =��� −
�

���
	12����%���%�� ∙ �%

�

�,%
(9) 

�� ≥ 0;					����� = 0
�

�,%
(10) 

Solving the optimization problem by maximizing L$ leads to the
variables �� , which are required to determine 	  and the optimal
hyperplane. 

Data are often not linearly separable or greater margin can be 
achieved by allowing to misclassify some points. To allow errors 
the Equations (4) and (5) may be extended by the slack variable ξ�.
Additionally the radial basis function kernel (RBF) is used to 
transform the data set in a higher dimension, where a linear 
separation is possible.  

The SVM algorithm will be used several times to distinguish 
between more than two classes in multiclass applications. A typical 
method for multiclass SVM is one-vs-one, which is used here. 
These topics are not described in the part above, but are used for an 
efficient algorithm implementation. For further explanations see 
[11], [12]. 

IMPLEMENTATION 

Each measured or simulated CO2, CO or NO concentration at 
every point of investigation is a possible feature for the automatic 
defect detection. The data are normalized by the algorithms and 
used without any other modifications. The measurements contain 
60 to 120 data points per defect and measurement position. The 
species distributions were exported from the CFD simulations at 
every tenth time step, so that the algorithms have at least 450 data 
points per class and position. The data points are divided into a 
training (80 %) and a test data set (20 %). The MATLAB R2018b 
[13] functions fitcsvm (one-class learning) and fitcecoc (multi-class
learning) with automatic hyperparameter Bayesian optimization are
used. The selection of suitable features is based on the eleven
investigation cases in Table 2. Each case describes a combination
of exhaust gas components that were recorded at different
measurement positions and are taken into account in an own SVM.

The specified positions are on the left (180°), in the middle 
(202.5°) or on the right (225°) above the manipulated burner (see 
Fig. 3) and were selected on the basis of previous studies. For 
example, the case #1 only considers CO2 concentrations at three 
different positions. The SVM of case #4 considers the CO2, CO and 
NO concentration at the position 180° as features. 
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In this paper the features are determined only in a few selected 
positions. For an evaluation of the entire combustion chamber, the 
classification must be carried out several times at different positions. 
The advantage of this method is that several defects can be detected 
at the same time, which occur at different points in the combustion 
chamber. The procedure is not carried out in this work, but would 
be possible straight forward. 

RESULTS: ONE-CLASS-SVM 
The classification of only one class is used to detect anomalies 

in data sets. Here, only the reference case is made available to the 
SVM algorithm and trained. Test data that lie outside the 
determined hyperplane belong to the defect class. The main 
advantage of this approach is that defects can be detected, which 
have not been trained before. There is no need to create a damage 
library, but it is not possible to differentiate between defects in this 
way. The feasibility of this approach is examined in this section. 

The measured data set of the reference case Ref-P15λ1.0 is 
divided into a training (80 %) and a test data set (20 %). The data 
of all defect cases are summarized in one defect class. These data 
are only used in the SVM test phase to check the classification 
accuracy. The data set is not available for the algorithm in the 
learning phase.  

Figure 7 shows an extract of the measurement data distribution 
for the two features CO2 (180°) and CO2 (202.5°). The training data 
set of the reference class and the test data set of the defect class are 
shown. Red circled training data points mark the support vectors, 
which define the hyperplane around the reference class. 
Furthermore, the determined score is shown as a contour in the 
diagram. The score defines the class of the data. Test data with a 
score > 0 are assigned to the reference class. Data with a score < 0 
are classified as defect. It can be clearly seen that the highest score 
values are close to the reference class and decrease with increasing 
distance. The support vectors are distributed evenly around the 

training data. The algorithm of the one-class SVM offers the 
possibility of defining an outlier rate. As a result, the largest outliers 
of the reference class are neglected, whereby the decision plane 
move closer to the training data set. This procedure offers the 
advantage that measurement data from defect engines that are close 
to the reference class are more likely to be assigned to the defect 
class. This increases the true-positive-rate (defect is recognized as 
a defect) at the expense of the true-negative-rate (reference is 
recognized as a reference) and is particularly preferred for safety-
critical systems. The selected outlier-rate is 5 %. 

The diagram illustrates the good separability of the reference 
and defect classes. Almost all test data can be correctly assigned 
with just two features. It should be emphasized once again that only 
the CO2 concentration of the measurements are plotted, which are 
only slightly influenced by a defect. The CO2 concentration of the 
other defects are outside of the diagram area and can be assigned to 
the defect class with a correspondingly high degree of certainty. 

In Figure 8, the proportions of the correctly classified test data 
are plotted for different features. Each case describes a combination 
of different exhaust gas concentrations that were recorded at 
different positions at the combustion chamber outlet. The 
corresponding characteristics of the respective cases can be found 
in Table 2. The investigation was carried out for the numerically (a) 
and experimentally (b) determined data sets. A distinction is made 
between the success rates of the reference and defect class. 

The vast majority of the test cases show good classification 
results of over 85% for the test data of the reference case in both 
studies. The best combinations of features classify about 95 % of 
all reference data correctly. As expected, a completely correct 
allocation is not achieved due to the specified outlier rate of 5 %. 
By contrast, the proportion of correctly classified test data in the 
defect class increases by a few percentage points by using an outlier 
rate. Except for case #2 which consider only CO data 97 % to 100 % 
of the simulation data can be correctly assigned to the defect class. 
Within the experimental study, all data of the defect class are 
correctly recorded regardless of the investigation case. The different 
classification results between the CFD and FTIR data are mainly 
due to different distribution spreads.  

If a particularly high value is placed on the reliable detection of 
defects and possible misclassifications of reference data can be 
accepted, the investigation case #1 offers the best classification 
results, which only considerate the  CO2 concentration at three 
different positions. However, it should be pointed out that in later 
applications an entire data set determines the state of an engine and 
not a single data point. The probabilities of success in detecting an 
unknown defect in the model combustion chamber are therefore 
very high.  

Fig. 7: Extract of the FTIR data distribution of the reference and all 
defect cases for exemplary features. The score of the one-class 
SVM determines the class affiliation. 

Case CO2
(180°) 

CO 
(180°) 

NO 
(180°) 

CO2
(202.5°) 

CO 
(202.5°) 

NO 
(202.5°) 

CO2
(225°) 

CO 
(225°) 

NO 
(225°) 

#1 x x x 
#2 x x x 
#3 x x x 
#4 x x x 
#5 x x x 
#6 x x x 
#7 x x x x x x 
#8 x x x x x x 
#9 x x x x x x x x x 

#10 9 × CO2 (90° - 270°) 9 × CO (90° - 270°) 9 × NO (90° - 270°) 

Table 2: Investigation cases with different combinations of features 
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The vast majority of the test cases show good classification 
results of over 85% for the test data of the reference case in both 
studies. The best combinations of features classify about 95 % of 
all reference data correctly. As expected, a completely correct 
allocation is not achieved due to the specified outlier rate of 5 %. 
By contrast, the proportion of correctly classified test data in the 
defect class increases by a few percentage points by using an outlier 
rate. Except for case #2 which consider only CO data 97 % to 100 % 
of the simulation data can be correctly assigned to the defect class. 
Within the experimental study, all data of the defect class are 
correctly recorded regardless of the investigation case. The different 
classification results between the CFD and FTIR data are mainly 
due to different distribution spreads.  

If a particularly high value is placed on the reliable detection of 
defects and possible misclassifications of reference data can be 
accepted, the investigation case #1 offers the best classification 
results, which only considerate the  CO2 concentration at three 
different positions. However, it should be pointed out that in later 
applications an entire data set determines the state of an engine and 
not a single data point. The probabilities of success in detecting an 
unknown defect in the model combustion chamber are therefore 
very high.  

Fig. 7: Extract of the FTIR data distribution of the reference and all 
defect cases for exemplary features. The score of the one-class 
SVM determines the class affiliation. 
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(202.5°) 
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(225°) 
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(225°) 
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rate. Except for case #2 which consider only CO data 97 % to 100 % 
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correctly recorded regardless of the investigation case. The different 
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a) Data set from CFD simulation

b) Data set from FTIR measurement

Fig. 8: Influence of the feature selection of a one-class SVM on the 
proportion of correctly classified test data 

RESULTS: MULTI-CLASS-SVM 

In this section the results of the defect detection with a multi-
class SVM are presented. In contrast to the previous section, each 
defect is trained as a separate class. The proportions of the correctly 
classified data are used to evaluate the features and model 
parameters of the pattern recognition. The diagrams in Fig. 9 show 
the percentage of correctly classified data for the features and 
examination cases listed in the Table 2. 

The study was carried out separately for the data sets of the CFD 
simulation (a) and the FTIR measurements (b). With the exception 
of case #2, the classification rates are relatively high with over 85 % 
and the trained SVM algorithm is correspondingly good. As 
expected, the results of the training data are higher than those of the 
test data. The investigations on the measurement data show higher 
success rates than those based on the CFD data. The reason is the 
lower spread of the FTIR data compared to the data sets from the 
simulations. It is noticeable that the classification rates for 
simulated data of one single position (#4, #5, #6) are comparatively 
low. With the use of six or more features (#7-10), the classification 
rate increases in both examinations to 100 %. The extraction 
position of the data (#7, #8) is not relevant here. For the case #9 
with a total of nine features, all data are correctly assigned.  

a) Data set from CFD simulation

b) Data set from FTIR measurement

Fig. 9: Influence of the feature selection of a multi-class SVM on 
the proportion of correctly classified data 

RESULTS: EXPERIMENTAL AND NUMERICAL BASED 

DEFECT ALLOCATION 

The next step is to replace the training data of the FTIR 
measurement with data sets from numerical simulations with CFD. 
This may reduce cost and time to implement such a system and 
allows to train defects, which cannot be measured before. 

First studies indicate that a full classification of the measured 
data (testing) on basis of numerical data (training) with 23 different 
classes is not possible at the moment. The main reasons are the 
deviations between the FTIR and CFD results and the different 
distribution spreads. Figure 10 shows a comparison of measured 
and simulated data distributions for the reference class Ref-P15λ1.0 
and the defect class P15λ0.9. The data sets differ significantly in 
respect to the distribution spreads in these extreme examples. Here, 
the standard deviation of the simulated data is for the reference case 
lower, and for the defect case higher than the standard deviation of 
the measured data. Although the averaged results are nearly the 
same, different distribution spreads determine hyperplanes, which 
are not suitable for the training and test data and lower the 
classification rate. 

However, the error matrix in Fig. 11 demonstrates the basic 
feasibility of the approach. The rows show the true class and the 
columns show the predicted class by the SVM algorithm. The 
diagonal cells (blue) correspond to data points that are correctly 
classified. The off-diagonal cells correspond to incorrectly (red) 
classified test data. The percentage of the number of test data points 
for every class are given in each cell. The two columns on the right 
sum up the proportion of correctly and incorrectly classified data 
for each class and row. 

JGPP Vol. 12, No. 4

7



Fig. 10: Comparison of the measured and simulated data 
distributions for exemplary features and classes with different 
scatter ranges 

For this classification, the number of classes is reduced to five. 
The investigation case #1 was used, because the measured CO2 
concentration agree well with the results of the numerical 
calculations. With the exception of defect case P15λ0.8, the 
predicted classes are correct. It should be noted that different 
combinations of features allow to classify different defect classes 
correctly. For example the investigation case #2 is useful to detect 
air-fuel-variations, but not for power variations. 

Fig. 11: Error matrix for selected classes 

CONCLUSION 

In order to evaluate the possibility to detect the influence of a 
defect burner in the exhaust plane, generic studies on a model 
combustor are conducted, where one out of eight swirl burners can 
be manipulated in its operation condition. In the current work, 
variations of power, air-fuel equivalence ratio and displacement of 
a burner are investigated, simulating a failure of this burner. With 
transient CFD simulations and FTIR measurements the species 
distribution in the exhaust plane 200 mm above the burner is 
determined. The variations are leading to a distinguishable 
modified pattern at the exhaust plane of the combustion chamber 
concerning the species distribution. The results clarify that every 
type of defect has a specific influence on the exhaust jet, which can 
be used for automatic defect detection by machine learning.  

A support vector machine algorithm is implemented and trained 
on the simulated and measured concentration distribution of CO2, 
CO and NO. For this purpose, different combination of features are 
used. The study makes clear that a defect detection and defect 
allocation by analyzing the exhaust gases of the burner is feasible. 

One-class algorithms allow to detect unknown and untrained 
defects, whereby multi-class algorithms can distinguish between 
trained defects. In both cases, all defects are detected and classified 
correctly. The approach of a classification on the basis of 
numerically generated training data could only be implemented by 
a reduced number of defect classes. Valid simulation models are a 
precondition to create training data with CFD.  

In future work, it is intended to test and apply the developed 
SVM algorithm to numerical results of a combustor of a 
commercial two-shaft turbofan aircraft engine. Current 
investigations show, that defects affect the species and temperature 
distribution at the engine outlet and a defect detection seems to be 
feasible. Furthermore, the implementation of an experimental 
exhaust jet analysis on a real aircraft engine with defined 
combustion chamber defects is planned within the CRC 871. 
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