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ABSTRACT

Ribosomal RNA (rRNA) carries extensive 2′′′′′-O-methyl marks at functionally important sites. This simple chemical modifica-
tion is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population
with a yet-uncharacterized function. 2′′′′′-O-methylation occurs both in archaea and eukaryotes and is accomplished by the
Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the
archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a
guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 andNop58, and the enzymatic mod-
ule Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from
Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56.We discuss similarities and differences between
the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the
methyltransferase to the Box C/D RNP through a protein–protein interface that differs substantially from the archaeal
orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these
proteins from archaea to eukaryotes.
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INTRODUCTION

Methylation of the 2′-O-ribose position (2′-O-Me) is the
simplest and second most abundant modification of ribo-
somal RNA (rRNA) (Ayadi et al. 2019). Like many other
rRNA modifications, 2′-O-Me marks are transferred to the
RNA cotranscriptionally and post-transcriptionally in the
nucleolus and are important for ribosome biogenesis
and translational accuracy (Baudin-Baillieu et al. 2009;
Kimura and Suzuki 2010; Siibak and Remme 2010; Arai
et al. 2015; Sloan et al. 2017; Ishiguro et al. 2019). 2′-O-
Me has been shown to promote RNA folding and increase
chemical stability, thereby influencing the association of ri-
bosomal proteins in a space- and/or time-dependent man-
ner (Green and Noller 1996; Arai et al. 2015; Polikanov
et al. 2015; Natchiar et al. 2017; Ishiguro et al. 2019).

In archaea and eukaryotes, this modification is catalyzed
by multicomponent ribonucleoprotein (RNP) complexes.
The RNPs are assembled around guide RNAs named box
C/D s/snoRNAs (archaea/eukaryotes) after their distinct se-
quencemotifs box C (5′-RUGAUGA) and box D (5′-CUGA).

The box C/Dmotif folds in a characteristic structure termed
K-turn (Klein 2001; Špačková et al. 2010; Shi et al. 2016).
L7Ae or Snu13, in archaea and yeast, respectively, bind
to the K-turn motif of the guide RNA. A similar, but less
conserved, box C′/D′ motif is present in all archaeal guide
RNAs and has been proposed to exist in eukaryotic
guide RNAs as well (Qu et al. 2011; van Nues et al.
2011). This motif forms a characteristic structure named
K-loop (Nolivos et al. 2005). A second copy of L7Ae binds
the box C′/D′ motif in archaea; in contrast, Snu13 has been
found unable to recognize putative box C′/D′ motifs in
yeast (Cahill et al. 2002). The substrate RNA is recruited
by base-pairing with complementary sequences, located
upstream of box D and D′, respectively (Tran et al. 2003,
2005; Appel and Maxwell 2007). The guide RNA–L7Ae/
Snu13 interactionmediates the recruitment of the scaffold-
ing proteins Nop5 (archaea) or Nop56 and Nop58 (eukary-
otes). In archaea the Nop5 protein enters the complex as a
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homodimer; in eukaryotes Nop52 is substituted by the
Nop56–Nop58 heterodimer (Fig. 1A,B). The SAM-depen-
dent methyltransferase Fibrillarin (Fib, in archaea and
H. sapiens) or Nop1 (in fungi) is integrated into the Box
C/D RNP complex via interaction with the amino-terminal
domain of Nop5 (archaea) or Nop56 and Nop58 (eukary-
otes) (Tollervey et al. 1991; Lyman et al. 1999; Lechertier
et al. 2009; McKeegan et al. 2009; Ye et al. 2009;
Quinternet et al. 2015; Barandun et al. 2017; Paul et al.
2019). Two copies of the methyltransferase are recruited
to the RNP by the Nop protein dimers.
Components of the Box C/D RNP enzymes have been

linked to disease phenotypes (Dimitrova et al. 2019). In
particular, the methyltransferase Fibrillarin, which shows
a high degree of conservation in most domains of life,
has been associated with autoimmune diseases and can-
cer: The protein is frequently overexpressed in tumor cells
and has been related to a poor survival rate in breast can-
cer patients (Marcel et al. 2013). Thus, understanding the
functional mechanism and regulation of eukaryotic
snoRNPs is important both to elucidate the biology of
the cell and in a disease context.
The structure–function relationships of the archaeal Box

C/D sRNPs have been extensively studied in the past years
(Ye et al. 2009; Lin et al. 2011; Lapinaite et al. 2013;
Graziadei et al. 2016, 2020; Yang et al. 2016; Yu et al.
2018), leading to two structural models of the enzyme
loadedwith the substrate RNAs (Fig. 1A). In the first model,

the enzyme is a mono-RNP and comprises one copy of
guide RNA, two substrate RNAs, and two copies of each
protein (L7Ae, Nop5, and Fib) (Lin et al. 2011). In the sec-
ond model, the enzyme is a di-RNP and comprises two
copies of guide RNA, four copies of substrate RNAs, and
four copies of each protein (Lapinaite et al. 2013). The olig-
omerization state of the enzyme has been shown to
depend on the sequence of the guide RNA and has conse-
quences on the regulation of methylation efficiency at the
different substrate sites (Yip et al. 2016; Graziadei et al.
2020).
Conversely, little is known about protein–protein and

RNA–protein interactions in the eukaryotic Box C/D
snoRNP at high resolution, as the in vitro reconstruction
of functional eukaryotic Box C/D snoRNPs has so far yield-
ed complexes of heterogenous composition (Peng et al.
2014; Yang et al. 2020). Here, we determine the atomic de-
tails of the complex of the RNA 2′-O-methyltransferase
Nop1 with the Nop56 amino-terminal domain from S. cer-
evisiae (Sc). We find that the interaction interface between
the two proteins has significantly evolved from archaea to
eukaryotes. As a result, archaeal and eukaryotic proteins
cannot complement each other. Our high-resolution struc-
ture reveals the key interaction features of Nop1 and
Nop56 within the eukaryotic complex and suggests that
evolutionary pressure has caused structural and potentially
functional divergence of the Nop56 and Nop58 amino-
terminal domains from the archaeal Nop5 counterparts.

RESULTS

Archaeal RNA 2′′′′′-O-
methyltransferase cannot
complement its eukaryotic
ortholog in yeast

In this study we used proteins from
S. cerevisiae as representatives of
eukaryotic snoRNPs. The primary se-
quences of Nop1 and Nop56 share
an overall 73.9% and 58.5% similarity
with their respective human orthologs
(Supplemental Figs. 1, 2). When com-
pared to the archaeal Fibrillarin, Nop1
has an additional 80 amino acids long,
RGG-rich, amino-terminal domain,
shared by all eukaryotic 2′-O-methyl-
transferases; this domain is predicted
tobedisordered,mayplaya role in nu-
clear localization and is likely involved
in RNA binding (Chong et al. 2018;
Smith et al. 2020). Beyond this RGG-
rich domain, the primary sequence of
the catalytic domain of P. furiosus (Pf)
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FIGURE 1. Comparison of archaeal and eukaryotic Box C/D enzymes. (A) Two different struc-
tural models have been proposed for the archaeal Box C/D enzyme loaded with substrate
RNA: the mono-RNP model and the di-RNP model. (B) The eukaryotic Box C/D enzyme has
been found to assemble as a mono-RNP in its substrate-free form. Snu13, of which only one
copy is present in Box C/D snoRNPs capable of methylation (upper panel), has been found
to bind snoRNA with a 2:1 stoichiometry in snoRNPs that are not involved in 2′-O-methylation
(lower panel).
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Fibrillarin has 60.9% and 47.9% similarity with yeast Nop1
and human Fibrillarin, respectively (Fig. 2A; Supplemental
Fig. 1). On the other hand, the primary sequence of the
amino-terminal domain of yeast Nop56 shares only
31.3% similarity and17.6% identity with the archaeal ortho-
log (Fig. 2B; Supplemental Fig. 2), posing thequestionas to
whether the interactionmode of the eukaryotic 2′-O-meth-
yltransferase with the amino-terminal domains of the
Nop56 and Nop58 proteins is similar to that of archaeal
Fibrillarin with the Nop5 amino-terminal domain.

To answer this question, we first tested whether the ar-
chaeal and eukaryotic methyltransferases could complement
each other. We used recombinant Nop183–327 (lacking the
amino-terminal RGG-rich domain), Nop561–166 (the
amino-terminal domain of Nop56), Pf Fibrillarin and Pf
Nop51–123 (the amino-terminal domain of Nop5) and ana-
lyzed their ability to form stable complexes with each other
using size-exclusion chromatography. We found that the
amino-terminal domain of Pf Nop5 (Fig. 3A,C) cannot
form a stable complex with Nop183–327. Similarly, archaeal
Fibrillarin does not form a stable complex with the amino-
terminal domain of Nop56 (Fig. 3B,C). Control experi-
ments showed that Sc Nop183–327 and Nop561–166 as
well as Pf Fibrillarin and Nop5 form stable complexes
(Fig. 3D). We conclude that the interaction modes be-

tween the methyltransferase and the amino-terminal do-
mains of the scaffold proteins Nop5, Nop56, and Nop58
have evolved to become specific for archaea and eukary-
otes. Thus, we set out to characterize the Nop56–Nop1
complex in eukaryotes at atomic resolution.

Structure of the Nop561–166–Nop183–327 complex

We used X-ray crystallography to solve the structure of Sc
Nop183–327 in complex with Sc Nop561–166 to a resolution
of 1.7 Å (Table 1; Fig. 4). The structure of Nop183–327 is
very similar to that of human Fibrillarin (PDB-ID: 2IPX) with
an average root mean square deviation (RMSD) of 0.6 Å; a
comparable degree of similarity is found also with the
structures of different archaeal Fibrillarins (Fig. 2A; Aittaleb
et al. 2003; Oruganti et al. 2007; Ye et al. 2009; Gagnon
et al. 2012). The amino-terminal lobe (comprising
amino acids 83–146) consists of five anti-parallel β-sheets;
the substantially larger carboxy-terminal lobe consists of
seven β-sheets sandwiched between six α-helixes and
adopts the Rossmann-fold typical for S-adenosylmethionine
(SAM)-dependent methyltransferases (Figs. 2A, 4A; Wang
et al. 2000).

The amino-terminal domain of Nop56 consists of five
β-sheets, with β-sheets 1–3 (β1–3) and β-sheets 4–5 (β4–

5) being in an anti-parallel and parallel
orientation, respectively (Figs. 2B,
4A); the β-sheets core is surrounded
by seven α-helices. An insertion of
26 amino acids between β2 and β3
forms α-helix 1 (α1) and 2 (α2); this in-
sertion is present in both eukaryotic
Nop56 and Nop58 proteins but ab-
sent in archaeal Nop5 proteins (Fig.
2B; Supplemental Fig. 2).
Nop183–327 engages α3–5 and the

carboxy-terminal tail in the interaction
with α1, α6, and α7, β1 and the loop
region β4–α5 of Nop561–166 (Fig.
4A). Complex formation is driven by
the high charge complementarity,
with Nop1 presenting an overall posi-
tive surface charge that fits snuggly
the predominantly negative surface
charge of the Nop56 amino-terminal
domain (Fig. 4B).
Threemain interaction regions hold

Nop1 and Nop56 together (Fig. 4C–
E). First,Nop561–166α1andα6 contact
the carboxy-terminal tail of Nop1 (Fig.
4C). Hydrogen bonds are formed be-
tween Nop1–S323 and Nop561–166

α1-Q35 and Nop1–R322 and
Nop561–166 α6-D126, while
Nop561–166 α1-K32 has a polar

A

B

FIGURE2. Structural comparison of ScNop183–327 andNop561–166 to their archaeal orthologs
Fibrillarin andNop5. (A, left) Structure of Nop183–327 with the small amino-terminal and central
domains highlighted. The active site is indicated with red dashed lines. The structure is
part of the Sc Nop561–166–Nop183–327 complex structure determined here (see Fig. 4).
(Right) Superposition of the structure of Nop183–327 with those of archaeal orthologs. Sc
Nop183–327 is in slate, Pf Fibrillarin (PDB-ID: 2NNW) in green, Ss Fibrillarin (PDB-ID: 3ID5) in
forest, and Af Fibrillarin (PDB-ID: 1NT2) in smudge. (B, left) Structure of Nop561–166 with sec-
ondary structure elements indicated. The structure is part of the Sc Nop561–166–Nop183–327

complex structure determined here (see Fig. 4). (Right) Superposition of the structure of Sc
Nop561–166 with those of Nop5 amino-terminal domains from archaea. Sc Nop561–166 is in
green cyan, PfNop51–123 (PDB-ID: 2NNW) in hot pink, SsNop51–132 (PDB-ID: 3ID5) in magen-
ta, and AfNop51–71 (PDB-ID: 1NT2) in violet purple. RMSD values were calculated between all
heavy atoms.
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contact with the carbonyl of Nop1–S323. These interac-
tions lock the carboxy-terminal tail of Nop1 in a stable con-
formation. Additional hydrogen bonds at this site of the
complex are formed between Nop1–D263 (located in a
short loop between α5 and β10) and Nop561–166 α1-N39
as well as Nop1 α6-R297 and Nop561–166 α6-E122.
Second, Nop561–166 α7 contacts Nop1-α3, β7, and β8

(Fig. 4D). Nop1–Y195, which is highly conserved in eukary-
otes and archaea, forms a hydrogen bond with Nop56–
Q151, the backbone of Nop1-β8 has hydrogen bonds
with the side chain of Nop56–S159 and Nop1–K169 and
K205 have polar contacts with the side chain of Nop56–

E148 and the backbone carbonyl of Nop56–V163,
respectively.
Third, an extensive network of hydrogen bonds is

formed between residues of Nop1-α4 (Q228 and R231)
and the preceding loop (E222) with Nop56–S101, E10,
and Y158, respectively (Fig. 4E). This interaction area is
driven by a strong charge complementary between
Nop1–R231 and a negatively charged pocket on Nop56,
containing E10 and E11.
All in all, the complex between Nop1 and the Nop56

amino-terminal domain is supported almost exclusively
by polar interactions and hydrogen bonds.
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FIGURE 3. Analysis of cross-species complex formation between eukaryotic and archaeal Fibrillarin and Nop56/Nop5 proteins. (A) Overlay of
size-exclusion chromatograms of Sc Nop183–327 (blue), Pf Nop51–123 (pink), and Pf Nop51–123 together with Sc Nop183–327 (black). Peak 1 corre-
sponds to Sc Nop183–327 and peak 2 to Pf Nop51–123. (B) Overlay of size-exclusion chromatograms of Sc Nop561–166 (cyan), Pf Fibrillarin (green),
and ScNop561–166 together with Pf Fibrillarin (black). (C ) 4%–15%Mini-PROTEANTGX Precast Protein Gel (BioRad) of the chromatograms shown
in panels A–F. The color code above the lanes indicates the proteins present in the injection mixture: ScNop183–327 (blue), ScNop561–166 (cyan),
ScNop561–166-WF (orange), Pf Fibrillarin (green), and PfNop51–123 (pink). Blue/pink lanes represent fractions collected from peak 1 and peak 2 of
the black chromatogram of A. The fraction loaded in the middle lane corresponds to the region between peaks 1 and 2. The green/cyan lane
represents the elution peak of the black chromatogram of Figure 3B. The blue/orange lane represents the main elution peak from the black chro-
matogram of Figure 3D. The green/orange lane represents the elution peak from the black chromatogram of Figure 3F. LaneM contains the pro-
tein standard. (D) Overlay of size-exclusion chromatograms of Pf Fibrillarin (green), Pf Nop51–123 (pink), Sc Nop183–327 (blue), Sc Nop561–166

(cyan), Pf Fibrillarin with Pf Nop51–123 (gray), and Sc Nop183–227 with Sc Nop561–166 (black). (E) Overlay of size-exclusion chromatograms of Sc
Nop183–327 (blue), Sc Nop561–166-WF mutant (orange), and the mixture of Sc Nop183–327 and Sc Nop561–166-WF mutant (black). (F ) Overlay
of size-exclusion chromatograms of Pf Fibrillarin (green), Sc Nop561–166-WF mutant (orange), and the mixture of Pf Fibrillarin and Nop561–166-
WF mutant (black).
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Charge complementarity is partially conserved
from archaea to eukaryotes

After solving the first high-resolution structure of a eukary-
otic complex between the Nop56 amino-terminal domain
and the Nop1 methyltransferase, we compared the bind-
ing mode of the eukaryotic proteins with that of archaeal
proteins. We chose three representative structures of ar-

chaeal Nop5–Fib complexes in P. furiosus (Pf) (PDB-ID:
2NNW) (Oruganti et al. 2007), A. fulgidus (Af) (PDB-ID:
1NT2) (Aittaleb et al. 2003), and S. solfataricus (Ss) (PDB-
ID: 3ID5) (Ye et al. 2009), which are members of the three
evolutionarily different archaeal classes Thermococci,
Archaeoglobi, and Thermoprotei, respectively (Brochier-
Armanet et al. 2011).

The 2′-O-methyltransferase is quite well conserved
among archaeal classes (average primary sequence simi-
larity, 63.7%) and archaea and eukaryotes (average prima-
ry sequence similarity of archaeal Fibrillarins with ScNop1,
59.1%) (Supplemental Fig. 1). The structure of the catalytic
domain is also well conserved with RMSD values between
the structures of the archaeal proteins and that of Nop1
ranging from 1.6 to 2.9 Å (Fig. 2A). The presence of the
amino-terminal RGG-rich domain is themain feature differ-
entiating the eukaryotic methyltransferase from its archae-
al orthologs (Rodriguez-Corona et al. 2015). On the other
hand, the eukaryotic Nop56 amino-terminal domain di-
verges substantially from that of the archaeal Nop5 (aver-
age primary structure similarity of archaeal Nop5 amino-
terminal domains with Sc Nop561–166, 26.2%
(Supplemental Fig. 2). Structurally, the amino-terminal do-
mains of Nop5 and Nop56 proteins are also divergent: A
core fold, which is conserved across Pf, Ss, and Sc, is ac-
companied by two additional helices (α1 and α2) in the eu-
karyotic proteins (Fig. 2B; Supplemental Fig. 2), one of
which (α1) provides an interaction area with the methyl-
transferase. It is important to notice that the Nop5 ami-
no-terminal domain is not uniformly conserved across
archaeal species either: in Af, this domain is significantly
smaller than in Pf and Ss, misses three α-helixes and two
β-sheets and is not able to fold in the absence of
Fibrillarin in vitro (Aittaleb et al. 2003).

Despite these differences, the formation of the complex
between the Nop5 amino-terminal domain and Fibrillarin
in Pf and Ss is driven by charge complementarity as well
(Fig. 5A–C). A predominantly negatively charged surface
of Nop5 binds a predominantly positively charged surface
of Fibrillarin. Notably, the charge distribution of the sol-
vent-accessible surface of Ss Nop51–132 is more similar to
that of Sc Nop561–166 than it is the one of Pf Nop51–123.
Nevertheless, the Ss Fibrillarin surface interacting with
Nop5 is considerably less charged than the corresponding
surface of ScNop1. PfNop51–123 displays a higher number
of aromatic residues on the interaction surface with
Fibrillarin, limiting the accessibility to the charged resi-
dues. Thus, while the driving force for the formation of
the complex is conserved from Pf and Ss to Sc, the details
of the interactions differ both among archaeal species and
between archaea and eukaryotes.

Different from all other complexes, the interacting sur-
faces of theAf proteins show little charge complementarity
to each other, suggesting that complex formation is driven
by hydrophobic contacts (Fig. 5D). This fact may explain

TABLE 1. Crystallographic data collection and refinement
statistics

Structure Nop561–166-Nop183–327

PDB-ID: 6ZDT

Data collection
Beamline P11, PETRA III, DESY

Wavelength (Å) 1.03

Space group P21212
Cell dimensions

a, b, c (Å) 69.04, 118.29, 48.83

α, β, γ (°) 90.00, 90.00, 90.00
Resolution (Å)a 1.71–48.83 (1.71–1.74)

Rmerge (%)a,b 7.7 (121.4)

Rpim (%)a,c 2.1 (35.5)
I/σIa 22.2 (2.1)

Completeness (%)a 100 (100)

Redundancya 13.2 (12.6)
CC1/2 (%)a (Karplus and Diederichs
2012)

100 (85.6)

Refinement
Resolution (Å) 1.71–48.83

No. reflections 44,211

Rwork/ Rfree (%) 16.28/20.49
No. atoms 3870

Protein 3503

Ligand/ion -
Water 367

B-factors (Å2) 33.20

Protein 32.56
Ligand/ion -

Water 39.36

R.m.s. deviations
Bond lengths (Å) 0.005

Bond angles (°) 0.686

Ramachandran statistics (%)
Favored 98.18

Allowed 1.82

Outliers 0.00

aValues for the highest resolution shell are shown in parentheses.
bRmerge=Σh Σi|− Ih,i|/Σh Σi Ih,i, where h enumerates the unique reflections
and i are their symmetry-equivalent contributions.
cRpim=Σh [1/(/nh−1)]1/2 Σi|− Ih,I|Σh Σi Ih,I, where h enumerates the unique
reflections and i are their symmetry-equivalent contributions.
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how the presence of Fibrillarin promotes folding of the Af
Nop5 amino-terminal domain, as the folding process re-
quires hydrophobic interactions.

The eukaryotic Nop56–Nop1 complex lacks
conserved aromatic interactions present in the
archaeal orthologs

Next, we analyzed the differences in the interaction
interfaces of eukaryotic and archaeal complexes in atomic
details. Nop1–Y195, a conserved Tyr in β7 of the methyl-
transferase, forms a hydrogen bond with Nop561–166-α7
Q151 and stabilizes the complex via a polar interaction
(Fig. 6A,F). This Nop561–166 Gln is well conserved in eu-
karyotes (Fig. 6G), while in archaea the same position is oc-

cupied by a hydrophobic amino acid and a hydrophobic
cluster is built around the conserved Tyr. Pf Nop5-α6
W104, F105, and Y108 surround Pf Fib-Y102 (Fig. 6B); Ss
Fib-Y105 is part of a cluster comprising Ss Nop5–Y113
and Y114, with the hydrophobic contacts being reinforced
by SsNop5–L117 (Fig. 6C); even inAf, despite the peculiar
characteristics of the Af Nop5–Fib complex, this hydro-
phobic cluster is conserved (Fig. 6D). The structure of the
Nop5–Fib complex of M. janaschii (Mj) is not available;
nevertheless, docking of the crystal structures of Nop5
and Fib with the ClusPro 2.0 Webserver (Kozakov et al.
2013, 2017; Vajda et al. 2017) shows that two aromatic res-
idues of Mj Nop5-α6 (Y96 and F99) could build a hydro-
phobic cluster with the conserved Mj Fib-Y102 (Fig. 6E,
H). The presence of at least two aromatic residues on
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Nop5-α6 is characteristic of archaeal
proteins, while eukaryotic Nop56 pro-
teins have a polar, negatively charged
residue at the central position of the
aromatic cluster (Fig. 6G–H).

Next, we tested whether the differ-
ence in the nature of the interactions
of the conserved Tyr is crucial in de-
termining the selectivity of the Sc
Nop56 amino-terminal domain for Sc
Nop1 versus Pf Fibrillarin. We gener-
ated the Sc Nop561–166-L147W/
E148F mutant (Nop561–166-WF)
and tested its ability to bind Nop183–
327 (Fig. 3E) and Pf Fib (Fig. 3F). The
double mutation did not perturb the
binding preferences of Nop561–166

suggesting that this interaction area
is not crucial for the formation of a sta-
ble protein–protein complex.

Eukaryotic proteins Nop56
and Nop58 evolutionarily
acquired an additional
α-helix at the binding
interface with Nop1

Eukaryotic Nop56 and Nop58 pro-
teins have a 23–26 amino acids long
insertion between β2 and β3, which
folds into helices α1 and α2 (Fig.
7A). α1 is at the interface with Nop1
and enables Nop56 to interact with
its extended carboxy-terminal tail
(Fig. 7B). In archaea, where the two
additional α-helices are missing, the
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(A) Sc Nop561–166–Nop183–327 complex; (B) Pf Nop51–123–Fibrillarin (PDB-ID: 2NNW); (C ) Ss Nop51–132–Fibrillarin (PDB-ID: 3ID5);
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Fibrillarin carboxy-terminal end can-
not interact with the Nop5 amino-ter-
minal domain and remains shorter
than in eukaryotes (Fig. 7C–E).
The primary sequence of α1 is

reasonably well conserved across
eukaryotes but is slightly more hydro-
phobic in vertebrates than in fungi
(Fig. 7F). On the other hand, the ami-
no acid composition of the carboxy-
terminal tail of Nop1/Fib diverges
(Fig. 7E): in vertebrates, it contains a
poly-proline stretch, which makes it
more rigid and hydrophobic, while
in fungi the prolines are substituted
by polar residues. Despite these
differences, all eukaryotic proteins
share a predominantly negatively
charged surface on Nop56-α1, which
matches the total positive charge of
the Nop1/Fib carboxy-terminal tail.
Thus, the interaction between the
Nop56-α1 and the Nop1/Fib car-
boxy-terminal tail contributes to the
overall charge complementarity of
the binding interface in all eukary-
otes, with vertebrates displaying a
higher contribution of hydrophobic
contacts.
In archaea, the interaction interface

ends at Nop5-α5 (corresponding to
Nop1-α6), which presents mostly po-
lar side chains to Fibrillarin (Fig. 7C,
D,G); thus, the electrostatic nature of
the protein–protein interactions is
conserved at this site from archaea
to eukaryotes.
To test whether the interaction be-

tween the extended carboxy-terminal
tail of Nop183–327 and Nop56-α1 is
pivotal to the formation of a stable
Nop56–Nop1 complex, we generat-
ed Nop183–321, lacking the carboxy-
terminal tail, and the Nop561–166-
Q35A/N39A mutant. We then used
size-exclusion chromatography to
test the interaction between Nop183–
321 and wild-type Nop561–166, as
well as between Nop183–327 and
Nop561–166-Q35A/N39A. We found
that complex formation was not com-
promised by the mutations (Fig. 8A,
left panel, 8D). Nevertheless, the dissociation constant
(KD) of the Nop561–166-Q35A/N39A–Nop183–327 complex,
measured by isothermal titration calorimetry, was one or-

der of magnitude larger than that of the Nop561–166–
Nop183–327 complex (Fig. 8A, right panel, 8D;
Supplemental Fig. 3), confirming that the contacts
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line of the alignment.
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between the Nop1 carboxy-terminal tail and Nop56-α1
contribute to the binding affinity.

Nop1/Fib helix α4 is central to the formation of the
complex with Nop56 and Nop5 in both eukaryotes
and archaea

At the core of the Nop56–Nop1 complex, Nop1-α4 inserts
between Nop56-α6 and α7, with Nop1–R231 forming a
hydrogen bond with Nop56-β1 E10 (Fig. 7H). In all avail-
able structures of archaeal Fibrillarin in complex with
Nop5, Fib-α4 also inserts between Nop5-α5 and α6. This
interaction site has the highest charge complementarity
both in archaea and eukaryotes. As in Sc, Pf Fib-R138
forms a hydrogen bond with Nop5-E7 (Fig. 7I). This Fib-
α4 Arg is conserved among all eukaryotes but is more
variable in archaea (Fig. 7L). In Ss, the K141 found at this
position does not penetrate as deep as to reach Nop5-
β1 but instead forms hydrogen bonds with E66 and the
backbone of S90 on Nop5-α5 (Fig. 7J). Despite preserving
a network of hydrogen bonds, the interaction at the same
site of the AfNop5–Fib complex involves a completely dif-
ferent set of amino acids (Fig. 7K).

To verify the relevance of this interaction site for the for-
mation of a stable Nop56–Nop1 complex, we generated
the Nop183–327-R231E and Nop561–166-E10K/E11K mu-
tants and used size-exclusion chromatography to test their
ability to form a complex with wild-type Nop561–166 and
Nop183–327, respectively. None of the two mutants bound
the wild-type interaction partners (Fig. 8B,D), confirming
that the surface charge complementarity is the central driv-
ing force of complex formation between Nop183–327 and
Nop561–166.

Repulsion forces between archaeal
and eukaryotic proteins

After establishing the similarities and differences in the
nature of the attraction forces between the 2′-O-methyl-
transferase and the scaffold protein of the Box C/D 2′-
O-methylation enzyme in eukaryotes and archaea, we an-
alyzed whether any repulsion force actively counteracts
the formation of complexes between Sc Nop1 and Pf
Nop5 or Pf Fib and Sc Nop56. We compared the structure
of the Sc Nop561–166–Nop183–327 complex determined
here with that of the Pf Nop5–Fib complex from (Xue
et al. 2010) (PDB-ID: 3NMU) and found two major hot
spots where the nature of the sidechains of the ortholog
binding partner would cause either severe steric clashes
or charge repulsion, thus preventing complex formation
(Fig. 8C). First, if Fib were substituted by Sc Nop1 in the
structure of the Pf Nop5–Fib complex, E136 of Pf Fib-
α4 would be replaced by Nop1–K229, resulting in an
electrostatic repulsion with Pf Nop5–K40 and R122 (Fig.
8C, left panel). Second, if Nop1 were substituted by Pf

Fib in the structure of the Nop561–166–Nop183–327 com-
plex, Nop1–D263 and M236 at the interface with
Nop561–166-α6 would be replaced by Pf Fib-R170 and
K143, respectively. R170 could clash with Nop561–166-
α1, which is absent in the orthologous Pf Nop5 protein;
K143 would introduce a positive charge that could cause
repulsion with Nop561–166-R129 (Fig. 8C, middle panel),
while Pf Nop5 carries a negatively charged Glu at this
position.

To test whether these two areas of predicted clashes
and repulsion contribute to the incompatibility between
archaeal and eukaryotic proteins, we generated three mu-
tants. First, we engineered theNop561–166-E71K/Y158K to
mimic the predicted effect of Nop5-K40 and R122 and
tested its interaction with wild-type Nop183–327 via size-ex-
clusion chromatography. The Nop561–166-E71K/Y158K
mutant did not form a stable complex with Nop183–327

(Fig. 8C, right panel, 8D), confirming that Pf Nop5-K40
and R122 have a disruptive effect on the formation of
the complex between Pf Nop51–123 and Sc Nop183–327.
To enhance charge repulsion, we also generated the
Nop183–327-E222K mutant, which, as predicted, failed to
form a complex with Nop561–166-E71K/Y158K (Fig. 8C,
right panel, 8D). Last, we generated the Nop183–327-
D263R/M236K mutant, to mimic the predicted effect of
Pf Fib-R170 and K143, and tested its ability to form a com-
plex with wild-type Nop561–166. Nop183–327-D262R/
M236K did not bind wild-type Nop561–166, confirming
the disruptive effect of Pf Fib-R170 and K143 on the forma-
tion of the complex between Sc Nop561–166 and Pf Fib
(Fig. 8C, right panel, 8D).

In conclusion, we identified and confirmed two interface
regions where the nature of the amino acid side chain
actively disturbs the formation of a cross-species complex
and subsequently cause the incompatibility of Nop183–327

with Pf Nop51–123 and of Pf Fib with Nop561–166.

DISCUSSION

The ability of Nop1 to form a stable complex with the ami-
no-terminal domains of Nop56 and Nop58 is essential for
its recruitment to the Box C/D snoRNP enzyme.
Nevertheless, while the carboxy-terminal domain of the
Nop56 and Nop58 proteins is highly conserved across
species and even from archaea to eukaryotes, the amino-
terminal domain of the same proteins is highly variable.
Similarly, the methyltransferase is very well conserved in
its catalytic site and RNA binding motif (85.7% and
79.5% average similarity between Nop1 and archaeal
Fibrillarins, calculated for residues in a range of 4 Å from
either the cofactor and substrate-ribose or the RNA, re-
spectively) but more variable in the Nop5 or Nop56/
Nop58 interacting surface (53.7% average similarity be-
tween Nop1 and archaeal Fibrillarins, calculated for
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residues in a range of 4 Å from the binding partner). As a
result, the proteins from S. cerevisiae cannot bind the pro-
teins of P. furiosus.
The variability of Fibrillarin in regions other than the cat-

alytic site and the RNA binding surface may be a conse-
quence of the additional roles acquired by the protein in
eukaryotes with respect to archaea. In S. cerevisiae and hu-

mans, Fibrillarin methylates Q105 and Q104 of histone
H2A, respectively (Tessarz et al. 2014; Iyer-Bierhoff et al.
2018). In this role, the binding partners of Fibrillarin are un-
known; however, they are likely to engage the same sur-
face as the Nop56/Nop58 amino-terminal domains.
Fibrillarin has also been found to interact with nucleophos-
min (NPM1) in an RNA-independent manner (Nachmani

A

C

D

B

FIGURE 8. Experimental verification of the Nop561–166–Nop183–327 binding interface. (A) Left panel: overlay of size-exclusion chromatograms of
Nop561–166 with Nop183–327 (black), Nop561–166 with Nop183–321 (green) and Nop561–166-Q35A/N39A with Nop183–327 (pink). Right panel: iso-
thermal titration calorimetry binding curves of Nop183–327 with Nop561–166 (black) and Nop183–327 with Nop561–166-Q35A/N39A (pink). The ap-
proximate KD values determined for each complex are given in the respective color. Only approximate KD values can be provided, as stirring
caused partial precipitation of Nop183–327 during the measurements, thus impeding an accurate estimate of the Nop183–327 concentration.
The KD of the Nop183–321–Nop561–166 complex could not be measured due to the poor solubility of Nop183–321. (B) Overlay of size-exclusion
chromatograms of Nop561–166 with Nop183–327 (black), Nop561–166 with Nop183–327-R231E (magenta) and Nop561–166-E10K/E11K with
Nop183–327 (red). (C ) Left panel: overlay of the structures of the Sc Nop183–327–Nop561–166 complex and Pf Nop5–Fib complex showing the po-
tential charge repulsion between Pf Nop51–123-R122 and K40 (pink) and Sc Nop183–327-K229 (blue) in a putative cross-species complex. Sc
Nop561–166 is in green cyan and Pf Fib is in green. Middle panel: overlay of the structures of the Sc Nop183–327–Nop561–166 complex and Pf
Nop5–Fib complex showing the steric clash between Pf Fib-R170 (green) andNop561–166-α1 (green cyan) as well as the charge repulsion between
Pf Fib-K143 and Nop561–166-R129 and R140 in a putative cross-species complex. Right panel: overlay of size-exclusion chromatograms showing
that Nop561–166-E71K/Y158 and Nop183–327-D263R/M263K do not form a complex with wild-type Nop183–327 and Nop561–166, respectively.
Nop561–166-E71K/Y158K is also unable to interact with Nop183–327-E222K, as expected. All chromatograms in A–C show the absorbance at
280 nm and use the following color code: Nop183–327 alone, blue; Nop561–166 alone, green cyan; Nop183–327 with Nop561–166, black;
Nop183–327 with Nop561–166-Q35A/N39A, hot pink; Nop183–321 with Nop561–166, green; Nop183–327 with Nop561–166-E10K/E11K, red;
Nop183–327-R231E with Nop561–166, pink; Nop183–327 with Nop561–166-E71K/Y158K, orange; Nop183–327-E222K with Nop561–166-E71K/
Y158K, olive; Nop183–327-D263R/M263K with Nop561–166, purple. (D) 15% SDS polyacrylamide gels showing the content of all elution
peaks from the chromatograms in A–C. Lanes belonging to a specific chromatogram are labeled in the same color as the corresponding chro-
matogram and as in the legend. Multiple lanes from the same chromatogram represent multiple fractions with increasing elution volumes.
The faint band at∼ 23 kDa corresponds to amino-terminal His-tagged Nop561–166, present because of incomplete cleavage.
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et al. 2019). Also, in this case the structural details of the
interaction are unknown.

Similarly, the Nop56 and Nop58 proteins have acquired
a number of additional binding partners in eukaryotes with
respect to archaea. While some of these interactions have
been found to engage the carboxy-terminal domain (such
as the AAA+ATPase R2TP complex recruiting the carboxy-
terminal unstructured tail of Nop58 [Yu et al. 2019]), the
binding mode of many other partners is unknown, as for
example that of the Drosophila protein hoip, which binds
bothNop56 andNop58 (Murata et al. 2008), or of the com-
ponent of the R2TP complex Nop17, which binds Nop58
during the assembly of the Box C/D snoRNP (Prieto et al.
2015). In addition, Nop56 has been suggested to act in
Burkitt’s lymphoma associated with c-Myc mutations
(Cowling et al. 2014) through a yet-uncharacterized mech-
anism. Thus, both Fibrillarin and the amino-terminal do-
mains of Nop56 and Nop58 may have coevolved to
ensure an efficient mutual interaction while still supporting
the binding to other partners.

To date, the only structural information available for a
eukaryotic snoRNP has been obtained by cryogenic elec-
tron microscopy for a complex assembled around
snoRNA U3, which is not a methylation guide RNA
(Barandun et al. 2017; Cheng et al. 2019). In this complex
two copies of Snu13 bind to two kink-turn motifs in
snoRNA U3; conversely, guide RNAs involved in 2′-O-Me
contain only one K-turn motif and bind only one copy of
Snu13. The architecture of the U3 snoRNP is similar to
that of archaeal Box C/Dmono-RNPs (Lin et al. 2011); how-
ever, it remains unclear whether this architecture can be as-
sumed also for methylation-competent Box C/D snoRNPs.
In the U3 snoRNP structure, the amino-terminal domains of
both Nop56 and Nop58 bind the SAM-dependent meth-
yltransferase Nop1: yet, due to its limited resolution, the
structure gives only incomplete information on the binding
interfaces. Here we solve the first high-resolution structure
of the Nop56–Nop1 complex of S. cerevisiae and reveal
the atomic details of the protein–protein interaction
surface.

When comparing our high-resolution structure of the Sc
Nop561–166–Nop183–327 complexwith the 3.8 Å-resolution
cryo-EM structure of the same protein complex integrated
in the U3 snoRNP bound to the 90S preribosome
(Barandun et al. 2017) (PDB-ID: 5WLC), we observe that
Nop183–327 keeps its conformation in the multicomponent
complex (Fig. 9A), despite engaging in interactions with
several other proteins, such as Utp11, Fcf2, Sas10,
Utp24, and Bud21 (Barandun et al. 2017; Cheng et al.
2019). The average backbone root mean square deviation
(RMSD) of the two Nop183–327 structures is 1.22 Å. In con-
trast, the amino-terminal domain of Nop56 undergoes
conformational changes upon interaction with the other
binding partners in the 90S preribosome, resulting in an
average backbone RMSD of 2.5 Å for the Nop561–166

structures. The conformational changes are localized to
the residues comprised between β2 and β3 (region 1),
which form α-helices 1 and 2, and the Lys-rich loop be-
tween α4 and β4 (region 2) (Fig. 9A). Both regions are eu-
karyotic-specific extensions of Nop56 and are absent in
archaeal Nop5. The conformational changes occurring in
Nop56-α1 and α2 result in an altered surface charge distri-
bution (Fig. 9B) and are correlated with the recognition of
the protein binding partner Sof1 (Fig. 9C,E,F;
Supplemental Fig. 4A); similarly, the Lys-rich loop rear-
ranges to interact with the 5′ ETS RNA in the 90S preribo-
some (Fig. 9D,G,H).

In the high-resolution structure of the Nop561–166–
Nop183–327 complex, the amino acid sequence between
Nop561–166-β2 and β3 adopts a conformation that optimiz-
es intramolecular interactions (Fig. 9E) with hydrophobic
residues L22, I27, R30, and L31 oriented toward the core
of the protein and hydrophilic or charged residues, such
as Q23, D25, D26, and S29, exposed to the solvent.
Upon interaction with Sof1, R30 flips outwards by more
than 180°, dragging the hydrophobic residues I17, L22,
L31, and L33 toward the interaction interface with Sof1.
At the same time, α1 shifts upwards toward theNop1 inter-
face (Fig. 9F), causing a conformational change of the
Nop1 carboxy-terminal tail. This alters the interface be-
tween Nop183–327 and Nop561–166 at this site (Sup-
plemental Fig. 4A). The rest of the interactions between
Nop183–327 and Nop561–166 are well conserved in the two
structures (Supplemental Fig. 4B,C). However, the better
resolution of our crystallographic structure allows deter-
mining the position of all side chains with a higher level
of accuracy.

The comparison between the structures of Nop56–
Nop1 in isolation and as part of the U3 snoRNP in the
90S preribosome shows that the eukaryotic-specific seg-
ments of both Nop56 and Nop1 may adopt different con-
formations to adapt to multiple interaction partners. This
observation is also in agreement with our results demon-
strating that the interaction between the Nop1 carboxy-
terminal tail and Nop56-α1 is not essential for the forma-
tion of the Nop56–Nop1 complex. This contact site must
likely remain flexible to allow adaptation to other interac-
tion partners, and thus cannot be pivotal to the formation
of the Nop56–Nop1 complex.

In the cryo-EM structure of the U3 snoRNP bound to the
90S preribosome, the area corresponding to the Nop58–
Nop1 complex is poorly defined. Thus, to verify whether
the forces driving the formation of the Nop58–Nop1 com-
plex could be the same as those driving the formation of
the Nop56–Nop1, we used MODELLER (Webb and Sali
2016) to generate a homologymodel of the amino-terminal
domain of Nop58 based on the structure of Nop561–166 in
theNop561–166–Nop183–327 complex (Fig. 10A). The surface
chargedistributionofNop581–155 at the interfacewithNop1
isvery similar to thatofNop561–166andconserves thecentral
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negatively charged cavity that interacts with Nop1-α4
(Fig. 10B). The residues that are crucial for the interaction
of Nop56 with Nop1 are conserved in Nop58 (Fig. 10C).
These include Nop56–E10 (Nop58–E7) in β1, Nop56–E71
(Nop58–E65) in α3, Nop56–D102 (Nop58–E91) in the loop
between α5 and β5, Nop56–D126 (Nop58–D115),
Nop56–R129 (Nop58–R118), and Nop56–R132 (Nop58–
K121) in α6, as well as the carboxy-terminal residues of
both amino-terminal domains (Fig. 10C; Supplemental
Fig. 2). Based on these observations it is likely, that the driv-
ing forces that govern the formation of the Nop1–Nop56
complex are conserved in the Nop1–Nop58 complex.

Interestingly, Nop581–155 and Nop561–166 diverge most
significantly in the sequence of the eukaryotic-specific in-
sertion between β2 and β3, which we identified as an
adaptable hub for protein binding in Nop561–166 (Fig.
10C; Supplemental Fig. 2). This fact underlines that the eu-
karyotic-specific insertion has emerged from the need to
support interactions with binding partners other than
Nop1 and that these binding partners differ between
Nop56 and Nop58. The amino acid composition of
Nop58-α1 may also influence the binding affinity of
Nop581–155 for Nop1, as we have shown for the Nop561–
166

–Nop1 complex (Fig. 8A) and could explain the better
affinity of Nop1 for Nop56 than for Nop58 (Gautier et al.
1997; Lechertier et al. 2009).

In conclusion, we have determined the first high-resolu-
tion structure of the eukaryotic amino-terminal domain of
Nop56 bound to the 2′-O-methyltransferase. We have
demonstrated that Nop56 has additional structural ele-
ments with respect to its archaeal ortholog Nop5, which
are involved in the interaction with the eukaryotic methyl-
transferase and form an adaptable hub for eukaryotic-spe-
cific binding partners, such as Sof1 in the 90S
preribosome. In addition, while the nature of the interac-

tion surface is electrostatic in both eukaryotic and archaeal
complexes, the atomic details of the binding are different
and reveal coevolution of the two proteins.

The structure and functional mechanism of the eukaryot-
ic Box C/D snoRNP are still unknown, while the structure of
the substrate loaded archaeal Box C/D RNP, as well as the
regulation of its function, are still a matter of debate.
Unclear is also the degree of similarity between the archae-
al and eukaryotic enzymes. The structural information pre-
sented here is a first step to understand the evolution of
the structure and function of the Box C/D RNP responsible
for 2′-O-methylation from archaea to eukaryotes.

MATERIALS AND METHODS

Cloning

The genes of Nop183–327 and Nop56 from S. cerevisiae were op-
timized for codon-usage in E. coli and ordered from Invitrogen (by
Thermo Fisher Scientific). All primers were purchased fromSigma-
Aldrich. Dry genes were spun down and resuspended in sterile
high LC–MS grade water (Merck 7732-18-5) to a concentration
of ∼0.25 to ∼0.1 µg/µL. Genes were amplified via PCR using
Phusion high-fidelity DNA Polymerase (New England Biolabs
M0530S). All forward and reverse primers contained the cleavage
site for NcoI-HF (New England Biolabs R3193S) and NotI-HF
(New England Biolabs R3189S), respectively. Amplified genes
were purified using the QIAquick PCR purification kit (Qiagen
28104), cleaved with NcoI-HF and NotI-HF and repurified with
the same kit. The vector (pETM-11) was cleaved using the
above-mentioned restriction enzymes and purified in the same
way. Ligation used T4 DNA Ligase (New England Biolabs
M0202S) with the standard protocol provided by the manufactur-
er; vector and inserts were mixed in a 1:3 ratio using 60 ng of
pETM-11. After ligation, the reaction was transformed into chem-
ically competent E. coli Top10 cells by transferring the complete
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ligation mixture (20 µL) to Top10 cells (50 µL) and incubating the
mixture for 30 min on ice followed by a 1 min long heat-shock at
42°C. After the heat-shock, 500 µL of LB medium (Carl Roth) was
added and the reaction was incubated for 1 h at 37°C. Cells were
plated on LB-Agar plates containing Kanamycin (50 µg/mL). The
insertion of the gene into the vector was verified by sequencing
(Eurofins). Plasmids for Fibrillarin, Nop5, and Nop51–123 subcl-
oned into pETM-11 vectors were available in the lab from previ-
ous work (Lapinaite et al. 2013).

Mutagenesis

Mutants Nop183–321, Nop183–327–R231E, Nop183–327–E222K,
Nop183–327–D263R/M236K, Nop561–166–L147W/E148F (WF),
Nop561–166–E10K/E11K, Nop561–166–E71K/Y158K, and Nop
561–166–Q35A/N39Awere generated using the Pfu Plus! DNApo-
lymerase (Roboklon) and the protocol provided by the manufac-
turer. PCR products were cleared from the starting material by
digestion with DpnI (New England Biolabs R0176S); the enzyme
was heat-inactivated before transformation into E. coli OmniMax
cells. Positive mutants were verified by sequencing (Eurofins).

Expression and purification

For expression, the plasmids were transformed into E. coli BL21
(DE3) cells; positive transformants were selected by kanamycin re-
sistance. Cells were grown in LB medium at 37°C until an OD600
of 0.6–0.8 was reached; cells were then shifted to 16°C except for
the cells expressing Fibrillarin and Nop51–123, which were shifted
to 20°C. Expression of Nop183–327, Nop561–166, Nop183–321,
Nop183–327–R231E, Nop183–327–E222K, Nop183–327–D263R/
M236K, Nop561–166–L147W/E148F (WF), Nop561–166–E10K/
E11K, Nop561–166–E71K/Y158K and Nop561–166–Q35A/N39A
was induced by adding IPTG (Carl Roth 367-93-1) to a final con-
centration of 0.5 mM. Expression of Fibrillarin and Nop51–123

was induced by the addition of a final concentration of 1 mM
IPTG. All proteins were expressed individually. Cells were harvest-
ed 18–20 h after induction by centrifugation at 4500 rpm at 4°C.

Cells were resuspended in lysis buffer (buffer A: 50 mM Tris-
HCl, 1 MNaCl, 10% glycerol, 10 mM imidazole, pH 7.5). One tab-
let of cOmplete, EDTA-free protease inhibitor cocktail (Roche)
and 1 mg of lysozyme (Carl Roth 12650-88-3) were added for
30 min on ice. After incubation, the cells were lysed using sonica-
tion for 30 min. The lysate was then centrifuged at 18,500 rpm for
1 h at 4°C and the supernatant carefully decanted. For Fibrillarin
and Nop51–123, the supernatant was heated for 15 min at 80°C
and again centrifuged as described above.

All proteins were purified from the supernatant using 5 mL
HisTrap FF columns (Cytiva) connected to Äkta pure or Äkta start
systems (GE Healthcare). The supernatant was loaded using lysis
buffer (buffer A, described above). The column was then washed
three times with three columns volumes of buffer B (50 mM Tris-
HCl, 1 M NaCl, 10% glycerol, 10 mM imidazole, 1 M LiCl, pH
7.5) and the protein was eluted using a gradient of buffer C (50
mM Tris-HCl, 1 M NaCl, 10% glycerol, 1 M imidazole, pH 7.5).
The collected proteins were buffer-exchanged in buffer A using a
HiPrep 26/10 Desalting column (Cytiva). To remove the amino-ter-
minal His-tag all proteins were incubated with His-tagged TEV pro-
tease (made in-house) overnight at 4°C. TEV protease and cleaved

His-Tag were removed from the proteins using a 5 mL HisTrap FF
column (Cytiva).

Complex assembly

Purified Nop183–327 and Nop561–166, or mutants thereof, were
mixed in a 1:1 ratio and incubated for 15min at room temperature
before further purification steps. All complexes were purified us-
ing size-exclusion chromatography (SEC) on an Äkta pure system
at room temperature with running buffer D (50 mM sodium phos-
phate, 100 mM NaCl, 10 mM β-mercaptoethanol, pH 7.0) or run-
ning buffer E for crystallization (50 mM Tris-HCl, 50 mM NaCl,
1 mM DTT, pH 7.5). A Superdex 200 Increase 10/300 GL column
(Cytiva) or, for the preparation of the crystallization sample,
a HiLoad 16/600 Superdex 75 pg column (Cytiva) were used.
Purity was assessed using SDS gel-electrophoresis. For crystalliza-
tion, the purified complex was concentrated using Amicon Ultra-
15 10K centrifugal filters (Merck).

Isothermal titration calorimetry measurements

Isothermal titration calorimetry measurements of Nop183–327 with
Nop561–166 and of Nop183–327 with Nop561–166-Q35A/N39A
were performed using a TA Instruments Nano ITC calorimeter
with a cell temperature of 20°C applying a stirring rate of 300
rpm. Due to the limited solubility of Nop183–327 in the absence
of Nop561–166 under low salt conditions, both proteins were
kept in 50 mM sodium phosphate, 500 mM NaCl, 10 mM β-mer-
captoethanol, pH 7.0, rather than in running buffer D, which was
instead used for size-exclusion chromatography. Nop183–327 was
placed in the measurement cell at either 100 µM or 85 µM, while
Nop561–166 and Nop561–166-Q35A/N39A were used as titrant at
concentrations of either 970 µM or 917 µM. Blank measurements
were performed for both titration series. The data was analyzed
with the NanoAnalyze software provided by TA Instruments and
plotted with OriginPro 2020. The exact values of the KD and the
other binding parameters reported in Supplemental Figure 3
are however inaccurate, as some Nop183–327 precipitated during
the measurements due to stirring.

Crystallization

A concentrated solution of ∼10mg/mL of Nop561–166–Nop183–327

in crystallization buffer was used for crystallization by sitting drop
vapor diffusion. Initial crystallization screens were set up with a
Crystal Pheonix crystallization robot (Art Robbins Instruments) us-
ing NeXtal DWBlock Suites (Qiagen); JCSG Core I Suite, JCSG
Core II Suite, JCSG Core II Suite, JCSG Core IV Suite, Protein
Complex Suite, Nucleix Suite, PEG Suite, and PEG II Suite. The
drop solution was equilibrated against 200 µL of reservoir solution
at 12°C. Crystals appeared in the Protein Complex Suite screen as
well as in the PEG Suite screen after 1 wk. Based on the two best hit
conditions, grid screens were set up and incubated at 12°C. After 1
wk, crystals were obtained inmultiple conditions, the best of which
was 0.1MHEPES (pH 7.5), 0.1M LiCl, and 40% PEG400. Cryo-pro-
tection was achieved by the addition of 10% (2R, 3R)-2,3-butane-
diol before flash-freezing.
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Data collection and processing

Data were collected at beamline P11 of PETRA III, DESY
(Deutsches Elektronen-Synchroton) (Burkhardt et al. 2016). The
data sets were recorded at 100K (λ=1.03 Å) and processed using
the AutoPROC toolbox (Vonrhein et al. 2011) executing XDS
(Kabsch 2010) followed by Pointless (Evans 2006) and Aimless
(Evans and Murshudov 2013) from the CCP4 program suite
(Winn et al. 2011). The high-resolution cut off was determined us-
ing a signal/noise ratio [I/σ(I)] of 2.0.

Structure determination and representation

The crystal structure of Nop561–166–Nop183–327 was solved by
molecular replacement executing Balbes (Long et al. 2008) from
the CCP4 suite (Winn et al. 2011). For Nop183–327 human Fibril-
larin (PDB-ID: 2IPX, sequence identity: 74%) was found as a work-
ing search model. For Nop561–166 a model was built using the
Phyre2web server (Kelley et al. 2015) and energyminimized using
Maestro from the Schrödinger2018 suite (Schrödinger, LLC). This
model was used as a search model using Phaser (McCoy et al.
2007) from the Phenix suite (Adams et al. 2010) including the fixed
partial solution containing only the model for Nop183–327. Initial
structural models were built with AutoBuild (Terwilliger et al.
2008) from the Phenix software package (Adams et al. 2010).
The models were analyzed and completed by iterative model-
building and refinement cycles using Coot (Emsley et al. 2010)
and Phenix.refine (Afonine et al. 2012), including TLS-refinement
and the addition of hydrogens in riding positions. Data collection
and refinement statistics are summarized in Table 1.

Surface electrostatics for Figures 4 and 5 were calculated using
the adaptive Poisson-Boltzmann solver (APBS) 2.1 (Jurrus et al.
2018).

Sequence alignments

All alignments shown in Figures 6 and 7 were done manually
based on available structures or models and formatted with
Espript 3.0 (Robert and Gouet 2014). (Sc—S. cerevisiae, Sp—
S. pombe, Hs—H. sapiens, Mm—M. musculus, Xl—X. leavis,
Dr—D. rerio, Pf—P. furiosus, Ph—P. horikoshi, Ss—S. solfataricus,
Af—A. fulgidus, Mj—M. janaschii).

DATA DEPOSITION

Structural data have been deposited in the Protein Data Bank
(https://www.rcsb.org) with the PDB code 6ZDT.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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