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A B S T R A C T

The identification of patterns and underlying characteristics of natural or engineering time-
varying phenomena poses a challenging task, especially in the scope of simulation models
and accompanying stochastic models. Because of their complex nature, time-varying processes
such as wind speed, seismic ground motion, or vibrations of machinery in the presence of
degradation oftentimes lack a closed-form description of their underlying Evolutionary Power
Spectral Density (EPSD) function. To overcome this issue, a wide range of measurements exist
for these types of processes. This opens up the path to a data-driven stochastic representation
of EPSD functions. Rather than solely relying on time–frequency transform methods like the
familiar short-time Fourier transform or wavelet transform for EPSD estimation, a probabilistic
representation of the EPSD can provide valuable insights into the epistemic uncertainty
associated with these processes. To address this problem, the evolutionary EPSD function is
relaxed based on multiple similar data to account for these uncertainties and to provide a
realistic representation of the time data in the time–frequency domain. This results is the
so-called Relaxed Evolutionary Power Spectral Density (REPSD) function, which serves as a
modular probabilistic representation of the time–frequency content of stochastic signals. For
this purpose, truncated normal distributions and kernel density estimates are used to determine
a probability density function for each time–frequency component. The REPSD function enables
the sampling of individual EPSD functions, facilitating their direct application to the simulation
model through stochastic simulation techniques like Monte Carlo simulation or other advanced
methods. Even though the accuracy is highly dependant on the data available and the
time–frequency transformation method used, the REPSD representation offers a stochastic
representation of characteristics used to describe stochastic signals and can reduce epistemic
uncertainty during the modelling of such time-varying processes. The method is illustrated
by numerical examples involving the analysis of dynamic behaviour under random loads.
The results show that the method can be successfully employed to account for uncertainties
in the estimation of the EPSD function and represent the accuracy of the time–frequency
transformation used.
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Acronyms

CDF Cumulative Density Function
DFT Discrete Fourier Transform
EPSD Evolutionary Power Spectral Density
FEM Finite Element Model
HHT Hilbert-Huang Transform
IQR Inter Quartile Range
KDE Kernel Density Estimation
KDE-REPSD Kernel Density Estimation Relaxed Evolutionary Power Spectral Density function
MC Monte Carlo
MTST Multi-Taper S Transform
PDF Probability Density Function
PSD Power Spectral Density
REPSD Relaxed Evolutionary Power Spectral Density
SRM Spectral Representation Method
STFT Short-Time Fourier Transform
TN Truncated Normal distribution
TN-REPSD Truncated Normal Relaxed Evolutionary Power Spectral Density function

1. Introduction

The description of natural phenomena in the context of simulation models is a challenging problem. These phenomena such as
ind and wave movements, seismic activities or climate changes are related to complex, interacting high-dimensional physical
odels. Also, engineering problems, such as vibrations of a component under changing material behaviour, can often only be
odelled with an acceptable level of accuracy using complex models and experiments. Since these phenomena present time-varying
roperties in engineering they are often referred to as environmental processes or from a mathematical and modelling perspective,
tochastic processes. In civil engineering, stochastic dynamics, and structural analysis, stochastic processes play a crucial role [1–3].
tochastic dynamics is concerned with the study of probabilistic systems that evolve over time and has applications in structural
eliability analysis. Specifically, the treatment of random vibrations is important in this field [4–7]. To ensure the reliability of a
tructure, analysts need to consider the potential impact of environmental processes such as wind, wave, or seismic loads at the
esign stage or carry out analyses for existing structures [8]. This often requires complex simulations to accurately predict how the
tructure will respond to these processes and to ensure that it meets safety requirements.

In addition to the physical models, it is possible to introduce a complementary stochastic model, which includes the formulation
f suitable stochastic processes. To approximate stochastic processes mainly three branches of approaches have been established up
o now [9]:

• The Karhunen–Lòeve expansion, in which for engineering processes orthogonal functions in time and space are combined
linearly [10]. To describe the stochastic processes, a formulation of the corresponding covariance functions must be available.
The Karhunen–Lòeve expansion can be used to simulate non-Gaussian and non-stationary stochastic processes [11].

• Sampling representations, which are in the classical representation mostly suitable for reproducing a full signal by deterministic
samples available, however, methods like the Withaker–Shannon interpolation require a limited bandwidth of the analysed
processes [12].

• Spectral representation methods, based on the formulation of a Power Spectral Density (PSD) function [13].

From an engineering perspective, when regarding environmental loads, formulating PSD functions has advantages in vibration
nalysis, as they provide a method of directly characterising the frequency content of stochastic signals. Artificial stochastic signals
an be considered as deterministic realisations of stochastic processes, whereas signals themselves can also be measurements. Via PSD
unction estimation procedures, a signal can be decomposed into its harmonic components. In particular, the amplitudes and their
istribution over the frequencies are determined. However, to accurately calculate the PSD function of a signal, certain mathematical
onditions are necessary, such as dealing with continuous signals and signals of infinite length. Since these requirements cannot be
et in practice, estimators are used.

Over time, different spectral density estimators have been developed that offer certain advantages and disadvantages. In the
tationary case, common estimators such as the periodogram [7], Welch’s method [14], or Bartlett’s method [15,16] are widely
mployed. For an overview, refer to [17]. These estimators all rely on the Discrete Fourier Transform (DFT) [18]. Since signals of
nvironmental processes often have a non-stationary character which results in a frequency power change in time, EPSD functions
eed to be considered. These take into account the time-varying behaviour of a signal and thus provide a more realistic representation
2

n the resulting time–frequency domain [19–21]. Different time–frequency transformation methods exist, with certain advantages
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and disadvantages, particularly in the quality of the transformation as well as the resolution in the time–frequency domain. An EPSD
function can be estimated using, among others, the Short-Time Fourier Transform (STFT) [7,22], wavelet methods [23,24], or the
recently developed Multi-Taper S Transform (MTST) [25].

Once a suitable estimation of a PSD or EPSD is available, artificial stochastic signals can be generated using the Spectral
epresentation Method (SRM), either in the stationary case [13] or in the non-stationary case [26]. The latter is of interest in

his work. For the generation of stochastic signals, all stochastic simulation methods are applicable, such as the widely used Monte
arlo (MC) simulation [27,28] but also the usage of advanced techniques such as subset simulation [29], line sampling [30], or
irectional importance sampling [31] are possible.

However, determining these signals via a transformation method of choice and even further utilise these representations for
.g. structural reliability analysis is challenging due to the presence of uncertainties [32]. Uncertainties can be divided into aleatory
nd epistemic uncertainties [33], while on the one side, aleatory uncertainties describe irreducible stochastic conditions, epistemic
ncertainties are referred to as reducible uncertainties. If both types of uncertainties occur simultaneously and are not separable,
hey are called hybrid uncertainties [34,35]. The assessment of uncertainties in simulations, analyses, and engineering systems
s ubiquitous. If uncertainties are incorrectly quantified, consequences can be disastrous. For example, a building under given
oads could suffer devastating damage that severely compromises the structural reliability. Different approaches to quantify and
ropagate uncertainties are available, such as precise probabilistic methods [36,37], non-probabilistic methods [38] or imprecise
robabilities [39].

In general, stochastic signals and specifically real data records are subject to uncertainties. These can result, for example,
rom poorly calibrated sensors, measurement errors, an insufficient amount of data, while damaged or failed sensors can result in
ecords with missing data. Furthermore, the presence of uncertainties is a direct result of the inherent complexity found in natural
nvironmental processes. In addition, due to the mentioned mathematical requirements on the signal for the time–frequency trans-
ormations, only estimates of the EPSD function can be determined, which leaves the epistemic uncertainty of the EPSD functions
nidentified. To overcome these issues, a range of PSD and EPSD function estimation techniques involving uncertainty quantification
ave been proposed. Missing data problems are treated in [40–42], an interval-valued PSD function from similar data has been
erived in [43], while in [44] a set of accelerograms is analysed to derive reliability bounds. An interval-valued signal can be
ransformed to an interval-valued PSD function using the interval DFT transform [45]. In particular, the steadily growing databases,
or instance [46–48], contribute to a better understanding of environmental processes and the quantification of uncertainties.

In addition to the above mentioned approaches, the authors of this work derived a probabilistic model of a set of similar PSD
unctions, the relaxed PSD function [49]. However, the proposed methodology is only valid for stationary and Gaussian stochastic
ignals. The non-stationary case needs to involve the EPSD function estimation for a more accurate representation of environmental
rocesses. Additionally, the spectral representation by SRM and the stochastic simulation need to be reconsidered. In this work a
odular framework for the representation of non-stationary stochastic signals via EPSD functions using artificial stochastic signals

enerated by the SRM is proposed. This framework results in the construction of a novel class of stochastic EPSD functions
alled the Relaxed Evolutionary Power Spectral Density functions (REPSD). The REPSDs expand the relaxed case to non-stationary
rocesses, which are more suitable for the description of natural processes, offer a stochastic model that is capable of dealing with
leatory and epistemic uncertainties and lead to the generation of stochastic signals based on a profound stochastic EPSD model.
he EPSD function estimation will be carried out using the recently developed MTST [25]. Once the ensemble is derived, each
pectral density per time–frequency component will be transformed into a probability density function. To underline the modularity
f the construction of a REPSD function, simple truncated normal distributions will be used as basis, additionally kernel density
stimations are implemented to construct custom Probability Density Function (PDF) in the time–frequency space and to show, that
rbitrary PDF types could be implemented. Both approaches have their advantages and disadvantages, depending on the amount
nd appearance of the data. The resulting REPSD function is used to perform numerical simulations of the dynamic behaviour of
ystems subjected to environmental processes by sampling individual EPSD functions applied to the model via MC simulation.

This work is organised as follows: Basic concepts of the SRM and EPSD function establishment, important for the remainder of
his work will be explained in Section 2. In Section 3 the methodology of constructing the REPSD function will be elaborated. The
btained REPSD model will be validated by MTST estimations of EPSD functions and compared to the source EPSD of an artificial
nvironmental process. To illustrate the strengths and advantages of the REPSD function, two different numerical examples are
resented in Section 4. The final conclusions and a critical discussion of the obtained results are given in Section 5.

. Preliminaries

In this section necessary methodologies for the REPSD representation are introduced. These mainly include the representation
f non-stationary stochastic processes by a spectral representation (Section 2.1), the estimation of EPSD functions from generated
tochastic signals by the state of the art MTST method (Section 2.2) and revisiting the Kernel Density Estimation (KDE), which is
sed to determine PDF representations during the REPSD construction (Section 2.3).

.1. Representation of non-stationary stochastic processes

A convenient way to generate sample functions 𝑋(𝑡) that represent non-stationary stochastic processes in a time-domain is
presented in [26]. For a source EPSD 𝑆𝑋 (𝜔, 𝑡) the spectral representation of non-stationary stochastic processes can be stated
as

𝑋(𝑡) =
√

2
𝑁𝜔−1
∑ √

2𝑆𝑋 (𝜔𝑛, 𝑡)𝛥𝜔 cos(𝜔𝑛𝑡 + 𝜑𝑛), (1)
3

𝑛=0
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Fig. 1. Non-separable EPSD function (Eq. (3)) for 𝜔 ∈ [0, 32.17] rad/s and 𝑡 ∈ [0, 50] s.

in which,
𝜔𝑛 = 𝑛𝛥𝜔, 𝑛 = 0, 1, 2,… , 𝑁𝜔 − 1,

and 𝛥𝜔 =
𝜔𝑢
𝑁𝜔

,
(2)

𝑡 ∈ [0, 𝑇 ] is the time domain with 𝑇 being the ultimate time. 𝜔𝑛 are discretised frequency values and 𝜔𝑢 = 𝑓𝑠∕4𝜋 is the upper
cutoff-frequency determined by the time discretisation 𝛥𝑡 and sampling ratio 𝑓𝑠 = 1∕𝛥𝑡. 𝜑𝑛, with 𝑛 = 0, 1,… , 𝑁𝜔 − 1 are uniformly
distributed phase angles in the range [0, 2𝜋]. 𝑁𝑡 is the desired number of time instances, such that 𝛥𝑡 = 𝑇 ∕𝑁𝑡. 𝑆𝑋 (𝜔𝑛, 𝑡) in Eq. (1) is
the source EPSD and could be of arbitrary shape. A non-separable EPSD as in [50] has been chosen as source EPSD:

𝑆𝑋 (𝜔, 𝑡) =
( 𝜔
5𝜋

)2
⋅ exp [−0.15𝑡] ⋅ 𝑡2 ⋅ exp

[

−
( 𝜔
5𝜋

)2
𝑡
]

. (3)

For a discretised time–frequency space this relation is depicted in Fig. 1. As already established in the SRM [13], if 𝑁𝜔 → ∞ it can
be assumed that the sample function in Eq. (1) presents an accurate simulation for a non-stationary stochastic process. Since only
a limited number 𝑁𝜔 of approximation terms in Eq. (3) is feasible, the sample functions in 𝑋(𝑡) are referred to as stochastic signals
or simply signals.

2.2. Evolutionary power spectral density estimation

The generated sample functions in Eq. (1) are regarded as arbitrary stochastic signals but with the same source EPSD. A
challenging task remains to find a robust estimator for this source EPSD when considering only a finite number of generated
stochastic signals. In [25] the MTST method, which exhibits a significant variance reduction in comparison to other EPSD
estimation procedures such as the Priestley method and wavelet-based methods, has been presented. Given a non-stationary
stochastic signal 𝑋(𝑡) and 𝑀 time–frequency Hermite windows, denoted as 𝛹𝑚(𝜔, 𝑡), 𝑚 = 0, 1,… ,𝑀 − 1, with zero-padding
𝑋0(𝑡) = {01,… , 0𝑁𝑡∕2, 𝑋(𝑡), 01,… , 0𝑁𝑡∕2−1}, the so-called S-transform is given to be

𝑠𝑚(𝜔, 𝑡) =
𝑐
∑

𝑘=−𝑐
𝛹𝑚(𝜔, 𝑘𝛥𝑡 − 𝑡) ⋅𝑋0(𝑘𝛥𝑡) ⋅ exp [−𝑖2𝜋𝜔𝑘𝛥𝑡] ⋅ 𝛥𝑡 (4)

in the case that 𝑐, 𝑐,→ ∞, Eq. (4) has the maximum accuracy dependant only on 𝑀 . In this study 𝑐 = ⌈𝑁𝑡∕2⌉ + 1 and 𝑐 = ⌊𝑁𝑡∕2⌋.
Please note that with the zero-padding a continuous window over the time-domain can be regarded, i.e. 𝑋0(𝑡) is treated as a periodic
signal. The Hermite windows are constructed as following

𝛹0(𝜔, 𝑡) = 𝜋−1∕4 ⋅
√

w(𝜔) ⋅ exp
[

−1∕2 ⋅ w(𝜔)2 ⋅ 𝑡2
]

,

𝛹1(𝜔, 𝑡) =
√

2𝜋−1∕4 ⋅ w(𝜔)3∕2 ⋅ 𝑡 ⋅ exp
[

−1∕2 ⋅ w(𝜔)2 ⋅ 𝑡2
]

,

𝛹𝑚(𝜔, 𝑡) =
√

2∕𝑚 ⋅ w(𝜔) ⋅ 𝑡 ⋅ 𝛹𝑚−1(𝑡, 𝜔) −
√

(𝑚 − 1)∕𝑚 ⋅ 𝛹𝑚−2(𝑡, 𝜔).

(5)

With the shape function

w(𝜔) = 𝑎
[

1 +
𝑏2 ⋅ |𝜔∕𝑓𝑠|

|𝑐|+1

|𝑐|+1

]

, (6)
4

|𝑏| ⋅ |𝜔∕𝑓𝑠| + 1
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and parameters 𝑎, 𝑏, 𝑐. A detailed study on the choice of these parameters can be found in [51]. With the full definition of the
Hermite windows, the estimator for 𝑆𝑋 (𝜔, 𝑡) is established as

𝑆̂𝑋 (𝜔, 𝑡) =
1
𝑀

𝑀−1
∑

𝑚=0
𝑠∗𝑚(𝜔, 𝑡)𝑠

𝑇
𝑚(𝜔, 𝑡). (7)

Here (⋅)∗ represents the conjugate operator, and (⋅)𝑇 the transpose operator.

2.3. Kernel density estimation

The KDE is a method of probability theory and statistics that allows to estimate the PDF of a random variable without assuming
a specific distribution. A brief explanation is given here, while the reader is referred to [52–54] for a detailed explanation.

A PDF is estimated by applying a kernel function to each individual data point. The kernel function serves as a weighting factor
to account for the contributions of each data point to the estimated density. Summing up all kernel functions will result in the
estimated PDF. The choice of kernel function and its width is crucial for the accuracy of the estimate because it determines the
shape of the estimated PDF. Typical kernel functions include the Gaussian distribution or the Epanechnikov function. The KDE is
often used to gain an understanding of the distribution of the data, or as a basis for further analysis.

The estimation of the PDF using KDE can be expressed by

𝑓 (𝑥) = 1
𝑛

𝑛
∑

𝑖=1

1
ℎ
𝐾ℎ

(𝑥 − 𝑥𝑖
ℎ

)

, (8)

where 𝑓 is the estimated probability density, 𝐾ℎ is the kernel function, ℎ is the bandwidth of the kernels, 𝑥 is the point at which
the PDF is estimated and 𝑥𝑖 are the observations, i.e. the available data points. In this work, a Gaussian kernel is utilised.

The bandwidth has a significant impact on the quality of the resulting estimated PDF. For example, setting the bandwidth too high
can lead to an over-smoothed result, while choosing a bandwidth that is too low can overweight individual data points, leading
to an under-smoothed PDF characterised by multiple sharp peaks. There are several ways to find an optimal bandwidth for the
kernels. Assuming that the PDF to be estimated is Gaussian distributed, a well-known rule is Scott’s rule [55], which incorporates
the number of data points 𝑛 as well as their standard deviation 𝜎

ℎ𝑜𝑝𝑡 =
(

4𝜎5
3𝑛

)1∕5
≈ 1.06𝜎𝑛−1∕5. (9)

Another rule is Silverman’s rule [52], which takes into account the Inter Quartile Range (IQR) in addition to the number of data
points 𝑛 and their standard deviation 𝜎

ℎ𝑜𝑝𝑡 = 0.9min
(

𝜎, 𝐼𝑄𝑅
1.34

)

𝑛−1∕5, (10)

where 𝐼𝑄𝑅 = 𝑄3 −𝑄1 with 𝑄1 as lower quartile and 𝑄3 as upper quartile.

3. Methodology

In this section the novel estimation procedure for the REPSD function is presented.

3.1. Relaxed evolutionary power spectral density function

The novel construction of REPSD functions is particularly suitable when many records are available for particular phenomena.
The aim is to reduce the epistemic uncertainty when describing stochastic signals. When records of environmental or natural
processes such as wind loads, seismic ground motions, or other vibrations are available, it is still not determined which EPSD
function is a good approximation for this signal aggregation. For a thorough analysis, it is also interesting to examine whether these
phenomena can be considered directly related or not. The latter challenge is not part of this method and would require additional
preliminary data analysis. However, from a modelling perspective, a common characteristics formulation of environmental processes
is essential to obtain simulation results. Furthermore, a stochastic, relaxed representation of EPSD functions for stochastic signals
could lead to a new modelling perspective, as the representation of main features, such as first and second order moments, of
natural processes can then be determined by statistical methods. Consider an ensemble that consists of a number of different
EPSD estimations from stochastic signals. Fig. 2(a) shall represent signals from a natural process. The estimation procedure can
be chosen according to the analyst’s needs, throughout this work the presented MTST method in Section 2.2 with the estimator
in Eq. (7) is used. This set of EPSD estimations with cardinality 𝑁𝑒 can be stated as an ensemble: {𝑆̂𝑋𝑖

}, 𝑖 = 1, 2,… , 𝑁𝑒. Here
𝑁𝑒 is determined by the number of regarded records available, containing either measurements or artificially generated stochastic
signals (as in Fig. 2(a)). Each EPSD function estimation, denoted by the index 𝑖, is discretised over the frequency and time domain,
i.e. 𝑠𝑖,𝜔𝑛 ,𝑡𝑘 = 𝑆̂𝑋𝑖

(𝜔𝑛, 𝑡𝑘), 𝑛 = 0, 1,… , 𝑁𝜔 − 1, 𝑘 = 1,… , 𝑁𝑡. The ensemble consists of the data-driven input collection of EPSD
estimations which lay the foundation of the stochastic input space for the REPSD function described below. In Fig. 2(b) the MTST
5

estimations of the EPSD functions are shown, the label abbreviations of the boxplot for each discretised frequency–time point
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Fig. 2. 50 source signals obtained from Eq. (1)(left), boxplot with full range and quartiles for the ensemble in {𝑆̂𝑋𝑖
} (right).

represent the following: Min.: minimum value, Q1: lower quartile, Median: median value, Q2: upper quartile, Max.: maximum value
of the data. It is obvious that the time–frequency transformation from stochastic signals delivers a massive amount of statistical data.

From the ensemble, following statistical moments are derived for each discretised point of the EPSD ensemble

𝜇𝜔𝑛 ,𝑡𝑘 = 1
𝑁𝑒

𝑁𝑒
∑

𝑖=1
𝑠𝑖,𝜔𝑛 ,𝑡𝑘 , (11a)

𝜎𝜔𝑛 ,𝑡𝑘 =

√

√

√

√
1

𝑁𝑒 − 1

𝑁𝑒
∑

𝑖=1

(

𝑠𝑖,𝜔𝑛 ,𝑡𝑘 − 𝜇𝜔𝑛 ,𝑡𝑘

)2
, (11b)

with 𝜔𝑛 = 𝑛𝛥𝜔, 𝑛 = 0, 1,… , 𝑁𝜔 −1, and 𝑡𝑘 = 𝑘𝛥𝑡, 𝑘 = 1, 2,… , 𝑁𝑡. Eq. (11a) and Eq. (11b) need to be calculated for each discretised
frequency 𝜔𝑛 and time instance 𝑡𝑘. With this statistical information for each discretised point a probability density function can be
constructed. In theory, establishing arbitrary distribution types is possible. For the sake of clarity, first, a simple distribution type
is chosen. Assume a Truncated Normal distribution (TN) for each point. These are then given to be

𝑓𝑇𝑁
𝜔𝑛 ,𝑡𝑘

(𝑠;𝜇𝜔𝑛 ,𝑡𝑘 , 𝜎𝜔𝑛 ,𝑡𝑘 , 𝑙𝜔𝑛 ,𝑡𝑘 , 𝑢𝜔𝑛 ,𝑡𝑘 ) =

1
𝜎𝜔𝑛 ,𝑡𝑘

𝜙(
𝑠−𝜇𝜔𝑛,𝑡𝑘
𝜎𝜔𝑛,𝑡𝑘

)

𝛷(
𝑢𝜔𝑛,𝑡𝑘−𝜇𝜔𝑛,𝑡𝑘

𝜎𝜔𝑛,𝑡𝑘
) −𝛷(

𝑙𝜔𝑛,𝑡𝑘−𝜇𝜔𝑛,𝑡𝑘
𝜎𝜔𝑛,𝑡𝑘

)
,

(12)

and 𝜙(𝜂) = 1
√

2𝜋
exp

(

− 1
2 𝜂

2
)

is the standard normal distribution, 𝛷(𝜁 ) = 1
2

(

1 + erf(𝜁∕
√

2)
)

is the corresponding cumulative
distribution function. The lower and upper truncation bounds are given to be 𝑙𝜔𝑛 ,𝑡𝑘 and 𝑢𝜔𝑛 ,𝑡𝑘 . The influence of the truncation
bounds has been discussed for the frequency domain in [49]. In this study the configuration 𝑙𝜔𝑛 ,𝑡𝑘 = 0 and 𝑢𝜔𝑛 ,𝑡𝑘 = 2𝜇𝜔𝑛 ,𝑡𝑘 proved
to be more robust. The TN distribution yields a smooth representation of the EPSD function values for each discretised point. Thus,
outliers or gaps in the EPSD function value are weighted less.

In some cases, however, it may be useful to represent the data more in its natural appearance. In such a case, the KDE provides
a much more inclusive representation of the data. This can result in multiple peaks instead of smooth curve as in the case of the
TN distribution. If the data set is to be represented by KDE, Eq. (8) can be reformulated into its KDE-driven REPSD form

𝑓𝐾𝐷𝐸
𝜔𝑛 ,𝑡𝑘

(

𝑥; 𝑠𝑖,𝜔𝑛 ,𝑡𝑘 , ℎ𝜔𝑛 ,𝑡𝑘

)

= 1
𝑁𝑒

𝑁𝑒
∑

𝑖=1

1
ℎ𝜔𝑛 ,𝑡𝑘

𝐾ℎ𝜔𝑛,𝑡𝑘

(

𝑥 − 𝑠𝑖,𝜔𝑛 ,𝑡𝑘
ℎ𝜔𝑛 ,𝑡𝑘

)

. (13)

This equation is evaluated for each time–frequency point (𝜔𝑛, 𝑡𝑘). The parameter ℎ𝜔𝑛 ,𝑡𝑘 describes an adaptive bandwidth for the
KDE, which will be determined according to Eq. (10) and the respective available EPSD values at the corresponding time–frequency
point.

For both types of distribution functions it can be argued why they are superior, but this always depends on the individual case,
as the form and number of data are important for this assessment. For a high number of data, a truncated normal distribution may
be better, as this may well lead to a smooth representation. Also, if a clear interval of the ensemble data can be identified the TN
approach would be better because this would make the choice of truncation bounds for the PDF definition easier. If there is less
data or multiple PDF peaks are expected, a KDE may provide better results, since gaps and multiple peaks, for instance, can be
6
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Fig. 3. Single MTST estimation for one signal as depicted in Fig. 2(a).

represented easier. However, here over-fitting could appear, in these cases a careful examination of the sampled REPSDs about the
ensemble and the underlying data needs to be carried out. Special consideration to outliers must be given, in particular for KDE
approaches, because again here an over representation of outlier data could occur. Note that the distributions presented are only two
possibilities that could be used for the REPSD model. Additionally, no correlations or dependencies have been considered so far. To
obtain a realisation of a Truncated Normal Relaxed Evolutionary Power Spectral Density function (TN-REPSD) named 𝑇𝑆𝑋 (𝜔𝑛, 𝑡𝑘),
for each 𝜔𝑛 and 𝑡𝑘 a sample is generated from the respective distributions in Eq. (12). To obtain a realisation of a Kernel Density
Estimation Relaxed Evolutionary Power Spectral Density function (KDE-REPSD) named 𝐾𝑆𝑋 (𝜔𝑛, 𝑡𝑘), for each 𝜔𝑛 and 𝑡𝑘 a sample is
generated from the respective distributions in Eq. (13). In a sense, Eqs. (12) and (13) can be seen as the description of uncorrelated
random fields.

3.2. Optimised multi-taper S transform parameters & error estimates

The MTST estimation for each signal in Fig. 2(a) is dependant on the choice of the parameters 𝑎, 𝑏, 𝑐 of the window function
in Eq. (6) and the number of Hermite window order 𝑀 used. Since the source EPSD for the regarded signals is known as in Eq. (3),
it is possible to formulate an objective function. The objective function, also later on used as error estimate, is formulated according
to the Frobenius norm of matrices. Respectively for two arbitrary EPSDs a residual matrix of the comparison of the two is stated
as 𝑆𝑟𝑒𝑠(𝜔𝑛, 𝑡𝑘) = 𝑆1(𝜔𝑛, 𝑡𝑘) − 𝑆2(𝜔𝑛, 𝑡𝑘) for 𝑛 = 0, 1,… , 𝑁𝜔 − 1, 𝑘 = 1,… , 𝑁𝑡. For this residual matrix the Frobenius norm is used to
formulate an objective function and error estimate by

‖𝑆𝑟𝑒𝑠(𝜔𝑛, 𝑡𝑘)‖𝐹 =

√

√

√

√

√

𝑁𝜔−1
∑

𝑖=0

𝑁𝑡
∑

𝑗=1
|𝑆𝑟𝑒𝑠(𝜔𝑖, 𝑡𝑗 )|

2. (14)

Following constraints for the MTST parameters are introduced 0.001 ≤ 𝑎 ≤ 1, 0.001 ≤ 𝑏 ≤ 30, 0.001 ≤ 𝑐 ≤ 1, and 𝑀 ∈ 1, 2,… , 10,
these constraints were chosen by the authors after assessing the parameter discussion in [51]. For the minimisation of the residual
matrix a genetic algorithm optimisation was used as established in [56]. Following objective is minimised once before the REPSD
is constructed:

arg min
𝑎,𝑏,𝑐,𝑀

{

‖𝑆𝑟𝑒𝑠0(𝜔𝑛, 𝑡𝑘, 𝑎, 𝑏, 𝑐,𝑀)‖𝐹

}

, (15)

where in this specific case 𝑆𝑟𝑒𝑠0(𝜔𝑛, 𝑡𝑘) = 𝑆𝑋 (𝜔𝑛, 𝑡𝑘) − 𝑆̂𝑋 (𝜔𝑛, 𝑡𝑘), which defines the Frobenius norm between the source EPSD and
the mean of one a priori chosen ensemble. The formal calculation of the first and second order moments for the ensemble date can
be found in the Appendix.

3.3. Error analysis

In Fig. 3, a single MTST estimation of one arbitrarily chosen signal in Fig. 2(a) is depicted. In Fig. 4, a single realisation of the
TN-REPSD is shown. Whilst the MTST estimation is showing gaps for specific parts of the EPSD, the by TN-REPSD generated sample
EPSD is resembling the source EPSD in Fig. 1.

The mean of the MTST estimations for all ensemble members is robust and yields a good approximation. But a single TN-REPSD
sample, as in Fig. 4, shows in comparison to a single MTST estimation a better resemblance to the source EPSD due to the construction
of a non-correlated random field that describes the ensemble’s statistics in frequency and time domain. For all error evaluations,
the direct absolute differences between two EPSD functions, differences between the ensemble’s mean and REPSD sample’s mean,
7
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Fig. 4. Single TN-REPSD sample generated according to Eq. (12).

or the equivalent difference for the standard deviation are regarded. Also, the errors according to the Frobenius norm introduced
in Eq. (14) are shown. The error and convergence analysis for the TN-REPSD representation and sampling has been performed. The
results are shown in Fig. 5, here following notations were used: The source EPSD function is described as 𝑆𝑋 (𝜔, 𝑡), the ensemble
mean estimated by MTST is 𝑆̂𝑋 (𝜔𝑛, 𝑡𝑘), the mean of generated TN-REPSD samples is denoted as 𝑇𝑆𝑋 (𝜔, 𝑡).

In Fig. 5(a) the error between the source EPSD and the mean of the MTST estimates is shown. The maximum deviation amounts
to ≈ 0.2. This error is the reference, since it measures the deviation of the MTST estimation to the source EPSD function. In Fig. 5(b)
the error between the mean of 𝑁10𝑘 = 10000 generated TN-REPSD samples and the source EPSD is shown. Here it can be seen that
the error is similar to the error of the MTST estimation mean. This leads to the conclusion that the constructed TN-REPSD is mainly
dependant on the quality of the EPSD estimation.

TN-REPSD is not adding any errors but offering a fully stochastic description of an estimated EPSD. In Fig. 5(c) the error between
the mean of the MTST estimated ensemble is compared to the mean of the 𝑁10𝑘 generated TN-REPSD samples. From the three results
Fig. 5(a)–5(c), the error map in Fig. 5(c) exhibits the smallest error. This is expected, because the TN-REPSD is constructed out of the
𝑁𝑒 = 50 ensemble members. In Fig. 5(d) a convergence analysis based on the MC method has been carried out for different number
of generated TN-REPSD samples 𝑁 ∈ {1, 2, 2.5, 3, 4.5, 4, 4.5, 5} ⋅ 104. For larger numbers of 𝑁 , the error between the TN-REPSD mean
and the ensemble mean is decreasing (blue line, blue axis), the error between the source EPSD and the mean of the TN-REPSD is
constant (orange line, orange axis). The dashed black line refers to the direct error of the source EPSD function in comparison to the
mean of the MTST ensemble in the Frobenius norm. This error serves here as a reference and corresponds to the orange axis. The
orange line is below this value. All these results in Fig. 5 indicate that the TN-REPSD does not introduce any additional error and
delivers a good representation of the provided input ensemble (data). Additionally, the convergence of the MC simulations follows
the law of large numbers, i.e. with a larger sample size the error reduces. Similar considerations are carried out for the KDE-REPSD
in Fig. 6.

In Fig. 6, the notations are equivalent to the previous graph, 𝐾𝑆𝑋 (𝜔, 𝑡) denotes the mean of the by KDE-REPSD generated EPSD
samples. The general trend of these error and convergence results are similar. Which again indicates that the stochastic representation
of the EPSD ensemble is mainly reliant on the EPSD estimation procedure. Please note that a different ensemble has been used for
the KDE-REPSD analysis, resulting in a slightly different error in Fig. 6(a) compared to Fig. 5(a). In Fig. 6(c) higher local errors are
observed. Especially when comparing with the previous results of the TN-REPSD in Fig. 5(c). Also for the KDE-REPSD generated
samples it can be observed, that the dashed black line, which is the reference error value for the source EPSD estimation, is always
larger than the orange line. This leads to the conclusion that no additional error is introduced by the KDE-REPSD.

Additionally, for specific time instances 𝑡 ∈ {0.88 s, 9.67 s, 19.43 s} the EPSD function’s frequency space is analysed in detail. The
underlying ensemble members are again denoted by 𝑆̂𝑋 , the mean value by 𝐸[𝑆̂𝑋 ] and the standard deviation by 𝜎[𝑆̂𝑋 ], these
descriptions are used for each of the specific time instances. The MC sampling results of the TN-REPSD and KDE-REPSD with the
same 𝑁10𝑘 samples from the previous results were used for this comparison. The mean of the samples is denoted by 𝐸[𝑇𝑆𝑋 ] and
𝐸[𝐾𝑆𝑋 ], the standard deviation of the samples by 𝜎[𝑇𝑆𝑋 ] and 𝜎[𝐾𝑆𝑋 ]. The mean values for the different REPSD representation
and the underlying ensemble values over the frequency space is analysed in Fig. 7(a), and the standard deviation over the frequency
space in Fig. 7(b). Three respective time instances have been regarded. In Fig. 7(a) it can be seen that the KDE-REPSD (𝐾𝑆𝑋) samples
have some issues to clearly represent the mean value, specifically for 𝑡1. However, in Fig. 7(b), the TN-REPSD (𝑇𝑆𝑋) samples show
a larger error regarding the standard deviation, which is better represented by the KDE-REPSD. These results clearly indicate, that
the choice of distribution functions has a large influence on the stochastic representation of the EPSD and should be done carefully.

3.4. Relaxed non-homogeneous spectral representation method

In this section the influence of the REPSD models to the generated time signals is evaluated. For this purpose, samples from both
TN-REPSD (Eq. (12)) and the KDE-REPSD (Eq. (13)) are drawn and time signals are generated by using Eq. (1). A total of 10,000
8
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Fig. 5. Errors, differences and convergence analysis for the TN-REPSD samples.

EPSD samples and corresponding signals are compared to each other. As a reference value, time signals generated from the source
EPSD given in Eq. (3) are used. The quantity considered for comparison is the absolute maximum value max(|𝑥̈(𝑡)|) of the respective
time signal 𝑥̈(𝑡), which represents an earthquake ground motion in this case.

The respective results are given in Fig. 8, where the histograms of the three respective cases are given in Fig. 8(a) and for
each sample of maximum accelerations, the corresponding empirical Cumulative Density Function (CDF) is depicted in Fig. 8(b).
It can be clearly seen that the time signals generated by the three models result in a very similar behaviour in terms of maximum
acceleration. All histograms show a similar shape and distribution of the maximum values, which consequently is also visible in
the empirical CDFs. It should further be noted, that none of the models has some extreme values in any direction, thus the results
can be considered of equal quality. However, minor differences can be seen, which may result from the influence of the random
variables used in the stochastic process generation.

3.4.1. Energy of generated signals
As a further criterion for comparison, the total energy in the generated signals is considered. This analysis was carried out again

for both the TN-REPSD (Eq. (12)) and the KDE-REPSD (Eq. (13)). The total energy of the signal can be determined by the following
expression

𝐸 =
𝑁𝑡
∑

𝑛=0
|𝑥(𝑛)|2. (16)

The analysis has been carried out with the identical signals generated in the previous section. In Fig. 9 an overview of the energy
content of the signals is given. For better comparability, the energy content of the individual signals is arranged in ascending order.
It can be clearly seen that all models result in signals with similar energy content and energy distribution.
9
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Fig. 6. Errors, differences and convergence analysis for the KDE-REPSD samples.

Fig. 7. Stochastic simulation (MC) results in comparison to underlying ensemble statistics.
10
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Fig. 8. Histogram and empirical CDF of the maximum acceleration of the generated signals from the sampled EPSD.

Fig. 9. Energy of the generated signals in ascending order of energy content.

Table 1
Comparison of the energy content of the generated signals from the source EPSD, TN-REPSD and KDE-REPSD.
Units are given in [m2 s−4].

Source EPSD TN-REPSD KDE-REPSD

min 89.7147 100.771 103.5557
max 268.484 261.6281 290.2797
mean 170.8195 166.7248 170.7418
median 169.7479 165.661 169.8419

In addition, Table 1 shows the min, max, mean and median for the 10,000 generated signals. The min value of the source EPSD
eems to be slightly smaller than for both relaxed models and the max value of the KDE-REPSD is also somewhat higher that the
ther values. However, since these are the extreme values, such a behaviour can be expected. In addition, those outlier values may
nly be reached by a very small portion of samples. In this comparison, the mean and median are more meaningful as often a high
umber of samples is applied to the system under investigation. For these two values, it is clear to see that they are in the similar
ange. Thus, it can be concluded that the signals have an identical energy content, at least in an averaged sense.

. Numerical examples
11

To show possible applications of the REPSD approach, two numerical examples are investigated in this work.
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Fig. 10. OpenSEES FEM dimensions and stress–strain relations of the material.

Fig. 11. FEM frame structure model input and response. The abbreviation gm refers to ground motion.

4.1. Finite element model of a steel frame structure with irregular mass

Underlining the versatility of the REPSD approach, the seismic response of a steel moment resisting frame Finite Element Model
(FEM) is analysed. The FEM is inspired by the results presented in [57], here a numerical model of a low rise moment steel frame
with an irregular mass on the top storey has been presented and validated. In Fig. 10(a) the steel frame’s dimensions, nodes and
elements are depicted. White dots represent the conjunction nodes, the black dot represents a mass node. The beams and columns are
consisting of H-shaped fibre steel material elements which are implemented displacement-based via the Open System for Earthquake
Engineering Simulation (OpenSees) [58,59]. Following length quantities are defined: ℎ0 = 680 mm, ℎ1 = 630 mm, 𝑊 = 1600 mm, 𝑏 =
800 mm, 𝑏𝐹 = 45 mm, ℎ𝑇 = 100 mm, 𝑏𝑆 = 6 mm, ℎ𝐹 = 8 mm. The material properties of the steel is characterised by the skeleton
stress–strain curve, which defines compression and tension points, see Fig. 10(b). Within OpenSees the uniaxial material with
hysteretic properties has been chosen. The stress–strain points in Fig. 10(b) define the envelope. The model’s columns are fixed
within the foundation assuming a damping ratio of 0.02.

For the seismic ground motion, the SRM and both REPSD approaches with the relaxed SRM approach have been tested. The
source EPSD as in Eq. (3) has been chosen, the SRM and relaxed SRM generated processes are scaled down by a factor of 10. MC
simulation results of the SRM generated signals are depicted in Fig. 11(a), the generated signals serve as artificial seismic ground
motion signals applied to the FEM. The displacements of the FEM’s 4-th storey centre node has been chosen as quantity of interest.
Exemplary results for the displacement are shown in Fig. 11(b). Each artificial seismic ground motion again leads to a different EPSD
estimation, as respectively depicted in Fig. 12(a). In Fig. 12(b) respectively 3 different response EPSDs of the 50 generated ensemble
members are shown. Thus the FEM input as well as output are treated as signals from which EPSDs ensembles are constructed.

For the REPSD generation, in each case the same input signal and therefore EPSD ensemble with 50 members has been used.
The number of 50 reflects the limited availability of data, in this case artificial ground motion records. The same ensemble for
12
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Fig. 12. EPSD estimations by MTST for model input (artificial seismic ground motion) and output (displacement responses).

Fig. 13. Full response statistics of each 5000 realised displacement histories of the FEM (both figures share the same legend)

each estimation has been used in order to ensure comparability between the TN-REPSD and KD-REPSD approach. Both REPSD
models are then compared with results of 5000 MC simulations. The procedure for the input signal, is already validated in the
preliminaries. Only a linear scaling was applied to the signals, which only leads to smaller EPSD function values but no change of
the time–frequency components.

First a comparison of the full time history of the FEM response is carried out, the results are shown in Fig. 13(a). A closer
comparison of the results for a time interval of 2𝑠 is shown in Fig. 13(b). In these results it can be seen that the stochastic model of
the TN- and KDE-REPSD ground motion data is representing the stochastic properties of the process with satisfying accuracy.

During the analysis of the FEM, no closed-form solution of the response EPSD is available, therefore the comparison with the
MC simulation is considered as benchmark. To further analyse the accuracy of the REPSD representation, for specific time steps
the mean 𝐸[⋅] in Fig. 14(a) and standard deviation 𝜎[⋅] in Fig. 14(b), for the unrelaxed MC EPSDs, denoted by 𝑆̃𝑋 and the TN- as
well as the KDE-REPSD model denoted by 𝑇𝑆𝑋 and 𝐾𝑆𝑋 are regarded. Unrelaxed (𝑆̃𝑋) refers to the fact, that no stochastic model
for the EPSD function is considered. Additional stochastic signals are generated via MC with the respective REPSD representation,
which would be impossible if only data or records of signals were available.

In Fig. 14(a) the mean value of 5000 MC realisations and their unrelaxed MTST estimation of the response EPSD (𝑆̃𝑋) is
compared with the constructed TN-REPSD (𝑇𝑆𝑋) and KDE-REPSD (𝐾𝑆𝑋) functions. Please remember that the constructed REPSD
representations are estimated out of 50 ensemble members. The mean value is compared for different time instants over the full
frequency range. From the results in Fig. 14(a) it can be seen that the TN-REPSD function seems to overestimate the benchmark
EPSD function. This is specifically true for larger EPSD function values. The KDE-REPSD representation yields a better fit. For a
closer comparison the frequency interval 𝜔 ∈ [10, 15] rad∕s and the results are magnified in the north-east corner of the respective
plot. These results also show that the KDE-REPSD does yield a better representation of the mean. Here in particular for the peak
EPSD values.
13
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Fig. 14. Comparison of EPSD moments obtained from direct MC simulation (unrelaxed) with 5000 samples and 5000 TN- and KDE-REPSD representations based
on 50 ensemble members over the frequency for different time instances of interest.

Analogous to the analysis of the EPSD functions mean value, the standard deviation 𝜎 is analysed in Fig. 14(b). Different time
instants are regarded and the corresponding EPSD function values over the frequency space are shown. The TN-REPSD representation
is overestimating peak values of the response EPSD functions standard deviation. For a closer comparison the results in are magnified
for the frequency interval 𝜔 ∈ [10, 15] rad∕s in the north-east corner. These results indicate that for the standard deviation of
he unrelaxed EPSD functions in comparison to the TN- and KDE-REPSD functions, the KDE-REPSD representation can reproduce
he second order moment accurately from an ensemble with just 50 members. This means, only 50 direct FEM simulations were
ecessary to obtain the relaxed results in Fig. 14, in comparison to the 5000 MC simulations, this results in a speed up factor of
00.

.2. Modulated Davenport’s power spectral density function for time dependant fluctuating wind speed simulation

In this example, the empirical Davenport’s spectrum for near ground wind velocities as in [60] is regarded and modulated
o simulate a time-dependant change of parameters. To achieve this, the basic Davenport’s PSD function is modulated by a time
ependant term 𝐴(𝑡). Similar as in [61] Davenport’s power spectral density function can be written as

𝑆𝐷
𝑋 (𝜔, 𝑡) = 𝐴(𝑡)𝑣2∗

(

1200
2𝜋𝐴(𝑡)𝑈10

𝜔
)2

|𝜔|
(

1 +
(

1200
2𝜋𝐴(𝑡)𝑈10

𝜔
)2

)4∕3
, (17)

here 𝑣∗ = 1.691m∕s is the shear velocity of the wind and 𝑈10 = 31.88m∕s is the 10−min average wind speed in 10m height. These
re empirically estimated parameters.

A crude approach is suggested now. The hypothesis is that these two quantities could change in time. They could also have a
orrelation if a change in time is assumed. Without respecting the full physics of this complex coupled process at this point and only
or the purpose of generating a challenging benchmark problem, we can assume that a time modulation function of these quantities
xists. This time modulation is denoted as 𝐴(𝑡) and formulated by the following function

𝐴(𝑡) =
|

|

|

|

sin
( 1
2
𝑡
)

|

|

|

|

+ 1
2
. (18)

With this simple relation, an oscillatory change of the shear velocity and the 10−min average wind speed in 10m height is modelled.
This modulation leads to a so-called separable EPSD function. This modulated Davenport’s power spectral density function is denoted
as 𝑆𝐷

𝑋 (𝜔, 𝑡) and depicted in Fig. 15. Please note that this is an artificial benchmark problem, this modulation has not been tested or
validated on any real processes connected to Davenport’s PSD function. The resulting wind speed signals and their magnitude, are
of course highly dependant on the modulation function. And in the spirit of the original Davenport’s approach, should be validated
through experiments empirically.

In this work, since the EPSD function is now fully analytically available, the SRM approach can be used to model stochastic
processes that are non-homogeneous in time and frequency. Following parameters are used for the SRM and the domain specification:

𝐷 𝐷 𝐷
14

The total simulation time 𝑇 = 30 s, the upper cutoff-frequency 𝜔𝑢 = 20 rad∕s, the number of discretised time steps 𝑁𝑡 = 512,
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Fig. 15. Modulated Davenport’s separable EPSD function Eq. (3) for 𝜔 ∈ [0, 20] rad∕s and 𝑡 ∈ [0, 30] s.

Fig. 16. 50 artificial wind speed signals of the modulated Davenport’s PSD (obtained by SRM).

resulting in 𝛥𝑡𝐷 = 𝑇𝐷∕𝑁𝐷
𝑡 . SRM yields again the artificial record set of 50 signals, depicted in Fig. 16. From these signals in

Fig. 16, respectively the EPSD function ensemble members are estimated via the MTST approach. The same optimisation procedure
as presented in Section 3.2 has been performed resulting in following MTST parameters: 𝑀𝐷 = 2, 𝑎𝐷 = 0.4104, 𝑏𝐷 = 25.8864,
𝑐𝐷 = 0.3738. Three EPSD estimations by MTST are depicted in Fig. 17(a) and the MTST estimation mean of the ensemble is
represented in Fig. 17(b). The deterministic results as well as the statistical mean of the MTST estimations in Fig. 17 suggest that
the variance and accuracy of the MTST estimation is limited. The source EPSD function in Eq. (17) represents a highly nonlinear
relation, therefore the direct relation of the SRM and the MTST estimation of the EPSD functions can introduce further errors, which
are not the research focus of this work. The modulated Davenport’s PSD function can pose a challenging benchmark example for
signal generation and EPSD function estimation procedures.

In this work, it is assumed that due to a limited amount of data, the estimation by MTST is the only information of the simulated
signals in Fig. 16 that is present. However, applying other EPSD estimation procedures like Wavelet, STFT, Hilbert-Huang Transform
(HHT), or surrogate modelling techniques is beyond the scope of this work. This means, that the information present in Fig. 17 is
considered to be the baseline. The hypothesis is, that for some natural processes like earthquakes, wind speed loading and sea wave
loading, no source EPSD function is available or known. Only measurements and records are available.

The goal is now to establish an accurate relaxed representation of the EPSD function information within the ensemble, displayed
in Fig. 17. This ensemble is hypothetically stemming purely from measurements and records. To achieve the relaxed representation
of the EPSD function, first, the two presented REPSD representations TN-REPSD denoted by 𝑇 𝑆̂𝐷

𝑋 (𝜔, 𝑡) and KDE-REPSD, denoted by
𝐾𝑆̂𝐷

𝑋 (𝜔, 𝑡) are constructed as discussed in the preliminaries. Then the two representations are analysed for the accuracy of the MTST
estimations. Therefore, a MC simulation is performed to generate 1000 new EPSD samples from the respective REPSD functions.
15

From these samples, the deviation towards the MTST estimation is analysed. These results are compiled in Fig. 18. Note that for the
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Fig. 17. The MTST estimation of the EPSD for the by SRM and Eq. (17) generated wind speed signals in Fig. 16.

KDE approach in this example, a manual adjustment of the quartiles, introduced in Eq. (10), was necessary to reduce the modelling
error: 𝑄1 = 35.0646 and 𝑄2 = 45.0650, were chosen. In particular when looking at the mean of the 1000 generated MC samples
for the TN-REPSD approach in Fig. 18(a) and the KDE-REPSD approach in Fig. 18(b) it is observable, that the TN-REPSD approach
does model the mean of the ensemble better. The aforementioned adjustment of the quartiles was necessary because outliers of the
ensemble were weighted too heavily into the establishment of the KDE. For the mean of the generated samples in Fig. 18(b), still
some outliers can be identified. From this example it seems that the mean estimation of the TN-REPSD approach is more robust.
This is also reflected in the error comparison. Here the mean of the samples for TN-REPSD are compared with the mean of the MTST
estimated ensemble in Fig. 18(c), and the KDE-REPSD ensemble mean in Fig. 18(d). The KDE-REPSD representation does exhibit
larger errors over the whole domain. A contrary result can be observed for the standard deviation of the generated relaxed samples
in comparison to the standard deviation of the MTST EPSD function ensemble. The TN-REPSD generated samples exhibit large areas
of a larger error of the standard deviation, see Fig. 18(e). The KDE-REPSD generated samples on the other hand, even though having
a similar maximum error range, exhibit errors in a smaller area Fig. 18(f). This benchmark example highlights the importance of the
choice of the underlying distribution type for the relaxed representation of EPSD functions. Since for the TN-REPSD only the mean
value influences the parameter of the standard deviation (Eq. (11b)), no accurate representation of varying data can be achieved.
The KDE approach, with regard to an adjusted IQR proofs to be more robust in terms of representing varying data.

All in all it must be pointed out that any relaxed representation of EPSD functions is highly dependant on the EPSD function
estimation procedure. For the proposed approaches in this example, the REPSD (of any distribution type) can only be as good
as the EPSD estimation procedure. But several techniques could be applied to improve the stochastic model beneath the REPSD
representations, such as Bayesian updating procedures, surrogate representations or adaptive sampling approaches.

5. Conclusions

In this work, a novel stochastic representation of EPSD functions , called the REPSD, for natural phenomena modelled by
stochastic processes has been proposed. The scope of this work was built around the assumption, that for a battery of natural
processes (e.g. seismic ground motion signals, wind speed signals, wave load signals, or random vibrations in general) no prior
information about the source EPSD functions exists. However, data in the form of measurements and records is available. It is
possible to estimate EPSD functions deterministically by time–frequency transformation methods, such as wavelet transformation,
STFT, HHT, or the recently developed MTST method. These transformations are only estimators and usually are underlying a large
variance, especially for complex natural processes. The REPSD function representation allows for the straightforward construction of
a stochastic model of the EPSD function, given data for the analysed processes is available. Not only the choice of time–frequency
transformation method is modular, but also the underlying distribution type for the REPSD functions can be adaptively chosen
to the specific problem at hand. The REPSD representation offers a way to include aleatory and epistemic uncertainties into the
process of generating non-stationary stochastic signals. For two simple approaches, a TN and KDE distribution type, this procedure
has been presented in this work. In addition, it has been shown the presented method is suitable for non-separable as well as
separable EPSD functions. Convergence studies have been carried out to validate the results and analyse the accuracy. Additionally,
the standard SRM method has been extended to a relaxed SRM approach, to be able to generate new stochastic signals, from the
REPSD model. However, at several points in this work, it has been shown that the EPSD construction is not only dependant on the
choice of the underlying distribution type, but is also heavily reliant on the accuracy of the time–frequency transformation method.
An optimisation procedure for the MTST method has been proposed, which is applicable if further information on the EPSD function
space is available. The REPSD formulation is applied to practical benchmark examples, where a FEM of an multiple degree of freedom
16
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Fig. 18. Error analysis of the relaxed representations of the MTST estimated EPSD ensemble for the modulated Davenport’s PSD.

system is analysed, here the input, as well as the response, are then modelled using the relaxed approach. Additionally, an academic
benchmark example of a separable EPSD has been established, based on the empirical Davenport’s PSD function, which has been
modulated to incorporate temporal features. The relaxed approach is used to construct a model that represents a relaxed stochastic
17
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e

EPSD for signals generated by the modulated PSD. Overall, it can be stated that the REPSD representation’s accuracy is as good
as its underlying time–frequency transformation method. Nonetheless, the REPSD offers a stochastic representation of a stochastic
processes model, already for a limited amount of data and records. The accuracy of these terms should further be validated by
experiments and empirical investigations. Additionally, further information such as a correlation between the REPSD sample points
could be considered. Also, a Bayesian updating procedure could be incorporated if the data set is of variable size, changing, or if
additional parameters e.g. for the correlation are introduced. It is also possible to replace the probability distribution approach with
surrogate modelling approaches, such as Gaussian process regression or Neural-Network-Representations. Thus, by the introduction
of the REPSD concept, a generalised modular stochastic model for the representation of stochastic processes is established.
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Appendix. First and second order moments for matrices

Given the nature of the time–frequency transformation of stochastic processes, the available data of the EPSD functions in the set
{𝑆̂𝑋𝑖

} appear in matrix form. For the sake of completeness here are the formal calculations of the first and second order moments.
The first order moment is given to be

𝐸[𝑆𝑋 (𝜔, 𝑡)] = 𝑆𝑋 (𝜔, 𝑡) =
1
𝑁𝑒

𝑁𝑒
∑

𝑖=1
𝑆𝑋𝑖

(𝜔, 𝑡). (A.1)

The second order moment is given to be

𝜎
(

𝑆𝑋 (𝜔, 𝑡)
)

=

√

√

√

√
1

𝑁𝑒 − 1

𝑁𝑒
∑

𝑖=1

(

𝑆𝑋𝑖
(𝜔, 𝑡) − 𝑆𝑋 (𝜔, 𝑡)

)

. (A.2)
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