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ABSTRACT:

Collecting knowledge in the form of databases consisting of images and descriptive texts that represent objects from past centuries
is a fundamental part of preserving cultural heritage. In this context, images with known information about depicted artifacts can
serve as a source of information for automated methods to complete existing collections. For instance, image classifiers can provide
predictions for different object properties (tasks) to semantically enrich collections. A challenge in this context is to train such
classifiers given the nature of existing data: Many images do not come along with a class label for all tasks (incomplete samples)
and class distributions are commonly imbalanced. In this paper, these challenges are addressed by a multi-task training strategy
for a classifier based on a convolutional neural network (SilkNet) that requires images with class labels for the tasks to be learned.
The proposed approach can deal with incomplete training examples, while implicitly taking interdependencies between tasks into
account. Extensions of the training approach with a focus on hard examples during training as well as the use of an auxiliary feature
clustering are developed to counteract problems with class imbalance. Evaluation is conducted based on a dataset consisting of
images of historical silk fabrics with labels for five tasks, i.e. silk properties. A comparison of different variants of the classifier
shows that the extensions of the training approach significantly improve the classifier’s performance; the average F1-score is up to
5.0% larger, where the largest improvements occur with underrepresented classes of a task (up to +14.3%).

1. INTRODUCTION

Preserving our cultural heritage for future generations and mak-
ing it available to both historians and the wider public are im-
portant tasks. In this context, a key strategy is the digitiza-
tion of collections of historical objects in the form of search-
able databases with standardized annotations and, potentially,
images. It was the goal of the EU H2020 project SILKNOW
(http://silknow.eu/) to take one step in the direction of
searchable databases for the preservation and better understand-
ing of European cultural heritage related to silk. To make silk-
related knowledge from the past accessible for future genera-
tions, a database related to silk fabrics was built by harvest-
ing existing online collections (Alba Pagán et al., 2020). How-
ever, the information that is relevant for art historians or other
users is not always readily available in digital online collec-
tions. Given the fact that a digital collection may contain tens or
even hundreds of thousands of records representing artifacts, a
manual input of this information is tedious, expensive and, con-
sequently, often impossible. Thus, automated procedures have
to be developed. For artifacts, such as silk fabrics, for which
one or several images are available, relevant properties, such as
the time or place of production, the material a fabric is made
of, or the technique that was used for its production, can be pre-
dicted automatically from images of the artifacts. From a user’s
perspective, the present work is motivated by the need for a
database containing historically relevant objects with standard-
ized metadata as complete as possible.

For the automatic derivation of complete and standardized
properties of artifacts, such as silk fabrics, images are exploited
as an information source. Machine learning techniques al-
low training of an image classifier per property of interest (se-
mantic variable) using labelled training images. After train-
ing, the classifier is able to predict missing class labels of un-

seen samples. Early works in the context of cultural heritage
differentiate different painters of artworks utilizing a Support
Vector Machine, e.g. (Blessing and Wen, 2010). Inspired by
the huge successes of deep learning-based classification meth-
ods, supervised learning based on deep convolutional neural
networks (CNNs) (Krizhevsky et al., 2012) are used in more
recent works aiming to learn historically relevant information
from images of artistic pictures, e.g. (Tan et al., 2016; Sur and
Blaine, 2017). Instead of independently training one classifier
for each variable in the context of single-task learning (STL),
interdependencies between the variables are exploited in multi-
task learning (MTL) by combining several related (classifica-
tion) tasks in the training procedure with the goal of an im-
proved generalisation (Caruana, 1993). This is why MTL was
also investigated in the domain of image classification with ap-
plications in cultural heritage preservation, e.g. (Strezoski and
Worring, 2017; Garcia et al., 2020; Yang et al., 2022). How-
ever, standard multi-task classification frameworks require one
reference label for every task to be learned during training for
every training sample. The challenge that has to be faced in
real-world data, such as cultural heritage collections, is that
there may be many training samples for which annotations are
unavailable for some of the target variables to be predicted.
Such samples are referred to as incomplete samples in this pa-
per. Additionally, the distribution of the available class labels
of a variable is often imbalanced for real-world datasets, which
constitutes a further challenge to supervised learning. It is a
well-known problem that training using data with imbalanced
class distributions results in a classifier that tends to predict
classes that were represented in the training data rather well,
whereas classes with only a few examples in the training data
often cannot be distinguished from other classes (Krawczyk,
2016; Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani,
2021). It is of special interest to apply a classifier that can
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distinguish the classes of all silk properties well such that ad-
ded value is delivered for the user of a silk database thanks to
the predictions. In general, there are works addressing class
imbalance, e.g. (Chawla et al., 2002), and in particular, there
are works addressing class imbalance in the context of train-
ing CNNs, e.g. (Pouyanfar et al., 2018). Nevertheless, only one
work could be identified addressing class imbalance in the con-
text of MTL and, in particular, allowing for training data that is
only partly labelled: In (Dorozysnki et al., 2021), a focal multi-
task training strategy for incomplete samples is proposed This
seems to be the only work in the context of cultural heritage
preservation except for (Dorozynski and Rottensteiner, 2022a);
in (Dorozynski and Rottensteiner, 2022a), class imbalance is
investigated in an STL scenario by exploiting an auxiliary fea-
ture clustering in training.

In this paper, class imbalance in the context of multi-task clas-
sification for cultural heritage applications is investigated. For
this purpose, a CNN-based multi-task classifier will be trained,
where the training strategy allows for both complete as well as
incomplete training samples. In contrast to existing works, dif-
ferent strategies addressing class imbalance are combined res-
ulting in a superior classification performance. Thus, the sci-
entific contributions are the following:

• We propose a combination of feature space clustering and
focal training to tackle problems with class imbalance.

• An existing feature space clustering approach in the con-
text of STL is adapted to an MTL scenario allowing for
incomplete training samples.

• Finally, comprehensive experiments are conducted to in-
vestigate the performance of the proposed combined ap-
proach compared to the performance of the individual ap-
proaches.

2. RELATED WORK

In general, image classification aims to assign a class label to
an input image. In recent years, CNNs (Krizhevsky et al., 2012)
have been to be superior in solving this task compared to clas-
sical machine learning techniques in case a sufficient number
of training samples is available. However, in case the task to
be learned is represented by a rather small dataset consisting
of some ten thousand images, such as in the context of cul-
tural heritage applications, determining all weights of a CNN by
means of training on such a dataset might be challenging. This
is, fine-tuning (Yosinski et al., 2014; Tajbakhsh et al., 2016)
of networks trained on a larger dataset, e.g. ImageNet (Rus-
sakovsky et al., 2015), became a common strategy to overcome
such limitations and particular in the context of predicting prop-
erties of artifacts, e.g. (Tan et al., 2016; Sur and Blaine, 2017).
Instead of training individual classifiers for a set of classific-
ation tasks to be solved, i.e. one classifier per task, a single
multi-task network can be trained to simultaneously learn all of
the tasks. The fact that the joint training of related tasks can
be beneficial in comparison to a separate training of the indi-
vidual tasks was already stated in (Caruana, 1993), who intro-
duced MTL for artificial neural networks and decision trees.
The idea behind MTL is to take advantage of dependencies
between the tasks to be learned with the goal of improved gen-
eralisation. Against this background, the joint training of clas-
sifiers for different tasks is addressed in different contexts, e.g.

remote sensing, (Leiva-Murillo et al., 2013), human pose es-
timation, e.g. (Li et al., 2014), depth estimation and semantic
segmentation, e.g. (Zhang et al., 2019), as well as cultural herit-
age preservation, e.g. (Strezoski and Worring, 2017; Dorozyn-
ski et al., 2019; Garcia et al., 2020). In this context, the ap-
proach in (Dorozynski et al., 2019) is the only one that allows
for missing information in the training strategy, which is a re-
quirement for MTL in the context of cultural heritage preserva-
tion. Moreover, no work could be identified that addresses class
imbalance in the context of multi-task learning. Nevertheless,
class imbalance occurs in almost all heritage-related classifica-
tion tasks.

Learning from imbalanced data is a well-known problem in
the fields of Photogrammetry and Computer Vision (Johnson
and Khoshgoftaar, 2019; Sridhar and Kalaivani, 2021). Dif-
ferent strategies have been developed to address learning us-
ing data with imbalanced class distributions. While the training
class distribution is artificially balanced in (Chawla et al., 2002;
Ando and Huang, 2017), in (Lin et al., 2017; Khan et al., 2017)
the training objectives are adapted such that classes with few
training examples have a higher impact on the classifier’s para-
meters. Dong et al. (2018) combine aspects of both strategies.
According to (Krawczyk, 2016), class imbalance may be irrel-
evant if there are sufficiently good representations for both, fre-
quent as well as less frequent classes. Using CNNs, both rep-
resentations of images as well as the mapping to class scores,
are learned. Thus, one way of achieving such a sufficient rep-
resentation is to guide the CNN to learn that the feature vectors
belonging to the same class should be close in feature space
and that clusters corresponding to different classes should be
further away from each other, e.g. (Huang et al., 2016; Cao et
al., 2019; Dorozynski and Rottensteiner, 2022a). All cluster-
ing approaches in the works just mentioned force the distances
between features belonging to the same class to be small and
those belonging to different classes to be large. Thus, problems
with class imbalance are partly mitigated (Huang et al., 2016;
Cao et al., 2019; Dorozynski and Rottensteiner, 2022a). Nev-
ertheless, class imbalance is nearly exclusively investigated in
the context of STL. To the best of the knowledge of the au-
thor, multi-task multi-class image classification is exclusively
addressed in (Dorozysnki et al., 2021), where a variant of the
focal loss (Lin et al., 2017) for multi-task learning is proposed.

Applying image-based classification techniques to derive in-
formation about depicted artifacts is not new. Early works
rely on support vector machines to predict properties of an-
cient paintings, e.g. (Blessing and Wen, 2010), whereas more
recent approaches use CNNs to solve such classification tasks,
e.g. (Tan et al., 2016; Sur and Blaine, 2017). Instead of train-
ing one CNN per task, e.g. predicting a painting’s artist, genre
or style (Tan et al., 2016), several related tasks can be learned
by one CNN-based classifier in the context of multi-task learn-
ing (Strezoski and Worring, 2017; Garcia et al., 2020; Yang
et al., 2022). The network architecture generally consists of
a shared feature extraction network, e.g. a residual network
(ResNet) (He et al., 2016) such as in (Sur and Blaine, 2017;
Strezoski and Worring, 2017; Garcia et al., 2020; Yang et al.,
2022), and a classification head with one branch per task. Sim-
ilarly, CNNs have been applied in the context of image classi-
fication related to historic silk fabrics (Dorozysnki et al., 2021;
Dorozynski and Rottensteiner, 2022a). In contrast to the other
works dealing with cultural heritage classification, these two
works seem to be the only ones that investigate class imbalance
in this context; while in (Dorozynski and Rottensteiner, 2022a)
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an auxiliary clustering is exploited to mitigate such problems
in an STL scenario, focal multi-class multi-task learning is pro-
posed in (Dorozysnki et al., 2021). However, problems with
class imbalance are still only partly mitigated.

Accordingly, the approach in this work aims to take a further
step to reduce problems with class imbalance in the context of
cultural heritage-related classification. For that purpose, focal
training (Lin et al., 2017; Dorozysnki et al., 2021) is combined
with an auxiliary feature clustering, relying on constraints for
the distance between features (Huang et al., 2016; Dorozyn-
ski and Rottensteiner, 2022a). In contrast to (Huang et al.,
2016; Dorozynski and Rottensteiner, 2022a), being in the con-
text of STL, the approach in the current work allows for MTL.
This requires an expansion of the formulation of the auxiliary
clustering loss. Just as the multi-task classification approach
in (Dorozysnki et al., 2021), the proposed method can deal with
both complete as well as incomplete samples. Thus, the classi-
fication method proposed in this work is aimed to be applicable
to complex data in terms of incompleteness and class imbal-
ance, while it is aimed to generalize well at the same time.

3. METHODOLOGY

The goal of the proposed MTL classification method is to auto-
matically predict a class label per classification task based on
images utilizing a single classifier. For that purpose, a CNN ar-
chitecture based on a ResNet (He et al., 2016) is proposed that
takes an RGB image of the size 224 x 224 pixels as an input and
provides normalized class scores for each task. In the context
of this work, a classification task is related to a property of an
object depicted in the image, e.g. the production time, the man-
ufacturing technique, the material, the place of origin and the
subject depicted type, denoted as depiction of a silk fabric, but
it could also be another property of another object type, such
as the artist of a depicted ancient painting. The proposed MTL
CNN architecture, denoted as SilkNet, is presented in section
3.1 and the proposed training strategy for determining optimal
values for the network parameters is presented in section 3.2.

3.1 Network Architecture (SilkNet)

The main objective of the proposed CNN denoted as SilkNet
is to allow for learning a classifier providing normalized class
scores ymk(x) for the M classification tasks. For that purpose,
the network architecture shown in Figure 1 is proposed. At
training time, it consists of three main parts; a feature extraction
part delivering features fjfc(x), a clustering head delivering
features f(x) for the auxiliary clustering, and a classification
head. The latter one consists of M classification branches de-
livering normalized class scores ymk(x) that can be interpreted
as posterior probabilities P (Cmk|x) for the kth class of the mth

semantic variable Cmk. At test time varies, only the classifica-
tion head is active for image classification, while the clustering
head is exclusively required in training to learn the auxiliary
clustering.

First of all, the image x is mapped to a 2048-dimensional fea-
ture vector fRN (x) by means of a ResNet-152 backbone (He et
al., 2016) with parameters wRN , followed by a Rectified Linear
Unit (ReLU) activation (Nair and Hinton, 2010) and a dropout
layer (Srivastava et al., 2014) with a dropout rate of 30%. Dro-
pout is introduced to enable the network to learn a more general
application-specific representation out of the features fRN (x)

Figure 1. CNN architecture of SilkNet. An input image x is
presented to the network. After a feature extraction network, a
feature vector fjfc(x) is presented to both, a clustering head
(connected with a green broken line) and a classification head
(connected with an orange broken line). During training, both
network heads are active, whereas at test time, exclusively the

classification head is active. For details see section 3.1.

provided by the potentially fully pre-trained ResNet. After-
wards, fRN (x) is presented to a sub-network joint fc consisting
of NLjfc fully connected layers with [NN1

jfc, ..., NN
NLjfc

jfc ]
nodes, respectively, resulting in a feature vector fjfc(x). The
sub-network joint fc is parameterized by the weight vector
wjfc. The layers joint fc are at the core of the proposed method,
because the resulting feature vectors fjfc(x,wRN ,wjfc) are
the input to both the clustering and classification heads. Thus,
the weights wjfc of the joint fc layers are both influenced by the
multi-task classification loss as well as by the auxiliary clus-
tering. The clustering head consists of a simple normaliza-
tion of the feature vector fjfc(x,wRN ,wjfc) to unit length,
leading to the feature vector f(x,wRN ,wjfc). This vector
will exclusively be used during training in the auxiliary clus-
tering loss. The classification head consists of M separate
branches, each corresponding to one classification task to be
learned. Each branch is connected to the sub-network joint fc
via fjfc(x), being processed by a ReLU activation function,
and consists of NLtfc task-specific fully connected layers of
[NN1

tfc, ..., NN
NLtfc

tfc ] nodes, respectively, and each layer is
followed by a ReLU activation. This network part is denoted
by fc-tm, where each task-specific branch is defined to have
an identical number of layers and a corresponding number of
nodes. Finally, each branch has a classification layer fc-cm
with Km nodes, where Km is the number of classes to be distin-
guished for the mth task, delivering unnormalized class scores
amk(x). It is parameterized by the weights wclass and deliv-
ers the normalized class scores ymk (x,wRN ,wjfc,wclass) =
ymk (x,w).

3.2 Network Training

Training is based on a set of training samples x that consist
of images with semantic annotations (class labels) for at least
one of the M variables; the proposed training strategy does
not require any further information. The CNN SilkNet depicted
in Figure 1 is trained by minimizing a loss function L (x,w)
based on such a set x. SilkNet has two sets of parameters from
the perspective of training: the weights wRN of the ResNet-
152 and the remaining weights whead := [wT

jfc,w
T
class]

T of
the additional layers. The weights wRN are initialized by
pre-trained weights obtained on the ILSVRC-2012-CLS data-
set (Russakovsky et al., 2015) (ImageNet), whereas the weights
whead of the additional layers of the CNN are initialized ran-
domly using variance scaling (He et al., 2015). As it is ex-
pected that silk fabrics or other objects in the context of cul-
tural heritage belong to another domain than objects depicted
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in the ImageNet dataset, the last NBRN residual blocks are
potentially fine-tuned (Yosinski et al., 2014). Denoting the
parameters of the frozen ResNet layers by wRNfr and those
of the fine-tuned ResNet layers by wRNft , the parameters to
be determined in training are wtr = [wT

RNft
,wT

head]
T . Note

that the entire parameter vector w can thus also be represented
by w = [wT

RNfr
,wT

tr]
T = [wT

RNfr
,wT

RNft
,wT

jfc,w
T
class]

T .
During training, the respective loss function is minimized us-
ing mini-batch stochastic gradient descent with adaptive mo-
ments, i.e. Adam (Kingma and Ba, 2015). In each training iter-
ation, only a mini-batch xMB ⊂ x consisting of NMB training
samples is considered, and only the loss L

(
xMB ,w

)
achieved

for the current mini-batch is used to update the parameters wtr.

The proposed loss function L consists of a classification loss
LC weighted by λC ∈ [0, 1], an auxiliary clustering loss Laux

weighted by λaux ∈ [0, 1]:

L
(
xMB ,w

)
=λC · LC

(
xMB ,w

)
+ λaux · Laux

(
xMB ,wRN ,wjfc

)
.

(1)

In order to mitigate problems with underrepresented classes,
the classification loss is decided to be a variant of the focal
loss (Lin et al., 2017). To avoid restricting the training method
to complete samples, which would drastically reduce the set of
training samples and might also reduce the set of tasks to be
learned in an MTL scenario (the more tasks are considered the
smaller tends to be the set of complete samples), the proposed
method should handle both complete and incomplete samples.
Thus, the focal multi-task multi-class classification loss pro-
posed in (Dorozysnki et al., 2021) is selected, i.e.

LC(x
MB ,w) = − 1

NM

NMB∑
i=1

∑
m∈Mav

i

Km∑
k=1

ωfo
mk ·timk ·limk (2)

with
ωfo
mk = (1− ymk (xi,w))γ (3)

and
limk = ln (ymk (xi,w)) . (4)

In equation 2, the loss is calculated for all NMB samples in
the mini-batch, where for each sample xi the loss is calcu-
lated for the Km classes of a task m for which the ith sample
has a known class label, i.e. m is in the set of tasks with
an available label Mav

i . The the focal weight ωfo
mk (eq. 3)

with the focusing parameter γ controls the impact of the ac-
tual loss term limk (eq. 4) on the total loss LC . Thus, the
network weights wtr are influenced more strongly by ”hard”
training examples that are assumed to be related to samples of
underrepresented classes. Hard samples are indicated by smal-
ler values of the softmax activation ymk (xi,w) for the cor-
rect class (timk = 1). For all other classes, the binary indic-
ator variable timk is zero. The total loss LC is normalized by
the total number of available annotations for all M variables
NM :=

∑NMB

i=1

∑
m∈Mav

i

∑Km
k=1 timk, i.e. the number of non-

zero loss terms constituting LC .

The auxiliary clustering loss Laux consists of three loss terms,
each referring to a concept of similarity. Learning these con-
cepts of similarity is supposed to improve learning image fea-
tures to form clusters such that each cluster belongs to a distinct
class or class combination in the regarded case of MTL. For that
purpose, similar to the classification approach in (Dorozynski

and Rottensteiner, 2022a), the concepts of similarity and the
corresponding loss terms proposed in (Dorozynski and Rotten-
steiner, 2022b) in the context of image retrieval are adapted as
auxiliary losses for training a classifier. In contrast to (Dorozyn-
ski and Rottensteiner, 2022a), being in the context of STL, the
approach in this work is in the context of MTL. Laux considers
semantic similarity in Lsem weighted by αsem ∈ [0, 1], colour
similarity in Lco weighted by αco ∈ [0, 1] and self-similarity in
Lslf weighted by αslf ∈ [0, 1], leading to the loss

Laux

(
xMB ,w

)
= αsem · Lsem

(
tMB ,w

)
+ αco · Lco

(
pMB
co ,w

)
+ αslf · Lslf

(
pMB
slf ,w

)
.

(5)

The loss for learning semantic similarity is a variant of the
triplet loss (Schroff et al., 2015), but it considers multiple se-
mantic variables instead of a single binary similarity aspect,
while allowing for missing labels for some of the variables:

Lsem(tMB ,w) = 1
NMB

t
·
∑NMB

t
nt=1 max

(
Mnt

i,p,n +∆nt
i,p,w −∆nt

i,n,w, 0
)
,

Mnt
i,p,n = Y i,p,nt

sem −
(
Y i,n,nt

sem + ui,n,nt
)
. (6)

The semantic similarity loss is calculated for all triplets t :=
(xi, xp, xn) ∈ tMB for which the positive sample xp is se-
mantically more similar to the anchor sample xi than the neg-
ative sample xn, which is fulfilled in case the margin Mnt

i,p,n is
larger than zero. For such triplets, the feature distance ∆nt

i,p,w

between xi, xp is forced to be at least by Mi,p,n larger than the
feature distance ∆nt

i,n,w between xi, xn as shown in Figure 2. In
equation 6, Y i,o

sem denotes the relation of known identical class
labels for xi, xo to the number of semantic variables M the
class labels of which are compared. Thus, Mi,p,n is the guaran-
teed difference in semantic similarity Y i,p,nt

sem between xnt
i , xnt

p

and the similarity Y i,n,nt

sem between xnt
i , xnt

n under considera-
tion of the percentage of tasks for which the class labels cannot
be compared for xnt

i , xnt
n due to missing information u(xi, xn).

Colour similarity is determined based on the agreement
between the colour distributions of two images xi, xo accord-
ing to the normalized cross correlation coefficient ρ(xi, xo) of
colour feature vectors h(xi) and h(xo). The colour feature vec-
tor h(xq) of an image xq describes the colour distribution of
that image in the HSV (H: hue, S: saturation, V: value) colour
space. The feature vector is built by calculating polar coordin-
ates (xc, yc) out of the hue H and saturation S values of every
pixel of the image xq resized to 224 x 224 pixels, afterwards de-
fining a discrete grid in (xc, yc) space and counting the number
of points per grid cell; concatenating the rows of the grid deliv-
ers h(xq). The colour similarity loss aims to learn descriptors
f(xi), f(xo) whose Euclidean distance reflects the colour sim-
ilarity ρ(xi, xo) of the image pair (xi, xo) defined, but in an
inverse way. This is achieved by the colour similarity loss

Lco(p
MB
co ,wv) =

1

Nco
·

Nco∑
nco=1

max
(
0, |∆nco

i,o,wv
−Mnco

i,o |
)
,

Mnco
i,o = (1− ρ(xnco

i , xnco
o )) . (7)

The loss Lco forces the feature distance ∆nco
i,o,w of the normal-

ized features to reflect the degree of colour similarity of the
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Figure 2. Principle of the semantic similarity loss
Lsem(tMB ,w) in eq. 3.2. In a two dimensional feature space
with features f1 and f2, minimizing Lsem is equal to forcing

(purple) SilkNet, parameterized by weights w, to produce feature
vectors f(x) such that the difference in distance – Euclidean
distance ∆i,p between the feature vector f(xi) of an anchor

sample xi (blue) and the vector f(xp) of a positive sample xp

(green) and Euclidean distance ∆i,n between the vector f(xi)
and the feature vector f(xn) of a negative sample xn (red) – is at
least as large as a margin Mi,p,n (yellow). Mi,p,n is a function
of the class labels available for a triplet t := (xi, xp, xn) and is

equal to the guaranteed difference in semantic similarity
between xi, xp (Y i,p

sem) and xi, xn (Y i,n
sem + ui,n).

corresponding images (xi, xo) =: pco ∈ pMB
co considered in

the colour margin Mnco
i,o . Thus, ∆nco

i,o,w is forced to be large for
ρ(xi, xo)→ −1, i.e. negatively correlated colour distributions,
and forced to be zero for ρ(xi, xo)→ +1, i.e. 100% correlated
colour distributions.

Finally, the self-similarity loss Lslf aims to learn that features
of images showing the same object should be similar and thus,
to learn features that are invariant to geometrical and radiomet-
rical transformations to some degree. For that purpose, the fea-
ture distance ∆

nslf

i,i′,w between two images (xi, x
′
i) =: pslf ∈

xMB
slf is forced to be zero, where the image x′

i is defined to be
an augmentation of an image xi in the mini-batch xMB . This
leads to the following loss:

Lslf (p
MB
slf ,w) =

1

NMB
slf

·
NMB

slf∑
nslf=1

∆
nslf

i,i′,w, (8)

The realized augmentation of xi to obtain x′
i consists of a

rotation of 90◦, horizontal and vertical flips, cropping by a
random percentage bcrop ∈ [0.7; 1], small random rotations
ω ∈ [−5◦; +5◦] as well as a change of the hue H ∈ [0; 1]
by adding a random value delta ∆H ∈ [−0.05;+0.05] and an
adaptation of the saturation S by multiplying it by a random
factor δS ∈ [0.9; 1.0]. Finally, a random zero mean Gaussian
noise with a standard deviation σG = 0.1 can be added.

4. DATASET

The use case considered in this paper is the automatic comple-
tion of missing information in a database of historic silk fabrics
employing a classifier. Thus, the SILKNOW dataset1 that was
generated in the context of the EU-H2020 project SILKNOW
with the goal to build and provide a platform containing in-
formation about the European silk heritage is selected for the
experiments. The dataset consists of 38,873 silk records in a

1 https://doi.org/10.5281/zenodo.5743090

knowledge graph (Alba Pagán et al., 2020), each coming along
with one or several images depicting a silk object as well as se-
mantic annotations for the production time, the manufacturing
technique, the material, the place of origin and the subject de-
picted type, denoted as depiction. Figure 3 shows an example
of an image of a silk fabric with annotations. Restricting the
dataset to images of plain silk textiles, i.e. excluding records
representing for instance furniture or accessories, and requiring
a known label for at least one of the M = 5 semantic variables
just mentioned results in a dataset consisting of 48,912 images.
The dataset is split into subsets of 60% of the samples to be used
for training, 20% for validation and 20% for testing, where all
images belonging to a single record, i.e. an identical silk object,
are part of the same subset. A requirement on the subsets is that
each subset contains at least one example for each class of each
variable. Some classes are represented by too few examples to
fulfil this requirement, i.e. they are represented by one or two
examples only. Furthermore, the class labels of the five vari-
ables are (at least) partly dependent on each other so that it is
not possible to split the data such that the requirement on the
subsets is fulfilled for all variables simultaneously. Thus, im-
ages that come along with a class label exclusively for classes
that, thus, have to be excluded are omitted also already omitted
in the 48,912 images. In case an image among these 48,912
images belongs to one of the excluded classes, its label is set
to background for that specific variable in order to differentiate
between unknown, i.e. there is no information available, and a
label that is different from the labels of interest even though it
cannot be considered (background).

The class structures and class distributions of the five semantic
variables, as well as the number of samples labelled as back-
ground per variable, are presented in Table 1. It can be seen that
the number of available class labels for the foreground classes
varies strongly between the individual variables; Place has the
largest amount of known class labels with 73.1% of available
semantic annotations, followed by material with 72.3%, time
with 58.0% and technique with 32.7% of available class labels.
Depiction has the lowest number of known labels of interest,
with only 7.0% of the 48,912 images in the dataset coming
along with a class label. Furthermore, in general, nearly all of
the images (99.8%) have an unknown class label for at least one
of the five variables, exemplifying the need for methods dealing
with incomplete training samples.

In addition to the differences in the amount of labelled data
available per variable, the class distributions of the individual
variables in Table 1 have different characteristics. Besides the
total number of classes Km differentiated per variable, the num-
ber of underrepresented classes |Mm|, defined to be the number
of classes with a relative frequency ζ < 1/Km, varies. Fur-

Figure 3. Example for an image of a silk fabric. Annotations:
time: 20th c.; technique: damask; material: animal fibre; place:

ES; depiction: unknown.
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Variable Class NS Class NS
place GB 7,998 RU 228

FR 7,379 JM 191
ES 4,708 CH 146
IT 4,700 EG 117
IN 2,353 AZ 115
CN 1,399 MO 84
IR 1,294 AT 81
JP 1,097 PT 73
BE 648 MA 63
TR 593 BD 60
DE 592 CA 52
GR 479 AU 46
NL 455 MM 46
US 357 UZ 42
PK 352 bg place 604

material animal fibre 27,252 bg material 0
metal thread 4,208
vegetal fibre 3,891

time 19th c. 9,975 16th c. 1,829
18th c. 8,423 15th c. 685
20th c. 4,012 13th c. 43
17th c. 3,378 bg time 104

technique embroidery 6,861 tabby 185
velvet 3,051 printed 99
damask 2,768 twill 67
other techn. 2,526 cannele 65
resist dyeing 355 bg techn. 44

depiction flower 2352 text 129
plant 336 animal 116
geom. shape 202 fruit 95
stripe 138 object 73
bg depiction 56

Table 1. Statistics of the distribution of samples for the
SILKNOW dataset. Variable: name of the variable considered;
Class: classes differentiated for each variables; NS: number of

samples for a class.

Variable Km |Mm| IR (eq. 9)
place 29 22 190.4
time 7 5 232.0
technique 9 5 105.6
material 3 2 7.0
depiction 8 7 32.2

Table 2. Statistics of the characteristics of the class distributions
of the classes of interest for the SILKNOW dataset. Km: total

number of classes; |Mm|: number of underrepresented classes;
IR: imbalance ratio.

thermore, an impression of the imbalance of the class distribu-
tion can be achieved by means of the imbalance ratio (Ortigosa-
Hernández et al., 2017)

IR(ζm) =
maxiζi
minjζj

. (9)

IR describes the ratio between the relative frequency ζ of the
most frequent class i and the least frequent class j. Table 2
shows the quantities for the class distributions in Table 1. The
class distributions of the variables vary strongly with respect to
their IR (eq. 9) values; the variable material has the lowest
IR of 7.0, indicating that the most dominant class has seven
times as many examples as the class with the lowest number of
examples, while the variable time has the highest IR (232.0).
Furthermore, the total number of classes Km varies between
3 (material) and 29 (place), where the amount of underrepres-
ented classes |Mm| varies between 55.6% for technique and
87.5% for depiction.

Name Loss weights Similarity setting
λC λaux αsem αco αslf

MTL 1.0 0.0 0.0 0.0 0.0
MTLfo 1.0 0.0 0.0 0.0 0.0
MTL+Rsem 1.0 1.0 1.0 0.0 0.0
MTL+Rall 1.0 1.0 0.5 0.5 0.5
MTLfo +Rsem 1.0 1.0 1.0 0.0 0.0
MTLfo +Rall 1.0 1.0 0.5 0.5 0.5

Table 3. Overview of the conducted classification experiments.
Name: name of the experiment, where all denotes that all

concepts of similarity are used in the clustering. In MTL, the
focal weight ωfo

mk is 0; Loss weights: values for the weights λC

and λaux in the loss in equation 1; Similarity setting: values for
the weights in the auxiliary loss in equation 5.

5. EXPERIMENTS

The multi-task classification method for training with imbal-
anced data in section 3 is evaluated on the basis of experiments
using the dataset described in section 4. The experimental setup
as well as the evaluation protocol are described in section 5.1
and the results are presented and discussed in section 5.2.

5.1 Experimental Setup and Evaluation Strategy

Training SilkNet is conducted using early stopping, i.e. the
training procedure is terminated when the validation loss, de-
noting the loss produced on an independent validation set us-
ing the current network parametrization, is saturated. This is
realized using hyperparameters that were identified in prelim-
inary experiments, where optimal parameter values are selec-
ted based on the average F1-score achieved on the validation
set. Thus, training of SilkNet is realized using standard para-
meters (β1 = 0.9, β2 = 0.999 and ϵ̂ = 1 · 10−8) for Adam,
where preliminary experiments showed that a learning rate of
1 · 10−4 is optimal. Furthermore, fine-tuning of NBRN = 3
and a SilkNet configuration with NLjfc = 1 shared fully con-
nected layer with NN1

jfc = 1024 nodes and NLtfc = 1 further
task-specific fully connected layer with NN1

tfc = 128 per task
leads to the best classification performance.

The conducted experiments presented in this paper are listed in
Table 3. In each experiment, SilkNet is trained on the training
set using the identified hyperparameters and the parametriza-
tion of the loss L

(
xMB ,w

)
(eq. 1). The goal of the experi-

ments is to get an impression of the different training strategies
to mitigate problems with class imbalance. Thus, the proposed
training approach, i.e. combining focal training and an auxili-
ary clustering (MTLfo +Rsem, MTLfo +Rall), is compared
to multi-task training without any auxiliary feature clustering
and a focal weight ωfo

mk of 0 (MTL), i.e. equally weights soft-
max loss terms. Furthermore, the approach is compared to focal
training (MTLfo) as well as different variants of an auxiliary
clustering (MTL + Rsem, MTL + Rall). The comparison is
based on the F1-scores and overall accuracies achieved by the
respective classifiers on the independent test set. In order to get
an impression of the impact of the random components during
training of a specific multi-task classifier on the quality met-
rics, training and the respective evaluation will be conducted
five times. The reported quality metrics for an experiment are
the ones achieved on average in the five independent runs of
that experiment.
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5.2 Results and Discussion

The results of the experiments are presented in Table 4. The
average F1-scores vary between 28.6% (MTL) and 33.6%
(MTLfo + Rall) and the respective Overall Accuracys (OAs)
are in the range between 63.9% (MTL) and 66.2% (MTL +
Rall). The remarkably higher OAs compared to the F1-scores
observed for all experiments indicate that techniques address-
ing class imbalance are required in the context of classifying
ancient silk fabrics. Both, the F1-scores as well as the OAs,
are all higher for focal training (MTLfo) than the respective
metrics obtained for the baseline image classification experi-
ments MTL. Furthermore, auxiliary feature space clustering
(MTL+Rsem, MTL+Rall) can improve the ability of a multi-
task classifier (MTL) to correctly predict the class for a given
image in terms of F1 and OA. It can be observed that the com-
bination of focal training and an auxiliary feature space cluster-
ing (MTLfo + Rall) leads to the highest average F1-score of
33.6%. That is, the combined training strategy (MTLfo+Rall)
achieves on average a 5.0% higher F1-score and a 1.9% higher
OA than the baseline training strategy (MTL). While F1 is
1.0% higher for MTLfo + Rall compared to focal training
(MTLfo), it is 1.7% higher for MTLfo + Rall compared to
training with an auxiliary clustering (MTL + Rall). The av-
erage F1-scores achieved per experiment already indicate that
combining focal training with an auxiliary clustering is to be
preferred over applying the two training strategies independ-
ently from each other. A detailed analysis of the variable-
specific F1-scores is provided in the following.

Analysing the variable-specific F1-scores averaged over all
classes of a variable (Table 5), a similar behaviour of the
F1-scores can be observed: Four of five variables achieve the
highest score for the combined training strategy (MTLfo +
Rall), whereas the improvements caused by applying focal
training (MTLfo) and an auxiliary clustering (MTL+ Rsem,
MTL + Rall) individually results in much smaller improve-
ments. Comparing the impact of an auxiliary clustering in train-
ing (MTL + Rall compared to MTL) to the impact of focal
weights (MTLfo compared to MTL) on the F1-scores, the
clustering is more beneficial than focal training for technique
(+2.1%) and depiction (+4.9%), whereas training with focal
weights is to be preferred over a clustering for place (+4.2%),
time (6.8%) and material (+8.8%). This might be caused by
the low proportion of available training samples for depiction,
i.e. only 7.0% of the images come along with a known class
label for depiction. Accordingly, the auxiliary clustering is as-
sumed to support the classifier, particularly in case of a low
number of available training samples. This assumption is sup-
ported by the scores obtained for technique (MTL + Rall

and MTLfo), having the second lowest proportion of training
data (32.8%): technique is the second variable besides depic-
tion for which a higher F1-score can be obtained exploiting an
auxiliary clustering (MTL + Rall) compared to focal training
(MTLfo). Combining the two strategies for training SilkNet
(MTLfo + Rall) further increases the F1-scores compared to
applying the strategies independent from each other, i.e. com-
pared to MTLfo and MTL + Rall, respectively, for most of
the variables. An exception in this regard is depiction; the F1-
score for training with both strategies (MTLfo +Rall) is only
slightly higher (+0.6%) than the one achieved in the baseline
experiment (MTL). This is reasonable, because focal train-
ing (MTLfo) decreases the F1-score of depiction compared
to MTL (-0.7%) and thus, counteracts the positive impact of
the auxiliary clustering (MTL+ Rall) in MTLfo + Rall. All

Experiment F1 [%] OA [%]
MTL 28.6 ± 0.46 63.9 ± 0.21
MTLfo 32.6 ± 1.11 65.9 ± 0.66
MTL+Rsem 30.5 ± 2.53 65.5 ± 0.70
MTL+Rall 31.9 ± 2.45 66.2 ± 0.44
MTLfo +Rsem 31.4 ± 0.41 65.4 ± 0.32
MTLfo +Rall 33.6 ± 1.03 65.8 ± 0.70

Table 4. Average F1-scores F1 [%] and overall accuracies OA
[%] of all experiments.

Experiment Variable m
de pl ma ti te

MTL 27.2 15.4 38.0 31.6 30.6
MTLfo 26.5 19.6 46.8 38.4 31.8
MTL+Rsem 30.0 14.7 40.9 36.0 31.0
MTL+Rall 32.1 16.4 42.0 36.5 32.7
MTLfo +Rsem 25.2 18.6 44.1 37.7 31.2
MTLfo +Rall 27.8 21.3 46.9 38.7 33.3

Table 5. Average variable-specific F1-scores F1 [%]. de:
depiction, pl: place, ma: material, ti: time, te: technique.

other variables obtain the highest F1-score in the experiment
MTLfo + Rall, where improvements of up to 8.9% (mater-
ial) compared to MTL can be observed. In this context, a
significant correlation between the differences in the F1-score
F1(MTLfo + Rall) − F1(MTL) and the percentage of la-
belled examples for a variable (cf. section 4) of 93% (p-value:
0.02) can be determined, i.e. a larger positive effect is observed
for variables with a larger percentage of labelled samples. As
the differences in the F1-scores F1(MTLfo

a−i) − F1(MTL)
also tend to be larger for variables with a larger percentage of la-
belled samples (87% correlation, p-value: 0.06), it is concluded
that the magnitude of the improvements of MTLfo+Rall com-
pared to MTL is limited by the need of focal training for a
larger training set for a classification task. Nevertheless, the
proposed combined training strategy is to be preferred over pre-
viously existing strategies addressing class imbalance for most
of the variables.

Analysing the performance of the different classifiers in cor-
rectly predicting underrepresented classes based on the F1-
scores exclusively considering those classes (Table 6), there
is a trend that is similar to the one shown in Table 5: The
highest F1-score for depiction is achieved for training with
an auxiliary clustering (MTL + Rall), whereas focal train-
ing (MTLfo) decreases the score compared to the baseline
training (MTL). Accordingly, the score obtained by SilkNet
trained with focal weights and clustering (MTLfo + Rall) is
not higher than the one in the experiment MTL + Rall. For
the other four variables, focal training (MTLfo) is more bene-
ficial than training with an auxiliary clustering (MTL+Rsem,
MTL + Rall), whereas the highest scores are obtained in the
experiment MTLfo + Rall. Differences in the F1-score for
underrepresented classes between MTLfo + Rall and MTL
of up to +14.3% (material) are achieved, where the differences
in the F1-score for underrepresented classes are larger than the
one considering all classes. Accordingly, it is concluded that
the proposed training strategy predominantly helps to learn a
classifier to correctly predict underrepresented classes.

To summarize, the individual approaches aiming to handle
problems with class imbalance, i.e. focal training and exploit-
ing an auxiliary feature clustering, improve the classifier’s abil-
ity to distinguish the individual classes (higher F1-score). The
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Experiment Variable m
de pl ma ti te

MTL 22.6 7.0 14.0 26.2 8.3
MTLfo 22.0 10.4 27.7 34.9 8.7
MTL+Rsem 25.4 5.6 18.5 31.7 7.5
MTL+Rall 27.3 7.1 20.2 32.3 8.6
MTLfo +Rsem 20.5 9.8 23.6 34.4 8.3
MTLfo +Rall 23.3 12.3 28.3 35.7 11.7

Table 6. Average variable-specific F1-scores F1 [%] of the
underrepresented classes Mm of all variables (background class

not considered). Notation according to Table 5.

proposed combination of these strategies leads to the best per-
formance with respect to the variable-specific F1-scores for all
classes as well as the ones for underrepresented classes, where
the positive effect is larger for underrepresented classes. In this
context, the focal training aspect is found to result in a larger
positive impact on the F1-scores (for all classes and underrep-
resented classes) for variables with a larger number of labelled
training samples. Accordingly, the proposed approach realizing
feature space clustering combined with focal training helps to
mitigate problems with class imbalance.

6. CONCLUSIONS AND OUTLOOK

In this paper, a classification approach allowing for training a
multi-task classifier using data with imbalanced class distribu-
tion for all of the tasks was proposed. The training strategy
can deal with images both with a class label for all tasks to be
learned as well as with a label for a subset of the tasks, which
is particularly important in the context of applications in the
context of cultural heritage preservation. The proposed training
strategy combines multi-task multi-class focal training and an
auxiliary feature clustering with respect to visual and semantic
aspects of similarity to help the classifier to distinguish indi-
vidual classes in a better way. Comprehensive experiments on a
dataset of images depicting ancient silk fabrics showed that the
proposed training strategy indeed improves the F1-score com-
pared to standard multi-task training (+5.0% on average). The
task-specific F1-scores are improved by up to 8.9%, where pre-
dominantly underrepresented classes benefit from the proposed
combined training strategy (up to +14.3%). Moreover, the pro-
posed training strategy was shown to be preferred over both
training with focal weights and using an auxiliary clustering.

There are several directions for potential future work. One op-
tion for future work could be the modification of the data basis
for further experiments. It could be observed that lower ac-
curacies tend to be obtained for classes with a low number of
training samples. Thus, data augmentation strategies could be
applied to synthetically increase the number of training samples
for such classes, similar to (Chawla et al., 2002). In this context,
generative adversarial networks might be exploited to obtain
synthetic data, e.g. (Pérez and Cozman, 2021). Moreover, ex-
periments on other datasets, e.g. OmniArt (Strezoski and Wor-
ring, 2017) or SemArt (Garcia and Vogiatzis, 2018), could be
conducted to analyse the generality of the findings in this paper
in the context of heritage-related applications. Future method-
ological work related to both of the proposed approaches could
address modifications of the mapping from an input image to
high-level image features by modifying the used neural net-
work. A strategy to do so could be to apply another network
as a generic feature extractor. Furthermore, further additional
data available for the SILKNOW dataset, i.e. information about

relations between different instances as well as textual descrip-
tions, could be exploited for training requiring methodological
modifications of the training strategy to do so: The relations in
the graph could be exploited similarly to (Garcia et al., 2020),
where additional features are derived from the graph per train-
ing samples. The textual descriptions could also be considered
in the context of multi-modal classification, being a growing
field of research. Preliminary experiments involving the com-
bination of images, class labels and textual descriptions (Rei et
al., 2022) have shown promising results for the classification
of historic silk fabrics. Finally, the principle of task balancing
was already shown in (Yang et al., 2022) to be beneficial for
multi-task learning with complete samples in the context of cul-
tural heritage applications. It would be interesting to develop
and investigate an according approach for incomplete training
samples and, in particular, to combine such an approach with
techniques addressing class imbalance.
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Pérez, S. P., Cozman, F. G., 2021. How to generate synthetic
paintings to improve art style classification. Brazilian Con-
ference on Intelligent Systems, Springer, 238–253.

Pouyanfar, S., Tao, Y., Mohan, A., Tian, H., Kaseb, A. S.,
Gauen, K., Dailey, R., Aghajanzadeh, S., Lu, Y.-H., Chen,
S.-C. et al., 2018. Dynamic sampling in convolutional neural
networks for imbalanced data classification. 2018 IEEE Con-
ference on Multimedia Information Processing and Retrieval
(MIPR), 112–117.

Rei, L., Mladenic, D., Dorozynski, M., Rottensteiner, F.,
Schleider, T., Troncy, R., Lozano, J. S., Salvatella, M. G.,
2022. Multimodal metadata assignment for cultural heritage
artifacts. Multimedia Systems, 29, 847–869.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. et al.,
2015. Imagenet large scale visual recognition challenge. In-
ternational journal of computer vision, 115(3), 211–252.

Schroff, F., Kalenichenko, D., Philbin, J., 2015. A unified em-
bedding for face recognition and clustering. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 815–823.

Sridhar, S., Kalaivani, A., 2021. A survey on methodologies for
handling imbalance problem in multiclass classification. Ad-
vances in Smart System Technologies, 1163, Springer, Singa-
pore, 775–790.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R., 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1), 1929–1958.

Strezoski, G., Worring, M., 2017. Omniart: multi-task
deep learning for artistic data analysis. arXiv preprint
arXiv:1708.00684.

Sur, D., Blaine, E., 2017. Cross-depiction transfer learning for
art classification. Technical Report CS 231A and CS 231N,
Stanford University, USA.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-175-2023 | © Author(s) 2023. CC BY 4.0 License.

 
183



Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kend-
all, C. B., Gotway, M. B., Liang, J., 2016. Convolutional
Neural Networks for Medical Image Analysis: Full Train-
ing or Fine Tuning? IEEE Transactions on Medical Imaging,
35(5), 1299–1312.

Tan, W. R., Chan, C. S., Aguirre, H. E., Tanaka, K., 2016. Ceci
n’est pas une pipe: A deep convolutional network for fine-art
paintings classification. International Conference on Image
Processing (ICIP), IEEE, 3703–3707.

Yang, B., Xiang, X., Kong, W., Peng, Y., Yao, J., 2022.
Adaptive Multi-Task Learning Using Lagrange Multiplier
for Automatic Art Analysis. Multimedia Tools and Applic-
ations, 81(3), 3715–3733. https://doi.org/10.1007/s11042-
021-11360-7.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How trans-
ferable are features in deep neural networks? Advances in
Neural Information Processing Systems (NIPS), 27, 3320–
3328.

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J., 2019.
Pattern-affinitive propagation across depth, surface normal
and semantic segmentation. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 4101–4110.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-175-2023 | © Author(s) 2023. CC BY 4.0 License.

 
184




