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ABSTRACT:

Deforestation is considered one of the main causes of global warming and biodiversity reduction. Therefore, early detection of
deforestation processes is of paramount importance to preserve environmental resources. Currently, there is plenty of research
focused on detecting deforestation from satellite imagery using Convolutional Neural Networks (CNNs). Although these works
yield remarkable results, most of them employ pairs of images and detect changes which occurred between the two image acquisition
epochs only. Furthermore, these models tend to produce poor results when applied to new data in real-world scenarios. In this
regard, an interesting research topic deals with the generalization capacity of the classifiers. CNN-based approaches combined with
time series data can be a suitable framework to obtain classifiers that generalize better to new data. Image time series contain
complementary information, representing different imaging conditions over time. This work addresses the transferability for
detecting deforestation in different areas of the Amazon region, using Sentinel-2 time series and reference maps from PRODES
project, which are not required to be synchronized. The results indicate that the classifier with time series data brings a substantial
improvement in accuracy by taking advantage of the temporal information.

1. INTRODUCTION

Over the past decades, major technological advances have
given access to massive amounts of remote sensing (RS)
data. This availability has allowed to develop various
applications that are essential for understanding environmental
processes, e.g. the identification of risks, the analysis of urban
development and deforestation (Gomes et al., 2020; Tasar
et al., 2019). The application considered in this paper is
bi-temporal deforestation detection in tropical rain forests, e.g.
those in the Brazilian Amazon region, which is particularly
important because deforestation is one of the major causes
of global warming (Kpienbaareh et al., 2022). The goal is
to analyse a pair of co-registered satellite images acquired
at different points in time in order to predict at pixel level
whether deforestation occurred between the two dates or not,
which can be seen as a special case of pixel-wise classification.
For the Brazilian Amazon region, every year the Brazilian
National Institute for Space Research (INPE) performs a
manual analysis to detect deforestation activities in the context
of the Program for Deforestation Monitoring in the Brazilian
Legal Amazon (PRODES)1. As this manual process is tedious
and time-consuming, it would be advantageous to automate it.

Convolutional Neural Networks (CNNs) have brought about a
substantial improvement in various classification tasks. In order
to train a CNN that works well on new images, one requires
a large amount of labelled training data that is representative
for the task. For the application addressed in this paper,
there are two aspects which may make it difficult to meet this
∗ Corresponding author
1 http://terrabrasilis.dpi.inpe.br/map/deforestation

(accessed 27/06/2023).

requirement: the location of a scene and the acquisition dates
of the images. This is because forests and deforested areas
look different in different geographic regions and because the
appearance also changes due to seasonal or atmospheric effects.
Thus, in order to train a classifier that generalizes well to new
data, one requires training data from a variety of regions and
acquired at multiple points in time.

For forest monitoring, such data is available in principle:
the reference for deforestation generated on a yearly basis
in the context of PRODES is freely available for the entire
Brazilian rain forest, and satellite image time series with an
even higher temporal resolution are available, often as open
data. However, using such data for training poses several
problems. Firstly, the acquisition dates of the satellite images
typically do not correspond to the dates for which the manual
annotations are available. Secondly, even if the satellite images
and the reference labels are synchronised, using only images
corresponding to the dates for which information about a
deforestation event is available in the reference may not be
optimal, because it would prevent the use of other images that
might otherwise increase the pool of training data under the
assumption that the change process can be modelled. Due to
these problems, it is a common strategy to use data from a
subset of a single image pair that is coarsely synchronised with
the reference to train a classifier before applying the latter to the
remaining areas of the same image pair. Although this yields a
high performance, such classifiers often result in poor results
when applied to another image pair acquired at a different time
or showing a different location (Vega et al., 2021).

Another important aspect to consider is that there may or may
not have been different regrowth and deforestation cycles in the
investigated scene. However, only primary deforestation events
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are recorded in PRODES. This means that areas which were
already labelled as being affected by deforestation in the past
are automatically considered not to be affected by (primary)
deforestation any more (INPE, 2021). Practically, those areas
are ignored in the manual analysis and, thus, information about
regrowth is not contained in the database, so that situations in
which a second deforestation event occurs after regrowth are
not represented in the training data. In addition, there are barely
any areas in the reference for the class No Deforestation where
there is no forest at both, the earlier and the later date, as those
areas were usually affected by deforestation in the past and,
thus, are ignored in the manual labelling process. The lack of
such training samples does not allow to train a classifier that
detects arbitrary deforestation events.

In this work, we propose a strategy for training a CNN for
bi-temporal deforestation detection in the Amazon region that
leverages the available data described above with the aim that
the classifier generalises better to unseen data. The proposed
training strategy relies on the availability of time series of
satellite and (potentially incomplete) reference label images,
which need not be synchronized. The core idea is to use
knowledge about the class transitions in the time series of
reference labels to infer a valid set of reference labels given
an arbitrary image pair. We aim to train a classifier to detect
arbitrary deforestation events, i.e. areas where there is no
forest at a specific date but where there was forest at an
earlier date. We assume that training on many different image
pairs from the time series helps the classifier to generalize
better to new image pairs, thus improving the prospects of an
automatic workflow for the task at hand. Furthermore, using
the proposed strategy, we obtain a classifier that is capable of
detecting not only primary deforestation, but also secondary
deforestation occurring after regrowth. In our work we consider
small regions in the Amazon region, which, however, are
big enough, to enable us to investigate how the proposed
strategy influences the classification performance of a CNN
trained on a time series of one such region when it is applied
to another region. Whereas we focus on the application of
bi-temporal deforestation detection, in principle the proposed
training strategy is transferable to similar scenarios in which
existing but imperfect label data should be used to train a
classifier to improve its generalization capacity.

The main contributions of this work are as follows: (1) We
propose a strategy to leverage an existing database with a series
of reference label maps and a time series of satellite images
to train a CNN so that the latter generalizes well to unseen
data. The labels in the database and the images need not be
synchronized. (2) We propose and compare different variants
of our method, relying on different ways for generating training
labels from the available information. (3) We also show that
the CNNs trained using the proposed strategy achieve a much
higher classification performance compared to the standard
procedure of training on a single image pair synchronised with
the reference. (4) In our experiments, we evaluate by how much
the performance of the classifier is improved when considering
training and test data from different areas and / or epochs,
indicating the improvement of the generalization capability. (5)
Furthermore, we show that using a slight modification of the
way in which the training labels are obtained, we can train a
classifier capable of predicting secondary deforestation events
even though those are not explicitly contained in the database.
However, this contribution is evaluated only qualitatively, as we
do not have a reference for secondary deforestation events.

2. RELATED WORK

Addressing bi-temporal deforestation detection, several Fully
Convolutional Networks (FCN) were assessed in (Torres et
al., 2021). Besides comparing different architectures, the
authors evaluated the performance of classifiers trained on
image pairs from different satellite missions, namely Landsat-8
and Sentinel-2, which have a different spatial resolution. The
experiments were carried out in a region of the Amazon
forest, using reference labels from the PRODES dataset. More
recently, in (Andrade et al., 2022) a variant of the DeepLabv3+
architecture was suggested for deforestation detection using
Sentinel-2 image pairs. This method was also evaluated on an
region within the Amazon forest. The results of DeepLabv3+
were compared with two patch-wise semantic segmentation
methods, and it outperformed the baselines. Although all these
works achieved satisfactory classification performance, they
are focused on bi-temporal image pairs, considering only test
samples which come from the same image pair that was used for
training. As the Amazon region is characterized by a complex
forest cover, when these models are applied to other datasets
with temporal and spatial changes, there is a significant drop in
performance in the classification results. For instance, in (Vega
et al., 2021), the classifiers achieved only a poor accuracy when
they were trained on one dataset and evaluated on another one.
In many such cases, this drop in accuracy was more that 50% in
terms of F1-score compared to results achieved when training
and testing on subsets of the same dataset.

In this regard, a related group of methods which are interesting
for the application of bi-temporal deforestation detection are
those from Transfer Learning (TL). Here, the data is assumed to
be available in different domains which are different but related,
e.g. data from different epochs or from different geographical
locations. The goal of TL is to leverage the data available in all
domains to achieve a good performance in the domain which is
to be classified. In the default setting, one considers a source
domain (SD) for which plenty of training data is available and
a target domain (TD) which is to be classified but for which
an insufficient amount of training labels is available. It is also
assumed that training in the SD only does not yield satisfactory
performance in the TD due to the so called domain gap (Soto et
al., 2022; Tasar et al., 2020).

One setting in TL is unsupervised domain adaptation (UDA).
It is particularly interesting, because one does not require any
training labels in the target domain. Such techniques address
the domain gap problem by transferring information from a
labeled SD to an unlabeled TD. In particular, for deforestation
detection, different methods based on domain adaptation have
been proposed (Soto et al., 2022; Noa et al., 2021; Vega et al.,
2021). The authors analysed the domain gap between several
regions in the Amazon with specific time and geographical
locations. Their analysis started by evaluating the performance
of the classifiers in the naive scheme, where the classifier is
trained on the SD and tested on different TD; the results showed
poor performance in all scenarios. In this regard, the UDA
methods are proposed as a solution to mitigate the domain
gap. Although the authors reported encouraging results, when
compared to the performance of a classifier trained on the TD,
there is still a drop in performance, motivating the exploration
of other strategies to bridge the domain gap.

In this work, we aim to prevent a potential domain gap
by leveraging additional time series data for training. In
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the literature, there exist some works which consider time
series in combination with CNNs to analyze forest dynamics
and other environmental processes (Carrillo-Niquete et al.,
2022). In (Matosak et al., 2022), a CNN-based model using
a combination of recurrent neural networks (RNN) and U-Net
is proposed to monitor deforestation and forest degradation in
the Brazilian Cerrado region. In that work, Landsat-8 and
Sentinel-2 time series with labels from PRODES were used,
and the method was compared in three different scenarios,
starting with training and evaluating on a labeled dataset,
considered as SD. The authors also evaluated a classifier
trained on a SD and tested on TD from different epochs and
geographical locations. In the first scenario, satisfactory results
were achieved. However, in the other two scenarios, when
the model is evaluated in different TD, a drop in performance
is observed, especially when the TD differs in geographical
location. Likewise, some variants of CNN and RNN with
Landsat-8 time series were evaluated in (Masolele et al.,
2021). The authors also assessed a hybrid model to combine
spatio-temporal information of the data. The target application
was also deforestation detection in tropical regions. Even
though these works, taking advantage of the spatio-temporal
information contained in the time series, reported satisfactory
results, they require synchronized images and reference data,
which can be problematic in real-world applications.

In this work, we propose a training strategy to bridge the
domain gap for deforestation detection. This strategy relies on
the availability of a satellite image time series and a series of
reference label maps, which need not be synchronized. Instead,
by using a set of rules to infer valid labels from a reference label
series for an arbitrary epoch, it is possible to train a classifier
that generalises well to unseen data and it is also possible to
detect secondary deforestation events even though they are not
contained in the reference.

3. METHODOLOGY

We start this section with a formal introduction of bi-temporal
deforestation detection based on satellite imagery. The goal of
deforestation detection is to automatically determine at pixel
level whether deforestation has occurred between an earlier date
te and a later date tl based on satellite images. The data to be
classified consist of a pair of co-registered images that show
the same region, the earlier image Xe acquired at te and the
later image Xl acquired at tl. The desired output is a binary
label map that indicates for each pixel whether deforestation
has occurred between te and tl or not. We propose a strategy
that uses asynchronous time series of images and label data to
train a classifier that performs well on an unseen image pair.

For training, let us consider a satellite image time series X =
{XI1 , XI2 , · · · , XIi , · · · , XIN }, where N is the number of
time steps of X , and XIi represents an image at time step tIi ;
the notation Ii indicates that the index i refers to the image
time series. Furthermore, we assume a label map time series
Y =

{
YL1 , YL2 , · · · , YLj , · · · , YLM

}
, where M is the number

of time steps of Y , and YLj represents a label map at time step
tLj , and refers to deforestation that occurred between tLj−1 and
tLj ; here, the notation Lj indicates that the index j refers to the
label map time series. Note that identical indices do not imply
identical time stamps if the indices refer to different time series,
i.e. i = j does not imply tIi = tLj . Typically, the time series
X will contain more images than Y . In this paper, the label
maps in Y are generated based on the information available

in PRODES, i.e. information about recently deforested areas
published once a year. This information is derived from
Landsat-8, Sentinel-2 and CBERS data acquired in the dry
season, when the cloud coverage is minimal.

In principle, the task of bi-temporal deforestation detection
requires a reference in which two classes are differentiated:
Deforestation (DF) and No Deforestation (NDF), where
this information is related to what happened between the
epochs te and tl at which the images were acquired. In
particular, PRODES only contains information about primary
deforestation, i.e. areas that were labelled as deforested at
some point in time in the past are ignored in the yearly manual
labelling process. As there may or may not have happened
another regrowth and deforestation cycle, those areas cannot be
used to train a model for deforestation detection as the reference
labels are unknown. To deal with this problem, a third label,
Past Deforestation (PD), is assigned to areas in a label map
YLj that were labelled as DF at any point in time earlier than
tLj−1 . Such areas are supposed not to carry any information for
bi-temporal deforestation classification between epochs tLj−1

and tLj , and they are commonly disregarded in the training
procedure (INPE, 2021).

Our goal is to use the two time series X and Y to train a
classifier C that predicts the label map Ŷ differentiating the
classes DF and NDF for an arbitrary unseen image pair
X̃T = {XT

e , XT
l }, where the superscript T indicates that the

image pair is a test pair not contained in the training set. In our
strategy, the time series X and Y to be used for training are not
required to be synchronised. This is different from the common
approach (Wang et al., 2023; De Bem et al., 2020; Torres et al.,
2021), which is to choose a pair of training images XIl and XIe

and label maps YLj and YLj−1 such that the acquisition date tIl
of the later training image XIl is as close as possible to the date
tl = tLj of the label map YLj and the acquisition date tIe of the
earlier image is as close as possible to the date te = tLj−1 of
YLj−1 . This commonly used approach has two disadvantages.
Firstly, the resultant classifier cannot be expected to be well
transferable to new image pairs, because only a single image
pair is used for training. Secondly, there are barely samples for
the subcategory of the class NDF in which there is no forest in
te and no forest in tl, either, because this is a case that usually
only occurs in the areas marked as Past Deforestation, which
are not to be used for training. Consequently, in such areas,
the classification performance is poor. This is why usually the
pixels marked as Past Deforestation in the label maps are not
considered in the evaluation, e.g. (Torres et al., 2021).

We propose an alternative training strategy (cf. Figure 1). We
start by randomly sampling overlapping patches in arbitrary
image pairs from the time series X and generate the required
training labels online using information about the time td
at which the area related to a pixel was identified as being
deforested. This information could be derived from the
(non-synchronous) time series of label maps Y by identifying
the time tLj of the label map YLj in which this pixel is marked
as belonging to class DF . In the particular case of PRODES,
the database does not only contain the label images. For every
area affected by deforestation, it also contains the acquisition
date of the image in which the corresponding DF polygon
was digitized. In other words, for every DF pixel in any of
the images in the time series Y , PRODES also contains the
time stamp tDF of the image in which that pixel was found
to be deforested. In this work, we use this attribute to define
td = tDF and, consequently, the label maps describing the
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deforestation between te and tl. The way in which this is
done is the core of the proposed strategy and is described in
Section 3.1. The resultant training data are used to train a CNN
to predict the pixel-wise class scores for DF and NDF . The
CNN structure is presented in Section 3.2, whereas Section 3.3
describes the training procedure.

3.1 Generation of training samples

In this work, we introduce three different procedures to create
the training samples. All of them create a label map Y by
computing the label y for each pixel using the time td at
which the deforestation occurred, defined in the way described
above; pixels that were never deforested (i.e., do not appear as
belonging to class DF in any of the label images in the time
series Y) are marked by a special value td = NEV ER.

The first procedure serves as our baseline and corresponds to the
common strategy in which two fixed dates are used for training
a classifier; it was also used for bi-temporal deforestation
detection in (Torres et al., 2021; Andrade et al., 2022). Here,
we select a time td for areas marked as deforested in a label
map YLj and then search for a pair of images XIl and XIe from
X , acquired at times tl = tIl and te = tIe , such that tl is the
date closest to td and te is selected to correspond most closely
to the date tLj−1 (i.e., given the strategy used in PRODES, the
one of the label map produced for the year before tLj ). Then,
a new label map Y representing the deforestation that occurred
between te and tl is generated. This is done based on a set R1
of rules to determine the label map Y to be used for training by
computing the label y for each pixel:

R1 : y =

 DF if te ≤ td ≤ tl,
NDF if (td > tl) ∨ (td = NEVER) ,
UK td < te.

(1)

The last row in equ. 1 corresponds to what was introduced as
Past Deforestation above. For such regions it is unknown (UK)
whether the correct class is DF or NDF.

For the other two training strategies, we use all the available
data, i.e. we do not restrict the selection of te and tl by requiring
them to correspond to consecutive years. To construct a training
sample, first, a random pair of images XIl and XIe is sampled
from X , and again we have tl = tIl and te = tIe . Here, the
label y for each pixel is determined based on a set R2 of rules:

R2 : y =

 DF if te + ρ ≤ td ≤ tl,
NDF if (td > tl) ∨ (td = NEVER) ,
UK otherwise.

(2)

In eq. 2, ρ is a hyper-parameter corresponding to a buffer
time-span. The rationale behind R2 is that for an arbitrary
image pair, we assume deforestation to have happened between
the two dates if the deforestation was recorded before tl and
after te. However, if it was recorded only shortly after te, the
actual deforestation might have happened before te and, thus,
not between te and tl. This is the reason why we add the buffer
ρ, which should roughly correspond to the frequency in which
the manual reference is generated.

The third variant considers additional cases, using knowledge
about the class transitions to define a set R3 of rules for
determining the reference label y for every pixel:

R3 : y =


DF if te + ρ ≤ td ≤ tl,
NDF if (td = NEVER) ∨

(td > tl + ρa) ∨
(te − ρr < td < te) ,

UK otherwise.

(3)

The main difference to the rule set R2 (eq. 2) is in the definition
of class NDF , which is assigned to y if one of three constraints
is fulfilled. The first one is considered in R2, too. The second
one considers the case in which deforestation that happened
after tl + ρa, from which we infer that the deforestation event
did not happen in between te and tl. Again, a time buffer is
required, because if the deforestation was detected only shortly
after tl, the event may or may not fall into the interval between
te and tl. The third constraint is very interesting in the context
of the addressed application. Here, recent deforestation, i.e.
deforestation that was recorded before te, but not earlier than
te − ρr , is considered as No Deforestation with respect to
the interval between te and tl. As noted earlier, areas which
were recorded as deforestation in the past could, in principle,
belong to the class DF or to NDF, because another regrowth
cycle may have happened. However, if an area was recorded as
deforestation only shortly before te, we assume that no forest
has regrown in the meantime and thus, the area is considered
as NDF with respect to the interval te to tl. This is beneficial
when training the model, because it corresponds to a NDF case
in which there is neither a forest in te nor in tl. This case is
barely represented in the labels obtained when using the other
rules, where NDF corresponds to the case in which there is
forest in te and also in tl in most cases.

Based on these considerations, we assume that classifiers
trained using the rules R1 or R2 will tend to make wrong
predictions for NDF areas where there is no forest in both
images. This is why the predictions of these classifiers are only
usable in combination with the past deforestation maps, which
basically mask out the regions in which there is no forest in
the earlier image although deforestation occurred in the past
(td < te). On the other hand, we assume that a classifier that
was trained using the third set of rules (eq. 3) can correctly
predict such regions and, thus, the predictions can be used
without knowledge about past deforestation.

It has to be noted that the label maps generated using the rules
defined above may contain some errors related to errors in td.
These errors are caused by the fact that in areas covered by
clouds, deforestation areas might be manually labelled on the
basis of images that were not acquired immediately after the
deforestation event, but at a later point in time.

3.2 Network architecture

In this work, an architecture similar to U-Net (Ronneberger
et al., 2015) is used, having a Xception backbone (Chollet,
2017), a CNN architecture for image categorisation that
builds upon the concept of residual learning (He et al.,
2016). The main modification is the integration of depth-wise
separable convolutions into the residual blocks. Chollet (2017)
argues that, when using the same amount of parameters, this
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Figure 1. Overview of the suggested method. The training set is created from non-synchronized time series of Sentinel-2 images X
and reference label maps Y .

modification leads to an increased learning capacity compared
to using residual blocks with regular convolutions.

Figure 2 shows an overview of the classification network, and
Table 1 provides an overview of all layers. The encoder of the
network processes input patches with dimension p = H × W
and nC channels, which are passed through the layers of the
Xception network (Chollet, 2017) (layers 1-14 in Table 1). In
the decoder of the network, nearest neighbour interpolation is
used for upsampling (layers 15-23 in Table 1). All convolutions
in the decoder use 3×3 kernels and zero padding with 1 px. The
exceptions are the last three convolutions (layers 24, 25 and 26),
that use 1×1 kernels and no padding. For the last convolutional
layer, we use the softmax activation function with two outputs,
associated to the classes DF and NDF. Overall, this network
has about 15.5 M parameters and a theoretical receptive field of
907× 907 px.

1

4

26

5

(Skip connections)

6 7-14

2,3

15,16
17,18

19,20
21,22

23,24,25

Figure 2. Illustration of the Xception U-Net architecture. The
layer numbers correspond to those in Table 1. Blue and green

layers correspond to Xception blocks of type A and B,
respectively. The dotted lines represent skip connections.

3.3 Loss Function and Training Procedure

As this application contains highly imbalanced class
distributions, we used the Adaptive Cross-Entropy loss
(ACE) for training, proposed in (Wittich and Rottensteiner,
2021). It is a variation of the conventional weighted cross
entropy loss, where instead of setting a fixed weight for each
class, the weights are adapted during each epoch according to
the classification performance of each class c. The adapted
weighs wc are calculated according to:

wc = (1−∆IoUc)
κ =

[
1−

(
IoUc −

1

2

∑
c

IoUc

)]κ
,

(4)
where c ∈ {DF,NDF}, IoUc symbolizes the intersection
over union for each class, ∆IoUc is the difference between the

Layer(s) Layer type h, w Depth

E
nc

od
er

1 Input layer p nC

2 StrConv, BN, ReLU p/2 32
3 Conv, BN, ReLU p/2 64
4 Xception block A p/4 128
5 Xception block A p/8 256
6 Xception block A p/16 728
7-14 8× Xception block B p/16 728

D
ec

od
er

15, 16 2×{Conv, BN, ReLU} p/8 128
17 Upsample, Concat(4) p/4 256
18, 19 2×{Conv, BN, ReLU} p/4 64
20 Upsample, Concat(3) p/2 128
21,22 2×{Conv, BN, ReLU} p/2 32
23 Upsample p 32
24,25 2×{Conv, BN, ReLU} p 16
26 Conv, softmax p 2

Table 1. Layers of the architecture of the network used in this
paper. Conv: Convolutional layer. StrConv: Strided

convolutional layer. BN: 2D batch normalization; ReLU:
Rectified linear unit. Concat(LX ): Depth-wise concatenation of
the output of layer LX and the current layer. h, w, depth: Output

dimensions. p is the predefined patch size. For a detailed
explanation of the Xception blocks, cf. (Chollet, 2017).

class-wise IoU score and the mean IoU of classes DF and
NDF , and the hyper-parameter κ scales the influence of classes
with a lower IoU . The loss for the images in a batch B and with
height H and width W is defined by:

L = − 1

Np

B∑
b=1

H∑
i=1

W∑
j=1

∑
c

ȳb(i, j, c)·log(rSb (i, j, c))·wc, (5)

where b is the index of an image in the batch, i, j are the indices
of a pixel in an image, and c is the class DF or NDF . Np =
H · W · B represents the total number of pixels in a batch.
The symbol ȳb(i, j, c) indicates whether pixel (i, j) in the bth

label map belongs to class c, rSb (i, j, c) denotes the softmax
output for the class with index c at pixel (i, j).We extend this
loss formulation by defining wc = 0 for those pixels for which
the reference class is unknown (UK; cf. eqs. 1-3), i.e. those
pixels do not contribute to the loss.

The Xception backbone is pre-trained on the ImageNet dataset
(Deng et al., 2009), except for the first layer. That layer
is initialized randomly because ImageNet only consists of
RGB-images, whereas in our application the number nC of
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input channels is different from 3. The parameters of the
decoder are also initialized randomly; random initialization
is based on (He et al., 2015). In each training iteration, a
batch of training samples is constructed following the strategy
introduced in Section 3.1. Next, the loss is calculated for the
batch according to eq. 5 and the parameters of the network are
updated using gradient descent with momentum. Furthermore,
to prevent over-fitting, we use early stopping, i.e. training is
stopped if the performance of the classifier on the validation set
did not improve for 10 epochs.

4. EXPERIMENTS

In this section, we present the experiments conducted to
evaluate our method. We start by presenting the dataset used
in the experiments. Then, we describe the experimental setup,
and finally, we present and discuss the results.

4.1 Dataset

The dataset is composed of three different domains located in
the Pará and Rondônia states of the Brazilian Legal Amazon
(BLA; cf. Figure 3). These domains were suggested by
experts for deforestation monitoring and cover both, areas with
and without deforestation. The time series of images and
deforestation reference maps are related to the deforestation
which occurred between 2017 and 2021. These label maps
were downloaded from the PRODES project, which provides
an open-access database.

15°S 15°S

0° 0°

15°N 15°N
80°W

80°W

60°W

60°W

40°W

40°W

A
C

Brazil

B

N

Domains Brazilian Legal Amazon (BLA)

Figure 3. Geographical locations of the datasets. Domain A is
located in Rondônia, domains B and C in Pará.

The dataset consists of 100 Sentinel-2 Level-2A images. Each
domain is a mosaic of three Sentinel-2 scenes, which were
acquired from the Copernicus Open Access Hub2 provided
by the European Space Agency (ESA). Multiple images
from different acquisition dates from late May to September
are considered, depending on the cloud coverage and data
availability (Assis et al., 2019). The images were selected based
on the requirement for a small cloud coverage (less than 5%).
Table 2 presents detailed information about the acquired images
per domain and year, as well as the percentage of deforestation
in each scene. All images were processed by ESA’s Sen2Cor
v2.9 software3 to apply bottom-of-atmosphere corrections. For

2 https://scihub.copernicus.eu/ (accessed 27/06/2023)
3 https://step.esa.int/main/snap-supported-plugins/

sen2cor/sen2cor-v2-9 (accessed 27/06/2023)

the classification, the multi-spectral composite of near infrared,
red, green and blue was used. These channels are available with
a ground sampling distance (GSD) of 10 m.

Figure 4 illustrates some examples of the training set from each
domain. Each column represents a different domain (A, B,
or C). The first two lines represent the co-registered pair of
multi-spectral images (MSI) for the earlier image Xe and the
later image Xl as RGB composites. The third line shows the
reference label maps.

Domain Sentinel-2
Tile ID

Images per year Def.
[%]2016 2017 2018 2019 2020 2021

A
T20-LLQ 1 2 2 2 2 2 9.3
T20-LMQ 1 2 3 3 2 2 6.6
T20-LNQ 1 2 2 2 2 2 4.0

B
T22-MCB 1 2 2 2 2 2 2.6
T22-MDB 1 2 2 2 2 1 7.6
T22-MEB 1 2 2 2 2 1 9.3

C
T21-MXU 1 2 2 3 2 2 2.1
T21-MYU 1 2 2 2 2 2 1.6
T21-MZU 1 2 2 2 2 2 2.6

Table 2. Number of Sentinel-2 images per year for each domain.
The last column (Def.) gives the relative amount of deforestation

areas in each tile.

Domain A B C

MSI Xe

MSI Xl

Y

Figure 4. Data samples from the datasets for deforestation
detection; side length of the patches is 256 px. MSI: RGB

composite of the earlier (Xe) and the later multispectral images
(Xl). Y : Reference label maps derived from PRODES.

Colour-codes: Unknown (grey), Deforested (orange),
Non-deforested (green)

4.2 Experimental setup

Each domain was divided into 75 tiles, with a distribution
of 40%:10%:50% for training, validation and evaluation,
respectively. The classifier was trained using image patches
with size of 256 × 256 px; patches that do not contain any
deforestation were removed from the training set to increase the
relative amount of pixels that show deforestation and partially
compensate for problems due to the class imbalance.

In pre-processing, the deforestation reference was rasterized
with a GSD of 10 m to generate the label maps, also including
the time stamp td for every pixel marked as DF in a label
map. Although only images with low cloud-coverage were
queried, there are still some clouds in the images. As a correct
prediction is impossible for the areas which are occluded
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by the cloud in one or both of the images, such areas are
ignored during training and inference. Following the PRODES
methodology, two-pixel-wide inner and outer boundaries of
polygons identified as Deforested in the reference are also
ignored. This buffering is done because the manual delineation
was partially carried out using images of lower resolution,
resulting in a low spatial precision of the outlines of some
deforestation areas, and therefore possibly incorrect labels.

The implementation of the Xception U-Net and the pre-trained
weights are taken from the Segmentation Models Pytorch
repository4 (Iakubovskii, 2019). In addition, during training,
the loss function was minimized using Stochastic Gradient
Descent with a learning rate of 2e−3, momentum of 0.9,
and weight decay of 1e−5. Furthermore, data augmentation
was applied by randomly cropping the image patches.
Each experiment was run five times using different random
initializations. The classification results reported in the next
section represent the average of the five runs. We report the
F1-scores for the class Deforestation, defined as harmonic mean
of precision and recall for that class.

For the experiments, we trained different classifiers for each
domain (A, B, and C) following the rules described in
Section 3.1. For R2 and R3, the time-span parameters ρ,
ρa, and ρr were defined as one year. The performance of
the classifiers was evaluated in two different scenarios. In
the first scenario, for training and evaluation, we selected the
images acquired at two specific epochs for each domain, i.e.
te = 07/25/2019 and tl = 08/08/2020 for domain A,
te = 06/23/2019 and tl = 06/22/2020 for domain B, and
te = 07/29/2019 and tl = 09/06/2020 for domain C. It
roughly represents the real scenario implemented in PRODES,
which is related to the deforestation occurring within one year;
the results are presented in Section 4.3. In the second scenario,
we randomly selected an image pair from the entire time series,
which contains images from 05/24/2016 to 10/11/2021, and
the corresponding references were defined in the way described
in Section 3.1. Note that in this second scenario, the image
pair for a patch was selected randomly only once so that in
different test runs, the same image pairs were used. The results
of the evaluation in this scenario are discussed in Section 4.4. In
both scenarios, we analysed the performance of the classifiers
applied on the same domains (intra-domain setting) and on
different domains (cross-domain setting).

4.3 Evaluation on a fixed image pair

For these experiments, we evaluated each classifier trained on
domains A, B, and C, and following the rules R1, R2 and R3
for an image pair acquired at two specific epochs. Table 3
summarizes the classification results in terms of the average
F1-scores for the class Deforestation (DF). As expected, the
F1-scores achieved in the intra-domain settings are higher than
those in the cross-domain setting: a classifier performs better if
trained on data from the same domain as the test data, because
then it is more likely for the data in the training and test sets
to follow similar distributions. Comparing the performance
of the classifiers trained using labels generated according to
rule sets R1 and R2 in the intra-domain setting, we can notice
that the inclusion of time series for training results in a better
performance in all cases, demonstrating that the classifiers can
use the knowledge about class transition in different epochs to

4 https://github.com/qubvel/segmentation models.pytorch (accessed
27/06/2023)

gain a more comprehensive view of the appearance of changes
over time. The improvement in the intra-class setting is up to
6% in the F1-score for DF (area C). Similarly, using the entire
time series and defining the training labels according to rule set
R3, a better performance was achieved compared to R1. In
this case, additional samples of class NDF are included. For
area A, where the variant based on R1 performs best among all
areas, R3 leads to a small decrease in the F1-scores and for area
B the increase is smaller than for R2, but in the intra-domain
setting in area C, the variant based on R3 performs best, with
an increase in the F1-score of 3.7%.

Train on / Rule
Test on

2019-2020
A B C

A / R1 72.4 58.1 26.3
A / R2 76.2 (+3.8) 68.2 (+10.1) 28.6 (+2.3)
A / R3 71.8 (-0.6) 64.3 (+6.2) 28.0 (+1.7)
B / R1 67.8 68.3 21.1
B / R2 71.7 (+3.9) 74.3 (+6.0) 23.7 (+2.6)
B / R3 68.6 (+0.8) 71.1 (+2.8) 22.3 (+1.2)
C / R1 54.8 43.5 40.9
C / R2 67.0 (+12.2) 69.9 (+26.4) 43.5 (+2.6)
C / R3 68.8 (+14) 70.8 (+27.3) 44.6 (+3.7)

Table 3. Mean F1-scores [%] for the class DF achieved in five
test runs in the evaluation scenario based on a fixed image pair
(2019-2020). The classifiers were trained following the rules
defined in Section 3.1. Values in parentheses show the gain in

F1-score of the classifiers based on rule sets R2 and R3
compared to the baseline ( R1). The standard deviation of the F1

scores is ±1.4%.

Regarding the cross-domain results achieved in the variants
based on R1, there is a drop in performance compared to the
intra-domain results. In this case, the classifiers are evaluated
in another domain than they were trained on, which may have
different distributions due to the different geographic locations
and vegetation types. The drop of the F1-scores when only
using a single image pair for training (R1) can be up to 25%
(e.g., testing in domain B after training in domain C). However,
when time series data and the additional cases for NDF are
included (rule sets R2 and R3), better results are achieved,
demonstrating that the generalization capability is improved
when the information from the time series is exploited. The
improvement is most pronounced when training in domain
C and evaluating in domain B (+26% for R2, +27% for
R3); however, a small improvement can be observed in all
cross-domain settings.

4.4 Evaluation on random image pairs

In this setting, we evaluated the classifiers in a more general
scenario. Instead of selecting a fixed image pair, an arbitrary
random image pair was selected from the entire time series
for every patch to be classified, while te < tl in all cases.
For comparison purposes, the random image pairs were the
same for all of these experiments. Table 4 summarizes the
classification results in terms of average F1-scores for the
class DF. The results suggest that using rule sets R2 and R3
improves the F1-score of the classifier significantly compared
to the baseline R1 in all three domains. Looking at the
intra-domain results based on rule set R1, a lower performance
was achieved than for the evaluation scenario based on fixed
dates (cf. Table 3). We believe that this is due to the
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fact that in the first scenario, the classifier was trained using
samples in the same year (and, thus, in the same images)
that were also used for testing. In contrast, in the evaluation
using different (randomly selected) image pairs, the distribution
of the data may be different compared to the single image
pair used in training, thus potentially leading to a decreased
performance. On the other hand, when the time series data (R2)
and the additional cases for the class NDF (R3) are considered
in training, the performance of the classifiers is significantly
improved compared to the baseline (R1), with a margin of up
to 22% in the intra-domain setting. This shows the advantage of
using time series for training to identify patterns and trends that
may not be apparent in a single image pair: with the inclusion
of time series data, the classifiers can learn from a larger
set of changes occurring over time, possibly characterized by
different changes of the appearance in the data, leading to a
better performance when classifying unseen data.

Train on / Rule
Test on

Random dates
A B C

A / R1 71.8 56.3 16.4
A / R2 82.7 (+10.9) 76.6 (+20.3) 38.6 (+22.2)
A / R3 81.2 (+9.4) 72.2 (+15.9) 32.7 (+16.3)
B / R1 69.8 68.1 20.2
B / R2 78.1 (+8.3) 80.2 (+12.1) 27.9 (+7.7)
B / R3 79.0 (+9.2) 78.5 (+10.4) 38.1 (+17.9)
C / R1 55.3 43.1 35.3
C / R2 75.3(+20.0) 76.8 (+33.7) 57.7 (+22.4)
C / R3 75.9 (+20.6) 76.6 (+33.5) 57.7 (+22.4)

Table 4. Mean F1-scores [%] for the class DF achieved in five
test runs in the evaluation scenario based on random epochs
(2016-2021). The classifiers were trained following the rules
defined in Section 3.1. Values in parentheses show the gain in

F1-score of the classifiers based on rule sets R2 and R3
compared to the baseline ( R1). The standard deviation of the F1

scores is ±1.1%.

Regarding the cross-domain results, even larger improvements
in the performance can be achieved when using rule sets R2
and R3 compared to the baseline (up to 34% in F1-scores
when training in domain C and testing in domain B). In
these cases, the highest F1-scores for the class DF were
achieved, demonstrating that the generalization capability of
the classifiers is improved when the information contained in
the entire time series is used for training. In some cases,
the F1-scores in the cross-domain setting were very similar
to those the intra-domain results. For instance, when a
classifier is trained and evaluated on domain A, F1-scores
of approximately 83% were achieved. When independent
classifiers were trained using domains B and C and evaluated
on domain A, the approximate F1-score values obtained
were 79% and 75%, respectively, and, thus, of a similar
order of magnitude. A similar behavior was observed when
the classifiers were evaluated on domain B. In general, for
the domain C, lower F1-scores were obtained in both, the
intra-domain and the cross-domain settings, which may be due
to the high percentage of cloud coverage in the images, possibly
affecting the classifiers in a negative way.

4.5 Visual analysis

A visual example of deforestation prediction of the classifiers
trained using rule sets R1, R2, and R3 is shown in Figure 5.

It shows the false-color multi-spectral images for the earlier
image Xe and the later image Xl from domain A along with
the reference Y and the output predictions for that image
pair for different variants of the classifier in an intra-domain
and a cross-domain scenario, i.e., when trained in domain
A and B, respectively. We present the output predictions
without completely masking out the past deforestation areas to
analyze how the approach deals with regrowth and secondary
deforestation events that happen only in these areas.

For the visual analysis we focus on three areas in the past
deforestation region. The region marked by the red outline
(north-west) corresponds to an area which shows no forest
in both images. Thus, this area should be predicted as no
deforestation. A region that does show secondary deforestation
is marked by a blue outline (middle of the image). Even though
the area is marked as past deforestation, there is forest in the
earlier image and no forest in the later image, which indicates
a secondary deforestation event. In the region with the green
outline, there some deforestation occurred prior to the te, but
also in the period between te and tl. Whether this case should
be predicted as deforestation is unclear and depends on the
definition of that class.

A comparison of the three classifiers trained on domain A
(second row in Figure 5) shows that the classifiers trained using
R1 and R3 make correct predictions for the areas with red
and blue outlines. However, the classifier trained using R1
erroneously predicts deforestation in the north-east and south
of the image, where the classifier trained using R3 correctly
predicts no deforestation. The classifier trained using rule set
R2 performs a bit better than rule set R1 in those regions but
erroneously predicts deforestation in the area marked by the red
outline. Interestingly, the classifiers trained using rule sets R1
and R3 predict no deforestation in the area marked by the green
outline, whereas the classifier trained using rule set R2 predicts
deforestation. To summarize, considering only those regions
in the past deforestation area which can clearly be classified
as deforestation or no deforestation, the classifier trained using
rule set R3 performs best in the intra-domain scenario.

In the cross-domain scenario (last row in Figure 5), the
classifier trained using rule sets R1 and R2 erroneously predicts
deforestation in the area marked by the red outline. The
classifier trained using rule set R3 correctly predicts no
deforestation in that area. Looking at the remaining areas,
again the classifier trained using rule set R3 is considered to
perform best. It is to be noted that the predictions made by
the two classifiers trained using rule sets R3 in the intra-domain
and cross-domain scenario are very similar except for the area
marked by the green outline, while the predictions made by the
classifiers trained using rule sets R1 and R2 differ more. We
consider this as an indication that the classifier trained using
rule set R3 is more robust to changes in the domain.

Although we do not have reference data for regrowth and
secondary deforestation cycles, we conclude from the visual
interpretation of the results that the use of time series and the
inclusion of additional cases of the NDF class improved the
generalization capacity of the classifier.

5. CONCLUSIONS

We have proposed a training strategy to improve the
generalisation capability of a classifier to detect deforestation
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Figure 5. Sample predictions from the classifiers using rules R1,
R2, and R3 for an image pair in domain A. Side length of the

patches is 256 px. MSI: False-colour multi-spectral image (infra
red, red, green) for the earlier image Xe and the later image Xl.

Y : Reference label map. Colour-codes: Unknown (grey),
Deforested (orange), Non-deforested (green)

using Sentinel-2 time series. Unlike conventional methods
selecting a single image pair with dates very close to the
beginning and the end of the time interval reflected in a
reference map for deforestation, we used arbitrary images pairs
from the entire time series and potentially non-synchronized
reference maps to build a training set that helps a classifier
to generalise better to unseen data. We defined different
sets of rules for deriving training labels from the existing
reference in order to exploit the available (but not necessarily
optimal) information as good as possible. One of these
rule sets was designed to identify additional samples for
the class No Deforestation to improve the classification in
areas where there is no forest in both images. This allows
the classifier to be more accurate in predicting deforestation
events and to reduce its dependency on information about
past deforestation. The performance of this strategy was
evaluated on three datasets from different geographic locations
and showing different types of vegetation. Experimental results
demonstrated the superiority of the proposed strategy over the
baseline (training with a single image pair), leading to a more
precise identification of deforested areas in nearly all cases.
In particular, the generalization capability could be improved
considerably in a cross-domain setting, with an improvement
of up to 22% in the F1-scores of the class DF in the scenario
considered in the PRODES project (evaluation using images
acquired at two subsequent years). Thus, the performance
gap due to the differences between the domains could be
reduced by leveraging the time series and our definition of the
corresponding training labels. We believe that this strategy can
potentially be extended in different areas of the Amazon region
to automatically detect deforestation and alleviate the manual

annotation task.

As far as potential future work is concerned, we see a
high potential of combining the proposed training strategy
with unsupervised domain adaptation in order to improve the
generalization capabilities in the cross-domain scenario. These
would be an attractive extension to mitigate the domain gap
between data from different geographic regions even further.
In addition, the inclusion of more Sentinel-2 images and
self-supervised approaches can be explored as an alternative to
deal with the lack of intermediary labels in the time series.
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