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A B S T R A C T

Flexible Job Shop Scheduling is one of the most difficult optimization problems known. In addition,
modern production planning and control strategies require continuous and process-parallel optimization
of machine allocation and processing sequences. Therefore, this paper presents a new method for process
parallel Flexible Job Shop Scheduling using the concept of quantum computing based optimization. A
scientific benchmark and the application to a realistic use-case demonstrates the good performance and
practicability of this new approach. A managerial insight shows how the approach for process parallel
flexible job shop scheduling can be integrated in existing production planning and control IT-
infrastructure.

© 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Rising customers’ expectations and technological develop-
ments have led to an increased complexity of manufacturing
systems. Additionally, companies face stochastic disturbances and
cyclic demands, which results in an unbalanced utilization of
manufacturing capacity. Thus, effective and efficient production
planning and control (PPC) have become a crucial advantage in
competition. While work planning defines the required production
technologies and strategies as well as the sequence of the
production steps, production control is concerned with reoccur-
ring activities in production, like order release or machine tool
allocation, and short-term rescheduling due to unplanned machine
breakdowns or deviations from planned times. However, the
separation of work planning and production control has proven to
be too rigid and inefficient in case of single-part and small-series
production [1,49]. Integrated PPC enables shorter throughput
times, transparent decision-making and a high level of ability to
react in case of faults and unplanned events. Therefore, Denkena
et al. [1] developed the approach of adaptive PPC (cf. Fig. 1), where
alternative process chains for each order are generated totally
automatically and PPC activities are completely integrated.

But, within this classical form of adaptive PPC an order
perspective is presumed when calculating the priority value for
each process chain. While the different process chains of an order
are valuated, the routings of the other released orders are assumed
to be fixed. This means that it is not taken into account that the

choice of a process chain for an order can always affect the choice
of production routes for all other orders. As a result, the best
solution can be missed. Overall, a method is needed which
optimizes the process parallel decision-making of the adaptive PPC
holistically.

State of the art

In order to counteract the lack of a production system
perspective when selecting process chains, the approach of
classical adaptive PPC was extended by a Genetic Algorithm [2].
Each individual forms a possible combination of work plans. By
crossover, mutation and selection operations, a well suited work
plan selection for all released orders can be determined in an
acceptable time. The computing time for this pure routing
optimization is still low enough to allow a process parallel use
in shop floor production. With a maximum of 20 simultaneously
released orders, 4 production levels and 19 machines in total, the
computing time was always less than four minutes [3].

The holistically optimized allocation of work plans in combi-
nation with sequencing is known in research as the Flexible Job
Shop Scheduling Problem (FJSP). The FJSP is an extension of the
classical Job Shop Scheduling Problem (JSP), which allows an
operation to be processed by some machines from a given set. The
goal is to assign each operation to a machine, and to order the
operations on the machines, such that the makespan of all
operations is minimized [4]. The FJSP is considered one of the most
difficult combinatorial optimization problems, and it was shown to
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As shown in Fig. 2, there is a variety of approaches to solving the
JSP. Heuristics are used both individually and in hybrid
ombinations. Genetic Algorithms, which are used for example
n Pezzella et al. [6], Bagheri et al. [7], Wang et al. [8], Giovanni and
ezzella [9], Zhang et al. [10], Teekeng and Thammano [11], Alcan
nd Basligi [12], Chiang and Lin [13] and Driss et al. [14], are also a
ocal point of research. Furthermore, the approaches of Sun et al.
15] and Huang et al. [16] combine Genetic Algorithms with
article swarm optimization. Dalfard and Mohammadi [17] use
imulated Annealing to complement the Genetic Algorithm, Rossi
nd Boschi [18] combine the Genetic Algorithm with an Ant Colony
pproach. Both Li and Gao [19] and Zhang et al. [20] rely on a hybrid
f Genetic Algorithm and Tabu Search. The use of Tabu Search
orms the second larger cluster among the heuristics used.

In addition to Genetic Algorithms, Tabu Search, Ant Colony,
article Swarm Optimization and Simulated Annealing, many
ther approaches can be found in research work on the FJSP.
owever, these usually use hybrid forms with the heuristics
lready mentioned (e. g., [21–31]). The approaches of Xing et al.
32] and Nouri et al. [33] are particularly noteworthy here. The first
ne uses simple rule based strategies for job assignment and
equencing. Nouri et al. [33] propose a hybridization of the two
ost frequently used metaheuristics (Genetic Algorithm and Tabu
earch) within a holonic multiagent model.
The comparability of the different optimization approaches is

artially given, since standardized test scenarios were already
eveloped for example by Brandimarte [4], Kacem et al. [21] and
acem et al. [22]. Subsequently, these have often been used by
uthors to benchmark their approach (cf. Table 1). The test
cenarios differ with regard to the number of available machines
M), the orders to be scheduled (N) and the non-linear work plans
nderlying these orders.

In general, the use of the presented approaches was only
intended for nonlinear PPC. A process parallel use, as it is necessary
for adaptive PPC, was not in focus. This new field of application
brings along a higher time criticality in the solution finding,
because orders can only be passed on to the next workstation after
a successful recalculation.

Depending on the size of the PPC problem, the computing time
is documented for example in Xing et al. [32], Wang et al. [8], Li
et al. [30], Zhang et al. [10], Nouri et al. [33] and Li and Gao [19]. As
expected, the computing time usually increases significantly with
the problem size. An exception is, for example, the calculation
time for the MK-08 problem in Zhang et al. [10]. At 2.2 s, this is
less than the solution times for the smaller problems MK-02 and
MK-04 to MK-07. For the equally large problem MK-09 (20 � 10)
and for the problem instance seti5xxx (15 �18), significantly
higher computation times of 30.2 s and 105.25 s are specified. It
can therefore be assumed that the mechanism used by Zhang
et al. [10] to form a starting population for the developed Genetic
Algorithm happens to be ideally suited to the present PPC
problem MK-08. Even the rule-based approach of Xing et al. [32]
cannot show consistently low computing times that can be used
for process parallel application. On the contrary, with 3.02–
122.52 min, depending on the complexity of the optimization
scenario, the times here are even significantly higher than the
otherwise reported time range.

Basically, the scientific results suggest that, at the latest for
problem sizes relevant to practice, a process-parallel application,
as it becomes necessary with a novel combination with adaptive
PPC, no longer seems realistic. Therefore, an approach is needed
that provides results similar to or equal to those of the previous
algorithms, but at the same time delivers reliably low computing
times, especially for large problem instances. Ho et al. [24] present
a first approach here, since the computation time of their CDR-
PopGen algorithm still has a very low computation time of 0.042 s
even for the largest MK problem instance (20 � 15). With their
approach, however, they do not achieve the best known solution
for any MK problem (see Table 1).

In addition to the consideration of solution quality and
computing time, a usable algorithm must ensure the import of
optimization problems from and the export of solutions to existing
planning and scheduling systems (e.g. Manufacturing Execution
System, abbreviated MES) via generally available interfaces. This is
the only way to avoid parallel structures and thus keep hurdles for
the transfer into practical application low. This aspect is usually not
considered in previous considerations.

Fig. 1. Classical adaptive PPC (based on [1]).
Fig. 2. Approaches to solving the FJSP [44–46,50–52].
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Concept of the Digital Annealer

In the past the solution of difficult optimization problems
moved forward by innovative algorithms and the development of
computer hardware. Indeed for the last 50 years progress in
compute power followed Moore’s law. Based on miniaturization of
structures the hardware performance for von Neumann architec-
tures doubled every 18 month. Physical laws limit this develop-
ment when miniaturization arrives at atomic scale. Further
improvements require new approaches and a revival of pur-
pose-built machines is emerging [34].

Examples for promising hardware alternatives are neuro-
morphic computing delivering superior power efficiency to
artificial intelligence applications or quantum computing to
overcome the challenges of NP hard problems.

Combinatorial optimization for discrete decisions is the
algorithmic background of many real world problems like cost
reduction, risk mitigation, similarity search, task scheduling etc.
These problems often turn out to be NP hard and economically
reasonable solutions on classical hardware are out of reach. For
such problems, quantum computers can be a solution. According to
Lucas [35] many NP hard problems can be mapped to an energy
minimization exercise formulated as an Ising model.

Quantum Annealing as a special concept of Quantum
Computing is able to solve Ising model problems in polynomial
time. Published by Kadowaki and Nishimori [36] as concept,
Quantum Annealing was realized by D-Wave and commercialized
since 2011 ([37]). In future generations, D-Wave could increase
the number of bits and their connectivity and precision. D-Wave
machines can solve Ising models but the required connectivity
and precision in real world problems can only be reached by
mapping the logical model bits to sets of physical qubits. This so
called embedding process reduces the number of usable model
bits by a factor of 30–50 compared to the available qubits. This
limits the application of Quantum Annealing in operative
scenarios today.

In many optimization applications the small compute effort and
execution time is more important than the global optimality of the
solution. For such applications, where the last percent of
optimization target can be neglected, an approach on classical
CMOS hardware is available. The Digital Annealer is a purpose-
built machine by Fujitsu that optimizes Ising models in short
processing times [38]. It can be applied to the same problem class
as D-Wave Quantum Annealer. In its version 2 it can support fully
connected high precision Ising models with 8192 bits.

The input for Quantum Annealing is a specific Ising model,
which contains all information about the optimization problem. An

Ising model is given as a binary search space X ¼ 0; 1f gN for a
natural dimension N and an energy function E : X ! R from the
search space to the real numbers that for each x ¼ x1; . . . ; xNð Þ 2 X
is given by

E x1; . . . ; xNð Þ ¼
XN

i¼1 bixi þ
XN

i¼1
XN

j¼i wi;jxixj ð1Þ

for a real valued bias vector

b ¼ b1; . . . ; bNð Þ 2 RN ð2Þ
and an upper triangular weight matrix

w ¼ wi;j
� �

i ¼ 1; 2; . . . N 2 RN2
: ð3Þio
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The quantum annealing searches for a solution xmin 2 X with
minimum energy, i.e.

8x 2 X : E xð Þ � E xminð Þ: ð4Þ
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The polynomial E of quadratic order in binary variables xi is
alled Quadratic Unconstrained Binary Optimization (QUBO). The
igital Annealer gets such a QUBO as input and therefore supports
xactly the same problems and problem formulation as Quantum
nnealers do. It can handle QUBOs defined on up to 8192 bits and
he bias and weight values can be represented in 16–64 bit
recision. This allows much bigger models than possible on
uantum technologies today.
On the Digital Annealer, the search for optimized solutions is a

arkov Chain Monte Carlo process. A step from a current state
 2 X to a neighbor state x0 2 X differing in one bit from the current
tate is applied with a probability depending on the energies of the
wo states where lower energies are preferred. The base concept is

 simulated annealing approach [39,40], where the acceptance of a
tep from one state to another additionally depends on a start
emperature t which is gradually decreased during the process.
he start and end temperature and the number of steps for the
andom walk are figured out problem specific and are typically not
odified for every data set. Hence the calculation time can be kept
onstant and does not grow exponentially with the problem size.
he Digital Annealer has multiple hardware and algorithmic
mprovements compared to simulated annealing, and it can
rovide very good optimization results in sub second runtime:

) Parallel trial steps: Every state in the search space has N
neighbors in Hamming distance of one bit. The random
experiments for accepting a neighbor as next position candidate
are done in parallel and then one of the candidates is selected.
This shortens the waiting time due to unaccepted steps in local
minima by up to factor of N.

) Fast escape from local minimum: When the annealing process is
in low temperature even with parallel attempts for all neighbors
no candidate might be produced. In that case the next attempt is
calculated from a higher “borrowed” start energy to increase the
acceptance probability. With every miss of candidates after a
trial phase this energy is increased so that latest after few
energy increments a step acceptance becomes sure and the
local minimum can be left behind. This helps the search in the
later phases at cold temperature to do much more steps and find
better solutions in shorter time.

) Parallel execution: The Digital Annealer hardware provides not
only enough arithmetic logical units for parallel step attempts
on all bits but 16 times more units. Therefore, it can run 16
independent annealing processes in parallel in the hardware.
This increases the quality of the best solution.

) Parallel tempering replica exchange: Aside from annealing, the
Digital Annealer supports parallel tempering as a second
optimization approach. Annealing processes at different con-
stant temperatures are executed in parallel. After a given
number of steps, the reached states are shuffled between
neighboring temperatures randomly where higher energy
preferably goes to higher temperature to give the worse state
higher probability to search around while the better state goes
into colder converging and conserving annealing conditions.

A detailed description of the Digital Annealer together with
ome benchmarking results can be found in Matsubara et al. [41].
n contrast to ideal quantum annealers the algorithmic approach of
he Digital Annealer cannot guarantee an optimum solution in
very case. Combinatorial problems with few valuable solutions or

Current quantum annealers are limited in the representation
of densely connected Ising models, i.e. problems where the
weight matrix of Eq. (3) features a high number of off-diagonal
nonzero entries [42]. This limitation of physical qubit coupling
does not apply to simulated annealing approaches. The quantum
inspired algorithmic improvements and hardware accelerations
of simulated annealing gives the Digital Annealer real time
capabilities for many industrial optimization problems. Thus, the
concept of the Digital Annealer fulfils in principle the require-
ments formulated in chapter 2 for a solution approach for
process-parallel, holistically optimized work plan selection
within the framework of adaptive PPC. To apply the Digital
Annealer to the FJSP, however, a suitable Ising model is still
required. Therefore, in the next chapter different transformations
of the FJSP into Ising models are demonstrated.

QUBO-formulation for process parallel flexible job shop
scheduling

In this chapter a formulation of the FJSP that is amenable to
quantum annealers is constructed, i.e. a formulation of a FJSP
instance as a quadratic unconstrained optimization problem is
needed. The following QUBO-formulation is based on the work of
Venturelli et al. [43] and extends it with a penalty term that favors
schedules with shorter makespans. Additionally an approach of
how to efficiently estimate a discretized timeline from original
problem instances in continuous time is presented.

Problem definition

A (continuous) FJSP instance consists of a set of n jobs J ¼
j1; . . . ; jnf g which need to be scheduled on a set of machines
M ¼ m1; . . . my

� �
. For each job j 2 J there is a set of operations Oj

with nj :¼ Oj
�� ��, all of which need to be executed in a defined order.

That is, let O :¼ Sj2JOj be the union of all operations, then there is a
unique order mapping

c : O ! N; ð5Þ
where for each j 2 J the restriction cjOj

maps Oj bijectively onto the

set 1; . . . ; nj
� �

. It can be assumed that for any job j 2 J and o 2 Oj the
position of the operation o in the execution order of job j is given by
c oð Þ.

Depending on the problem statement, an operation has
multiple machines on which it can potentially be executed. That
is, for any j 2 J and o 2 Oj there is a non-empty subset Mo � M of
machines that are capable of performing operation o. Furthermore
for any m 2 M and o 2 Oj the duration of operation o on machine m is
denoted by do;m 2 R�0. In particular it is assumed that do;m ¼ 0 if
and only if m=2Mo.

Additionally, as bigger problems will later be split up into
smaller instances, it is assumed that for each m 2 M there is a
machine availability time am 2 R�0, which indicates the earliest
possible time at which an operation can be started on machine m.
Analogously a job availability time aj 2 R�0 is assigned to each job
j 2 J, indicating the earliest possible time at which the first
operation of a job j is allowed to start. Hence an operation of a job j
can at the earliest start on some machine m at time maxfaj; amg.

A schedule V for a FJSP J, O, M as above is defined as a set of triples
ven only one result of interest are less suited for the Digital
nnealer; factorization of large integers as a possibility to break
ncryptions is a popular example in that direction. On the other
and, if the set of admissible solutions is dense in the binary search
pace and the QUBO allows several near optimum solutions, then
he problem is typically well suited for the Digital Annealer.
10
o; m; tð Þ 2 O � M � R�0 (indicating the starting time t of an
operation o on some machine m) which satisfies:

1) For all o 2 O, there is at most one m 2 M and at most one t 2 R�0
with o; m; tð Þ 2 V .

2) For all o; m; tð Þ 2 V it is satisfied do;m > 0.
3
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3) Let o; m; tð Þ; o
0
; m

0
; t
0� � 2 V with o; o

0 2 Oj for some j 2 J. If

c oð Þ < c o
0� �
, then t < t

0
.

A feasible schedule V is a schedule where the further conditions
hold:

4) For all o 2 O, there is exactly one m 2 M and exactly one t 2 R�0
with o; m; tð Þ 2 V .

5) Let o; m; tð Þ 2 V with o 2 Oj for some j 2 J. Then max aj; am
� � � t.

6) Let o; m; tð Þ; o
0
; m

0
; t
0� � 2 V with o; o

0 2 Oj for some j 2 J. If

c oð Þ < c o
0� �
, then t þ do;m � t

0
.

7) Let m 2 M. For all o 6¼ o
0 2 O and t;  t

0 2 R�0 with
o; m; tð Þ; o

0
; m; t

0� � 2 V the time t
0
does not lie in the half open

interval t; t þ do;m
�

.

A feasible schedule V is squeezed, if for any o; m; tð Þ 2 V with
o 2 Oj for some j 2 J at least one of the following is true:

8) The time t satisfies t ¼ max aj;  am
� �

.
9) For o

0 2 Oj with c oð Þ ¼ c o
0� �þ 1, there is m

0 2 M such that

o
0
; m

0
; t � do0 ;m0

� 	
2 V .

10)
There exists o

0 2 O such that o
0
; m; t � do0 ;m

� 	
2 V .

A squeezed schedule is uniquely given by the order of
operations on each machine. Indeed, it is easy to see that by
shifting the starting times accordingly, for any schedule V
satisfying condition 4) it can be passed to a unique squeezed
schedule Vsq with the same order of operations on each machine,
i.e. for all m 2 M and o; o

0 2 O applies

9t < t
0 2 R�0 s:t:  o; m; tð Þ; o

0
; m; t

0
� 	

2 V()9t < t
0

2 R�0 s:t:  o; m; tð Þ; o
0
; m; t

0
� 	

2 Vsq: ð6Þ

Finally the makespan of a schedule V is defined as

makespan Vð Þ :¼ max
o;m;tð Þ2V

t þ do;m
� �

; ð7Þ

and the objective of a FJSP J, O, M as above is to find

min
feasible schedule V

makespan Vð Þ: ð8Þ

Note that for any feasible schedule V applies
makespan Vsq

� � � makespan Vð Þ.
For the QUBO formulation only discrete FJSP instances are

considered. In later sections it is suggested how to discretize
continuous FJSP instances. A discrete FJSP instance is given by jobs
J, operations Oj, machines M and a unique order map c : O�!N

exactly as above. Additionally, there is a discrete timeline T
0
:¼

0; . . . ; T � 1f g for a number of time ticks T 2 N. The duration of an
operation o 2 O on a machine m 2 M is given as a number of time
ticks by do;m 2 N. As above for the job and machine availability
times applies aj; am 2 N.

The definition of a discrete (feasible, squeezed) schedule V and
its makespan works exactly as above, however in this case

V � O � M � T
0
. For clarity the conditions of a discrete feasible

schedule V are given:

6) Let o; m; tð Þ; o
0
; m

0
; t
0� � 2 V with o; o

0 2 Oj for some j 2 J. If

c oð Þ < c o
0� �
, then t þ do;m � t

0
.

7) Let m 2 M. For all o 6¼ o
0 2 O and t;  t

0 2 T
0

with
o; m; tð Þ; o

0
; m; t

0� � 2 V applies t
0
=2 t; :::t þ do;m � 1
� �

.

As in the continuous case, for any discrete schedule V satisfying
condition 4) it can be passed to a squeezed schedule Vsq with the
same order of operations on each machine. However, note that it
might be necessary to move to an extended timeline T’ in the
problem instance.

QUBO setup

In the following, let a discrete problem instance be given by jobs

J, machines M and operations O as well as a timeline T
0
:¼

0; :::; T � 1f g for some T 2 N as above.
In this setup, a set of binary variables which corresponds to all

the possible discrete starting times of the operations is assigned,
i.e. binary variables

xo;m;t
� �

o2O;m2M;t2T
0 ð9Þ

are defined, where

xo;m;t ¼ 1 : operation o starts on machine m at time t;
0 : otherwise:



:

In the following, a binary polynomial H is set up in the variables
ðxo;m;tÞ which is associated with the problem instance: First for the
different necessary constraints in FJSP are accounted by defining
binary polynomials H0, H1, H2. Then a binary polynomial H3 is
defined that serves as a cost function which favors schedules with
shorter makespans. Afterwards the optimization objective H can
be set as

H :¼  aH0 þ bH1 þ gH2 þ dH3 ð11Þ
with scalar weights a;  b;  g;  d 2 R>0.

Polynomials for necessary constraints

The optimization problem is limited by three constraints.
Firstly, each operation must be started once and only once on some
capable machine:

H0 :¼
X
o2O

1 �
X
m2Mo

XT�1
t¼0

xo;m;t

  !2

: ð12Þ

Obviously, this rule is fulfilled for a binary configuration xo;m;t
� �

as above if and only if H0 xo;m;t
� �� � ¼ 0.

Secondly, for every job j 2 J, its operations Oj must be executed
in the order given by

cjoj : Oj ! 1; . . . ; nj
� �

: ð13Þ

For any j 2 J the set Vj of violating index combinations for job j is
defined as

Vj ¼ o; m; tð Þ; o
0
; m

0
; t
0

� 	� 	
2 Oj � M � T

0� 	2
jm 2 Mo ^ m

0 2 Mo0

^ c oð Þ < c o
0

� 	� 	
^ t

0
< t þ do;m

� 	
g
;

8<:

4) For all o 2 O, there is exactly one m 2 M and exactly one t 2 T

0

with o; m; tð Þ 2 V .
5) Let o; m; tð Þ 2 V with o 2 Oj for some j 2 J. Then

max aj; am
� � � t < T � do;m.
104
thus

H1 :¼
X
j2J

X
o;m;tð Þ; o0 ;m0 ;t0ð Þð Þ2Vj

xo;m;txo0 ;m0 ;t0 : ð14Þ
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Again, the rule described above is fulfilled for any binary
onfiguration xo;m;t

� �
if and only if H1 xo;m;t

� �� �
  ¼  0.

In addition, only one operation can be executed simultaneously
n a single machine at a certain point in time. Analogously to
bove, for any m 2  M a set Wm of violating index combinations for
achine m is defined as

m ¼ o; m; tð Þ; o
0
; m; t

0
� 	� 	

2 O � M � T
0� 	2
jt � t

0
< t þ do;m


 �
;

hus

2 :¼
X
m2M

X
o;m;tð Þ; o0 ;m;t0ð Þð Þ2Wm

xo;m;txo0 ;m;t0 : ð15Þ

Again, for any binary configuration xo;m;t
� �

as above no machine
s double-occupied if and only if H2 xo;m;t

� �� � ¼ 0.

redecessors and successors

Before the binary polynomial which serves as cost
unction for longer makespans is defined, the notion of
redecessor and successor times is introduced: Let j 2 J and

 2 Oj. Depending on c oð Þ, in a feasible schedule the operation o
annot start arbitrarily early or late, since there has to be a
inimum number of time ticks before (resp. after) the finishing

ime of o to execute all operations o
0 2 Oj with c o

0� �
< c oð Þ (resp.

ith c o
0� �
> c oð Þ).

For any o 2 O denote by do;min ¼ minm2Mo do;m
� �

the minimum
ime in which an operation can in principle be executed.

For j 2 J, o 2 Oj and m 2 Mo, the minimum successor time Sj;o;m
or operation o on machine m is given by

j;o;m :¼ do;m þ
X

o0 2Oj ; c o0ð Þ>c oð Þ
do0 ;min: ð16Þ

The minimum predecessor time Pj;o;m for a job j and an operation
 2 Oj on machine m is given recursively along its execution order

 oð Þ: For o with c oð Þ ¼ 1 set

j;o;m :¼ max am; aj
� �

: ð17Þ

Let Pj;o0 ;m be already defined for some o
0 2 Oj and let o 2 Oj with

 oð Þ ¼ c o
0� �þ 1, then set

j;o0 :¼ min
m2Mo

Pj;o0 ;m þ do0 ;m
n o

; ð18Þ

nd recursively

j;o;m :¼ max am; zj;o0
n o

ð19Þ

akespan objective H3

The polynomials H0, H1, H2 only consist of combinatorial
onstraints, however the optimization target is to bring the
achine activities to early time ticks. With the notion of
redecessor and successor times, a binary polynomial can be
efined that penalizes late starting times of operations that could
n theory have already started.

Let j 2 J, o 2 Oj, m 2 Mo and let Gj;o;m ¼ T � Sj;o;m � Pj;o;m. If

� 0, then the timeline T
0 ¼ 0; . . . ; T � 1f g is too small and the

a scalar penalty weight is defined

po;m;t :¼
t þ do;m � Pj;o;m

Gj;o;m
2 do;m

Gj;o;m
; 1 þ do;m

Gj;o;m

"
: ð21Þ

and then

H3 :¼
X
j2J

X
o2Oj

X
m2Mo

XT�Sj;o;m�1

t¼Pj;o;m
po;m;txo;m;t: ð22Þ

All in all, this results in the complete objective binary
polynomial according to Eq. (11). It is only necessary to define
penalty weights for time ticks t as in Eq. (20), because all further
binary variables can be pruned, as described in the next section.

The optimization objective H itself is unconstrained: the
necessary constraints of the scheduling problem are encoded
within the penalties H0, H1, H2. In the annealing process these need
to be driven to zero in order to obtain a feasible schedule.
Depending on the problem instance it thus makes sense to choose
a; b; g � d.

In general, due to the impact of H1 and H2, the objective
polynomial H  will possess a high number of nonzero quadratic
coefficients. Additionally, finding the global minimum of the FJSP is
often unnecessary for practical industrial applications, whereas
obtaining a near optimum solution is sufficient. This makes the
optimization of the polynomial H suitable for a simulated
annealing approach with the Digital Annealer, as outlined at the
end of chapter 3.

Variable pruning

The number of binary variables xo;m;t
� �

o2O;m2M;t2T 0 equals

Oj j� Mj j�T, however, the discussion above shows that the number
of variables which is needed can be significantly reduced:

1) Not every machine can perform every operation, hence it can be

stated that xo;m;t ¼ 0 for all t 2 T
0
, o 2 O, m 2 M with m=2Mo:

2) As discussed, for an operation there needs to be time for
predecessor and successor operations, hence for all o 2 O and

m 2 M applies xo;m;t ¼ 0 for all time ticks t 2 T
0
with 0 � t <

Pj;o;m or t � T � Sj;o;m.

Discretization of problem instances with real makespans

In practice for a given continuous problem instance J, O, M with

real makespans do;m 2 R�0, a suitable discrete timeline T
0
is not

known in advance. In order to find a fitting discretization of the
problem instance first a real candidate for a timeline Q 2 R>0 in
which all operations can be executed needs to be estimated. The
timeline Q then needs to be discretized by defining the number of
equidistant time ticks T 2 N, from which the length of one
timestep l :¼ Q

T�1 can be computed. However, this poses several
difficulties:

1) In a discretization, given a real length l 2 R>0 of one timestep,
the execution of some operation o 2 O on a machine m 2 M

takes do;m
l timesteps, which in general will not be an integer.

Applying some rounding operator leads to inaccuracies in the
j;o;m

peration o has no possibility to start on machine m. Otherwise, for

ny time tick t 2 T
0
with

j;o;m � t < T � Sj;o;m ð20Þ
105
representation of the original problem.
) As the number of usable binary variables on current quantum
annealers is severely limited (on the Digital Annealer it is
limited to 8192 at the time of writing), the number of timesteps
2
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T should be chosen in a way that already respects the amount of
binary variables which will be pruned as described in chapter
4.6.

In the following two sections these two considerations are
addressed. In section 4.7.3 a two-step process to obtain a suitable
discretization of a continuous problem instance is proposed.

Discretization of execution times
For a continuous problem instance J, O, M, suppose some real

candidate for a timeline Q 2 R>0 as well as a desired number of
timesteps T 2 N for a discretization is given. Formally, Q is any
positive real number for which the set of feasible schedules

VjV is  makespan Vð Þ � Qf g ð23Þ

is nonempty. Using the length of one time step l :¼ Q
T�1, it is possible

to pass to a discrete problem instance with timeline T
0
:¼

0; . . . ; T � 1f g and integer durations ~do;m :¼ g do;m
l

� 	
, where g

denotes some integer approximation such as flooring, ceiling or
rounding to the nearest integer. Obtain discrete availability times ~aj
and ~am in the same way.

Now given a squeezed schedule ~V � O � M � T
0

for the
discretized problem, it can be passed to a continuous schedule
V for the original problem using the map

~V ! O � M�R�0;   o; m; tð Þ7! o; m; t � lð Þ: ð24Þ
Even though it can always be passed from V to Vsq, the schedule

V cannot be expected to be squeezed: if g is the ceiling function, V
will be feasible, however will most likely have gaps between the
operations. If g is the flooring function, V cannot be expected to be
feasible, as there might be overlapping operations. Any integer
approximation apparently cannot capture all subtleties in the real
durations do;m, however, depending on l they blur eminently for
flooring and ceiling. In particular, discrete durations will be
approximated in the following by basic rounding, where durations
< 1 will always be rounded up to 1, in order to not include
durations of 0 on capable machines. This means that for a given l,
the map

g : R�0 ! N;  d7!

0; if d ¼ 0;

1; if 0 <
d
l
< 0:5;

d
l
þ 0:5

� 

otherwise:

8>>>><>>>>: ð25Þ

is used.

Choosing a timeline T0 given Q
In this section the problem of choosing the number of time ticks

T for a suitable discretization of a real makespan candidate Q is
addressed, while at the same time respecting some maximum
number of binary variables as well as the number of variables
which can be pruned as described in chapter 4.6.

The same notation as in section 4.7.1 above is used.
Let J, O, M be a continuous problem instance, and suppose a real

candidate for a timeline Q 2 R>0 is given. Denote by Q a predefined
maximum number of possible binary variables that can be used. Let

U ¼ o; mð Þ 2 O � Mjdo;m > 0
� ��� �� ð26Þ

that

T ¼ max ~T 2 N>0jU � ~T � F ~T
� 	

� Q
n o

: ð27Þ

Let ~T 2 N>0. In the continuous problem instance for each job
j 2 J, operation o 2 Oj and machine m 2 M predecessor times Pj;o;m

and successor times Sj;o;m can be defined in the exact same way as in
chapter 4.4 above (with the only exception that the durations do;m
lie in R). Using that any duration d 2 R takes g d

l

� �
time steps of

length l :¼ Q
~T �1, and by omitting the rounding operation g, an

estimate

F ~T
� 	e X

j2J;o2Oj;m2Mo

Pj;o;m� ~T � 1
� 	
Q

þ
Sj;o;m� ~T � 1

� 	
Q

0@ 1A
¼

~T � 1
Q
� X

j2J;o2Oj ;m2Mo

Pj;o;m þ Sj;o;m

0@ 1A ð28Þ

is obtained.
Hence using Eq. (27) and denoting

G :¼
X

j2J;o2Oj ;m2Mo

Pj;o;m þ Sj;o;m; ð29Þ

an initial approximation of T is obtained via

T~
Q � G

Q

U � G
Q

$ %
: ð30Þ

Using this estimate of T, a discretization of the given problem
instance can be computed and hence an exact value of the number
of predecessor/successor variables F Tð Þ, as well as the number of

used binary variables eQ ¼ U � T � F Tð Þ. Depending on the differ-

ence eQ � Q , this estimate of T can then be even further refined by

iteratively decreasing respectively increasing T and recomputing eQ
until T satisfies Eq. (27).

Two-step process for discretization
In order to choose a suitable discretization of a continuous

problem instance J, O, M, it is proceeded as follows:

- A fast round-robin scheduling approach is used to find a
squeezed schedule to the problem instance. This approach
simply takes all jobs permuted arbitrarily and schedules the first
operation of each job one after another, always choosing for each
operation the most convenient free slot on the machines. Then
the second operation of each job is scheduled and so on. This is
repeated for q times to obtain a set of q squeezed schedules. Of
these, let V be the schedule with the minimum makespan, and

denote its makespan by Q
0
.

- Given Q
0
, compute number of timesteps T and a discretization as

described in section 4.7.1 and 4.7.2 above.
- From the schedule V , using the same order of operations on each

machine, pass to a discrete squeezed schedule eV for the
discretized problem instance.

- Compute

Q :¼ e � makespan eV� 	
� Q

0

T � 1
; ð31Þ
be the number of all (operation, capable machine)-pairs.
Furthermore given any T 2 N>0, it is possible to pass on to a

discrete problem instance as described in the previous section and
F Tð Þ is written for the number of unused predecessor/successor
variables as in chapter 4.6, depending on T. Thus for the
discretization of the continuous problem T should be chosen such
106
for some e � 1. Use Q as an updated makespan candidate to
arrive at an updated discretization, again using the approach
described above in section 4.7.1 and 4.7.2.

Here e � 1 serves as a security scaling factor to give the
annealing process more freedom in the choice of timesteps when
scheduling operations.
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teratively solving large-scale problems

With a limited number of model bits for a growing number of
obs, operations and machines, the number of time ticks that can
e used in a discretization of the continuous timeline shrinks. For
xample, the Digital Annealer currently has a limit of 8192 bits -
epending on the problem instance, needing to fit around two
undred operations becomes too coarse-grained and no longer
ields good solutions. The number of qubits on usable quantum
nnealers at the current state of technology is even lower.
Thus, in order to solve larger problem instances, these need to

e split into smaller subproblems of which the solutions in turn are
ombined into a full solution of the original large problem. On a
igh level, the proposed iterative approach is described below and
ummarized in Fig. 3.
A job j 2 J is defined to be unfinished in some (continuous or

iscrete) schedule V , if there is o 2 Oj such that o  6¼ o0 for all
o0; m; t Þ 2 V . Analogously a job j 2 J is finished in a schedule V , if
here exists o; m; tð Þ 2 V for all o 2 Oj.

Given as usual a continuous problem instance J, O, M with
urations do;m 2 R�0 and job availability times aj ¼ 0 for all j 2 J,
nd machine availability times am ¼ 0 for all m 2 M and order map

 : O7!N, the proposed iterative approach is as follows:

) Let m 2 0½ ; 1 be a predefined ratio of operations to remove after

each iteration. Furthermore let V 0ð Þ :¼ ; be an empty global

schedule. For all j 2 J let s 0ð Þ
j :¼ 1 be the starting operation index,

as well as a global starting time g 0ð Þ :¼ 0. Define availability times

a 0ð Þ
j :¼ aj for each j 2 J and a 0ð Þ

m :¼ am for each m 2 M. Set k   0.
) Let R kð Þ � J be the subset of unfinished jobs in V kð Þ. Choose ane kð Þ kð Þ

c kð Þ :  eO kð Þ ! N, with c kð Þ oð Þ ¼ c oð Þ � s kð Þ
j þ 1 for o 2 eO kð Þ

j for some

j 2eJ kð Þ
.

3) Solve the smaller subproblem consisting of eJ kð Þ
, eO kð Þ

, M with

availability times a kð Þ
j , a kð Þ

m and order map c kð Þ as described, and

obtain a squeezed schedulefW kð Þ
for the subproblemeJ kð Þ

, eO kð Þ
, M.

Merge the current global schedule V kð Þ with fW kð Þ
, i.e. set

eV kð Þ
:¼ V kð Þ [ o; m; g kð Þ

� 	
j o; m; t � g kð Þ
� 	

2 fW kð Þ
 �
: ð32Þ

If all jobs j 2 J are finished in eV kð Þ
, it is terminated with the

squeezed schedule V kþ1ð Þ :¼ eV kð Þ
for the initial problem J, O, M.

4) Otherwise, given m, a tail of the appended operations infW kð Þ
is

cut off. That is, let t kð Þ � makespan eV kð Þ
� �

be maximal such that

o; m; tð Þ 2 fW kð Þjt þ do;m > t kð Þ

 ����� ���� � m � eO kð Þ

���� ����: ð33Þ

Then set as next iterate for the current global schedule

V kþ1ð Þ :¼ V kð Þ [ o; m; tð Þj o; m; t � g kð Þ
� 	

2 fW kð Þ
^ t � g kð Þ þ do;m � t kð Þ


 �
ð34Þ

5) For each m 2 M let

f kð Þ
m :¼ max t þ do;mj o; m; tð Þ 2 V kþ1ð Þ 

n o
ð35Þ

the finishing time of each machine, respectively f kð Þ
m :¼ 0 if the set

on the right hand side is empty. Analogously let for each j 2 J

f kð Þ
j :¼ max t þ do;mjo 2 Oj and  o; m; tð Þ 2 V kþ1ð Þ 

n o
ð36Þ

the finishing time of each job.

6) Using V kþ1ð Þ, update the next iterates accordingly:
(a) For all j 2 J, set

s kþ1ð Þ
j :¼ max c oð Þjo 2 Oj and  o; m; tð Þ 2 V kþ1ð Þ 

n o
þ 1; ð37Þ

respectively s kþ1ð Þ
j ¼ 1 if the set on the right hand side is empty.

(b) Set g kþ1ð Þ :¼ minm2M f kð Þ
m .

(c) Update availability times by

a kþ1ð Þ
m :¼ f kð Þ

m � g kþ1ð Þ ð38Þ
and

a kþ1ð Þ
j :¼ max 0; f kð Þ

j � g kþ1ð Þ
n o

: ð39Þ

Fig. 3. Heuristic for solving large scale problems.
'appropriate' subset J � R of unfinished jobs. For each

j 2eJ kð Þ
, a chain of operations eO kð Þ

j � Oj is taken from the

beginning of the remaining operations in Oj. That is, choose

u kð Þ
j 2 s kð Þ

j ; . . . ; nj

n o
and set eO kð Þ

j :¼ o 2 Ojjs kð Þ
j � c oð Þ � u kð Þ

j

n o
, as

well as eO kð Þ
:¼ S kð Þ

j2eJeO kð Þ
j . Obtain an adjusted order function
10
7) Continue from step 2 with k   k þ 1.

The idea of the above approach is that good solutions for
smaller subproblems with less jobs and less operations might not
necessarily be part of a good solution for the original problem, as
7
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following operations can drastically change the picture. However,
often in practice ‘early’ operations in a good solution of the smaller
subproblem tend to stay rigid when compared to good solutions of
the original problem. Hence in each iteration of the above process a
tail is cut off from the current solution, thus merely using the start
of the solution to the smaller subproblem.

In the following, two strategies are presented how to choose the

subseteJ kð Þ � R kð Þ of unfinished jobs in the k -th iteration, as well as

u kð Þ
j 2 s kð Þ

j ; . . . ; nj

n o
for each j 2eJ kð Þ

.

Rolling horizon
With this strategy a step size w 2 N>0 is defined and all jobs are

always handled at the same time. I.e. in the k-th iteration defineeJ kð Þ
:¼ R kð Þ to be the set of all unfinished jobs of J. Then given a job

j 2eJ set u kð Þ
j :¼ min k�w þ 1; nj

� �
in each iteration of the algorithm

above. Hence the full solution builds itself up in a rolling fashion,
extending its horizon.

Bottleneck identification
In larger problems with many jobs, it is not practical to include

all jobs in each iteration, so a choice about which jobs to exclude
from the subproblem needs to be made each time. The idea in this

approach is to assign a bottleneck factor b kð Þ
j > 0 to each unfinished

job j 2 R kð Þ in the k -th iteration. These weight factors should reflect
how much the job contributes to the overall makespan of the

problem. The greater b kð Þ
j , the more j is considered as a 'bottleneck'

and include it in the subproblem, with the aim to start potentially
long running jobs early on.

For ease of notation in the following the kð Þ -superscript in the k
-th iteration is omitted.

Given a problem J;  O;  M at the start of an iteration in the
algorithm, the following steps for each unfinished job j 2 J (with
usual notation) is performed:

1) Compute the minimum duration that is needed to execute the
remaining operations of j:

d
0
j;min :¼ aj þ

X
o2Oj ;c oð Þ�sj

do;min: ð40Þ

2) Let q 2 N be some predefined number of samples. Each time
permuting the jobs randomly, the round-robin algorithm as in
chapter 4.7 is performed for q times and obtain q finishing times

f
0
j;1; . . .  ; f

0
j;q of the job j. Taking the mean yields an estimated

finishing time of j by

f
0
j :¼

1
q

Xq
i¼1

f
0
j;i: ð41Þ

After d
0
j;min and f

0
j have been computed for each j, a min-max

normalization on the values is performed, i.e. for each j 2 R set

dj;min :¼
d
0
j;min � mink2R d

0
k;min

n o
maxk2R d

0
k;min

n o
� mink2R d

0
k;min

n o 2 0; 1½ 	 ð42Þ

as well as

f j :¼  
f
0
j � mink2R f

0
k

n o
maxk2R f

0
k

n o
� mink2R f

0
k

n o 2 0; 1½ 	: ð43Þ

In case that mink2R d
0
k;min

n o
¼ maxk2R d

0
k;min

n o
the normalized

minimum duration for job execution dj;min is set to zero for all j;
analogously for f j. The bottleneck factor bj is then calculated as

bj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2j;min þ f 2j

q
2 0;

ffiffiffi
2
ph i

: ð44Þ

The bottleneck factors bj can be used to choose eJ as a pre-

defined number of jobs (e.g. chooseeJ as the x jobs with the highest
bottleneck factor). Furthermore, bj can also be used to decide how

many operations to include for each job j 2eJ proportionally to its
bottleneck factor (e.g. include more operations for jobs with higher
bottleneck factors). In this study, the bottleneck factors are used in
the following way.

Given the full problem instance J, O, M, a maximum number
rJ � Jj j of jobs and a desired number rO 
 Oj j of operations to
include in each iteration is defined. Furthermore, a minimum
number rO;min of operations to include for each chosen job is
selected, with 0 � rO;min�rJ � rO. The choices in step 2 of the
algorithm in chapter 4.8 are made in the following way:
Fig. 4. Solving large scale problems without (a) and with (b) overlapped iterations.
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- Let z ¼ Rj j be the number of unfinished jobs in J. Compute the
remaining bottleneck factors of all z unfinished jobs as described
above. Ordering the jobs in descending order by their bottleneck

factors, eJ is chosen as the first min rJ; z
� �

unfinished jobs.
- Let p :¼ rO � eJ��� ����rO;min. For each j 2eJ with bottleneck factor bj and

starting operation sj define

j :¼ sj � 1 þ rO;min þ round
bj�pP

j2eJ bj
0@ 1A ð45Þ

if
P

j2eJbj 6¼ 0, and

j :¼ sj � 1 þ rO;min þ round
peJ��� ���

0B@
1CA ð46Þ

otherwise. Then choose uj :¼ min euj; nj
� �

, and exclude the job j

rom eJ if uj < sj. Otherwise the operation slice to include in the
teration for job j is defined as

j ¼ o 2 Oj
��sj � c oð Þ � uj

� �
; ð47Þ

s desired.

valuation

The evaluation is split up into three parts. First, the digital
nnealing model for process parallel flexible job shop scheduling is
alidated. Therefore, the suitability of the iterative approach for
roblem decomposition is analyzed. Afterwards, a scientific
enchmark using the MK-problems presented in Table 1 evaluates
he competitiveness of the new digital annealing model. Further,
alidation proves the robustness of the digital annealing model for
rocess parallel flexible job shop scheduling against stochastic
nfluences and hyper-parameter variation. Second, the approach
ill be applied to a practical use-case scenario. A comparison with

 MES planning result for this application aims to underline the
dvantages over currently used PPC methods. Third, a managerial
nsight is given. Focus here is to demonstrate how the optimization
odel can easily be connected to other IT-systems via standard-

zed interfaces, which enables a process parallel usage in practice.

alidation and scientific benchmark

For proofing the suitability of the iterative approach for
roblem decomposition, the mechanism of overlapping iterations
cf. Fig. 3, step four) is of special interest. The Gantt diagrams in
ig. 4 show two different planning results for the problem instance
K-01 with 10 jobs on six machines (0–5) and a total of 55
perations.
In both cases the bottleneck identification method for problem

ecomposition is applied and the problem has been solved in two
terations, choosing only 44 operations in the first iteration. In the
rst diagram no operations were removed after the first iteration,
eading to a solution with a makespan of 49. In the second diagram

 large portion of trailing operations (marked with a black border)
s removed, leading to a solution with a makespan of 42, which
eans that the makespan can be reduced as intended by
verlapping iterations.

also provides the best result for MK-09, but the standard deviation
of 1.30 for five repeated optimization runs is slightly higher than
with rolling horizon (cf. Table 3).

Generally, the results presented in Table 3 show that for MK-03
and MK-08 the best known solution could be confirmed. In 7 out of
10 scenarios the Digital Annealer was able to achieve a solution
quality which is higher or equal to the average value of the
solutions from Table 1. This is especially true for the larger and thus
more practice-relevant problem instances MK-05 to MK-10. Nine
out of ten Digital Annealer solutions dominate the results of Ho
et al. [24], none of the solutions found is worse. This is of special
interest because the approach of Ho et al. [24] basically represents
an alternative for process-parallel use in the context of adaptive
PPC, due to the very low computational times.

It is noticeable that the best results for the smallest problem
instances MK-01 and MK-02 were also achieved by splitting up the
production program (three and four iterations), although optimi-
zation would have been possible without splitting up. A possible
reason may be that many different combinations of work plans and
order sequences lead to similar makespan results. In this case, the
correct positioning of a few work steps determines the quality of
the solution. By dividing the search space into smaller units, the
width of the search space is better searched and the solution
quality can be improved. In many cases, however, this procedure
prevents the absolute optimum from being found. This in turn
explains the below-average optimization result for MK-01.

The anneal times are less than 30 s for all problem instances.
The calculation time increases linearly with the number of
iterations required. In this case, the average calculation time per
iteration is 2.69 s with a standard deviation of only 0.05 s. Since
obviously the number of required iterations increases significantly
slower than the size of the problem, it can be assumed that even for
larger optimization problems it is possible to realize process
parallel executable computing times. For example, the computing
time for problem instance MK-10 is only three times higher than
the anneal time for problem MK-01. This is a decisive advantage
over the approaches known from literature, where the computing
time increases four to 5329 times, according to an overview in Li
and Gao [19], enriched by the results from Wang et al. [8], Li et al.
[30], Zhang et al. [10] and Nouri et al. [33]. On average of all
references mentioned, the computing time increases by a factor of
467.

In order to make first statements about the practical suitability
of the new approach, the robustness of the solution quality is
examined more closely in the following. In order to be able to make
statements about stochastic influences, the optimization runs are

Table 2
Model parameterization for scientific benchmark.

MK t a b g d Q e m w rJ rO rO;min q

01 900 800 700 700 200 8.192 1.0 0.4 – 10 30 1 300
02 900 800 700 700 200 8.192 1.0 0.5 – 10 30 1 300
03 900 800 700 700 200 8.192 1.3 0.2 – 15 60 1 300
04 900 800 700 700 200 8.192 1.0 0.6 – 15 60 1 300
05 900 800 700 700 200 8.192 1.0 0.4 – 15 50 1 300
06 900 800 700 700 200 8.192 1.0 0.4 – 10 70 5 300
07 900 800 700 700 200 8.192 1.0 0.4 – 20 60 1 300
08 900 800 700 700 200 8.192 1.2 0.3 – 20 50 1 300
09 900 800 700 700 200 8.192 1.1 0.3 2 – – – –

10 900 800 700 700 200 8.192 1.2 0.5 – 20 50 1 300
For the scientific benchmark the hyper-parameters shown in
able 2 are used. These have been iteratively determined as the
ost suitable parameters during intensive test runs. It can be seen

hat for the problem MK-09 the rolling horizon method is used. All
ther problem instances are optimized by using bottleneck
dentification. With a makespan of 67, the bottleneck identification
10
first repeated five times with the hyper-parameters from Table 2.
The standard deviation of 0.00–3.91 indicates very stable
optimization results (cf. Table 3).

In addition, the robustness with regard to hyper-parameter
changes is examined as the best settings are normally not known
upfront. For this purpose, the ratio of operations to remove from a
9
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previously optimized subproblem m, the maximum number of jobs
per subproblem rJ , the starting temperature of the annealing
process t and the weighting factor of the makespan penalty d are
independently varied against the previously determined optimum
value. Only the MK-10 problem instance will be considered, as this
is the most practice-oriented one due to the high number of
machines and orders. In addition, MK-10 shows a high standard
deviation with respect to the mean makespan compared to the
other problem instances (cf. Table 3). It is therefore assumed that in
this case the optimization model reacts particularly sensitively to
changed hyper-parameters.

Fig. 5 shows that the increase in makespan is usually small
(<10%) or very small (<5%) when the selected hyper-parameters
are varied. The lower limit of the 95% confidence interval is even
slightly below zero in five of eight cases and with 1.68% and 0.87%
only a little in the positive range for rJ ¼ 15 respectively m ¼ 0:2.
Due to the low standard deviation in repeated optimization runs,
the upper limits of the confidence intervals are also below a
makespan deviation of 10% in six out of 10 cases. For rJ ¼ 15, a
probability of error of 5% results in a moderately higher maximum
makespan deviation of 12.15%. Only for rJ ¼ 10, which corresponds

to a deviation of 50% from the previously selected ideal setting, a
strong increase in makespan of 17.5% on average can be registered.

Overall, the results indicate that the optimization model is
robust to hyper-parameters variations with regard to the make-
span. However, the average 3.72% deterioration of the optimization
result at d ¼ 300 indicates that the makespan objective H3 (cf.
Eq. 22) is not ideally suited for the present problem. Due to the
higher weighting of H3, invalid solutions would have to occur more
frequently with previously ideal model parameterization. Alterna-
tively, better results should be obtained if the choice of d ¼ 200
was not optimal. The measured deterioration suggests that the
current penalization of each delay of a single operation does not
fully correlate with the actual goal of makespan reduction. In fact, if
the values for d are too high, individual operations are shifted in
positions that are unfavorable for the makespan, which means that
the local optimization slows down the global one.

As already shown before, the anneal time correlates with the
number of required iterations. This in turn is on average almost
independent of the hyper-parameters t and d, which is why no
significant effect on the anneal time can be demonstrated for a
variation of both parameters. In contrast, it becomes clear that the
correct choice of m and rJ influence the anneal time significantly. Is
m set too high the anneal time increases greatly (120.33% in the
above example), while the makespan is not reduced significantly.

Practical application

For a more practical evaluation, the digital annealing approach
is investigated on the basis of the production of a sample
component. The production program foresees the production of
40 jobs of one product type with different lot sizes (ranging from
200 to 680 pieces). In total six machines are available for
production, which differ in terms of the work steps they can
execute and the processing speed for each workpiece (cf. Fig. 6). A
standardized format was developed to map these characteristics.
In this format, the relevant technological relationships can be
depicted using product-specific machine matrices, and lot size-
independent basic processing times can be stored. Empty cells
indicate that a machine is not suitable for processing a machine-
work step combination of the product type in question. Order
quantities (lot sizes) and a product type identifier (pID) are added
to each job which is to be scheduled. The pIDs are used as link to
the product-specific machine matrices (see chapter 5.3 for more
details).

The evaluation of the solution quality is done by comparison

Table 3
Results of scientific benchmark.

Benchmark solutiona Annealer solution Standard deviation Anneal time No. of iterations

MK-01 37 / 40.16 41 0.45 7.80 3
MK-02 26 / 27.11 27 0.55 10.34 4
MK-03 204 / 204 204 0.00 10.90 4
MK-04 60 / 63.37 67 1.10 8.15 3
MK-05 172 / 174.5 176 0.71 8.09 3
MK-06 57 / 66.11 62 1.30 10.73 4
MK-07 139 / 144.20 144 3.27 8.10 3
MK-08 523 / 523.2 523 0.00 21.53 8
MK-09 307 / 316.3 314 1.3 18.96 7
MK-10 197 / 222.9 214 3.91 27.06 10

a Best known upper bound / medium value of solutions presented in Table 1.
Fig. 5. Impact of hyper-parameter variations on realized makespan and anneal time.

110
with two different planning results from a MES. The first one uses a
simple forward scheduling algorithm without holistic optimiza-
tion. A work step of an order to be planned is always allocated to
the next free machine that is technically suitable for this work step.
The sequence of the operation allocation is based on the delivery
dates of the orders. Since these were all assumed to be the same in
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he present example, the selection is made in ascending order
ccording to the order numbers. The low computing time of this
imple scheduling algorithm makes process-parallel execution
asy.
In the second reference scenario, the MES is extended via a

lug-In to include the Genetic Algorithm of Denkena et al. [2] for
olistically optimized machine allocation (cf. chapter 2). Sequenc-
ng in front of the machines is still performed by the rule-based
lanning algorithm of the MES. Within this approach the
omputing time depends on the selected number of individuals
nd generations. A process-parallel execution can thus be limited.
In Table 4 the makespan result of all three approaches is

enchmarked. The corresponding hyper-parameter settings for the
igital annealing approach are shown in Table 5 (exp. V0).
ompared to pure MES planning, the makespan can be reduced
y 138.2 h with the new approach. This corresponds to a saving of
0.90% in relation to the procedure currently used in practice. The
se of the Genetic Algorithm for holistically optimized work plan
election, on the other hand, only achieves a makespan reduction
f 18.32% (or 61.9 h) compared to the conventional MES solution.
onsequently, for practical application it can be concluded that the
ew approach is superior to the existing approaches both in terms
f computing time and makespan optimization.
Also within the scope of the practical evaluation, a sensitivity

nalysis was carried out. In order to investigate to what extent the
ndings on the robustness of the optimization approach gained in
he preceding chapter can be confirmed, the hyper-parameter m
nd rJ were again varied compared to the settings identified as
deal. For all the three experiments V0-V2, the same configurations
s for the MK-problems were used for the starting temperature, the
eighting factors of the constraints H0, H1 and H2 as well as for the
akespan objective H3 (t ¼ 900, a ¼ 800, b ¼ g ¼ 700, d ¼ 200).
he maximum number of possible binary variables Q is also fixed
t 8192 again. The other hyper-parameters used are presented in
able 5. Note that ro;min is set to the maximum of four operations,
hich means that with rO ¼ 32, respectively rO ¼ 40 it is ensured
hat the maximum of eight, respectively 10 jobs per iteration are
onsidered for all experiments (V0-V2).

The results presented in Table 6 show that the robustness of the
new optimization approach against hyper-parameter deviation
can be confirmed with regard to the maximum number of jobs to
be used per iteration in the practical application scenario
(experiment V2). An increase of rJ by 25% compared to experiment
V0 results only in an increase of the mean makespan of 5.59%,
which is still far below the results the MES-based approaches (cf.
Table 4). The minimum makespan at experiment V2 is even only
1.95% above that of the benchmark experiment V0. But, in
comparison to the scientific benchmark the new optimization
model reacts more sensitively to a significant increase in the ratio
of operations to remove to m ¼ 0:3. Here the average makespan
increases by 17.06% compared to the V0 settings, the minimum
makespan is 17.74% higher. This finding stands in contrast to the
results of the scientific analysis chapter 5.1, where choosing m too
high did not significantly change the makespan (cf. Fig. 5). A
possible reason for this model behavior is the high number of jobs
with a low number of operations per job. This constellation means
that entire jobs are already removed from the existing schedule for
m ¼ 0:3 and must therefore be completely rescheduled in the next
iteration. As a result, the previously performed optimization effort
for this entire job is lost and at the same time it becomes more
difficult to optimally integrate the first operations of the job into
the already existing schedule again. Nevertheless, the results
basically support the findings from the scientific benchmark,
where the strongly increased anneal time for m ¼ 0:8 also
indicated that choosing too high values for m is not desirable.
As a result, a conservative approach should always be followed
when choosing m and lower settings should be preferred initially.
Values of m > 0:5 do not seem to be appropriate in principle.

However, the results generally also indicate that at least for the
hyper-parameters of the sub-method for iteratively solving large-
scale problems m, rJ , rO and rO;min a problem-specific adaptation

Fig. 6. Non-linear workplan of sample component production.

able 4
akespan evaluation for different optimization approaches.

Table 5
Model parametrization for sensitivity analysis.

Exp. e m rJ rO rO;min q

V0 1.2 0 8 32 4 300
V1 1.2 0.3 8 32 4 300
V2 1.2 0 10 40 4 300
DA GA + MES MES

Min. makespan 199.68h 275.98h 337.88h
DA – �27.65% �40.90%
GA + MES +38.21% – �18.32%
MES +69.21% +22.43% –

A: Digital Annealing Approach; GA + MES: MES with Genetic Algorithm Plug-In.

11
must always be made. As a result, no clear guidelines for the
parameterization of the digital annealing approach can be given, at
least according to the current state of knowledge. Nevertheless, the
relatively small number of particularly relevant parameters and
the fact that obviously a certain parameterization window always
produces good optimization results allow a practical application.
1
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Managerial insights

The approach presented above can only be transferred into
practice if a simple integration into the existing PPC-IT-infrastruc-
ture is possible. The concept shown in Fig. 7, which has been
aligned with a MES manufacturer, shows that this is possible for
the given approach. The needed job and product type identifier
(jID, pID), the lot size and a work step identifier (wsID) as well as
the possible machines (mID) for each work step can be exported
out of the MES to a. txt-file via SQL query. A method for the
automated identification of alternative machine allocation options,
based on job and machine characteristics as well as an ontology
based approach is described in Denkena et al. [2].

The exported data can be automatically transferred into the
standardized input format described in chapter 5.2 (e.g. using a
Visual Basic for Application (VBA) script in combination with the
common spreadsheet software EXCEL). The transfer of the
optimization problem to the Digital Annealer as well as the return
of the optimization results is done with standard commands from
open source Python libraries. The selected. txt output format in
turn allows the planning results to be fed back directly into the SQL
database of the MES. The program-independent transfer format
again allows easy integration into alternative or further software
systems (e.g. EXCEL or databases of other MES manufacturers).

Conclusion and outlook

Modern production planning and control strategies require
continuous and process-parallel optimization of machine alloca-
tion and processing sequences. Therefore, this paper presented a

new method for process parallel flexible job shop scheduling using
the concept of quantum annealing based optimization. The results
of a scientific benchmark showed that the new approach provides
results similar to or equal to those of the classical heuristics, but at
the same time delivers reliably low anneal times, especially for
large problem instances. Thus, for a FJSP with 20 jobs and 15
machines in 27.06 s, a solution could be found that undercuts the
average makespan of 19 classical reference models by about 4%.
Further evaluations showed that the solutions of the new approach
are robust against stochastic influences. Even hyper-parameter
variations have little effect on the achieved makespan optimiza-
tion, and if they do, then only when there are high deviations from
the ideal setting. The application within the scope of a practical use
case confirms the good performance of the new approach.
Compared to a classical MES solution and a combination of MES
and genetic algorithm, significant makespan reductions of 28% and
41% respectively were achieved.

Finally, the investigations within this paper showed that the
makespan objective formulation H3 is not ideally chosen for
makespan optimization. In first additional experiments the best
results of the round-robin algorithm were used for the formulation
of an additional binary objective polynomial H4 which quadrati-
cally penalizes late operation finishing times on each machine
individually. Thus, a minimum makespan of 196 h was achieved for
the sample component production from Fig. 6. For MK-10, a
makespan of 209 was obtained with the alternative approach. In
three repeated observations, the standard deviation was reduced
to 1.73 and thus more than halved compared to the results from
Table 3. Also for MK-09 a better makespan of 311 was achieved, but
both the standard deviation (2.08) and the number of required

Table 6
Results of sensitivity analysis.

Exp. Minimum makespan Avg. makespana Standard deviationa Avg. anneal timea Avg. no. of iterationsa

V0 199.68h 203.26h 4.27 13.59 5.00
V1 235.10h 237.94 3.00 25.26 9.40
V2 203.58h 214.62 h 6.82 12.97 4.80

a Out of five repeated optimization runs.
Fig. 7. Concept for MES integration.
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terations (10) and thus the anneal time (27.07 s) increased. It is
ecessary to carry out additional research and to further improve
he objective polynomial formulation if possible.

In further investigations, additional aspects for practical
pplication must be integrated into the QUBO formulation. This
ncludes, for example, the consideration of non-productive times
e.g. setup) and shift calendars as well as the extension of the
bjective function by additional optimization objectives. Here, in a
rst step, the capacity utilization is a further target criterion, since
revious investigations of the MK problems show that the same
akespan can be realized at different workload conditions (e.g.

28]). Additionally, a focus will be put on the optimization of the
UBO build time, which has not been considered so far.
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